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Abstract
We study how to achieve the ultimate power in the simplest, yet non-trivial,model of a thermal
machine, namely a two-level quantum system coupled to two thermal baths.Withoutmaking any
prior assumption on the protocol, via optimal control we show that, regardless of themicroscopic
details and of the operatingmode of the thermalmachine, themaximumpower is universally achieved
by a fast Otto-cycle like structure inwhich the controls are rapidly switched between two extremal
values. A closed formula for themaximumpower is derived, andfinite-speed effects are discussed.We
also analyze the associated efficiency atmaximumpower showing that, contrary to universal results
derived in the slow-driving regime, it can approachCarnot’s efficiency, no other universal bounds
being allowed.

1. Introduction

Two thermal baths in contact through aworking fluid that can be externally driven represent the prototypical
setup that has been studied from the origin of thermodynamics up to our days. The energy balance can be
described in terms of three quantities: thework extracted from the fluid and the heat exchangedwith the hot/
cold baths. The fundamental limitations to the inter-conversion of heat intowork stem from the concept of
irreversibility and are at the core of the second law of thermodynamics. Aworkingmedium in contact with two
baths at different temperatures is also significant from a practical point of view, since it is the paradigmbehind
the following specificmachines: the heat engine, the refrigerator [1–4], the thermal accelerator [5], and the
heater [5].

Quantum thermodynamics [6–8] has emerged both as a field of fundamental interest, and as a potential
candidate to improve the performance of thermalmachines [9–23]. The optimal performance of these systems
has been discussedwithin several frameworks and operational assumptions, ranging from low-dissipation and
slow driving regimes[24–28], to shortcuts to adiabaticity approaches [29–32], to endoreversible engines [33, 34].
Several techniques have been developed for the optimal control of two-level systems for achieving a variety of
goals: fromoptimizing the speed [35–37], to generating efficient quantum gates [38, 39], to controlling
dissipation [40, 41], and to optimizing thermodynamic performances [42–47].

The aimof the present paper is tofind the optimal strategy to delivermaximumpower in all four previously
mentionedmachines.We perform this optimization in the simplest, yet non-trivial, model of amachinewhich,
in the spirit of quantum thermodynamics, is based on a two-level quantum system asworkingfluid. As opposed
to current literature, we explicitly carry out the powermaximizationwithoutmaking any assumptions on the
operational regime, nor on the speed of the control parameters, nor on the specific coupling between the
workingfluid and the bath.Wefind that, if the evolution of theworkingmedium is governed by aMarkovian
master equation (MME) [48, 49], the optimal driving takes a universal form: an infinitesimalOtto-cycle-like
structure inwhich the control parametersmust be varied between two extremal values as fast as possible.
This is our firstmain results, described in equation (8). Surprisingly, the optimal solution is achieved in the
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‘fast-driving’ regime, i.e. when the driving frequency is faster than the typical dissipation rate induced by the
baths, which has received little attention in literature [50–52].

By applying our optimal protocol to heat engines and refrigerators, wefind new theoretical bounds on the
efficiency atmaximumpower (EMP).Many upper limits to the EMP, strictly smaller thanCarnot’s efficiency,
have been derived in literature, such as theCurzon–Ahlborn and Schmiedl–Seifert efficiencies. TheCurzon–
Ahlborn efficiency emerges in various specificmodels [53–55], and it has been derived by general arguments
from linear irreversible thermodynamics [56]. The Schmiedl–Seifert efficiency has been proven to be universal
in cyclic Brownian heat engines [57] and for any driven systemoperating in the slow-driving regime [24]. By
studying the efficiency of our system at the ultimate power, i.e. in the fast-driving regime, we prove that there is
no fundamental upper bound to the EMP. Indeed, we show that theCarnot efficiency is reachable atmaximum
power through a suitable engineering of the bath couplings. This is our secondmain results, illustrated in
figures 2(b), (c) andfigure 3. In view of experimental implementations, we assess the impact offinite-time effects
on our optimal protocol, finding that themaximumpower does not decreasemuch if the external driving is not
much slower than the typical dissipation rate induced by the baths [58, 59]. Furthermore, we apply our optimal
protocol to two experimentally accessiblemodels, namely photonic baths coupled to a qubit [22, 60–63] and
electronic leads coupled to a quantumdot [21, 23, 58, 59, 64, 65].

2.Maximumpower

The setupwe consider consists of a two-level quantum systemSwith energy gap ò(t) that can be externally
modulated4. As schematically shown infigure 1(a), the system is placed in thermal contact with two reservoirs,
the hot bathH at inverse temperatureβH and the cold bathC at inverse temperatureβC, respectively
characterized by coupling constantsλH(t) andλC(t) that can bemodulated in time. The system can operate in
four differentmodes: (i) the heat enginemode [E], where S is used to producework by extracting heat fromH
while donating it to C; (ii) the refrigeratormode [R], where S is used to extract heat fromC; (iii) the thermal
acceleratormode [A], where S operates tomove asmuch heat as possible toC; (iv) the heatermode [H], where
we simply use S to deliver asmuch heat as possible to bothH andC. Assuming cyclicmodulation of the controls
(i.e. of ò(t),λH(t) andλC(t))we are interested inmaximizing the corresponding averaged output powers of each
operatingmode, i.e. the quantities

= á ñ + á ñ = á ñ ( )[ ] [ ]P J J P J, , 1E H C R C

= -á ñ = -á ñ - á ñ ( )[ ] [ ]P J P J J, , 2A C H H C

where JH and JC are the instantaneous heatfluxes entering the hot and cold reservoirs respectively, andwhere the
symbol á ñ stands for temporal average over amodulation cycle of the controls. To tackle the problemwe adopt
aMMEapproach [60], namelywewrite

^ ^ ^ ^
 år r r= - +

a
a-

=

[ ] [ ] ( )
t

i
H D

d

d
, , 3

H,C

Figure 1. (a) Schematic representation of the setup. S (gray circle) is externally driven bymodulating the level spacing ò(t) and coupled
with the hot bathH (red box) and the cold bathC (blue box) at inverse temperaturesβH andβC. JH and JC are the heat currents leaving
the baths, whileΓH andΓC are the associated dissipation rates. Depending on the controls the system can operates either as an heat
engine (mode [E]), as a refrigerator (mode [R]), as a thermal accelerator (mode [A]), or as a heater (mode [H]). (b)Representation of
the optimal protocol thatmaximizes the power in the limit dt→ 0; and (c)power inmode [H] for finite values of dtΓnormalized to the
maximumpower.We assume a single bath coupled to S characterized by a dissipation rateΓ(ò) such thatΓ(ò)=Γ(−ò). In this case,
themaximization in equation (8) yields * * = -H C, andΓ in (c) denotes *G( )H .

4
In principle, one can consider a broader family of controls including the possibility of rotating theHamiltonian eigenvectors; however

there is evidence that such an additional freedomdoes not help in two-level systems [45, 46].
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where r̂ is the densitymatrix of the two-level system at time t,  s s+ -
ˆ ≔ ( ) ˆ ˆt its localHamiltonian, and

 å l s s s sG -a a a
=

+  [ ] ≔ ( ) ( ( ))( ˆ ˆ [ ˆ ˆ ] ) ( )( ) † †t t
1

2
, 4

i

i
i i i i

is theGorini–Kossakowski–Sudarshan–Lindblad dissipator [48, 49] associatedwith the bathα=H,C.We have
denotedwith s+ˆ and s-ˆ the raising and lowering operators of S andwith the symbol  [ ], the commutator
(−) and anti-commutator (+) operations. a is characterized by dissipation ratesΓα

(i=±)(ò) and by the
dimensionless coupling constant l Îa ( ) [ ]t 0, 1 that plays the role of a ‘switch’ control parameter. It is worth
noticing that, since   ¢ =[ ˆ ( ) ˆ ( )]t t, 0, theMMEwe employ is valid also in the fast-driving regime, provided
that the correlation time of the bath is the smallest timescale in our problem [66]. Therefore, the fast-driving
regime is characterized by a control frequencywhich is faster than the typical dissipation rate, but slower than
the inverse correlation time of the bath. Furthermore, we assume that theHamiltonain ̂int, describing the
system-bath interaction, is such that its expectation value on theGibbs state of the baths is zero (this is true, for
example, for tunnel-likeHamiltonians, where the number of creation/annihilation operators of the bath
entering ̂int is odd). Such assumption guarantees that nowork is necessary to switch on and off the coupling
between the system and the baths.

Without assigning any specific value to the dissipation rates, we only require them to obey the detailed
balance equation   G G =a a

b+ - - a( ) ( )( ) ( ) e . This ensures that, at constant level spacing ò, the system Swill
evolve into a thermal Gibbs state characterized by an excitation probability




  
G

G + G
=

+
a a

a a
b

+

+ - a
( ) ≔ ( )

( ) ( )
( )( )

( )

( ) ( )p
1

1 e
5

eq

when in contact only with heat bathα. For simplicity, we consider the system to be coupled to one heat bath at
the time, i.e. we assume that l l+ =( ) ( )t t 1H C , and thatλα(t) can take the values 0 or 1. Aswe shall see in the
following, this constraint, aswell as the possibility of controlling the coupling constantsλα(t), is not fundamental
to derive our results, at least for those cases where the effective dissipation rate

  G G + Ga a a
+ -( ) ≔ ( ) ( ) ( )( ) ( ) 6

of each bath is sufficiently peaked around distinct values. The instantaneous heat flux leaving the thermal bathα
can nowbe expressed as [62]

   r l= = - G -a a a a
a[ ˆ [ ˆ ]] ( ) ( ) [ ( )]( ( ) [ ( )])( )J t t t p t p ttr ,

eq

where s s r+ -( ) ≔ [ˆ ˆ ˆ ( )]p t ttr is the probability offinding S in the excited state of at time twhich obeys the
following differential equation

 å l= - G -
a

a a
a

=

( ) ( ) [ ( )]( ( ) [ ( )]) ( )( )

t
p t t t p t p t

d

d
, 7

H,C
eq

according to theMME specified above. By explicit integration of(7)we can hence transform all the terms in
equation (2) into functionals of the controls which can then be optimizedwith respect to all possible choices of
the latter.

As shown in appendix A, wefind that the protocols whichmaximize the average power of afixed physical
setup, i.e. atfixed dissipation rates, are cycles performed in the fast-driving regime, i.e. when the driving
frequency is faster than the typical dissipation rate.More precisely, the optimal cycle is such that ò(t)
instantaneously jumps between two values òH and òC, see figure 1(b), while being in contact, respectively, only
with the hot and cold bath for infinitesimal times τH and τC fulfilling the condition  t t = G G( ) ( )H C C C H H

5.
As inOtto cycles considered in literature (see the extensive literature on this topic, e.g. [10, 12, 20, 67–69]), no
heat is transferred during the jumps and nowork is donewhile the system is in contact with the baths. The
resultingmaximumpower averaged over one period can then be cast into the following compact expression (see
appendix B for details)

   

 


  
=

G G -

G + Gn n
Î


( ) ( )( ( ) ( )

( ( ) ( ) )
( )[ ]

( )

( )

( ) ( )

[ ]P
p p

max , 8max

,

H H C C eq
H

H eq
C

C

H H C C
2

H C

where ν=E, R, A,H and the quantity  n[ ] is given by   = -[ ]E H C,  = -[ ]R C,  =[ ]A C, and
  = -[ ]H C H. In equation (8)  is the range over which the energy gap ò(t) of S is allowed to be varied
according to the possible technical limitations associatedwith the specific implementation of the setup.
Equation (8), which stems from the optimality of the fast-driving regime, is the firstmain result of the present
work.We emphasize that, as opposed to current literature, our closed expression for themaximumpower holds
for any dissipation rate functionΓH/C(ò). In the followingwewill apply our result to specific implementations

5
This particular scaling has been found also in the optimization of endoreversible CarnotHeat engines [9].
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which are relevant experimentally and compute their associated efficiencies atmaximumpower. In particular
we shall consider the case of fermionic (Fn) and bosonic (Bn) bathswith associated effective rates of the form

    bG = G =a a a a a( ) ( ) ( ) ( )( ) ( )k k, coth 2 , 9n nF Bn n

with n�0 integer andwith kα being a coupling strength constant. The fermionic rate (thefirst of equation (9))
for instance can describe two electronic leads, with density of states depending on n, tunnel coupled to a single-
level quantum-dot [64, 70, 71]; the bosonic one instead is applied in the study of two-level atoms in a dispersive
quantum electromagnetic cavity [72].

3.Heat enginemode [E]

It is commonbelief that the efficiency of a heat engine (work extracted over heat absorbed from the hot bathH),
driven atmaximumpower (EMP), should exhibit afinite gapwith respect to theCarnot efficiency
h b b-≔ 1c H C. Indeed, this is corroborated by various results on EMPbounds: theCurzon–Ahlborn EMP

h h- -≔ 1 1CA c emerges in various specificmodels [27, 53, 57], and it has been derived by general
arguments from linear irreversible thermodynamics [56], while the Schmiedl–Seifert EMP h h h-≔ ( )2SS c c

has been proven to be universal for any driven systemoperating in the slow-driving regime [24]. However, the
completely out-of-equilibrium and optimal cycles associatedwith the values ofP(max)

[E] reported in equation (8),
do not fulfill such assumptions. As amatter of fact, by choosing particular ‘energyfiltering’ dissipation rates
Γα(ò) (instead of the regular ones given e.g. in equation (9)), we can produce configurationswhich approach
Carnot’s efficiencywith arbitrary precisionwhile deliveringmaximumpower, proving the lack of any
fundamental bound to the EMP. Before discussing this highly not trivial effect, it is worth analyzing the
performances associatedwith the bathsmodels of equation (9).

We remind that the efficiency of anOtto cycle heat engine working between the internal energies òC and òH is
given by  h = -1 C H. Accordingly, indicatingwith *H and *C the values of the gaps that lead to the
maximumof the rhs termof equation (8), wewrite the EMPof our scheme as

* * * *   h h b b= - = - -( ) ( ) ( )[ ]
( )P 1 1 1 . 10E
max

C H c C C H H

Infigure 2(a)we report the value of η(P(max)
[E] ) obtained from(10) for the rates of equation (9) for n=0, 1. By

a direct comparisonwith ηCA and ηSS, one notices that while the second is always respected by our optimal

Figure 2.EMP for the heat enginemode [η(P(max)
[E] ) of equation (10)], normalized to ηc, as a function of ηc (varied by fixingβH and

sweeping overβC). (a) shows η(P
(max)
[E] ) for the fermionicmodels (F0 and F1) and the bosonicmodels (B0 andB1) of equation (9)

together with the upper bounds ηSS [57] and ηCA [53]. Notice that as h  0c (small baths temperature difference), we have
η(P(max)

[E] );ηc/2+ηc
2/8 as expected. For ηc→1, instead, the value of η( [ ]

( )P E
max ) for themodels F1 andB1 saturates to afinite fraction

of ηc, while the F0 andB0models reachCarnot efficiency. The Fermionicmodel displays a slightly larger η(P(max)
[E] ) than the

corresponding bosonicmodel. In allmodels we consider symmetric leads, i.e. kH=kC.Note that η(P
(max)
[E] )does not depend on the

value of kα. (b) and (c) show η(P(max)
[E] ) computed using Lorentzian filtering rates   gs sG = + -a a a a( ) ( ( ) )/2 2 2 with γ,σ and a¯

positive constants (systemswithmultiple quantum-dots in series [73] e.g. exhibit such dependence). In both panels wefix  =¯ 1C .
(b): we set  =¯ ¯2H C such that we expect to approach ηc at h =¯ 1 2c . Indeed, asσ decreases, η(P(max)

[E] )/ηc approaches one at h =¯ 1 2c .
Conversely, the correspondingmaximumpower decreases: in the inset, whereP(max)

[E] is plotted as a function ofσ for h =¯ 1 2c , we see
that themaximumpower becomes vanishingly small forσ→0. The power is normalized to the its value forσ=0.15, where
P(max)
[E] =0. 0044γβH

−1. (c): At fixedσ=0.01, we show that the EMP can approach ηc at any bath temperature.We choose   =¯ ¯H C

1/0.65, 1/0.5 and 1/0.35, corresponding to h =¯ 0.35c , 0.5 and 0.65. Energies are expressed in units of 1/βH, and the EMPdoes not
depend on γ.
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protocol, thefirst is outperformed at least for the baths F0 andB0, confirming thefindings of [45, 65, 71]. For
small temperature differences between the baths, the EMP can be expanded as a power series in ηc of the form
h h+ + a a .1 c 2 c

2 It has been shown that a1=1/2 is a universal property of lowdissipation heat engines [24]
and, in this context, a2=1/8 is associatedwith symmetric dissipation coefficients. As explicitly discussed in
appendix C, wefind that also our protocol delivers an EMPwith afirst order expansion term a1=1/2 andwith
a second order correction a2=1/8 achieved if we assume that the two leads are symmetric, i.e.  bG =( ),H

 bG ( ),C , or if the rates are constants.
We now turn to the possibility of having h ( )[ ]

( )P E
max arbitrarily close to hc. By a close inspection of the second

identity of equation (10)wenotice that one can have h h( )[ ]
( )P E
max

c for all thosemodels where themaximum

power (see equation (8)) is obtained for values of the gaps fulfilling the condition * * b b»C C H H. Consider hence
a scenariowhere the ratesΓα(òα) are such that the power is vanishingly small for all values of òα except for a
windows of widthσ around a given value a¯ , a configuration that can be used to eliminate the presence of the
activation controlsλα(t) from the problem.Under the assumption of small enoughσ, we expect the
maximization in equation (8) to yield * * b b»C C H H when the inverse temperature ratio is  b b » ¯ ¯C H H C, so
that h h»( )[ ]

( )P E
max

c. This is indeed evident from figures 2(b) and (c), wherewe report the value h ( )[ ]
( )P E
max as a

function of ηc (which represents the temperature of the baths) for rates having a Lorentzian shape dependence:
by decreasing σ, the EMPapproaches Carnot’s efficiency at  h - =¯ ≔ ¯ ¯1 1 2c C H (figure 2(b)), while by
tuning the position of the peak of the Lorentzian rates, the EMP can approachCarnot’s efficiency at any given
bath temperature configuration h̄c (figure 2(c)).We emphasize that even our systemwith Lorentzian shaped
rates would exhibit an EMPbounded by ηSS if operated in the slow-driving regime. The possibility of reaching
Carnot’s EMP is thus a characteristic which emerges thanks to the fast-driving regime. Conversely, asσ
decreases and h h( )[ ]

( )P E
max

c, the correspondingmaximumpower tends to zero (see the inset offigure 2(b)
where themaximumpower, at h =¯ 1 2c , is plotted as a function ofσ).

4. Refrigeratormode [R]

The efficiency of a refrigerator is quantified by the coefficient of performance (COP), i.e. the ratio between the
heat extracted from the cold bath and thework done on the system. For anOtto-cylce theCOP is given by

  = -( )Cop C H C which, by replacing the values *C, *H that lead to themaximum P(max)
[R] of equation (8),

yields an associatedCOP atmaximumpower (CMP) equal to

*
* *

*
*


 




b
b

=
-

= + -
-⎡

⎣⎢
⎤
⎦⎥( )

( )
( ) ( )[ ]

( )/C P C1 1 1 , 11op R
max C

H C

H H

C C
op

c
1

where b b b-- - -≔ ( )( ) /Cop
c

C
1

H
1

C
1 is themaximumCOPdictated by the second law. Remarkably, as in the heat

engine case, we can produce configurationswhich approach ( )Cop
c with arbitrary precisionwhile delivering

maximumpower exploiting the same ‘energy filtering’ dissipation rates. Before discussing this effect we present
some universal properties of the CMP andwe analyze the performance of the bathsmodels of equation (9).

Assuming that the rates depend on the energy and on the temperature through the productβò, i.e.
 bG = Ga a a a a( ) ( ) (e.g. themodels (9) satisfy this hypothesis for n=0, while they do not for n>0), wefind

that theCOP atmaximumpower reduces to the universal family of curves

= + +( ) ( ) ( )[ ]
( ) ( ) ( ) ( )PC C C 1 C C , 12op R

max
op
0

op
c

op
0

op
c

whereCop
(0) represents the COPwhenβH=βC. It thus follows that for thesemodels the knowledge ofCop(P

max
[R] )

at a single bath temperature configuration identifies unambiguously theCOP for all other temperature
differences. This feature is in contrast with the heat enginemode since, under the same hypothesis, the EMP at
arbitrary temperatures depends on the details of the system.

Consider next themaximumpower for themodels described equation (9).Wefind that themaximization in
equation (8) yields *  +¥H (and a finite value of *C), which implies

b= =+ ( ) ( )[ ]
( )

[ ]P c k C P, 0, 13n
n

R
max

C C
1

op R
max

where cn is a dimensionless numberwhich only depends on n for n>0, while it is a function of kH/ kC if n=0
(see appendixD for details). The fact that the correspondingCOP is equal to zero is a direct consequence of the
divergent value of *H: physically itmeans that themaximumcooling power (which isfinite, see equation (13)) is
obtained by performing an infinite work, thus by releasing an infinite amount of heat into the hot bath. In the
more realistic scenariowhere there are limitations on our control of the gaps, say   Da∣ ∣ , the resulting value of
P(max)
[R] will be smaller than in equation (13) but the associatedCOPwill be non-zerowith a scaling that for large

enoughΔ goes as bµ D( ) ( )[ ]PC 1op R
max

C (see appendixD for details). Equation (13) shows that in allmodels the
maximumcooling power only depends on the temperature 1/βC of the cold lead as a simple power law, and it
vanishes as 1/βC→ 0. Intuitively thismakes sense since it is harder to refrigerate a colder bath and at 1/βC=0
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there is no energy to extract from the bath. Furthermore, for n>0 the properties of the hot bath (i.e.
temperature and coupling constant) do not enter theP(max)

[R] formula.
We now return to the possibility of having theCMP arbitrarily close to ( )Cop

c . As in the heat engine case, from

the second equality of equation (11)we see that, if themaximization in equation (8) yields values of *H and *C

such that * * b b»H H C C, then »( )[ ]
( )C P Cop R

max
op

c . Indeed, as we can see infigure 3, we are able to have a CMP

close to ( )Cop
c at any desired temperature configuration ¯ ( )Cop

c by considering appropriately tuned Lorentzian rates
(described infigure 2).

5. Thermal accelerator [A] andheater [H]modes

For the physicalmodels described in equation (9) it turns out that in order tomaximize the heat entering the cold
bath, it ismore convenient to release heat into both baths (JH, JC<0), rather than extracting heat from the hot
bathH and releasing it into the cold bath (JH>0, JC<0). The thermal acceleratormode [A] thus appears to be
useless if we are just interested inmaximizing the heat delivered to the cold bath. Accordingly, in the following
we shall focus on the heater [H]mode onlywith a single bath (or equivalently with two baths at the same
temperature). Assuming to have some physical limit   D∣ ∣ on thewaywe can control the gap, from
equation (8)wefind

b
=

D
´

D+
⎧
⎨⎪
⎩⎪

( )

( )
( )[ ]

( )P
k F

B2

tanh
2

, model ,

1, model ,
14

n
n

n

H
max

1

where k is the coupling constant appearing in equation (9). Equation (14) shows that themaximumpower
diverges asD  +¥, the exponent ofΔ depending on the density of states associatedwith the rates.
Interestingly, themaximumpower that can be delivered to the bath vanishes for high temperatures (βΔ=1) in
the fermionicmodels, while it isfinite and insensitive to temperature in the bosonicmodels. This is due to the
peculiar rates of the bosonicmodels which diverge for b  1. On the contrary, for low temperatures
(bD  1) bothmodels yield the same value ofP[H]

(max).

6. Finite-time corrections

The derivation of ourmain equation (8)was obtained under the implicit assumption that one could implement
infinitesimal control cycles. Yet this hypothesis is not as crucial as itmay appear. Indeed the feasibility of an
infinitesimalOtto cycle relies on the ability of performing a very fast drivingwith respect to the typical time
scales of the dynamics, a regime that can be achieved in several experimental setups [58, 59]. Furthermore by
taking the square-wave protocol shown infigure 1(b) characterized by finite time intervals τH and τC still
fulfilling the ratio  t t = G G( ) ( )H C C C H H , wefind that, at leading order in dt, themaximumpower

n ( )[ ]
( )P tdmax only different from the ideal value n[ ]

( )P max of equation (8) by a quadratic correction, i.e. »n ( )[ ]
( )P tdmax

- G G n
 ( ) [ ]

( )t P1 d 12H C
2 max , where G = GGa a ( )1 2, G = G G G + G ( )H C H C

2, and all rates are computed for òH
and òC thatmaximize equation (8). Besides, even in the regimewhere G G  t td , d 1H C , n ( )[ ]

( )P tdmax can be shown

(see appendix B for details) to only decrease as G + G- - ( ) ( )t td 2 d 2H
1

C
1, implying that a considerable fraction

Figure 3. ( )[ ]
( )C Pop R
max as a function ofCop

(c) (varied by fixingβH and sweeping overβC), computed using the same Lorentzian filtering
rates discussed infigure 2. Fixingσ=0.01 and  =¯ 1C as in figure 2(c), we choose   =¯ ¯ 7 5H C , 6/5 and 17/15, corresponding to
bath temperature configurations =¯ ( )C 2.5op

c , 5 and 7.5. Energies are expressed in units of 1/βH and theCMPdoes not depend on γ.
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of n[ ]
( )P max can still be achieved also in this case (e.g. seefigure 1(c)wherewe report the dt dependence of ( )[ ]

( )P tdH
max

in the heatermode). On the contrary deviations from equation (8) due tofinite time corrections in the quenches
turns out to bemore relevant. These last are first order in the ration between the duration of the quench (now
different from0) and the period of the protocol dt (see appendix B for details).

7. Conclusions

Weproved that a cycle switching between two extremal values in the fast-driving regime achieves universally the
maximumpower and themaximum cooling rate (respectively for aworkingmediumoperating as a heat engine
or as a refrigerator), regardless of the specific dissipation rates, andwe found a general expression for the external
control during the cycle. The power advantage ofmodulating the control fields with rapid adiabatic
transformations has been observed in the literature [51, 68, 74] for some specificmodel and this intuition is in
agreementwith our general results.We also found that thefirst coefficient of the expansion in power of ηC of the
EMP is universal while the second one is linked to the symmetry of the dissipation coefficients. This paper
enlights that the featuresmentioned above are valid also strongly out of equilibrium, while already proven in low
dissipation [64] and steady state [3] heat engines. If the bath spectral densities can be suitably tailored through
energyfilters (as for instance in [73]) our protocol allows to reach theCarnot bound atmaximumpower both
operating as a heat engine or refrigerator, although at the cost of a vanishing power. This observation proves the
lack of universal upper bounds to the EMP. Finally, a new scaling for theCOPof a bathwith flat spectral density
is shown and a clear dependence of the EMP and theCOP atmaximumpower on the spectral densities of the
two thermal baths is established. The results are discussed in detail for some specificmodels, from flat bosonic
and fermionic baths to environments withmore complicated spectral densities, and finite driving speed effects
are analyzed.
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AppendixA.Optimality of infinitesimalOtto cycles

In this appendixwe present explicit proof that infinitesimalOtto cycles are optimal for reachingmaximum
power performances for our two-level setting. As a preliminary result we clarify that under periodicmodulations
of the control parameters, themaster equation (equation (4) of themain text) produces solutionswhich
asymptotically are also periodic. For this purpose let uswrite equation (4) of themain text as

= + ( ) ( ) ( ) ( )p t A t p t B t where, for ease of notation, we introduced the functions

  å ål l= - G = G
a

a a
a

a a
a

= =

( ) ( ) [ ( )] ( ) ( ) [ ( )] [ ( )] ( )( )A t t t B t t t p t, , A.1
H,C H,C

eq

and consider periodical driving forces such thatA(t+τ)=A(t),B(t+τ)=B(t) for all t. By explicitly
integrationwe get

ò ò ò= ¢ ¢ +  ¢ ¢
¢( ) ( ) ( ) ( )( ) ( )p t B t t pe d e 0 . A.2

t
A t t A t t

0

d d
t

t t

0

Decompose then the integral on the right-hand side as

ò ò òò ò ò ò¢ ¢ = ¢ ¢ + ¢ ¢
t

t 

-

  -    
t

t¢ ¢ ¢

-

-( ) ( ) ( ) ( )( ) ( ) ( ) ( )B t t B t t B t te d e d e e d . A.3
t

A t t

t

t
A t t

t
A t t A t t

0

d d

0

d d
t

t

t

t

t

t

t

t

Notice now that, sinceA(t) andB(t) are periodic, the quantity ò= ¢ ¢ò
t-

 
¢( ) ( )( )c t B t te d

t

t A t td
t

t

is also periodic

with period τ, while = ò  
t-

( )d e A t dt
t

t

is constant in time. Substituting the previous definitions in equation (A.3)
and then in equation (A.2)we find

ò ò ò= + ¢ ¢ +
t-   ¢ ¢

t

¢

-

( ) ( ) ( ) ( ) ( )( ) ( )p t c t d B t t pe d e 0 . A.4
t

A t t A t t

0

d d
t

t t

0

In the asymptotic limit where the initial condition p(0) has been completely forgotten (sinceA(t)�0 at all
times, the contribution of the initial condition decays exponentially), equation (A.2) gives
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ò òt- » ¢ ¢
t-  

t

¢

-

( ) ( ) ( )( )p t B t te d , A.5
t

A t t

0

d
t

t

which substituted in equation (A.4) allows us towrite

t» + -( ) ( ) ( ) ( )p t c t dp t , A.6

wherewe neglected again the contribution coming from the initial condition. Equation (A.6)defines a recursive
succession, with limit point equal to c(t)/(1− d), the periodicity of c(t) concludes the proof. This result can also
be framed in the general context of Floquet theory [75]. The Floquet theorem states that a fundamentalmatrix
solution of afirst order differential equationwith periodically driven coefficients is quasi-periodical, namely can
bewritten as y(t)=P(t)eMtwhere P(t) is a periodicmatrix function (with the same period of the coefficients)
and eMt is the so calledmonodromymatrix. The real parts of the eigenvalues ofM are responsible of the
asymptotic behavior of the solutions and are known as Lyapunov exponents, a stable cyclic solution is
characterized by their negativity. In the case of equation (4) of themain text, our calculations reveal that the
monodromymatrix is given by the constant d, the sign of the Lyapunov exponent is given by <dlog 0,
confirming our predictions about the stability.

In the above paragraphwe showed that the asymptotic solution of equation (4) of themain text is periodic
with the same period of the external driving ò(t). Notice that in the equilibrium scenario the previous result is
trivial, since the population instantly relaxes to theGibbs state that is amonotonic function of the control
parameter ò. In our casewe can establish only that p(t) and ò(t) share the same period, although finding the
proper functional relation between the two is absolutely non-trivial (see for example [43]). Howeverwe don’t
need any additional information to prove that any cycle that is not infinitesimal, namely a square wave protocol
inwhich the controls jump at a timemuch faster that the typical dynamical scaleΓ, cannot achieve the
maximumpower. The proof is outlined in the following: since ò(t) and p(t) share the same periodicity, a cycle can
be represented in the (p, ò) plane as a closed curve. Let us suppose that the optimal cycle  is not infinitesimal,
for example as infigure A1. Thus, it is possible to perform an instantaneous quench, for example, in themiddle
(where the probability is halfway between theminimumandmaximumvalue), and divide the transformation in
two smaller sub-cycles 1 and 2 (see figure A1). Since the quenches are instantaneous, they do not contribute to
the heat exchanged and to the time duration of the process. Furthermore, performing the two sub-cycles in
series effectively builds a transformationwith the same average power of the original cycle, a property that in
symbols we can exemplify as   =( ) ( ◦ )P P 1 2 . Simple calculations reveal that the power of the single sub-
cycles cannot be both greater or smaller than the power of the original one, thuswe are left with two possibilities,
    ( ) ( ◦ ) ( )P P P1 1 2 2 or     ( ) ( ◦ ) ( )P P P2 1 2 1 . In both cases the original cycle is sub-optimal,

that is absurd, unless    = =( ) ( ◦ ) ( )P P P1 1 2 2 but even in this case we can choose one of the two sub-cycles
still preserving optimality.

The previous argument shows that the only candidates for powermaximization are those cycles that cannot
be dividedwith a quench as done in the above proof, thus being infinitesimal. Notice that the previous proof
strongly relies on the possibility of performing effectively instantaneous quenches, a characteristic that is better
analyzed in the next appendix. At last, by using Pontryagin’sminimumprinciple, it can be shown that if coupling
constantsλH(t) andλC(t) fulfill a ‘trade-off relation’ (i.e. if one increases, the other one decreases), then the

Figure A1.The original cycle is represented by a black line following a closed path in the (p, ò) plane. The two sub-cycles are the
portions of the original one enclosed in the light red and in the light blue squares, respectively denotedwith 1 and 2.
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optimal cycle will haveλC(t)=0 andλH(t)=1, orλC(t)=0 andλH(t)=1 at all times [43]. This implies that
the coupling to the bathsmust be switched during the quenches of the infinitesimalOtto-cycle.

Appendix B.Maximumpower formula andfinite-time corrections

In this appendixwe prove equation (5) of themain text and discuss the finite-time corrections.
As as shown in the previous appendix, the optimal cyclemust be an infinitesimalOtto cycle, sowe consider a

protocol (depicted infigure 1(b) of themain text)where ò(t)=òH,λH=1 andλC=0 for tä[0, τH], and
ò(t)=òC,λH=0 andλC=1 for t t tÎ +[ ]t ,H H C . The optimal cycle and corresponding powerwill then be
found by taking the limit t t= + td 0H C andmaximizing over the free parameters òH, òC and t tH C.

We proceed the followingway:first we perform an exact calculation, for arbitrary τH and τC, of the heat rates
á ñJH , á ñJC , averaged over one period, flowing out of the hot and cold bath respectively. Then, in the limit td 0,
wefind the ratio τH/τC thatmaximizes the power andwefind the corresponding expression of themaximum
power, proving equation (5) of themain text and the optimal ratio condition

 t t = G G( ) ( ) ( ). B.1H C C C H H

The instantaneous heat currents can bewritten in terms of the probability p(t) by plugging the solution of
equation (4) of themain text into equation (3) of themain text.We denotedwith pH(t) and pC(t) the solution of
equation (4) of themain text respectively in the time intervals  t= [ ]0,H H and  t t t= +[ ],C H H C . Since the
control parameters (i.e. ò(t),λH(t) andλC(t)) are constant in each interval, we have that

= + = +-G -G( ) ( ) ( )( ) ( )p t H p p t C pe , e , B.2t t
H eq

H
C eq

CH C

whereH andC are two constants andwhere, for ease of notation, we introduced the symbols G Ga a a≔ ( ) and
a a
a≔ ( )( ) ( )p peq eq (for a = H, C).We determine the two constantsH andC by imposing that the probability p(t)

is continuous in t=τH, i.e.

t t=( ) ( ) ( )p p B.3H H C H

and that p(t) is periodic with period τH+τC, i.e.

t t= +( ) ( ) ( )p p0 . B.4H C H C

We impose periodic boundary conditions because, as discussed in the previous appendix, a periodic protocol
produces a periodic p(t) after an initial transient time, andwe are indeed interested in the ‘asymptotic’ regime.
Equations (B.3) and (B.4) reduce to the following linear-algebra problem for the constantsH andC:

-
-

-
=

t t

t t

-G -G

-G +

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )( ) ( ) ( )p p

H
C

1 e e
1 e

1
1

, B.5
C H

eq eq

H H C H

C H C

with solution

t t
t

t
=

-

G + G
G

- G

t

t t

G

G G

⎛
⎝⎜

⎞
⎠⎟( ) ( )

[( ) ]
( )

( )
( )

( ) ( )p pH
C sinh 2

e sinh 2

e e sinh 2
, B.6

eq
C

eq
H

H H C C

2
C C

2
H H

H H

C H C C

which, via equation (B.2), completely determine p(t). By substituting equation (B.2) into equation (3) of the
main text, we canwrite the averaged heat rates á ñJH and á ñJC as

 

 
 

 

ò ò

ò ò
t t t t t t

t t t t t t

á ñ
+

=
+

=
+

-

á ñ
+

=
+

=
+

-

t

t t

-G

-G -G





≔ [ ]

≔ [ ] ( )

J J t p t

J J t p t

1
d d

H
e 1 ,

1
d d

C
e e 1 , B.7

H
H C

H
H

H C
H

H

H C

C
H C

C
C

H C
C

C

H C

H H

H H

C C

C H C C

wherewe use the fact that ò(t) is constant in each a and the fact that, since the two-level system is coupled to one
bath at a time, =a p pwith p(t)=pH(t) during H and p(t)=pC(t) during C. Using the expressions forH and
C given in equation (B.6), we can rewrite equation (B.7) as


t t

t t
t t

t t
t t

á ñ = 
+

G G
G + G

-
G + G
G + G

- -
( ) ( ) ( )

( ) ( )
( )( ) ( )J p p

2 2

coth 2 coth 2
. B.8H C

H C

H C

H H C C

H H C C
eq

H
eq

C H H
1

C C
1

H H C C

Wenow impose that dt=τH+τC by setting τH=θdt and τC=(1−θ)dt, for q Î [ ]0, 1 , in equation (B.8).
Taking hence the infinitesimal cycle limit td 0 we get

 q q
q q

á ñ = 
G G -

G + G -
-

( )
( )

( ) ( )( ) ( )J p p
1

1
. B.9H C H C

H C

H C
eq

H
eq

C
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Themaximization over θ of the above expression yields the condition

q
q-

=
G
G

( )
1

, B.10C

H

which,multiplying by dt the numerator and the denominator of the left-hand side of equation (B.10), proves
equation (B.1). Solving hence equation (B.10) for θ and plugging the result into equation (B.9) yields

á ñ = 
G G

G + G
-

( )
( ) ( )( ) ( )J p p , B.11H C H C

H C

H C
2 eq

H
eq

C

which replaced into equation (1) of themain text, andmaximizingwith respect to the only two free parameters
left, i.e. òH and òC, allows us to derive equation (5) of themain text for all four thermalmachinemodes. An
additional comment has to bemade for the acceleratormode [A], that aims atmaximizing the heat released
into the cold bathwhile extracting heat from the hot bath. By definition, wemust restrict themaximization
in equation (5) of themain text to guarantee á ñJ 0H , e.g. by forcing  to be    b bÇ È( )0H C C H H

   b bÇ( )0H C C H H . On the other hand, the heatermode consists of heating a single reservoir whose
interactionwith the two-level system is described by a rateΓ(ò) and equilibriumprobability peq(ò). So in this case
themaximizationmust be performed takingΓα(ò)=Γ(ò) and  =a ( ) ( )( )p peq eq (forα=H,C). If we also
require thatΓ(ò)=Γ(−ò), which physicallymeans that the rates do not distinguish which one of the two energy
levels is the ground and excited state, wefind that equation (5) can be simplified to

  
  

= G -
Î

( )[ ( )] ( )[ ]
( )P pmax

1

2
1 2 , B.12H

max

0,
eq

and the corresponding optimal cycle is given by anOtto cycle where τH=τC and the value ò thatmaximizes
equation (B.12) determines òH=−òC=ò . Thus the optimal cycle in the heater case corresponds to attempting
continuous population inversions.

B.1. Finite-time corrections part one
Setting τH=θdt and τC=(1−θ)dt in equation (B.8), and plugging in the expression of θ that satisfies
equation (B.10), wefind that the average heat rate for an arbitrary period dt is given by

á ñ = 
G G

G + G
-

G + G
G + G

- - 
 ( )

( )
( ) ( ) ( )

( ) ( )
( )( ) ( )J t p p

t t

t t
d

d 2 d 2

coth d 2 coth d 2
, B.13H C H C

H C

H C
2 eq

H
eq

C H
1

C
1

H C

where G = GGa a ( )1 2 and G = G G G + G ( )H C H C
2. Plugging this results into equation (1) of themain text

andmaximizing over òH and òC yields the expression

=
G + G
G + Gn n

- - 
 ( ) ( ) ( )

( ) ( )
( )[ ]

( )
[ ]
( )P t

t t

t t
Pd

d 2 d 2

coth d 2 coth d 2
, B.14max H

1
C

1

H C

max

which provides thefinite time version of equation (5) of themain text. On one hand, as anticipated in themain
text, by expanding equation (B.14) for small dt, wefind the following quadratic correction

» - G Gn n
 ( ) ( ) ( )[ ]

( )
[ ]
( )P t t Pd 1 d 12 . B.15max

H C
2 max

On the other hand for G G
~

 t t, d 1H C , we get

»
G + G

n n

- - 
( ) ( ) ( ) ( )[ ]

( )
[ ]
( )P t

t t
Pd

d 2 d 2

2
, B.16H Cmax

1 1
max

implying that a considerable fraction of P(max)
[ν] can be achieved even if the driving frequency is slower than the

typical rate. Notice that equation (B.14) is a strictly decreasing function of dt; this is consistent with the fact that
an infinitesimal cycle is indeed the optimal solution.

We conclude by observing that we can simplify equation (B.14) for the heatermodewhere a single reservoir
is coupled to the two-level system.Under the hypothesis leading to equation (B.12), wefind that

=
G

G
( ) ( ) ( )[ ]

( )
[ ]
( )P t

t

t
Pd

tanh d 4

d 4
, B.17H

max
H
max

whereΓ is computed in the value of ò thatmaximizes equation (B.12). Figure 1(c) of themain text, which is a plot
of equation (B.17), shows that »( )[ ]

( )
[ ]
( )P t PdH

max
H
max up to dtΓ≈2, while for G = td 10 1, ( )[ ]

( )P tdH
max is only

decreased of a factor two.

B.2. Finite-time corrections part two: the quenches
Finite-time corrections to the powermay not only arise from the finite duration of the isothermal
transformations (i.e. from afinite value of τC and τH), but also from afinite duration τ of the quenches, i.e. of the
transformations duringwhich ò changes between the two extremal values òC and òH.Wewill thus assume that
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each quench is carried out in a time τ. The aimof this appendix is to showhow these effects could be accounted
for, and to estimate the leading order corrections to themaximumpower delivered by the heat engine due to this
effect; analogous considerations hold also for the othermachines.Wewill thus restrict ourself to the regime
t g- td 1, where dt=τC+τH and γ is the characteristic rate of the systemduring the protocol. Thefirst
inequality states that the duration of the quenches ismuch smaller than the duration of the isothermal
transformations. The second inequality implies that the finite-time corrections discussed in the previous
subsection are neglected, since they have been previously discussed.

Using the results of appendix A, we know that p(t) has a limit cycle with the same period of ò(t). If we further
assume that the protocol ismuch faster than γ, the probability tends to afixed value p̄ given by

ò

ò
=

G

G
¯

( ) ( )

( )
( )p

s s p s

s s

d

d
, B.18

T

T
0 eq

0

whereT=dt+2τ is the total duration of the protocol,  l lG = G + G( ) ( ) [ ( )] ( ) [ ( )]s s s s sH H C C and

   

 

l l

l l
=

G + G

G + G
( )

( ) [ ( )] [ ( )] ( ) [ ( )] [ ( )]

( ) [ ( )] ( ) [ ( )]
( )

( ) ( )

p s
s s p s s s p s

s s s s
. B.19eq

H H eq
H

C C eq
C

H H C C

By using again the hypothesis that the protocol ismuch faster than γ, we canwrite the power of the heat engine,
averaged over one period, as

òl = G -( ) ( ) ( )[ ( ) ¯ ] ( )[ ]P
T

s s s p s p
1

d . B.20
T

E
0

eq

As in the ideal protocol (see figure 1(b) of themain text), wewill assume that during the two isothermal
transformationswe respectively have ò(s)=òH,λH(s)=1,λC(s)=0 and ò(s)=òC,λH(s)=0,λC(s)=1. This
means that we are coupled to one bath at a time. Instead, during the quencheswe assume that all three control
parameters (ò(s),λH(s) andλC(s)) vary linearly in time between the corresponding extremal values.We thus
divide the integral in equation (B.20) in the four different transformations:

   

ò ò ò ò
t

t

t

=
+ + +

+

º
+ + +

+

t

t

t t

t t

t t t

t t t

t t t+

+

+ +

+ +

+ +

 

( )
( ) ( ) ( ) ( )

( )

[ ]P
t

t

... ... ... ...

d 2

d 2
, B.21

E
0

2

H H C C C H

H

H

H

H

H C

H C

H C

where ( )... stands for  G -( ) ( )[ ( ) ¯]s s s p s pd eq . In the regimewe consider the power, up to leading order
corrections in τ/dt, can bewritten as

   
t

t
=

+
- +

+ ⎜ ⎟⎛
⎝

⎞
⎠( ) ( )[ ]P

t t td
1

2

d d
, B.22E

H C H C C H

where thefirst addend is obtained bymeans of afirst order expansion in τ/dt of the denominator in the rhs of
equation (B.21).

Wewish to compare equation (B.22) to the power [ ]
( )P E
max achieved in the ideal protocol, sowewill estimate

the four termsH,C, H C and C H. First, we notice that p̄ depends on thewhole protocol, see
equation (B.18).We can thuswrite

d= +¯ ¯ ¯ ( )( ) ( )p p p , B.230 1

where ¯( )p 0 is the value of p̄ in the ideal protocol, and d ¯( )p 1 the corrections due to the finite-time quenches. These
two terms can be calculated simply by dividing the integrals in the definition of p̄ as we did forP[E](τ). It is easy to
see that d ¯( )p 1 is of the order τ/dt. SinceH andC are linear functions of p̄, and d= +¯ ¯ ¯( ) ( )p p p0 1 , we have
that, forα=H,C

    t= G - = +a a a a a
a

a a a( )[ ( ) ¯ ] ( )( ) ( ) ( )p p , B.24
eq

0 1

wherea
( )0 is thework extracted in the ideal protocol during the isothermal transformation, whilea

( )1

represents the corrections due to the variation in population p̄ induced by thefinite-time quenches.We have
that

   t d gt= - G µa a a a a a( ) ¯ ( ) ( )( ) ( )p O , B.251 1

where the last termmeans thata
( )1 is of the order γτ.

Next, we need to estimate H C and C H. By inspecting the definition, we see that

  gt= µ á ñ  ( ) ( )O , B.26H C C H

where á ñ is a characteristic value of the energy gap during the quench.
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Nowwe can return to equation (B.22). Using equations (B.24)–(B.26), and noticing that the order of
magnitude of g á ñ is the same as [ ]

( )P E
max , wefind that all the corrections previously discussed are of the order

γ/dt.We thus conclude that

t t= -( ) [ ( )] ( )[ ] [ ]
( )P P O t1 d , B.27E E
max

where the correctionsmust be negative by virtue of the theoremproved in appendix A. The impact offinite time
quenches is thus first order τ/dt.

AppendixC. Efficiency atmaximumpower

For small temperature differences, i.e. for small values of ηc, we can consider an expansion of the EMPof the
kind

h h h= + +( ) ( )[ ]P a a .... C.1E 1 c 2 c
2

In this appendixwe prove that a1=1/2, while for symmetric or constant rates we further have a2=1/8. The
maximumpower of a heat engine (without constraints on the control parameters) can bewritten as (see
equation (5) of themain text)

= ( ) ( )[ ]
( )

( )
[ ]P P x xmax , , C.2

x x
E
max

,
E H C

H C

where

h
b

h- - -( ) ≔
( )

[ ( )][ ( ) ( )] ( )[ ]P x x
g x x

x x f x f x,
, ;

1 , C.3E H C
H C c

H
H C c H C

 b=a a ax (forα=H,C), + -( ) ≔ [ ( )]f x x1 exp 1 and, expressing theΓα as a function of the gap ò and of the
inverse temperatureβα of leadα

h
b b h

b b h

G G -

G + G -
( ) ≔

( ) ( ( ))
( ( ) ( ( )) )

( )g x x
x x

x x
, ;

, , 1

, , 1
. C.4H C c

H H H C C H c

H H H C C H c
2

In equation (C.4)wedecide to expressβC asβH/(1−ηc) becausewe are interested in performing an expansion
in ηc around a single inverse temperatureβH. Let *xH and *xC be respectively the values of xH and xC thatmaximize
P[E](xH, xC). By inspecting equations (C.3) and (C.4), we see that *ax is a function of ηc (and ofβH through g), so
we can express *ax as a power series in ηc:

*

*

h h

h h

= + + +

= + + + ( )

x m m m

x m n n

...,

.... C.5

H 0 1 c 2 c
2

C 0 1 c 2 c
2

Both *xH and *xC have the same leading order term. This can be seen considering equation (C.3) at ηc=0:
b( )g x x, ; 0 0H C H , while - -[ ][ ( ) ( )]x x f x f x 0H C H C , so themaximumpower is zero (at equal

temperatures, the second law forbids the possibility of extractingwork). Inspecting equation (C.3), it is easy to
see that zero power at ηc=0 implies xH=xC.Using equation (7) of themain text, we have that

*
*

h h= - -( ) ( ) ( )[ ]
( )P

x

x
1 1 , C.6E

max C

H
c

so plugging equation (C.5) into (C.6) and expressing η(P[E]
(max)) as a power series in ηc, wefind that

h h h= + + +( ) ( ) ( ) ( )[ ]
( )P b b1

1

2
1 , C.7E

max
1 c 2 c

2

where

=
-

= +
-

b
m n

m
b

m

m

m n

m
, 2 .1

1 1

0
2

1

0

2 2

0

Thus, the knowledge of b1 and b2 implies also the knowledge of a1 and a2. Also themaximumpower * *( )[ ]P x x,E H C

can bewritten as a power series in ηc by plugging the expansion equation (C.5) into (C.3). This yields

* * åb
h=

=

+¥

( ) ( )[ ] [ ]
( )P x x P,

1
, C.8

n

n n
E H C

H 0
E c

where the coefficients P[E]
(n) are functions ofmi, ni (for =i 0, 1, 2 ,...) and ofβH.Wenowwish to determine b1

and b2 bymaximizing P[E]
(n), starting from the lowest orders.Wefind that = =[ ]

( )
[ ]
( )P P 0E

0
E
1 and
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= -
+

+

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )[ ]
( )P

b b m g m m

m

1

2

, ; 0

1 cosh
, C.9E

2 1 1 0
2

0 0

0

wherewe expressed n1 in terms of b1. The last fraction in equation (C.9) is positive, soP[E]
(2) ismaximized by

choosing b1 thatmaximizes the term in square brackets, andm0 thatmaximizes the last fraction. The
maximization of the first term yields b1=−1/2, which readily implies (see equation (C.7)) a1=1/2, as we
wanted to prove. Themaximization of the second term allows us tofind the following implicit expression form0

- + ¶ + ¶ =⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) [ ( ) ( )] ( )g m m m

m
m g m m g m m, ; 0 2 tanh

2
, ; 0 , ; 0 0, C.10x x0 0 0

0
0 0 0 0 0H C

where ¶ a ( )g m m, ; 0x 0 0 denotes the partial derivative of g(xH, xC; ηc), respect to xα, calculated in xH=xC=m0

and ηc=0. In order to compute b2, wemustmaximize also higher order terms of the power. It turns out that
P[E]
(3) only depends onm0 if we impose that b1=−1/2 and thatm0 satisfies equation (C.10). Thus, there is

nothing to optimize, sowemust analyze the next order. P[E]
(4) is a function ofm0,m1, n1,m2, n2 andβC.Wewrite

m1 in terms of b2, which is the only coefficient that determines a2.We further express n1 in terms of b1, and
impose b1=−1/2. At last, wewrite g(m0,m0; 0) in terms of its partial derivatives using equation (C.10). This
leads to an expression ofP[E]

(4) as a function ofm0 (which is implicitly known), b2,m2, n2 andβH.Wemaximize
P[E]
(4) by setting to zero both partial derivatives ofP[E]

(4) respect to b2 andm2.We thusfind the following expression
for b2:

=
¶ - ¶
¶ + ¶

-
¶ + ¶
¶ + ¶

( )
·

( )
( )b

m g g

g g

g g

g g

tanh

8

2

2
, C.11

m

x x

x x

x x

x x
2

0 2
0

H C

H C

H C

H C

where all partial derivatives of g are computed in xH=xC=m0 and ηc=0. This is, in principle, a closed
expression for b2, thus for a2, sincem0 is defined in equation (C.10), and equation (C.11) only depends onm0.
Equation (C.11) shows that in general b2, thus a2, will depend on the specific rates. However, if ¶ = ¶g gx xH C

, the
first term in equation (C.11) vanishes, while the second one reduces to a number, yielding b2=−3/4. Indeed,
plugging this value of b2 into equation (C.7) yields precisely a2=1/8.We conclude the proof by noticing that if
the rates are symmetric, i.e.  b bG = G( ) ( ), ,H C , ( )g x x, ; 0H C is a symmetric function upon exchange of xH
and xC. This implies that ¶ = ¶( ) ( )g m m g m m, ; 0 , ; 0x x0 0 0 0H C

, so a2=1/8. At last, if the rates are constants,
also g(xH, xC; ηc) is constant, trivially satisfying ¶ = ¶ =g g 0x xH C

.

AppendixD. COP atmaximumpower

In this appendixwe prove equations (9) and (10) of themain text andwe derive the scaling of theCOP at
maximumpower for large values of themaximumgapΔ given by bµ D( ) ( )[ ]C P 1op R

max
C . TheCOP at

maximumpower can bewritten as (see equation (8) of themain text)

*
* *


 
=

-
( ) ( )[ ]C P , D.1op R

max C

H C

where *H and *C are respectively the values of òH and òC thatmaximize (see equation (5) of themain text)

      b b- -( ) ≔ ( ) [ ( ) ( )] ( )[ ]P g f f, , , D.2R H C H C C H H C C

where + -( ) ≔ [ ( )]f x x1 exp 1 and

   
 
G G

G + G
( ) ≔ ( ) ( )

( ( ) ( ) )
( )g , . D.3H C

H H C C

H H C C
2

Wefirst prove that the COP atmaximumpower takes the universal formof equation (9) of themain text if
the rates depend on the energy and on the temperature only throughβò, i.e.  bG = Ga a a a( ) ( ).We rewrite
equation (D.1) as a function of * *b=a a ax (forα=H,C):

*
*

= + -

-⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥( ) ( )[ ] ( )C P

x

x C

1
1 1 , D.4op R

max H

C op
c

1

whereCop
(c) is theCarnot COP for a refrigerator (seemain text).We can determine *ax bymaximizing

b
-

G G
G + G

-( ) ≔ ( ) ( )
( ( ) ( ) )

[ ( ) ( )] ( )[ ]P x x
x x

x x
x f x f x,

1
. D.5R H C

C

H H C C

H H C C
2 C H C

Crucially, given our hypothesis on the rates, there is no explicit dependence on the temperatures in
equation (D.5) (except for the prefactor 1/βC), so themaximization of P[R](xH, xC)will simply yield two values of
*xH and *xC that do not depend on the temperatures. Thus, for all bath temperatures theCOP atmaximumpower

will be given by equation (D.4), where *xH and *xC are twofixed values. The ratio *xH/ x
*
Cwill depend on the
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specific rates we consider. By imposing in equation (D.4) that theCOP atmaximumpower of the system for
βH=βC (i.e. for  ¥( )Cop

c ) isCop
(0), we can eliminate the ratio *xH/ x

*
C in favor ofCop

(0), concluding the proof of
equation (9) of themain text.

We nowprove equation (10) of themain text. Since equation (D.2) remains unchanged by sending both
  -H H and   -C C, we can assumewithout loss of generality that   0C (this is a general property
which applies independently of the specific choice of bathmodels). Furthermore, wemust ensure that the
system is acting as a refrigerator by imposing   ( )[ ]P , 0R H C . This implies that  b b( ) ( )f fH H C C , thus

  b b ( )0 . D.6C C H H

Wenow show that in themodels described by equation (6) of themain text, the partial derivative of  ( )[ ]P ,R H C

respect to òH is non-negative for all values of òH and òC satisfying equation (D.6), which implies that *  +¥H .
Using equation (D.6), the condition    ¶ ¶( )[ ]P , 0R H C H can bewritten as


 


 b

b
¶

¶
-

+
( )

[ ( )]
( )gln ,

2 1 cosh
. D.7

H
H C

H

H H

Since   ¶ ¶( )gln ,H C H has the same sign as  G ( )d dH H H, and since the rhs of equation (D.7) is strictly
negative, equation (D.7) is certainly satisfiedwheneverΓH(òH) is a growing function. This proves that
*  +¥H when the baths are described by the Fnmodel (see equation (6) of themain text) evenwhen the two
baths have different powers n. TheBnmodel ismore tricky to analyze since the rates are decreasing functions
around the origin. Nonetheless, using equation (D.6) it is possible to show that equation (D.7) is satisfied also in
theBnmodel by plugging Ga

( )Bn (ò) (see equation (6) of themain text) into equation (D.7). This result holds also
when the two baths have different powers n.

We nowknow that *  +¥H in the Fn andBnmodels. Since both G ( )( )F
H

n and G ( )( )B
H

n diverge for n>0
when *  +¥H , we have that

   b
b

+¥ = G = =( ) ( ) ( ) ( ) ( )g k h k
x

h x, , D.8n
n

nC C C C C C C C
C

C
C

where, as before, b=xC C C and h(x)≔1 for the Fnmodel and ( ) ≔h x xcoth 2 for theBnmodel (see
equation (6) of themain text). Thus, using xC instead of òC, and noting that  b( )f H H vanishes for   +¥H ,
we canwrite +¥( )[ ]P ,R C [see equation (D.2)] as

b
=>

+
+ ( ) ( ) ( )[ ]

( )P
k

x h x f x . D.9n
n

n
R

0 C

C
1 C

1
C C

Equation (D.9) is non-negarive for all values of xC and it vanishes in xC=0 and  +¥xC thanks to the
exponential decrease of f (xC) for large values of xC. Therefore, equation (D.9)will bemaximum for thefinite
value *xC thatmaximizes + ( ) ( )x h x f xn

C
1

C C , and plugging *xC into equation (D.9) yields thefirst relation in
equation (10) of themain text, where * * *= +( ) ( ) ( )c x h x f xn

n
C

1
C C . For n=0, we separately analyze the F0 andB0

models. In the F0model,   = +( ) ( )g k k k k,H C H C H C
2, so +¥( )[ ]P ,R C can bewritten as

b
=

+( )
( ) ( )[ ]

( )P
k r

r
x f x

1
, D.10R

F C

C
2 C C

0

where ≔r k kH C. Using the same argument as before, equation (D.10) implies afinite value of *xC which arises
from themaximization of xC f (xC).We thus proved the first relation in equation (10) of themain text for the
F0model, where * *= +( ) ( )c r r x f x10

2
C C . At last, in theB0model   +¥ =( ) ( )g k k x, coth 2H C H C C

+[ ( ) ]k k xcoth 2H C C
2 . Thus, +¥( )[ ]P ,R C can bewritten as

b
=

+

( )
( ( ) )

( ) ( )[ ]
( )P

k r x

r x
x f x

coth 2

coth 2
. D.11R

B C

C

C

C
2

C C
0

Again, *xC is afinite valuewhich can be found bymaximizing +( ) ( ( ) ) ( )r x r x x f xcoth 2 coth 2C C
2

C C .
Only in this case, *xC depends on the ratio r.We thus proved the first relation in equation (10) of themain text for

theB0model, where * * * *= +( ) ( ( ) ) ( )c r x r x x f xcoth 2 coth 20 C C
2

C C .

The second relation in equation (10) of themain text stems from the fact that in allmodels *  +¥H while
òC

* isfinite. Thus, equation (D.1) implies that the ( )[ ]PCop R
max vanishes. At last wewant to roughly estimate the

behavior of ( )[ ]PCop R
max in the presence of a large yetfinite constraint on themaximumgap:   D∣ ( )∣t . Since òH

would diverge if therewas no constraint, we can assume that, in the presence ofΔ, *H=Δ. On the other hand,
*C is a finite quantity (which is given by * * b= xC C C in the unconstrained case), so if we assume that *D  C,
from equation (D.1)wehave that
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*
*

*
 b b

» »
D

µ
D

( ) ( )[ ]P
x

C
1

. D.12op R
max C

H

C

C C
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