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Below equation (76) in section 6 of our article [1], wemention that the small-delay expansion of the delayed term
in the linear delay Langevin equation

w t h= - - + ( ) ( ) ( ) ( )x t x t D t2 1

leads to a decrease in the steady state variance n = á ñxSS
2 , in contradiction to the exact expression (equation (24)

in [1])
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Expanding instead the full equation (1), including the noise term, up to thefirst order in τ, leads to the linear
Langevin equation
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for an overdamped harmonic oscillatorwith frequency w w wt= -˜ ( )1 and diffusion coefficient
wt= -˜ ( )D D 1 2. The corresponding stationary variance is given by
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wherewe have expanded the result tofirst order in τ in thefinal expression. The same result is obtained by
expanding the exact expression(2).More details about small-delay expansions in delay Langevin equations can
be found in [2].

The expansion(4) up to thefirst order in the time delay gives intuitionwhy the behavior of equation (1) for
small delays is reminiscent of an overdamped harmonic oscillator. Similarly, the expansion
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of equation (1) up to the second order in time delay gives a hint onwhy solutions to equation (1) for intermediate
delays exhibit damped oscillations. However, one should be aware that especially the higher order Taylor
expansionsmay be problematic [2, 3].

Equation (5) describes a noisy damped harmonic oscillator with unitmass, damping constant
g wt wt= -( )2 1 2, frequency w t=˜ 2 2, and diffusion coefficient g w t=D̃ D42 2 4. The corresponding
stationary variance reads

g
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which is the same as the result(4), obtained using the first order expansion, andwhich differs from the second

order expansion
w

wt w t+ +( )D
1 1

2
2 2 of the correct expression(2). Inmathematical literature [3], such failures

of Taylor expansions of delay differential equations are known to be a consequence of two ingredients. First, it is
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not guaranteed that the remainder in the Taylor expansion is small and, second, the expansions involve higher
derivatives thatmight not exist. In the case of the linear delay Langevin equation (1), we find that the second
derivative of x involves thefirst derivative of thewhite noise, which should indeed be treatedwith care.

Following themapping to the noisy damped harmonic oscillator further, we can identify the corresponding
free eigenfrequency

w
t

= = ( )k

m

2
, 70

and the damping ratio

c
g wt
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1

2

1
. 8

These quantities control the qualitative behavior of average solutions á ñx to equation (5). For c < 1, thus
wt < + »( )1 1 2 0.41, it exhibits overdamped behavior (pure exponential decay), and, for c > á ñx1,
performs exponentially decaying oscillations . The originalmodel(1) exhibits overdamped behavior for
wt < »e1 0.37 and damped oscillations for wt p< <e1 2. Both approximatemodels(3) and (5) are
unstable for wt > 1and the originalmodel is unstable for wt p= »2 1.57.

Even though the Taylor expansions above are of limited use, the result that the behavior of overdamped
delay systems is reminiscent of the behavior of corresponding underdamped harmonic oscillators seems to be
robust. Delay, in general, induces oscillations into the systemdynamics, and, for strong potentials,may lead to
instabilities. As another example of such behavior, we refer to [4] showing that the position x described the
stochastic delay equation
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exhibits qualitatively the same behavior as the velocity = v x of the constant force oscillator described by the
formula

g w h= - - +̈ ( ) ( ) ( )
∣ ( )∣
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x t
D t2 . 100

In this case, the small-delay Taylor expansionmakes no sense at all due to the non-analyticity of the absolute
value.

References

[1] Geiss D, KroyK andHolubecV 2019New J. Phys. 21 093014
[2] Guillouzic S, L’Heureux I and LongtinA 1999Phys. Rev.E 59 3970
[3] Insperger T 2015 J. Comput. NonlinearDyn. 10 024503
[4] KhadkaU,HolubecV, YangH andCichos F 2018Nat. Commun. 9 3864

2

New J. Phys. 21 (2019) 119503 DGeiss et al

https://doi.org/10.1088/1367-2630/ab3d76
https://doi.org/10.1103/PhysRevE.59.3970
https://doi.org/10.1115/1.4027180
https://doi.org/10.1038/s41467-018-06445-1


New J. Phys. 24 (2022) 109501 https://doi.org/10.1088/1367-2630/ac932a

OPEN ACCESS

RECEIVED

17 August 2022

ACCEPTED FOR PUBLICATION

20 September 2022

PUBLISHED

4 October 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

CORRIGENDUM

Corrigendum: Brownian molecules formed by delayed harmonic
interactions (2019 New J. Phys. 21 093014)

Daniel Geiss1,2 , Klaus Kroy2 and Viktor Holubec2,3,∗

1 Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, Germany
2 Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
3 Department of Macromolecular Physics, Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-180 00
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In this Corrigendum, we correct the following typos in equations (we only provide correct expressions):

(a) Above equation (6) on page 4: rc ≡
(∑N

i=1ri

)
/N

(b) Equation (20) on page 6:
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(c) Penultimate paragraph of page 6: P1(x,∞|x0, 0) ∝ exp
(
−ωx2/2D

)
, P1(x,∞|x0, 0) ∝ exp[
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]

(d) Last paragraph of page 6: ν(t) =
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(e) Equation (B7) on page 26:
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Abstract
A time-delayed responseof individual living organisms to information exchangedwithinflocks or swarms
leads to the emergence of complex collective behaviors.A recent experimental setupby (Khadka et al2018
Nat.Commun.93864), employing syntheticmicroswimmers, allows to emulate and study suchbehavior
in a controlledway, in the lab.Motivatedby these experiments,we study a systemofNBrownianparticles
interacting via a retardedharmonic interaction. For N 3 , we characterize its collective behavior
analytically, by solving thepertinent stochastic delay-differential equations, and forN>3byBrownian
dynamics simulations. Theparticles formmolecule-likenon-equilibriumstructureswhichbecome
unstablewith increasingnumberof particles, delay time, and interaction strength.We evaluate the entropy
and informationfluxesmaintaining these structures and, to quantitatively characterize their stability,
develop an approximate time-dependent transition-state theory to characterize transitionsbetween
different isomers of themolecules. For completeness,we include a comprehensive discussionof the
analytical solutionprocedure for systemsof linear stochastic delay differential equations infinite
dimension, andnew results for covariance and time-correlationmatrices.

1. Introduction

1.1. Feedback systems
From the synchronized response of aflock of starlings [1] avoiding an attack of a predator to the formation of
colonies of living bacteria [2, 3], the surging field of activematter provides awide range of fascinating
phenomena. Its ultimate aim is to develop amicroscopic understanding of the behavior of large numbers of
interacting, active and energy consuming ‘agents’ [4, 5], with a focus on emergent collective behavior [6].Most
of the quantitativemodels, such as theVicsekmodel [7], neglect thefinite speed of information transmission
between the individual particles. However, recent studies [8–11] have shown that a time delay in the interaction
may significantly affect the systemdynamics.Moreover, experimental realizationsmimicking natural
interacting systems require implementing the non-physical interactions, such as a reaction of a bird to its
environment, via a feedback loop [10–13]. Finite processing of the information in the feedback loop then
inevitably introduces time delay into the systemdynamics.

Current (mainly optical)micromanipulation techniques allow to realize such feedback systems on
microscale [11, 13–19].Many [13, 18, 19] of these techniques are based on spherical Janus particles [20, 21]with
hemispheres coatedwith differentmaterials in order to excite surface flows to propel them actively upon
illumination or in presence of other energy sources (e.g. chemical fuel added to the solvent). In order to steer
these particles, one usually has towait until the rotational diffusion reorients them towards the desired location.
This issuewas resolved by the setup introduced byKhadka et al [11] based onBrownian particles, symmetrically
decorated by gold nanoparticles, that thermophoretically self-propel in the direction determined by the position
of the laser focus on their circumference. In the feedback experiment, the particles are trackedwith a camera
withfinite exposure time and the position of the heating laser is determined by positions of the particles in the

OPEN ACCESS

RECEIVED

15May 2019

REVISED

26 July 2019

ACCEPTED FOR PUBLICATION

21August 2019

PUBLISHED

10 September 2019

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2019TheAuthor(s). Published by IOPPublishing Ltd on behalf of the Institute of Physics andDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/ab3d76
mailto:daniel.geiss@mis.mpg.de
mailto:klaus.kroy@uni-leipzig.de
mailto:viktor.holubec@mff.cuni.cz
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab3d76&domain=pdf&date_stamp=2019-09-10
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab3d76&domain=pdf&date_stamp=2019-09-10
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


previous frame. The setup allows to create arbitrary time-delayed interactions in themany-body system. In [11],
an interaction leading to constant absolute values of velocities of the individual particles was considered.

In the present paper, we theoretically analyze a system similar to that considered byKhadka et al [11], but
with harmonic interactions between the individual particles. Similarly to the case of [11], the two-dimensional
N-particle system is described by a set of 2N coupled nonlinear stochastic delay differential equations (SDDE).
For small enough values of the delay, highly symmetric non-equilibriummolecular-like structures form after a
transient period, which fluctuate due to thermal noise. The resulting structures strongly differ from the
molecules createdwith the constant-velocity protocol studied in [11], which oscillated, even for vanishing noise
amplitude, due to the nonzero delay. Another difference between the two realizations is that our setup leads, for
large delays, to oscillations with amplitudes exponentially increasing in time, while, in the setup of Khadka et al,
they are always bounded. The specific formof the interaction considered in our setupmoreover allows us to
linearize the underlying set of SDDE and to studymany aspects of themodel behavior analytically. For dimer
(N=2) and trimer (N=3), we use the linearizedmodel to calculate properties of the resultingGaussian
probability distributions for the bond length, namely itsmean values, covariancematrix, and time-correlation
matrix.We verify the validity of these results by Brownian dynamics (BD) simulations of the completemodel.
Moreover, we use the BD simulations to show that the behavior of largermolecules (N>3) is qualitatively the
same as that of the dimer and the trimer, with the difference that the critical value of the delay, beyondwhich the
molecules become unstable, decreases inversely in the particle numberN. If wewould scale the interaction
strength by the particle number, as it is common in toymodels ofmany-body systems, the critical value of the
delaywould thus be constant. If we label the individual particles, we can distinguish between several isomers of
the respectivemolecules according to their ordering. In the course of time, the noise induces jumps of a given
molecule between the individual isomers.We utilize our analytical results for the dimer and for the trimer to
evaluate the corresponding transition rates using Kramers’ theory [22, 23] and amore recent theory by
Bullerjahn et al [24].We compare the results with the rates calculated fromour BD simulations and identify a
useful formula for the transition rate that provides good predictions for small andmoderate values of the delay.

1.2. Stochastic delay differential equations
In general, delay differential equations (DDE’s) [25, 26]may generate rich dynamics [27]. Their solutionsmay
converge tofixed points or limit cycles, behave chaotically, and exhibitmultistability [28]. For systems affected
by noise, theDDEs are generalized to SDDE [29], which exhibit non-Markovian dynamics. Due to delay-
induced temporal correlations, the corresponding Fokker–Planck equation (FPE) cannot bewritten in a closed
form [30–32]. Instead, one obtains an infinite hierarchy of coupled FPEs for the n-time joint probability
densities for which generally nofinite closure is known.

For nonlinear systems, there are three established approximate approaches how to tackle the infinite
hierarchy: (i) the so called small delay approximation [30], which employs a Taylor expansion in the delay to
make the equations time local; (ii) also, if the delayed terms in the SDDE are small so that the systemdynamics is
almostMarkovian, a perturbation theory can be applied, leading to closed FPEs for the individual joint
probability densities [33]; (iii) a closed equation for the 1-time probability density valid in the steady state can be
obtained by linearization of all equations of the FPE hierarchy except for the first one [32].

So far, the only exactly solved problem is a one-dimensional linear stochastic delay equationwithGaussian
white noise, whose n-time probability densities are given bymultivariate Gaussians. Its stationary solution and
the conditions for its existence were discussed in [30, 31, 34]. Recently, a full time-dependent solution for 1- and
2-time probability densities was found byGiuggioli et al [35]. Employing the so-called time-convolutionless
transform introduced in the 1970s [36–40], these authors transformed the non-Markovian linear delayed
Langevin equation (LE) into a time-local form. Afterwards, they utilized this result in a derivation of analytically
solvable time-local FPEs for 1- and 2-time probability densities.

Even though an analytical treatment is thus rather complicated, there is a great interest in understanding
DDE’s and SDDE’s, due to their broad range of applications. Prominent examples are found in population
dynamics [41, 42], where the delay results frommaturation times, economics [43–46]when the limited reaction
times of themarket participantsmatters, or engineering [47]. In biology, finite transition times can play a
significant role in physiological systems [48–50] and neural networks [28, 51–53]. Recently [54–56],first efforts
were alsomade to incorporate a time delay into the language of stochastic thermodynamics [57, 58] in order to
evaluate energy and entropy fluxes in time-delayed stochastic system.

1.3.Outline
The rest of the paper is structured as follows. In section 2we first introduce the generalmodel and formulate the
underlying equations ofmotion in terms of SDDEs. After appropriate linearization, we study them analytically,
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considering both transient and stationary properties of the probability distributions for ‘bond’ lengths in
‘molecules’ self-assembling from two and three particles. Larger systems are studied in section 3. In section 4, we
apply the obtained results for evaluation of the entropy outflux (or information influx) from the systemdue to
the feedbackmaintaining the non-equilibrium stationary structures. In order to obtain amore quantitative
characterization of the stability of the non-equilibriummolecules, we utilize our analytical description of the
dimer and trimer for analytical and numerical investigation of the isomer transitions and back up the results by
BD simulations in section 5. In order to assess the robustness of ourfindings, section 6 addresses the role of the
functional formof thememory kernel considering negative delays and exponentialmemories.We summarize
ourfindings and conclude in section 7.Most of the technical details are given in appendices A–C. In appendix A,
we review the known results concerning the solution of systems of LDDEs. In appendix B, we showhow to
generalize these results for linear SDDEs. Finally, we apply the obtained results in appendix C for the calculation
of the time-correlationmatrix and the covariancematrix for systems of linear SDDEs.

2. Stochastic dynamics

Weconsider a two-dimensional systemofN overdamped Brownian particles coupled via time-delayed
harmonic pair interactions given by the potential

V r t
k

r t R
2

, 1ij ij2
2t t- = - -[ ( )] [ ( ) ] ( )

depicted infigure 1 by springs connecting the individual particles. In equation (1),R>0 denotes the
equilibrium spring length, k their stiffness, and r t t tr rij i jt t t- = - - -( ) ∣ ( ) ( )∣ is the distance between the
particles i and j located at positions ri and rj at an earlier time t− τ. Clearly, the picture of linear springs can
properly represent the time-delayed interactions only for a vanishing time delay τ.

Altogether, the particles diffuse in the composity potential

V V r
1

2
, 2

i j
ij

,
2å= ( ) ( )

( )

where the summation runs over all pairs (i, j), so that the ith particle is driven by the force VFi i= - =
V V,x yi i

¶ ¶( ). Because at time t the particle feels the value of the potential corresponding to its position at time
t−τ, here xi and yi denote theCartesian coordinates of the position vector ri in the past. In effect, theN-particle
system therefore obeys the set of nonlinear delayed Langevin equations

t
k

r t R t D t i Nr e 2 , 1, , . 3i
j i

ij ij i0å h
g

t t= - - - - + = ¼
¹

˙ ( ) [ ( ) ] ( ) ( ) ( )

The unit vector eij=rij/rij points fromparticle j to particle i and the diffusion coefficientD0=(βγ)−1 is related
to the inverse temperatureβ=1/kBT and the friction coefficient γ via the Einstein relation (kB denotes the
Boltzmann constant). The vectors ih comprise independentGaussianwhite noises satisfying the relations

Figure 1.Panel (a) displays stochastic trajectories of N 18= Brownian particles bound by delayed harmonic forces. At long times and
short enough delays, the particles formmolecular-like vibrating structures, while for long delays, they exhibit exponentially diverging
oscillations. In (b), we depict themodel as a systemofN=3 Brownian particles interconnected by ideal springs with stiffness k and
equilibrium lengthsR, whose response to deformation is time-delayed by evaluating rij at an earlier time t−τ.
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t t t t t0, . 4i i j ij1 2 D 1 2h h h d d dá ñ = á ñ = -a b
ab( ) ( ) ( ) ( ) ( )

Thenumbersα andβ label the components of the vector ih , while i refers to the specificparticle.Note that thenoise
and the friction in equation (3) are relatedby thefluctuation-dissipation theorem [59] for a vanishingdelayτ= 0
only, and that the system is always out of thermodynamic equilibrium forτ>0 [56]. In order toobtain amodel that
wouldobey thefluctuation-dissipation theorem, one should consider adifferentnoise correlation function (4).

For small enough values of the time delay, the particles form, after an initial transient period, highly
symmetricmolecular-like structures, some ofwhich are displayed infigure 4(a) in section 3. ForN=2 (dimer)
andN=3 (trimer) the steady-state structures occupy the globalminimumof the potentialV. ForN>3 the
globalminimumbecomes inaccessible due the chosen two-dimensional geometry and the resulting structures
are thus frustrated in the sense that some of the springs do not reach their equilibrium length in the steady-state.
The structures are dynamical, due to the Brownianmotion of the particles, which persistently kicks the system
out of theminimumof the potential energy (2). The effect of the delay is that the systemmay exhibit
exponentially decaying oscillations on its return to the energyminimum. The decay rate of these oscillations
decreases with increasing delay, and, for delays larger than a certain threshold, their amplitude exponentially
increases. This is because large delays induce in the system a ‘swing effect’, when the repulsive force fromone
side of the potential propels the particle to a ‘higher’ position at its opposite side, and so on.

Within the equilibriummodel that obeys thefluctuation-dissipation theorem, the stationary probability density
function (PDF) for positions of the individual particleswould simply be theBoltzmanndistribution V Zexp b-( )
withpotentialV, inverse temperatureβ, andnormalizationZ.However, the physical situation at hand,where the
delay is interpreted as a result of a feedback controlmechanismand thus is independentof thenoise, requires the
more involveddescriptionwith equation (4) that leads tonon-trivial non-equilibriumsteady states.Consequently,
theBoltzmanndistribution canno longerbe assumed. For the simplest caseof a dimerwith short delay time,wewill
findan approximatelyGaussiandistribution, corresponding to a (‘deformed’)Boltzmann factor at an effective
temperature. For larger particle numbers and longer delay times, the situationbecomesmore complicated.

A similar systemwith a quasi-constant force between the particles (constant upto a change of sign at distance
R), i.e. obeying the set of Langevion equations

t
k r t R t

r t R t
D tr

e

e

sign

sign
2 , 5i

j i ij ij

j i ij ij

i0

å

å
h

g

t t

t t
= -

- - -

- - -
+¹

¹

˙ ( )
[ ( ) ] ( )

[ ( ) ] ( )
( ) ( )

i=1,K,N,with sign(x)denoting the signum function,was discussed earlier in [11]. Themaindifference fromour
setting (3) is that, in equation (5), the absolute value of the force doesnotdependon the interparticle distances and the
particle numberN. Themainbenefit of assuming theharmonicpotential in equation (3) is that it allowsmuchmore
complete analytical treatment. To allow for an easy comparisonof the twomodels,we illustrate our results using
parameters inspiredby [11]. In the following,wefirst review someanalytical results for stochastic dynamics of dimers
and trimers.On this basis,wewill return to thediscussionof the emerging structures in section3.

2.1. Center ofmass
Similarly as for the dynamics considered in [11], the center ofmass coordinate Nr ri

n
ic 1º å =( ) of the system

obeys the Langevin equation

t D tr 2 , 6cc ch=˙ ( ) ( ) ( )

where 2i
N

ic 1h hº å = denotesGaussianwhite noise satisfying equation (4) (with the labels i, j replaced by c)
and the diffusion coefficientDc=D/N. Regardless of the interactions, the center ofmass performs ordinary
Brownianmotion and, assuming the center ofmass is at time t=0 located at the point r0, the PDF for rc reads

P t
N

Dt
N

Dt
r

r r
,

4
exp

4
. 7N

c 0
2

p
= -

-⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

2.2.Dimer
Let us now consider the simplest case of two interacting particles. ForN=2, equation (3) yields the systemof
four coupled equations ofmotion:

t
k

r t R t D tr e 2 , 81 1hg
t t= - - - - +˙ ( ) [ ( ) ] ( ) ( ) ( )

t
k

r t R t D tr e 2 , 92 2hg
t t= + - - - +˙ ( ) [ ( ) ] ( ) ( ) ( )

wherewe have used the abbreviations e(t)≡e12(t) and r(t)≡ r12(t). In the previous section, we have already
resolved the dynamics of the center ofmass coordinate for arbitraryN. Now,we consider only the dynamics of
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the relative coordinate r=r12=r1−r2 which obeys the equation ofmotion

t r t R t D tr e 4 10rhw t t= - - - - +˙( ) [ ( ) ] ( ) ( ) ( )

with frequency

k2 11w gº ( )

and 2r 1 2h h hº -( ) describingGaussianwhite noise satisfying equation (4)with the vector components i, j
replaced by the label r.

Projecting equation (10) on the direction of the bond at time t (bymultiplicationwith
t t te cos , sinj j=( ) ( ( ) ( ))) and on the direction perpendicular to the bond (bymultiplying it with

t te sin , cosj j= -j ( ( ) ( ))), we obtain the equations

r t r t R t t D tcos , 4 , 12r
rw t j t h= - - - - +˙ ( ) [ ( ) ] [ ( )] ( ) ( )

t
r t R

r t
t t

D

r t
tsin ,

4
, 13

2 rj w
t

j t h=
- -

- + j˙ ( ) ( )
( )

[ ( )]
( )

( ) ( )

wherej(t, t−τ)=j(t)−j(t−τ) denotes the change of orientation of the vector e(t−τ) during time τ.
Above, we used the formulas r≡ re, r rr e ejº + j˙ ˙ ˙ and e er

r r rh h hº + j
j.

From symmetry considerations, it follows that the stationary PDF for the orientationmust be constant inj.
To gain analytical insight into the dynamics and PDFof the bond-length r, we linearize the coupled Langevin
equations (12) and (13). If the angle dependent stiffness k t t2 cos ,g j t-[ ( )] in equation (12) is strong
enough such that the terms proportional to [r(t−τ)−R]/R can safely be neglected independently of the noise
strength, the formula (13) for the angle assumes the form5

t
D

R
t

4
. 14

2 rj h= j˙ ( ) ( ) ( )

The corresponding transition PDF (Green’s function) for change of the orientation byj(t, t−τ)=j(t)− j
(t− τ) during the time interval τ reads [60–62] p t t m t t, , 2 cos ,m

1 1
1j t t p p j t- = + å -- -

=
¥[ ( ) ] ( ) [ ( )]

m D Rexp 2 2 2t-[ ]. Using this function, we average equation (12) overj(t, t−τ) obtaining

r t r t R D t4 , 15r
rw t h= - - - +t˙ ( ) [ ( ) ] ( ) ( )

where D Rexp 2 2w w t= -t ( ) is the natural relaxation rate. Note that the same formulawithωτ substituted by
ω is obtained by simply assuming that the change of the orientationj(t, t−τ) of the bond per delay time τ is
small, i.e. for D R2 12t  . Themain difference between the two approximations is thatD/R2 does not
necessarily have to be small in the first case.Wewill discuss the regime of validity of the equation (15) inmore
detail around equation (25) below.

Equation (15) is a linear SDDEwhich can be solved analytically for r ,Î -¥ ¥( ). In our setting, r 0 and
thuswe should solve equation (15)with a reflecting boundary at the origin. However, sincewe have assumed
that r t R r t 1t- - ∣ ( ) ∣ ( ) , we alreadywork in the regimewhere r only seldom significantly deviates fromR
and thus the solution of equation (15) on the full real axis should approximate well the desired solution on the
positive half-line. The solution of equation (15) for r ,Î -¥ ¥( ) and t 0 in terms of deviations of the bond
length from its equilibrium length (whichwe call as shifted bond length),

x t r t R, 16= -( ) ( ) ( )

can be derived by severalmethods.We review two of them (time-convolutionless transform andGaussian
ansatz) for a generalmultidimensional linear SDDE in appendices A–B.Here, we present just themain formulas.
Assuming that the systemwas initially in state x(0)=x0 and that x(t)=0 for t<0, the formal solution of
equation (15) for r ,Î -¥ ¥( ) and t 0 reads

x t x t D s t s s4 d , 17
t

r
0

0
ròl l h= + -( ) ( ) ( ) ( ) ( )

where the dimensionless Green’s function

t
k

t k t k 18
k

k
k

0
ål

w
t q t=

-
- -t

=

¥

( ) ( )
!

( ) ( ) ( )

solves equation (15)with D 0= , t 0l =( ) for t< 0 and 0 1l =( ) . The symbol θ(x) in equation (18) stands for
theHeaviside step function. For an arbitrary initial condition x(t), t<0 and x(0)= x0, the expression x0λ(t) in
equation (17)must be substituted by x t s t s x sd0

0
òl w l t- - -t t-

( ) ( ) ( ). Based on the value of the reduced

5
In equation (13), we set r= [(r−R)/R+ 1]R, expand it in (r−R)/R, and neglect all terms proportional to (r−R)/R.
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delayωττwhich is a dimensionlessmeasure for the relevance of the delay relative to the natural relaxation time,
theGreen’s functionλ(t) in equation (17) exhibits three different dynamical regimes discussed in detail in
appendixA, infigureA1 and also below: (i)monotonic exponential decay to zero for short delays e0 1 w tt ,
(ii)oscillatory exponential decay to zero for intermediate (‘resonant’)delays e1 2 w t pt , and (iii)oscillatory
exponential divergence for longdelaysωττ>π/2.

The stochastic process x(t) in equation (17) arises as a linear combination of white noises and thus the
corresponding PDFsmust beGaussian. Indeed, wefind that one- and two-time conditional PDFs for x(t)with
the initial condition δ(x) for t<0 and δ(x−x0) at t=0 read
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denote themean of the shifted bond-length (16), its variance, and normalized time correlation, respectively.
The function P x t x x, , 0 d1 0( ∣ ) stands for the probability that the systemwhich departs with certainty from

state x0 at time 0 is found at time t somewhere in the interval (x, x+dx). Similarly, P x t x t x x x, ; , , 0 d d2 0¢ ¢ ¢( ∣ )
denotes the probability that the (shifted) bond length is in the interval x x x, d¢ ¢ + ¢( ) at time t ¢ and at a later time
t in (x, x+dx) under the condition that it has started at time t=0 at x0. The one-time PDFP1 possesses the
same structure as the corresponding PDF for τ=0 [63]. The non-Markov character of the process (15)with
nonzero delaymanifests itself in the fact that the two-time PDFP2 cannot be constructed from the one-time PDF
P1, while this is always possible for aMarkov process.

TheFPEs corresponding to thePDFs (19) and (20) are givenby equations (B.6) and (B.7) in appendixB,
respectively. Interestingly enough, thediffusionanddrift terms in theFPEs are givenby thenatural scales 2D andωτ
only in the limitτ→0.Moreover, both coefficients acquire a timedependence, determinedby the functionλ(t).

Specifically, thediffusion anddrift coefficients in equation (B.6) forP1 read D t D t s s td d
t2

0
2 2òl l l=t

⎡⎣ ⎤⎦( ) ( ) ( ) ( )

td and t t tw l l= -t ( ) ˙ ( ) ( ), respectively6.While thedrift coefficient in equation (B.7) forP2 is also givenbyωτ(t),

thediffusion coefficient reads D t D t s t s t s t t2 4 d d d
t

0òl l l l+ - ¢ -t
¢

( ) ( ) [ ( ) ( ) ( )] . Thisdifference in

diffusion coefficients is the reasonwhy thePDFP2 canbe constructed fromP1 in the standardway forMarkov
processes only forτ=0,wherebothdiffusion coefficients coincide.

Forτ=0 thePDFP1 always eventually relaxes to a time independent stationary statewhichdoesnotdependon
the initial condition andwhich is describedby the equilibriumGibbs formula P x x x D, ; , 0 exp 21 0

2w¥ µ -( ) ( ).
For anonzerodelay in the regimes (i) and (ii), i.e.when thenoiseless solution (18) and thus themeanvalue
μ(t)=x0λ(t)ofx converges to 0 for t  ¥, the systemrelaxes into a time-independent non-equilibriumsteady
state P x x x D, ; , 0 exp1 0

2w¥ µ - ¥ ¥t t( ) [ ( ) ( )]with w w¥ ¹t ( ) and D D2¥ ¹t ( ) , seefigure 8 in
section5.1. In these cases, our approximatemodel thus predicts that, in the long run, thedelaymerely ‘deforms’ the
(approximate)Gaussian equilibriumdistribution through aparameter renormalization.This state is characterizedby
anonzero entropyproduction rate [56]. For long timedelays, no stationary state exists. In comparison to the
analogous settingwith apiece-wise constant force discussedpreviously [11], this destabilization for longdelay times τ
is a new feature, due to increasingly high systematic forces thatmayoccur for longdelays.

In the regimes (i) and (ii), the variance t x t x t2 2n = á ñ - á ñ( ) ( ) ( ) converges to the stationary value
[30, 31, 34]

6
The case ofλ(t)=0, where these coefficients diverge, is discussed inmore detail in section 5.1.
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The derivation of this formula is given in appendix C,wherewe also derive an analytical expression for the
stationary time correlation function C t x s x s tlims= á + ñ¥( ) ( ) ( ) . Note that the variance (24) diverges upon
entering the unstable regime (iii) for 2w t pt .

The formula (24)finally allows us to specify the regime Rss
2n  where the approximation

r t R r t 0t- - »[ ( ) ] ( ) used in the derivation of equation (15) from equations (12) and (13) is reasonable
because the PDF for r is relatively sharply peaked around themean bond lengthR. Aswe already noted,
equation (15) is also valid in the case D R2 12t  when the bond rotates only slightly in each delay interval and
thus the anglej(t, t−τ) in equations (12) and (13) is small. However, also in this case we need to additionally
assume that Rss

2n  in order to ensure that the error caused by considering thewrong boundary condition at
r=−R is negligible. Altogether, the used approximation is expected to give good results if the condition

R 25ss
2n  ( )

is fulfilled.
An example of the stochastic evolution of the dimer obtained fromBD simulations of the exact system (12)

and (13) is depicted infigure 2(a). Infigure 2(b), we compare the results obtained fromBD simulationswith the
time evolution of the average shifted bond length (21) for different values of the equilibrium lengthR. As
expected, the approximate analytical formula (21) describes well the exact result for large enoughR satisfying the
inequality (25). For larger values of νss/R

2, the analytical result underestimates the correct value. This is because
the bond length in the BD simulation is obtained from equation (12)with the reflecting boundary at the origin,
while we allownegative values of r(t) in the approximate analytical description. Similarly as for themean value,
the analytical formula (22) for the bond length variance ν(t) approximates verywell the value obtained fromBD
simulations for large enoughR, as shown infigure 2(c). Infigure 2(d), we depict themonotonous rapid

Figure 2.Dimer dynamics in Brownian dynamics simulations and theory Comparison of the approximate analytical description of
the bond dynamics (full and dashed lines in panels (b)–(d)) and the behavior of the completemodel obtained using Brownian
dynamics simulations of equations (12)–(13) (symbols). Panel (a): Typical trajectory obtained from the simulation of a dimerwith
equilibriumbond lengthR=R1=10μm.Panel (b), we show the average shifted bond length (21) for a large value ofR=R1 and
the initial value x(0)=1μm (solid line), where the analytical approximationworks very well, and also for amoderate value of
R=R2=2.5μmand x(0)=0.25μm (dashed line). The convergence of the variance (22) of the bond length to its stationary value νss
(24) (dotted lines) for τ1=0.1 s, where the system operates in the oscillatory regime (ii) (solid line), and for τ2=0 s, where the bond
length decays exponentially toR (dashed line), is shown in panel (c). The divergence of the stationary value of the variance with
increasing τ is depicted in panel (d). If not specified otherwise in the description of the individual panels, we used the experimentally
reasonable parameters:ω=2k/γ=10 1 s−1, τ1=0.1 s,D=1μm2 s−1, andR=10μm. In the BD simulation, we averaged over
104 trajectories with time step dt=10−3 s.
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divergence of the stationary variance (24) as the time delay τ reaches the unstable regime (iii). Thismeans that
the delay tends to delocalize structures. On the other hand, the variance can be optimized as a function of the
frequencyωτ. The best localized structure is obtained for the frequency fulfilling the formula cos w t w t=t t( ) ,
i.e.ωτ≈0.74/τ and thus k D R2 0.74 exp 2 2t g t» ( ). For the corresponding value 0.74 of the reduced delay
ωττ the system is in the dynamical regime (ii)with exponentially decaying oscillations.

2.3. Trimer
Let us now consider the system composed of three particles. Then, equation (3) gives the systemof six coupled
equations ofmotion:

t
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For the relative coordinates r12(t)=r1(t)−r2(t)we obtain

t r t R t r t R t

r t R t D t t
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2
2 , 26
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32 32 1 2h h
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where k2w g= and similarly for tr13˙ ( ) and tr32˙ ( ). To get analytical results for bond lengths r t trij ij=( ) ∣ ( )∣, we
multiply the formulas for trij˙ ( ) by the corresponding unit vectors t t te r rij ij ij=( ) ( ) ∣ ( )∣and linearize the
resulting equations. To this end, we need to deal with the expressions eα(t−τ)·eβ(t),α,β=I,K, III, where
we introduced roman numbers as a shorthand indexing I≡12, II≡13, III≡32. For a vanishing delay τ=0,
eα·eα=1 and the scalar products eα·eβ describe the angles of the triangle formed by the three particles (see
figure 1 in section 2).We find that up to the leading order in the equilibriumbond lengthR the triangle is
equilateral and thus the internal angles areπ/3, leading to the relations eI·eII=eI·eIII=−eII·eIII≈1/2+
O[(rα−rβ)/R]with a correction that is on the order of (rI−rII)/R for eI·eII and similarly for the other scalar
products. The linearized equation for the relative coordinate xα≡rα−R thus reads
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where the lower index mod IIIa aº is considered as periodic with the period 3, i.e. xIV≡xI and xV≡xII.
Similarly as in the case of the dimer, equation (27) describes the dynamics of xα(t)well for large equilibrium
bond lengthsR and for time delays small compared to reorientation times of the unit vectors eα.

For an analytical treatment, it is advantageous to rewrite the system (27) in thematrix form

t M t D tx x 2 , 28xw t= - - +˙ ( ) ( ) ( ) ( )

for the three-dimensional column vector t x t x t x tx , ,I II III
=( ) [ ( ) ( ) ( )] . In equation (28), the noise vector tx ( ) is

given by t A t A t1 1 2 2x h hº +( ) ( ) ( )with the auxiliary noise vectors t , ,j j j j
1 2 3

h h h hº( ) [ ] , j=1, 2, containing
the jth components of the original noises tih ( ), i=1,K, 3. From the system (27) follows that thematricesM,A1

andA2 read
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where e j
a denote jth component of the two-dimensional unit vector eα. The time-correlations between the three

components of the noise vector tx ( ) are notmutually independent and read

t t A A A A t t M t t2 . 301 1 2 2
D D

 x x d dá ¢ ñ = + - ¢ = - ¢a b ab ab( ) ( ) ( ) ( ) ( ) ( )

Due to the linearity of equation (28) andGaussianity of the noise, theGreen’s function for the one-time PDF
P tr r, , 01 0( ∣ ) is Gaussian [37], and determined by themean value t txm = á ñ( ) ( ) and the covariancematrix

t t t t tx x  m m= á ñ -( ) ( ) ( ) ( )[ ( )] .We review in detail the derivation of these functions in appendices A
andB.2.
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For the initial condition x(t)=0, t<0 and x(0)=x0 we get

t t x , 310m l=( ) ( ) ( )
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whereλ(t) denotes theGreen’s function for equation (28) given by
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Multiplyingλ(t)by the vector 1, 1, 1[ ] , using the formula M 1, 1, 1 3 2 1, 1, 1 =[ ] [ ] and comparing the
result to the one-dimensionalGreen’s function (18), wefind thatλ(t)undergoeswith increasing t (i)monotonous
exponential decay to 0 for e0 3 2 1wt< , (ii)oscillatory exponential decay to 0 for 1/e<3ωτ/2<π/2 and
(iii)oscillatory exponential divergence forπ/2<3ωτ/2. In the regimes (i) and (ii) the stationary value of the
covariancematrix reads

t
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M
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2 sin
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, 34ss
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w
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where  denotes the identitymatrix. This formula follows from the results of appendix C after substituting the
matricesω and ss from the formula (C.7) in the appendix byωM and 4DM. In the appendix, we also derive an
analytical expression for the stationary time correlationmatrix C t s s tx xlims

= á + ñ¥( ) ( ) ( ) . The regime of
stability 3ωτ/2<π/2 of the trimer can also be determined from the condition that thematrix Mcos wt( ) is not
singular, i.e. its determinant cos 3 2 cos 32 wt wt( ) ( ) is nonzero.

Due to the symmetry of the problem, all diagonal elements of thematrix ss are identical and the same holds
also for all its off-diagonal elements. The approximate analytical, time-dependent solution (32) for the
covariancematrix is compared to the exact covariancematrix obtained byBD simulations of the complete
model infigure 3. Given the approximationsmade, wefind very good agreement. The analytical results only
slightly underestimate the diagonal elements (probably for the same reason as for the dimer) and overestimate
the off-diagonal elements. The behavior of the covariancematrix as a function of the frequencyω and delay τ is
similar to the behavior of the variance (24) for the dimer. Specifically, the diagonal elements of ss monotonicly
increase (the PDF for the bond lengths become broader)with τ and exhibit aminimumas functions ofω,
opening a possibility to optimize thewidth of the bond length PDF. The off-diagonal elements of ss
monotonously increase (the individual bonds of the trimer becomemore correlated) bothwith the delay and
with the natural relaxation frequency.

3. Structure formation

The approximate analytical study of the dimer and trimer revealed that both systems obey three dynamical
regimes: (i) and (ii) amonotonous and an oscillatory exponential relaxation towards a steady state with the
average bond length Rm ¥ =( ) , respectively, and (iii) an exponential divergence. The performed BD
simulations confirmed that for largeR, when themodel is well described by the approximate analytical formulas,
these regimes can indeed be observed also in the completemodel (3). Furthermore, the analytical study

Figure 3. (a)Diagonal and (b) off-diagonal elements of the covariancematrix t( ) as functions of time for two values 0 s (dashed red
lines and squares) and 0.2 s (full blue lines and circles) of the delay τ. The full and dashed lines are calculated from the approximate
analytical formula (32) and the symbols come from aBD simulation of the completemodel. The horizontal dotted lines depict the
elements of the stationary covariancematrix ss given by equation (34). Parameters used:ω=1 s−1,D=1μm2 s−1, rij(0)=12μm,
andR=10μm. In the BD simulation, we averaged over 105 trajectories with time step dt=10−3 s.
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predicted that the dimer is in the unstable regime (iii) forωτ>π/2 and the trimer forωτ>π/3. Let us now
discuss how general the presented findings are.

The stationary average bond lengthμ can be determined byminimizing the potential energy
V V ri j ij

1

2 , 2= å ( )( ) with the two-particle potentialV2 given by equation (1).Minimizing the potential in our two-

dimensional geometry yields the highly symmetricmolecule-like structures shown infigure 4(a). Due to the
confinement to 2d, the globalminimumof the potential corresponding toμ=R is accessible only for the dimer
(N=2) and the trimer (N=3). For largermolecules, the average bond length decreases as a result of the
infinite range of the potential. The system asymptotically relaxes to the depicted structures if the noiseD
vanishes and the reduced delay timeωτ is small enough such that the system is in the dynamical regime (i) or (ii).
NonzeroD leads tofluctuations around the asymptotic structures and largeωτ causes exponentially diverging
oscillations.

We have solved the completemodel using BD simulations and depict the behavior of the average bond
length r(t) for several values ofN in the dynamical regimes (i) and (ii)–(iii) infigures 4(b) and (c), respectively. In
the regime (i), we observe that larger systems relax faster than thosewith smallerN. Furthermore, infigure 4(c),
we see that larger systems oscillate with larger amplitudes and that the threshold between the regimes (ii) and (iii)
is reached at smaller values ofωτ.More precisely, all the curves infigure 4(c) are plotted using the same
parameters except forN and, while the curves forN�3 are in the regime (ii), the curves forN>3 correspond
to the regime (iii). These observations are in accordwith our analyticalfindings for the dimer and trimer.

By analyzing themean bond length at late times, we have evaluated the critical reduced delay wt( )
determining the threshold between the regimes (ii) and (iii) forN=2,K, 10. Infigure 5, we show its rescaled
value

c
2

, 35crit


p
wtº ( ) ( )

where the coefficient 2/π is introduced for the comparison to the approximate result for the dimer.Wefind that
the stability factor is well described byC/N as suggested by the approximate analytical results for the dimer

2wt p=[( ) ]and trimer [ 3wt p=( ) ]. However, the analytical results would imply that the constantC
equals to 2, which is smaller than the valueC≈3 obtained from the completemodel. The actual dimer and
trimer are thusmore stable than their linearized versions considered in our analytical study. The found scaling

Figure 4.Bound ‘molecules’—ground state and relaxation In panel (a)we showhighly symmetricmolecule-like structures formed in
ourmodel for a vanishing noise (D=0) and a small productωτ of the spring stiffnessω and the delay τ. Due to the infinite range of
the harmonic two-particle interaction, the inter-particle distances in themolecules decrease with increasing number of particles. For
D 0¹ , the structures vibrate erratically due to the noise andmay oscillate due to the delay. In panel (b)weplotted the BD results
average bond lengthμ(t) as a function of time for several values ofN for τ=0.1, where the oscillations do not arise (regime (i)). The
oscillations observed in panel (c)with τ=0.5 are only transient forN�3 (regime (ii)), and grow indefinitely forN>3 (regime (iii)).
Other parameters used:α= 1 s−1,R=10μm, andD=1μm2 s−1. In the simulation, we averaged over 104 stochastic trajectories
with time step dt=10−3 s.
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ccrit≈C/N implies that the stability of a systemwith rescaled potential stiffness k→k/N (to render the energy
extensive [81])would be (almost) independent of the particle number.

To better understand this behavior, let usfirst consider the approximate analyticalmodel described in
section 2.2. Imagine a particle in a harmonic potential centered around x=0, which is initially located at
x(0)=x0>0. Assuming that x(t)=0 for t<0 and neglecting the noise, the particle does not feel any force in
the time interval tä[0, τ] such that x(t)=x0 for all tä[0, τ]. In the subsequent time interval tä[τ, 2τ], the
particle experiences the force F=−ωτx0 pushing it towards the opposite wall of the trap. For times t>2τ the
force starts changing dynamically according to the earlier position at time t−τ. The particle keeps its direction
ofmotion until it reaches the position x1 where the force changes its sign. For large delays, the particlemay stop
significantly later than crossing theminimum, so that x1<0 and x x1 0>∣ ∣ ∣ ∣. A similar process then repeats
when the particle returns back, with the difference that now it reaches amaximumposition x2>0,
x x x2 1 0> >∣ ∣ ∣ ∣ ∣ ∣, etc. The amplitude thus increases after each half-period of oscillation causing a diverging
behavior.

In order to understand the difference between the approximate analytical and the complete (numerical)
solutions of themodel, it is helpful to project the latter to one dimension, where a particlemoves in the double-
well potential depicted figure 7 in section 5.1.We assume that the particle starts in the right well and oscillates
with increasing amplitude as discussed above. After some time the amplitude becomes large enough that the
particle crosses the barrier to the left well. Due to the presence of the additional well, the potential now contains
muchwider low-energy region compared to the purely harmonic case. The particle needs longer time to travel
fromone (unbounded) side of the potential to its other side, and hence also the (reduced) delayωτ required for
inducing diverging oscillations is larger than in the harmonic case. As a consequence, the completemodel is seen
to bemore stable than foreseen by our analytical considerations.Moreover, our discussion reveals the existence
of a fourth dynamical regime, preceding the unstable regime (iii), where the particle hops between the individual
wells of the potential and the amplitude of the oscillations remains finite.

Compared to the quasi-constant velocitymodel investigated in [11], our analysis thus reveals two qualitative
differences. First, the structures formed in the quasi-constant velocitymodel oscillate for arbitrary nonzero delay
τ, while in the harmonicmodel these oscillations appear only ifωτ is large enough. Second, the amplitude of the
oscillations in the quasi-constant velocitymodel is always constant in time, while the osculations in the
harmonicmodel either vanishwith time, if the system is in the regime (ii), or explodewith time, if the system is
in the regime (iii). The behavior observed in the harmonicmodel can be traced back to the increase of the force
with the particle distance and thuswe expect an analogous behavior also for other systemswith time-delayed
forces increasingwith distance.

4. Entropyfluxes

The investigatedmodel,much as themodel discussed in [11], is inspired by self-organized systems, where a
feedback based on the information about the state of the system at a previous time leads to structure formation.
Interpreting the delayed interactions in ourmodel as a result of such feedback control, we can investigate the
entropy flowout of the system caused by the feedback. Due to the non-analyticity of themodel with quasi-
constant forces considered in [11], the analysis of entropyflows in the supplementarymaterial thereinwas

Figure 5. Stability factor (35) delimiting the threshold between the stable dynamical regimes (i)–(ii) and the unstable dynamical regime
(iii) for systems consisting ofN=2,K, 10 particles obtained fromBD simulation of the completemodel (3) (solid broken line). The
stability factor is well approximated by the functionC/N (dashed lines). For the upper (lower) linewe choose the constantC such that
the curve crosses the last (first) point obtained from the simulation.
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performed for vanishing delay only. Using the approximateGaussian PDFs found in sections 2.2 and 2.3 for the
dimer and the trimer, respectively, we can repeat this analysis with nonzero delay.

Without feedback, i.e. without the time-delayed harmonic interactions (2), the particles would spread
diffusively and the system entropywould increase accordingly. The feedback control utilizes the information
about the particle positions to drive the system into a non-equilibrium steady state with a time independent PDF
P(x) and thuswith a time constant configurational entropy k P Px x xd logB ò= - ( ) ( ). The smaller the entropy
of the non-equilibrium steady state, themore localized the steady-state structure and thus the better the result of
the feedback control. Anothermeasure of the performance of the feedback is the rate - -

˙ of entropy taken from
the systemper unit time that can also be interpreted as the amount of information pumped into the systemper
unit time by the feedback device. This entropy flowbalances the diffusive spreading in the steady state and is thus
moreover ameasure of the useful ‘work’ (in units of J K−1) performed by the feedback device against thermal
dispersal. Evaluating the stationary entropy production F̇ due to the feedback controlmechanism and the
stationary entropy production D̇ due to the breaking of the fluctuation-dissipation theorem in equations (3)
and (4) for τ>0, one can define the feedback efficiency as the ratio F F D  h = - +-

˙ ( ˙ ˙ ). The entropy
production D̇ can be calculated along the lines of [56]. The entropy production q TF H =˙ is the
housekeeping heatflux qHflowing to the bath at temperatureT, due to the overall operation of the feedback
device, divided by the bath temperature. It clearly depends on the specific technical realization of the feedback.
In all known relevant realizations of the feedback inmicroscopic systems [11, 13, 16, 18, 19], the housekeeping
heatflux is very large compared to the ‘functional’ energyfluxes in the controlled system, resulting in a large F̇
compared to - -

˙ , so that the efficiency ηF of such devices is usually negligibly small.
To evaluate the entropy flowdue to the feedback (the time-delayed harmonic interaction) in the present

setup, we proceed along the similar lines as in [11, 64]. The center ofmass coordinate of the system is not affected
by the feedback and diffuses freely (see section 2.1). The structure formation due to the feedback thus occurs
only on the level of the bonds. Let us now consider the time-dependent PDFP(x, t) for the bonds that converges
to a time-independent non-equilibrium steady state due to the competition between feedback and diffusion.
The rate of change of its Shannon entropy t k P t P tx x xd , log ,B ò= -( ) ( ) ( ) can formally bewritten as

t t t , 36  = ++ -˙ ( ) ˙ ( ) ˙ ( ) ( )

where t+˙ ( ) stands for the positive entropy flowing into the systemdue to the diffusive spreading of the particles
and t-˙ ( ) corresponds to the outflowof entropy due to the feedback.

Assuming that the stochastic dynamics of the column vector x(t)describing the bonds obeys the generalized
Langevin equation (GLE) t t t tx F x x, t sh= - +˙ ( ) [ ( ) ( )] ( ), where η denotes a zeromeanGaussianwhite
noise with the covariancematrix t t t ti j ijh h d dá ¢ ñ = - ¢( ) ( ) ( ), the dynamical equation for P(x, t) can bewritten
in the form [30, 65]

t
P t

x x
P t tx x x,

1

2
, , . 37

ij
ij

i j

2

å ss
¶
¶

=
¶

¶ ¶
+( ) ( ) ( ) [ ] ( )

In this equation, the fist termon the right stands for the diffusive spreading of the PDF. The term tx,[ ]
corresponds to the time-delayed force F[x(t−τ)] in the Langevin equation and thus it describes the effect of the
feedback. Its concrete form is not relevant for the discussion below and thuswe refer to theworks [30, 65] for
more details about its structure.

Inserting equation (37) into the formal time derivative t k P t P tx x xd , log ,tB ò= - ¶˙ ( ) [ ( )] ( ) of the system
entropy t( ), we find that

t
k

x x
P P k P

P
Px x

2
d log d , 38
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B
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t k t P t t tx x xd , log , . 39B   ò= - = -- +˙ ( ) [ ] ( ) ˙ ( ) ˙ ( ) ( )

The last equation allows us to calculate the amount of entropy taken out of the systemdue to the feedback per
unit time, t-˙ ( ), from the PDFP(x, t)without knowing the explicit formof the operator . It is interesting to
adopt the Seifert’s idea of trajectory-dependent entropy [57, 66] and use equation (39) to define the stochastic
(position dependent) entropy flux

s t k P
P

P Px,
1

2
log . 40tB 2

2
ss

=   - ¶-
⎡
⎣⎢

⎤
⎦⎥˙ ( ) ( ) ( ) ( )

The average flux (39) then follows as the average t s tx, = á ñ- -
˙ ( ) ˙ ( ) either over the PDFP(x, t) or over the

individual stochastic trajectories generated in a BD simulation. To the best of our knowledge, the statistics of the
entropy flux (40) has not been investigated yet and thus it is not knownwhether its PDF fulfills some fluctuation
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symmetries. Such an investigationwould clearly be beyond the scope of the present paper andwe leave it for a
futurework.

Let us now evaluate the three entropyfluxes (36), (38) and (39) for a general d-dimensional Gaussian PDF

P t
t

t t tx x x,
1

2
exp

1

2
, 41

d

1




p
m m= - - --⎡

⎣⎢
⎤
⎦⎥( )

( ) ∣ ( )∣
( ( )) ( )( ( )) ( )

where t∣ ( )∣denotes determinant of the covariancematrix t( ). The corresponding entropy t( ) reads
t

k

d
t

2

1

2
log 2 42d

B
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p= +

( ) [( ) ∣ ( )∣] ( )

leading to the rate of change

t

k t
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From equation (38)we thenfind that

t

k
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2
Tr . 44
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Forfinite times, all the entropy fluxes depend on the initial conditions and can be determined from
equations (39), (43) and (44).

Let us now focus on the specific setups considered in sections 2.2 and 2.3. For the dimer, we have investigated
the PDF for the length of the single bond and thus d=1. Using our analytical findings with D4ss = and

t t n=( ) ( ), we get
t
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whereλ(t) is given by equation (18) and the variance reads t D s s4 d
t

0
2òn l=( ) ( ). Similarly, in our analytical

investigation of the trimer, we havefixed the angles between the individual bonds and investigated the PDF for
the three bond length only, implying that d=3. Using DM4ss = and Jacobi’s formula for the derivative of
determinants, we obtain the expressions
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whereλ(t) is given by equation (33) and the covariancematrix t( ) reads DM s s4 d
t

0
2ò l ( ).

The formulas (45)–(48) are valid both in the stable regimes (i) and (ii), where the system at long times relaxes
to a stationary time-independent structured state, and in the unstable regime (iii). In the unstable regime, the
variance ν(t) and the covariance t( ) diverge in time. As a result, the system entropy t( ) diverges and the
entropy flow t+˙ ( ) decays to zero, because the variance of the PDF is so large that the diffusion can hardly further
increase it. On the other hand, the rate of entropy change t̇( ) and thus also the entropy outflow t-˙ ( ) remain
finite oscillating functions, as can be seen for the dimer by using the exponential long-time approximation (A.7)
forλ(t), and similarly for the trimer.

For the purpose of structure formation, only the regimes (i) and (ii) are of interest, because only then the PDF
reaches a time-independent non-equilibrium steady state at long times, i.e. tlimt  =¥ ( ) ,

tlim 0t  =¥
˙ ( ) and t tlim limt t  º = -- ¥ - ¥ +

˙ ˙ ( ) ˙ ( ). Let us therefore now evaluate the long-time
stationary system entropies S and entropy fluxes t-˙ ( )maintaining themolecular-like structures formed in our
model for the dimer and the trimer in these two regimes. Using the asymptotic formulas (24) and (34) for the
dimer bond-length stationary variance νss and trimer covariance ss , wefind from equations (45)–(48)
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D
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for the trimer. In the last two formulas, a 1, 1ss= ( ) denotes diagonal and b 1, 2ss= ( ) off-diagonal elements
of the covariancematrix. The system entropies (49) and (51) are determined by thewidth of the PDFs for the
bonds. Therefore, theymonotonously increase with temperatureT=γD/kB andwith the delay time τ, and
exhibit aminimumas functions of the frequenciesωτ (dimer) andω (trimer), similarly as the variance νss and the
diagonalmatrix elements of the covariancematrix ss . The quality of the steady-state structures is thus in our
model always unfavorably influenced by the delay and, for a given delay, one can tune the frequency in order to
minimize this (usually unwanted) effect.

The two entropy fluxes (50) and (52) are negative, highlighting that they correspond to entropy outflows
from (or information inflows into) the system. Interestingly enough, the entropy fluxes do not depend on the
temperatureT (or noise strengthD) as already predicted in [11]. Thismeans that thefluxes are discontinuous in
the formal limitT→ 0 because theymust inevitably vanish for zero noise, where the PDF for the system
evolution is a δ-function for all times.We plot the stationary entropy fluxes (50) and (52) as functions of the
delay τ infigure 6(a) and frequencyω infigure 6(b). Naturally,maintaining a stationary structure in a bigger
system (trimer, dashed lines) requires a larger (more negative) entropy flux (ormore information) than in the
smaller one (dimer, solid lines). Themaximumof the fluxes -∣ ˙ ∣, depicted infigure 6(b), arises as a result of a
competition between stronger confinement, corresponding to larger frequenciesω, and gradual destabilization
with increasingωτ, when the system enters the unstable regime (iii). For thefigure, we used for simplicity the
approximationωτ≈ω for the dimer.

5. Transition rates for isomer transformations

The particles within themolecular structures depicted infigure 4(a)may exchange their positions. Assuming the
particles to be distinguishable, different arrangements of the same structuremay arise which can be interpreted
as different isomers of the samemolecule. Their study can provide further insight into the stability properties of
our non-equilibriummolecules. In fact, wefind that the study formoleculesmade out of only a few particles is
informative also for the phenomenology observed for large particle numbers.While for the purely deterministic
motion then isomer transitions only appear for time delays τ in the unstable regime (iii), in a system affected by
thermalfluctuations the transitions occur for arbitrary delays. The evaluation of the frequencies of such
transitions, whichmeasure the stability of the individual isomers, can thus provide insight into the overall energy
landscape responsible for the non-equilibrium structure formation. It is themain topic of transition rate
theory [23].

The transition rate tA Bk  ( ) for switching from a conformationA to a conformationB at time t can be (for
arbitrary dynamics) found from themean number of transitionsNA→B(t) fromA toB during an infinitesimal
time intervalΔ t as t N t tA B A Bk = D ( ) ( ) . Alternatively, one can get it from the inversemeanfirst passage
time for changing the two isomers, leading to the same results. In general, the deduced transition rates depend
on the initial state of the system and on time and they can be calculated analytically only in few simple situations.

Figure 6.The stationary structuremaintaining entropyfluxes (50) and (52) in the dimer (solid lines) and in the trimer (dashed lines) as
functions of the delay (panel (a)) and inverse frequency (panel (b)), respectively. If not specified otherwise we used the parameters
D=1μm2 s−1, τ=1 s andω= 1 s−1. For the dimer, we used the approximationωτ=ω, which is accurate forDτ/R2≈0.
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While they in principle can straightforwardly be evaluated in simulations, this can take a (forbiddingly) long
time if the transition rates are small.

For an analytical treatment, it ismore convenient to define the transition rate via the so-called survival
probability S(t) that the systemhas not changed its initial isomer until time t. Our particular problem concerning
the transitions between different isomers can bemapped to a particlemoving in a high-dimensional energy
landscape.We denote by S tA B ( ) the survival probability that the system, starting in the conformationAwith an
absorbing boundary at the top of the barrier to conformationB (and reflecting barriers elsewhere), will remain
in the configurationA until time t. The transition rate between the statesA andB is then given by tA Bk = ( )
S t S tA B A B ˙ ( ) ( ). Hence, if the dynamical equation for the probability distribution for the state of the system
with the correct boundary conditions is known,we can determine the transition rate numerically and, in some
situations, even analytically.

Considering standardMarkovian Langevin dynamics, the asymptotic form tlimt A Bk¥  ( ) of the
transition rate can (approximately) be calculated using Kramers’ rate theory [22, 23]whichwas originally
developed to describe chemical reaction rates. The approximationworks best for a high energy barrier
compared to the thermal energy. Kramers’ theory was extended to reaction rates forGLEs describing non-
Markovian systems. A crucial contribution in this direction came fromGrote andHynes [67]who derived a
dynamical correction toKramers’ result.While their analysis was based on a parabolic barrier, Pollak [68]
investigated the decay rate of an underdamped particle trapped in a symmetric cusp doublewell potential
obeying theGLEwith an arbitrarymemory kernel satisfying the fluctuation-dissipation theorem. The time-
dependent rate tA Bk  ( ) for driven overdamped systems can be calculated using the recent theory of Bullerjahn
et al [24] for forciblemolecular bond breaking.

To the best of our knowledge, the literature on the rate theory of time-delayed systems is scarce. The escape
froma cubicmetastable well under a time-delayed frictionwas investigated in [69]. Based on their small-delay
approximation, Guillouzic et al [70] calculated the transition rate and themeanfirst passage time for an
overdamped Brownian particle in a delayed quartic potential. From an experimental point of view, Curtin et al
[71] studied transitions in a bistable systemunder time-delayed feedback.

Ourmodel does not belong to any of the previously investigated classes of systems.However, for a vanishing
delay one can useKramers’ theory, since the systemobeys aMarkovian overdamped Langevin equation.
Moreover, for nonvanishing delays in the stable regimes (i) and (ii), the one-time PDFs for dimer and trimer can
be described by standard (time-local) FPEswith time-dependent coefficients, where Bullerjahn’s theory applies
andwhere one can evaluate the transition rate numerically. Furthermore, after long times, the coefficients in
these FPEs become time independent suggesting that Kramers’ theorymay be applied also to obtain the long-
time formof the transition rates for a nonzero delay.

Although looking promising, all the techniques above are based on the time-local FPE. For non-zero delay,
they share one drawback, whichmay limit their applicability to small delays: the time-local FPE is derived from
solutions to the delayed Langevin equationswithout the absorbing boundary condition.While this represents
no problem for diffusion dynamics without delay, it can cause problems in our delayed system. In the following
sections, we compare predictions of Kramers’ theory, Bullerjahn’s theory and direct numerical evaluation of the
transition rates from the time-local FPE against BD simulations of the transition rates for dimer and trimer,
demonstrating that the rates obtained from the time-local FPE are indeed accurate for small andmoderate
delays only.

5.1.Dimer
To study transition rates, the simplest configuration of ourmodel is the dimerwith two distinguishable particles
in one dimension. (Due to rotational symmetry, we cannot distinguish between dimer isomers in two
dimensions.)The setting is described by the approximate Langevin equation (15) for the inter-particle distance
r r r 01 2= - >∣ ∣ . A transition occurs when the two particles exchange their positions, and can be assigned to the
momentwhen the bond length r vanishes. To illustrate the problem, it is useful to extend the domain of the
distance variable r such that it is positive for one isomer andnegative for the other. For vanishing delay, this
redefined signed bond length r̃ then diffuses in the cusped double-well potentialV r r R 22gw= -(˜) (∣˜∣ ) ,
depicted infigure 7, with the diffusion coefficient 2D.

For a nonzero delay, based on the approximate solution (17) to the Langevin equation (15) assuming
r ,Î -¥ ¥( ) and x(t)= 0 for t< 0, we have found that the one-time PDF P P x t P x t x, , , 01 1 1 0= =( ) ( ∣ ) obeys
the FPE (B.6), which reads

t
P

x
t x D t

x
P x t P2 , . 531 1 1w

¶
¶

=
¶
¶

+
¶
¶

ºt t
⎡
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This equation describes diffusion in the harmonic potential

V r t t r R, 2, 542gw= -t(˜ ) ( )(∣˜∣ ) ( )

with the time-dependent stiffness γωτ(t) (given by (B.4)) and the time-dependent diffusion coefficient 2Dτ(t)
(given by (B.8)).

The validity of equation (53) forP1 with natural boundary conditions suggests that one can further employ
the analogy between the delayed dynamics and the (effective)Markovianmodel for calculating the transition
rateκ(t) for switching between the isomers. In theMarkovian case, the transition rate for surpassing the
(effective) energy barrier γωτ(t)R

2/2 at r=0 to the other isomer can be calculated from equation (53)with an
absorbing boundary at x=−R [63].We now review severalmethods suitable for this task, and compare the
results to BD simulations of the completemodel with energy barrier γωR2/2 and delayed dynamics. In order to
study the transition rate between the isomers of the dimer analytically, it is enough to consider the dynamics of
the system in one of thewells of the potential, i.e. for x r R 0= - >˜ .

5.1.1. Numericalmethod
Wefirst consider the situationwhen the systemdwells in the state x(t)=0 for t 0 and then starts to diffuse in
the time-dependent potential (54). Then, the time-dependentMarkovian rateκM(t) can be determined from the
equation

P x t x t P x t t P x t, , , , , 55t a a M a k¶ = +˜ ( ) ( ) ˜ ( ) ( ) ˜ ( ) ( )

for the normalized PDF P x t P x t S t, ,a a a=˜ ( ) ( ) ( ) for the position of the particle surviving in the right well of the
cusped potential [72]. Here,Pa(x, t) is the solution to the FPE (53)with absorbing boundary at x=−R and
S t xP x td ,

Ra aò=
-

¥
( ) ( ) is the probability that the particle survives in the right well until time t. Equation (55)

follows from equation (53) by inserting the definitions of the PDF Pã and of the transition rate

t S t S t . 56M a ak = -( ) ˙ ( ) ( ) ( )
We solved it numerically using themethod presented in [73].

5.1.2. Bullerjahn’smethod
Alternatively, one can determine the rate approximately using the analytical theory developed by Bullerjahn et al
in [24]. Therein, the rate is constructed from the (Gaussian) solutionP1 (20) of the FPE (53)with natural
boundary conditions. Specifically, one approximates the probability current

j R t S t t x D t P x t, 2 , 57x x Ra aw- = = - + ¶t t =-( ) ˙ ( ) [ ( ) ( ) ] ( )∣ ( )

across the absorbing boundary by7

j R t t x D t P x t, 4 , , 58x x R1* w- º - + ¶t t =-( ) [ ( ) ( ) ] ( )∣ ( )

and the survival probability Sa(t) by

S t x P x t R td ,
1

2
1 Erf 2 . 59

R
1 1ò n= = +

-

¥
( ) ( ) [ ( ( ) )] ( )

In the last expression, the symbol Erf denotes the error function and the variance ν(t) is given by equation (22).
The approximateMarkovian transition rate is then given by

Figure 7.The exchange of positions of the two particles of a dimer in 1d can bemapped to the escape dynamics of a single particle in a
cusped double-well potential.

7
Rescaling the diffusion coefficient by factor 2 corrects for the part of the diffusive flux that can not return to the systemdue to the absorbing

boundary, see [24] for details.
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t j R t S t, . 60B 1*k = - -( ) ( ) ( ) ( )

Infigure 8,we show the frequencyωτ(t), the (effective)diffusion coefficient 2Dτ(t), survival probabilities Sa(t)
and S1(t) and the transition ratesκM(t) andκB(t) as functions of time t forparameters in the dynamical regime (i).
One canobserve that both the parameters t t tw l l=t ( ) ˙ ( ) ( ) and D t D t t t2 2l w n= +t t( ) ( ) ( ) ( ) and the rates
saturatewith time.The relaxation timeofωτ(t) is determinedby the time inwhich theGreen’s functionλ(t)
approaches the long-time exponential representation (A.7), and the corresponding stationary value,

t1 Rw ¥ =t ( ) , is controlled by the relaxation time tR for decay ofλ(t) to 0, see alsofigureA1 in appendixA.The
effective diffusion coefficient converges to the value D D D2 1 sin cos 2w t w t¥ = +t t t( ) [ ( )] ( ) , determined
by the stationary variance ssn n¥ =( ) , see equation (24). The transition rates relaxwith the relaxation time tR,
similarly as the correspondingPDFsPa andP1. The analytical expressions for S1(t) andκB(t) approximate the
numerical results for Sa(t) andκM(t)best for short times t tR , where thePDFsPa andP1 are still hardly affected by
the different boundary conditions at x=−R. For long times andup tomoderate values of timedelay, the
approximate analytical transition rateκB overestimates the corresponding exact rateκM, see alsofigures 9(a) and (b)
below. For longdelays, the (effective)barrier height over the (effective) thermal energy decreases so that the
assumptions of the transition state theory are not valid anymore, andκB<κM, seefigure 9(c).

The situationof lowbarriers canbeunderstood fromthebehavior at vanishingpotential strengthω→0,when
Dτ(t)=2D and thefinite time transition ratesκM(t) andκB(t) canbe calculated analytically.Namely, thePDFs Pã and
P1 in thedefinitions (56) and (60)of the rates read P x t x Dt x R Dt, exp 4 exp 2 4a

2 2= - - - +˜ ( ) { ( ) [ ( ) ]}
Dt4p and P x t x Dt Dt, exp 4 41

2 p= -( ) ( ) [63] leading to the formulas

t
R

t

R Dt

x x Dt x R Dt

2 exp 4

d exp 4 exp 2 4
, 61

R

M

2

2 2ò
k =

-

- - - +
-

¥( ) ( )
{ ( ) [ ( ) ]}

( )

Figure 8.The frequencyωτ(t) (panel (a)) and the diffusion coefficient 2Dτ(t) [panel (b)] from theMarkovian FPE (53) as functions of
time. The solid lines in (c) and (d) show the time dependence of the survival probability Sa(t) and transition rateκM(t) calculated
numerically from equations (55) and (56), respectively. The dotted–dashed lines in (c) and (d) depict the corresponding variables S1(t)
andκB(t) obtained by approximate analytical solution of equation (55), see equation (60) and the text above. Parameters used:ω =
1 s−1,D=1μm2 s−1,R=5μm, and τ=0.1 s. The system is in the dynamical regime (i).
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Since the denominator in the expression for the rateκM(t) is smaller than that forκB(t), we conclude that, for low
energy barriers, the inequality t tB Mk k( ) ( ) holds. On the other hand, for very high barriers, the PDFs Pã and
P1 are (almost) identical because the absorbing boundary at x=−R is effectively inaccessible. In such a case, the
probability current j(−R, t) is (almost) zero, S(t)≈1, and j j D P2 0x x R1* » - ¶ <=-∣ leads to the inequal-
ity t tB Mk k( ) ( ).

To gain a deeper insight into the behavior of the transition rates, let us consider the stationary regime,
t  ¥. In this regime, P R, 0a - ¥ =˜ ( ) , due to the absorbing boundary condition at x=−R, and j x,1 ¥ º( )

x D P x2 , 0x x R1w- ¥ + ¥ ¶ ¥ =t t =-[ ( ) ( ) ] ˜ ( )∣ , due to the conservation of probability P x,t 1¶ ¥ =˜ ( )
P x S j x, ,t x1 1 1¶ ¥ ¥ = -¶ ¥[ ( ) ( )] ( ), where∂t≡∂/∂t and∂x≡∂/∂x. Then the transition rates Mk ¥ =( )

jDa- and jB D1k ¥ = -( ) are determined solely by the diffusive fluxes j D P x2 ,x x RDa aº ¥ ¶ ¥t =-( ) ˜ ( )∣
and j D P x2 ,x x RD1 1º ¥ ¶ ¥t =-( ) ˜ ( )∣ . The smaller the frequencyω, thewider the PDFs P1̃ and Pã. For smallω,
the boundary at x=−R is in the regionwhere the PDF P1̃has itsmaximumand it is also close to themaximum
of Pã. In such a case, the PDF Pã, whichmust vanish at x=−R, changes near the boundary faster than P1̃, leading
to j jD1 Da<∣ ∣ ∣ ∣and B Mk k¥ ¥( ) ( ), in accordwith the argument put forward in the previous paragraph.

With increasingω, the boundary shifts away from themaxima of P1̃ and Pã towards their tails. Due to the
trajectories trapped in the absorbing state [72, 74], themaximumof Pã is slightly farther away from the absorbing
boundary than themaximumof P1̃, and thus, with increasingω, the tail of Pã, with small derivative (small jDa),
hits the boundary at x=−R before the corresponding tail of P1̃. Hence, for large enough barrier height, the
inequality between the rates crosses over to B Mk k¥ ¥( ) ( ). Finally, for very stiff traps (w  ¥), both jDa and
jD1 vanish and 0M Bk k¥ = ¥ =( ) ( ) .

As shown in thefigure 8(d), the transition rates converge with time to constant values in regime (i), where the
limits tlimt wt¥ ( ) and D tlimt t¥ ( ) exist. Also in regime (ii), the PDFP1 assumes, after long times, the time-
independent stationary form P xexp 2 21

2
ss ssn pn= -( ) with the variance νss given by equation (24). This

Figure 9.Panels (a)–(c) show typical τ behavior of the predictionsκM (pale blue solid line), Mk̃ (dark blue solid line),κB (yellow
dotted–dashed line), Bk̃ (dark orange dotted–dashed line) andκK (non-horizontal red dotted line) for transition rates obtained from
equations (55)–(66). The horizontal dotted lines correspond toKramers’ prediction M

0kt= for τ=0 s. The symbols (κBD) in all the
panels were obtained from104 simulated trajectories of the Langevin equation (15)with the time step dt=10−4 s. The individual
panels differ only in the scale of the τ-axis.We used the same parameters as infigure 8, whereω=1 s−1 and thus the boundaries
between the dynamical regimes (i), (ii) and (iii) approximately correspond to the values of τ 0.39 and 1.57 s.
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suggests that, also in this regime, the transition rate should saturate at long times.However, both the frequency
ωτ(t) and the diffusion coefficient 2Dτ(t) actually exhibit diverging oscillations caused by the oscillations in the
Green’s functionλ(t) (18), in regime (ii). These divergences cause problems both in the FPE and in the
approximate calculation of the rate using Bullerjahn’smethod. As a consequence, the (effective)Markov
description can not be valid in the dynamical regime (ii). Nevertheless, let us now investigate towhat extent the
long-time transition rate k k= ¥( ) obtained fromBD simulations of the Langevin equation (15) is captured by
the predictions (56) and (60) above.

5.1.3. Long-time behavior andKramers’method
Assuming that at long times the PDF P̃ is time-independent and the limits tlimt wt¥ ( ) and D tlimt t¥ ( )
exist, we can rewrite the formula (55) as the eigenvalue problem

x P x P x, , , , 63a M a k¥ ¥ = ¥( ) ˜ ( ) ˜ ( ) ( )

for the long timeMarkovian transition rate M Mk k= ¥( ).We solve this formula numerically using themethod
described in [72, 73]. The steady state value of the transition rate predictedwith Bullerjahn’smethod reads

j S 64B 1*k = - ¥ ¥( ) ( ) ( )

with the survival probability S R1 Erf 2 21 ssn¥ = +( ) [ ( )] and the probability current j* w¥ = ¥t( ) ( )
R Rexp 2 22

ss ssn pn-( ) .
For high barriers, where S 11 ¥ »( ) , the long time formof Bullerjahn’s transition rate coincides with the

classical prediction byKramers [22, 23] for the transition rate for leaving one of thewells of a cusped potential
with barrier height Eb,
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In the penultimate equality, we used the appropriate inverse thermal energy D1 2b g= ¥t ( ) and barrier height
E R 2b

2gw= ¥t ( ) , and also the asymptotic formof the diffusion coefficient D ssw n¥ = ¥t t( ) ( ) , which
follows from the condition tlim 0t l =¥ ( ) , valid in the dynamical regimes (i) and (ii).

5.1.4. Renormalized transition rates
Interestingly, the termωτ(t), which causes divergences of the diffusion coefficient and the frequency of the
potential in the FPE (53), does not enter the argument of the exponential in the ratesκB andκK. Thismeans that
it just determines the kinetic prefactor, as can be also observed directly from the long-time form

P t x P2t x x1 ss 1w n¶ = ¶ + ¶t ( ) ( ) of the FPE (53). In the dynamical regime (ii), the kinetic prefactor in
equation (65) cannot be correct, due to the diverging oscillations in the time-dependent frequencyωτ(t).
Nevertheless, the exponential term seems to be reasonable, and thus it is tempting to use in the prefactor of the
transition rates simplyω, instead of the problematic w ¥t ( ). This substitution gives the correct pre-exponential
factor of the rate for vanishing delay τ=0, where w w¥ =t ( ) and D D2 2¥ =t ( ) .We denote the rates with
the renormalized prefactor as

66x xk wk w= ¥t˜ ( ) ( )

with x=M,B orK indicatingMarkov, Bullerjahn, or Kramers, respectively.
The necessity to change the kinetic prefactor in the rates stems from the fact that, although the absorbing

boundary conditionwe used in equation (63) is correct forMarkov dynamics (τ=0), it can not be precisely
valid for the time-delayed dynamics (τ>0). To see this, it is enough to realize that the delayed system
arriving at the boundary at a time t does not feel the energy barrier Eb=γωR2/2, but the barrier with
energy r t 22gw t-[ ( )] .

Infigures 9(a)–(c), we compare the various analytical predictionsκx and xk̃ , x=M,B orK, for the long-
time transition rate (lines)with the asymptotic rateκ (symbols) calculated fromBD simulations of equation (15)
using the inversefirst passage time for reaching the absorbing boundary at r=0. For a broad range of
parameters fulfilling k T V R, 0B - ( ), we have found that the rateκ can be predicted reasonably well only for
values of τ in the dynamical regime (i) (ωτ<1/e≈0.37) and in the first part of the dynamical regime (ii)
(ωτ<π/2≈1.57). The rateκ is best approximated by the expression Mk̃ obtained numerically from
equation (63)withω substituted for w ¥t ( ) in the operator . From the analytical expressions the re-scaled
Bullerjahn expression Bk̃ (see equations (64) and (66))works best. However, in the figure we have used
parameters leading to a high barrier Eb, and thus Kramer’s and Bullerjahn’s predictions,κK andκB, almost
coincide. As a consequence, the line for Kk̃ in thefigure overlapswith Bk̃ , similarly as the lineκK (suppressed in
thefigure for better readability) overlapswithκB.
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5.1.5. Delay-dependence ofκ
Infigure 9(d), we also show the behavior of the rateκ in the parameter regime (iii) inaccessible to the analytical
and numerical formulas due to the diverging oscillation. The simulated transition rate in figures 9(a)–(d) isfirst
approximately exponential and thus convex in τ, then its curvature changes to concave and it runs through a
maximumand,finally, the rate starts to decrease. The value of τwhere the curvature changes sign coincides with
the boundaryπ/2ωτ≈1.57 between the dynamical regimes (ii) and (iii). Interestingly, no qualitative change of
κ(τ) is observed at the boundaryωτ=1/e≈0.37 between the regimes (i) and (ii). It is tempting to attribute, the
(approximate) exponential increase of the ratewith τ in regimes (i) and (ii) to the increase of the steady-state
variance νss, which is given as the ratio of the effective energy barrierV R,- ¥( ) and the effective thermal
energy D2g ¥t ( ). Although this explanationmayworkwell for small delays, it breaks down for values of τ in
the second half of the regime (ii), where the actual rateκ is no longer well approximated by our analytical and
numerical predictions. Thismeans that the identification of the parameters γωτ(t) and 2Dτ(t)with the effective
potential stiffness and the effective diffusion coefficient, respectively, suggested by the effectiveMarkov
equation (53), is reasonable for relatively small values of τ only. In the dynamical regime (iii), the particle
undergoes oscillations with an amplitude that increases bothwith τ and t. The corresponding transition rate,
obtained from the BD simulations, thus decreases with the delay τ as a result of oscillations leading away from
the transition boundary at r=−R. Note that, in this regime, the stationary transition rate actually does not
exist, since the amount of time spent distant from the boundary increases with t (so that the transition rate
decreases with t), where t is the duration of the simulation.

5.2. Trimer
Consider the trimer depicted infigure 10with the three distinguishable particles labeled by the numbers 1–3.We
can count the particles either clockwise or anticlockwise and thus two different isomers can form in two
dimensions. As in the case of the dimer discussed above, transitions between the two isomers occurwith a
transition rate depending on the diffusion coefficient, the coupling strength, and the equilibrium spring length.

There are several ways how the clockwise isomermay turn into the anticlockwise one and vice versa. For
example, the particles 1 and 2 can switch their positions, or the particle 2 canmigrate from above the line
connecting particles 1 and 3 to below that line, to name a few. The transition rate for hopping between the two
isomers is then given as a sumof the transition rates for all the possible realizations of the transition. In order to
make an analytical prediction for the transition rate, we choose the coordinate frame in such away that the x-axis
always points fromparticle 1 to particle 3 (seefigure 10). Then all possible transitions between the two isomers
boil down to a single eventwhen particle 2 crosses the x-axis. In particular, this also includes the transitions due
to exchanging particles 1 and 3. In this case, the direction of the x-axes changes and thus the particle 2 effectively
moves to its other side. In the following, we estimate the long-time transition rate k k= ¥( ) for the isomer
transition in the steady state bymeans of Kramers’ theory and compare it to BD simulations.

In theBDsimulations, wehave evaluated the rateκusing the anglejbetween the abscissas 12∣ ∣ and 13∣ ∣ and a
neutral regionofwidth x R3 16D = as exemplarily shown infigure 10. Aneutral state 0ñ∣ is introduced to
avoidover counting due tofluctuations ofj around 0 andπ. It is occupied if the smallest height of the triangle
formedby the three particles, is smallerΔ x/2. i.e. either if maxj f< º>∣ ∣ x r x rarcsin 2 , arcsin 212 13D D[ ( ) ( )]
or x r x rarccos 2 arccos 212 13j f> º D + D<∣ ∣ ( ) ( ). Forjä [f>,f<] the system is said to be in the clockwise
state 1ñ∣ , while forjä[−f>,−f<] it is in the counter-clockwise state 1- ñ∣ . To calculate the transition rate,we
have counted the number of transitions between the states 1 ñ∣ during a specific simulation timewindow,where
the transition occurred if the systemunderwent the sequenceof states 1 0 1ñ  ñ  - ñ∣ ∣ ∣ or 1 0 1- ñ  ñ  ñ∣ ∣ ∣ .

Figure 10.Transition from the clockwise to the counterclockwise isomer of a trimermolecule. To calculate the transition rate from
the clockwise to the counterclockwise isomer, we choose the coordinate frame such that x-axis points fromparticle 1 to particle 3. By
this choice of frame, all transitions aremapped to the crossing of the x-axis by particle 2. The gray region ofwidthΔx depicts a
transition zone or ‘neutral region’ that helps to avoid that smallfluctuations around the axis are counted as isomer transitions.
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The resulting transition rateκ as a function of the time delay τ is depicted infigure 11(a). Therein, one can
observe the four dynamical regimes described in section 3. For small delays the rate is approximately
exponential, then the curvature of k t( ) changes frompositive to negative, after which the derivative of the rate
starts to increase due to the appearance of the fourth dynamical regimewhere the particle hops between the
individualminima of the potential, and for large delays in the unstable regime (iii) the rate drops, while the
particle exhibits diverging fluctuations. The transition rate is qualitatively similar to that obtained for the dimer
infigure 9. The only difference is that for the dimer we have not observed the fourth dynamical regime, because
we have calculated the rate using the first-passage timemethod, which is insensitive to the potential shape
beyond the boundary.

For an approximate analytical treatment, wemap the situation to a one-dimensional transition problem, to
whichwe apply Kramers’ theory. Specifically, we focus on the distance rb of the particle 2 from the x-axis and
construct an appropriate effective energy barrier Eb,eff and diffusion coefficientDeff. In the steady state, the three
particles aremost likely found at the vertices of an equilateral triangle. Using the notation of section 2.3, we
express the vector rb from the particle 2 to the center of the abscissa 13∣ ∣ as rb=r12+r31/2.Hence the
Gaussianwhite noise tbh ( ) corresponding to the coordinate rb is given by

D t t D t t D t4
1

2
4 2 3 , 671 2 3 1 bh h h h h- + - º( ( ) ( )) ( ( ) ( )) ( ) ( ) ( )

wherewe have used the relations (4). Based on these considerations, we approximate the effective diffusion
coefficient byDeff=3D.

For the corresponding effective energy barrier, wemake the ansatz E C R 12b,eff
2t gw= ( ) . Namely, wefirst

consider theminimumvalueEb=kR2/6= γωR2/12 of the energy difference between a configurationwith all
the three particles aligned (V=kR2/6) and the configurationwhere the particles form an equilateral triangle
with side lengthR (V=0), whereV is given by equation (2). The (possibly delay-dependent) unknown
dimensionless prefactorC(τ) accounts for the time delay and all additional ways the particle 2may take in the
multidimensional energy profile in order to pass from 1ñ∣ to 1- ñ∣ . The resulting Kramers’ rate for the transition
from 1ñ∣ to 1- ñ∣ thus reads

a
C R

D
exp

36
, 68TST

2

k t
t w

= -
⎧⎨⎩

⎫⎬⎭( ) ( ) ( )

where a(τ) is a further unknownprefactor thatmay depend on all parameters of themodel (see, for example,
equation (65) for Kramers’ rate in a cusped potential).

In order to test the formula (68), we havefitted it to the transition rateκ obtained fromBD simulations as a
function of the diffusion coefficientD. The results for different values of the time delay are shown infigure 11(b)
and the corresponding values of the coefficientsC(τ) and a(τ), obtained from the fits, are given in table 1. The
presented results prove that the transition rate exhibits exponential increase with the diffusion coefficient for a
relatively broad range of values of the time delay, and thus theD-dependence ofκ can be relatively well described
by theKramers-type ansatz (65).

Our attempts to include the effects of the delay in the effective diffusion coefficient and energy barrier,
analogously to the approach described in section 5.1, wherewemade the replacements ,ssw w t and
D D ,ss t , did not lead to a significant change of the value forC(τ).We thus conclude that the deviations ofC(τ)
fromunity aremainly caused by the assumption that the particle will almost in all cases cross the axis at the

Figure 11. (a) Steady-state transition rate for the trimer as a function of time delay obtained by BD simulations. (b) Steady state
transition rate for the trimer as a function of the diffusion coefficient for several values of time delay. The curves were obtained by
fitting the formula (68) to the simulation data (symbols). The curves of τ=0 s and τ=0.1 s are lying on top of each other. Parameters
used:ω=1 s−1,R=5 μm,D=1 μm2 s−1. In BD simulations, we have averaged over 103 trajectories with time step dt=10−3 s.
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minimumof the potential energy. Further improvement would thus require amultidimensional transition rate
theory, which is clearly beyond the scope of the present paper.

6. Extensions to othermemory kernels

So far,wehave consideredonly the interactions involving a given positive delay time. But how robust are our
analyticalfindings?Do they critically hingeon (possibly artificial)model details andbreakdownupon someminor
variation of themodel definition? It turns out thatmost of the presented results can bedirectly applied also to other
modelswith delay ormemory. To see this, note that the central equation (B.1) is equivalent to theGLE

x t t t x t td 69
t

0
òw f sh= - ¢ - ¢ ¢ +˙ ( ) ( ) ( ) ( )

with positive frequencyω>0 and thememory kernel given byf(t)=δ(t−τ), τ>0.Deriving a time-local
Langevin equation from theGLE (69)with arbitraryf(t) along the lines of appendix B.1, we obtain
equation (B.3)withλ(t) being theGreen’s function for equation (69), i.e. solving (69)with the initial condition
λ(0)=1 andλ(t)=0, t<0. Therefore, all our results that do not depend on the specific formof theGreen’s
function can be readily generalized to arbitraryf(t) after substituting theGreen’s function (A.5) forf(t)=δ
(t−τ) by theGreen’s function corresponding to the chosenf(t). In the rest of this section, we review some
paradigmatic examples ofmemory kernelsf(t), to provide readers with a set of examples of the potential
generalizationswe have inmind.

The simplest generalization of systemswith thememory kernelf(t)=δ(t−τ) are systemswithmultiple
different time delays with thememory kernel

t t . 70
i

N

i i
1

åf w d t= -
=
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Properties of these systems are studied in [35].
A slightly unusual but interesting variation thatmakes sense in the context of activematter employs a

negative delay. The individual active agentsmay react to a future state of their neighborhoodwhich they predict
in the basis of its present state. For idealized systems capable of a perfect prediction, theGLE (or, equivalently,
the linear SDDE) contains thememory kernelf(t)=δ(t+τ), τ>0 and it can be solved using the strategy
described in appendix A. The resultingGreen’s function

t
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t k 71
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is the so called Bruwier series [75] that is convergent for ew t<∣ ∣ ∣ ∣. Alternatively, the series (71) can bewritten in
the form [76]
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1
, 72

st

l
t
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where s is the absolute value of the smallest root of the equation ρ=−ωeτρ.
More realistic predictive systemsmight insteadonlyhave an imperfect knowledge of the future position and

anticipate a position x t x tpre t t+ ¹ +( ) ( ). Therefore,we reformulate the deterministic part of theGLE (69) as

x t x t . 73prew t= - +˙ ( ) ( ) ( )

One of the reasonable strategies for predicting xpre is to use the linear extrapolation

x t x t x t , 74pre t t+ = +( ) ( ) ˙ ( ) ( )

Table 1.The phenomenological parametersC(τ) and a(τ) forfive values of
the time delay τ corresponding to the three different dynamical regimes of
the trimer isomerization. The presented valueswere obtained by fitting the
formula (68) to the BDdata shown infigure 11(b).

Regime τ (s) C(τ) (1) a(τ) (s−1)

(i)Exponentialdecay 0 3.52±0.08 1.16±0.09
(i)Exponentialdecay 0.1 3.45±0.01 1.10±0.01
(i)Exponentialdecay 0.3 3.65±0.07 1.69±0.10
(ii)Dampedoscillations 0.5 3.41±0.07 2.07±0.12
(iii)Exponentialdivergence 1.0 1.48±0.05 1.23±0.05
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which is identical to a small delay expansion of x(t+τ). The equation ofmotion (73) then assumes the time
local form

x t x t1 75wt w+ = -( ) ˙ ( ) ( ) ( )

which is solved by x(t)=x0λ(t)with the exponentially decayingGreen’s function

t t texp
1

. 760l
w
wt

= -
+

-
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

The rescaled frequency 1rw w wt= +( ) decreaseswith increasingdelay and thus the resultingdynamics in general
exhibits slower relaxation and largerfluctuations (variance) thana systemwithvanishing timedelay.Note that for
conventional timedelays (nowcorresponding toτ<0 in equation (73)), thepresentedfirst order approximation
predicts dynamicswith rescaled frequencyωr increasingwith increasing timedelay (forωτ<−1).However, such
dynamicswould lead to smaller varianceνss fornon-zerodelays than for a vanishingdelay,which contradicts our exact
result (24), highlighting the limitedpractical significanceof thenaive small-delay expansion, as alreadypointedout
in [30].

Themost frequently used generic formof thememory kernel is the exponential

t b btexp 77f = -( ) ( ) ( )

which is obtained, for example, after integrating out themomentum in the Langevin equation for position of an
underdamped harmonic oscillator. Thismemory kernel leads to the correspondingGreen’s function
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⎤
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where b 42 2wW = - , which is reminiscent of theGreen’s function (A.7) for the systemwith conventional
time delay [f(t)=δ(t−τ)]. The difference is that, while theGreen’s function (78) always decays exponentially
with time, theGreen’s function (A.7) allows also for negative relaxation times and thus an exponential increase
with time. Properties of theGreen’s function (78), as well as those corresponding to a power-lawmemory, are
discussed inmore detail in [77].

7. Conclusion and outlook

Inspired by the surging interest in self-organized activematter and,more specifically, the experiments ofKhadka
et al [11], we consideredNBrownianparticles interacting via time-delayed harmonic interactions and confined to a
plane, as depicted infigure 1 in section2. The system is described by the set (3) of 2Nnonlinear delayed Langevin
equations andhence its dynamics is non-Markovian. At long times, the particles formhighly symmetric dynamical
molecular-like structures, depicted infigure 4(a) in section3,whichbecome increasingly compact for largeN.

We have analyzed small systems ofN=2 (dimer) andN=3 (trimer) particles analytically finding
molecules with nearest-neighbor distance given by the equilibrium spring lengthR. To this end, we linearized
the corresponding Langevin equations around the zero-temperature steady-state configurations, or,
equivalently, around theminimumof the potential energy (2). The linearized Langevin equations could be
solved analytically, leading toGaussian stationary probability densities with delay-dependent effective
parameters. In the appendices, we provide analytical expressions formean values, covariancematrix and time-
correlationmatrix for amultidimensional systemof linear delayed Langevin equations. For the dimer and
trimer, we have compared our analytical predictionswith BD simulations of the completemodel (3).We have
found good quantitative agreement in the parameter regimeswhere the system evolves relatively close to its
minimumenergy configuration, and good qualitative agreement otherwise (see section 2).

Our analytical results for thedimer and trimer imply that these structures are stable only for small enoughvalues of
theproduct kτ,where kdenotes the stifness of thepotential.Moreprecisely, these systems converge either
exponentially or by exponentially-dampedoscillations to corresponding steady states, or they exhibit exponentially
divergingoscillations.Our analysis of systemswith N 2 byBDsimulations, described in section3, reveals that these
dynamical regimes are stable beyond the linearization approximationand for an arbitrarynumberof particles.
Specifically,wehave found that the stability actually extends to larger values of kτ thanpredicted fromthe linearized
equations, the critical valueof theproduct kτdecaying approximately as 1/N. Therefore, larger systemsaremore
unstable than smaller ones, and thedependenceof the stability on theparticle number almost vanishes after rescaling
thepotential stiffness ask→k/N.Weconjecture that these instabilities are inducedby the chosen formof the
interactionwhichhas infinite range anddivergeswith increasing inter-particle distance. In contrast, themodelwith
constant forces, considered in [11], didnot lead tounstable behavior.

Interpreting the inter-particle interactions as an actionof a feedback controlmechanism,wehave, in section 4,
used our analytical results for thedimer and trimer to evaluate the amount of entropy extracted by the feedback
from (or information injected to) the system inorder tomaintain thenon-equilibrium structures. Interestingly
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enough, the entropyfluxes donot dependon thenoise amplitudeD andhence they are discontinuous atD=0,
where the steady-state structures are stablewithout feedback and thus the entropyfluxes vanish.

Assuming the particles to bedistinguishable, the steady-state structures (molecules) can formdifferent
isomers. Their transitiondynamics canprovide rich additional insight into the energy landscapeunderlying the
non-equilirbiumstructure formation. For the dimer and trimer, wehave investigatedhowandwhen the
transitions between the individual isomers can bedescribed by transition state theory. For thedimer,wehave
applied our analytical results, based on the time-convolutionless transform leading to the time-local FPE (53), to
construct several analytical approximations for the transition rate usingKramers’ theory [22, 23] andBullerjahn’s
theory [24].Wehave also calculated the transition rate from theFPEnumerically. Finally, wehave compared the
obtained predictions to results of BDsimulations of the full problem.While the FPE gives the exact value of the
transition rate for vanishing delay, our results show that the obtained rates agreewith the trueones for small and
moderate values of thedelay only.Weconjecture that this is caused by the fact that the classical absorbing
boundary used inour numerical and analytical evaluation of the transition rate cannot beused for larger values of
τ. Concerning the analytical results, the best agreementwith the true rateswas obtained by theBullerjahn’s formula
(64)with effective barrier height anddiffusion coefficient taken from the time-local FPE (53) and the prefactor
rescaled according to equation (66). In the case of the trimer,wehave confirmedbyBD simulations that the
transition rate increases exponentiallywith thenoise strengthD even for longer delays and thusKramers’ or
Bullerjahn’s type predictions can beused also in this case.Weplan to further investigate suitable absorbing
boundary conditions for delayed systems to predict (at least numerically) transition rates also for large delays.

Finally in section 6,wehave considered the robustness of our analytical resultswith respect to details of the
realization of the delay.Wedemonstrated thatmost of the presented equations canbeused also for systemswith
memory kernels different from that for discrete timedelays, i.e.f(t)=δ(t−τ). It is enough to substitute the
Green’s functionλ(t) (A.5) corresponding thedelayedLangevin equation by theGreen’s function corresponding to
thememory kernel of interest.We reviewed someparadigmaticmemory kernels andprovided an outlook on the
differences and similarities of the correspondingGreen’s functions. Amore detailed study is left for futurework.

As a further extension of ourwork, it would be interesting to consider physicallymore realistic interactions
that vanish at large distances. Furthermore, we plan to investigate the reaction of the studied system to an
external perturbation. Of particular interest could be the propagation and decay behavior of a local perturbation
through the system, especially in case of large numbers of particles. Last but not least, we aim to investigate the
behavior of the studied systemunder the action of an additional deterministic time-dependent driving and study
the corresponding stochastic dynamics and thermodynamics.
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AppendixA. Solution of theNoiseless problem

In this appendixwe solve themulti-dimensional linear delay differential equation (LDDE)

t tx x , A.1w t= - -˙ ( ) ( ) ( )

whereω is a positive semi-definitematrix with real entries and x(t) is a column vector. Laplace transformation of
this equation leads to the formula

s s s t tx x x xe d e A.2s st
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with x0≡x(0). The solution of this equation for the Laplace transformed variable reads
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where  denotes the identitymatrix. In the last step, we have expanded the inversematrix using theNeumann
series. The inverse Laplace transformof the ratio se s k 1t- + is given by t t kkt q t- -( ) ( ) ! [78] and thus the
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formula (A.3) can be inverted. Finally, the solution of equation (A.1) is given by

t t s t s sx x xd , A.40
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òl w l t= - - -
t-

( ) ( ) ( ) ( ) ( )

where
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¥
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( ) ( ) ( )

is amatrix-valued functionwhich solves equation (A.1)with the initial condition x(t)=0 for all t<0 and
x 0 =( ) . In the present paper, we always assume that the system is initialized at time t at position x0 with a
special history, namely x(t)=0 for all t<0, allowing us to simplify equation (A.4) to x(t)=λ(t)x0.

The only fixed point of theDDE (A.1) is x(t)=0. In order to investigate its stability, it is useful to present an
alternative solution of the LDDE (A.1) using the exponential ansatz t tx exp aµ -( ) ( ). Inserting this ansatz into
equation (A.1) leads to the equation expa w at= ( ) for thematrixα. Except for somenotable exceptions [79],
the solution of this equation is given by

W
1

, A.6a
t

tw= - -( ) ( )

whereW denotes thematrix valued LambertW function [80]. The LambertW function is amultivalued complex
function. The long-time behavior of solutions to equation (A.1) and thus also the stability of itsfixed point are
determined by the branch ofW yielding the largest real parts of the eigenvalues of thematrixα. The
corresponding values of the LambertW function strongly depend on the reduced delay τω.

For example, in one dimension, whereω is a positive real number, the branch of the LambertW function
with the largest real part exhibits three qualitatively different regimes as a function of τω leading to three
different dynamical regimes of solutions

Figure A1. Solid lines in the panels (a) and (b) show theGreen’s functionλ(t) (A.5) for the one-dimensional case of the LDDE (A.1)
and the time-correlation functionC(t) (C.2) for the one-dimensional linear SDDE (B.1) as functions of time, respectively. The dotted–
dashed lines describing the long-time behavior of these variables were calculated using the exponential solution (A.7) of
equation (A.1) in the form A t t texp cosR 0f- W +( ) ( ). The dashed lines delineate the overall exponential decay t texp R-( ) ofλ(t)
andC(t). The dotted line in panel (b)depicts the stationary valueC(0) of the variance given by equation (C.6). The lifetime
tR

1 a=- ( )R and the frequency aW = ∣ ( )∣I of the oscillations inλ(t) andC(t) are shown in panels (c) and (d), respectively. The dotted
lines in these panels serve just as an eye-guide depicting the linear behavior τ/tR=Ωτ=ωτ. For the purposes of the appendix, we
assume that the individualmodel parameters are dimensionless. Parameters used:ω=0.9 and τ=σ2/2=1.
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x t t t t texp exp cos , A.7Raµ - = - W( ) [ ( )] ( ) ( ) ( )R

t1 R a= ( )R , aW = ∣ ( )∣I , to equation (A.1). The boundaries between these regimes can be determined
analytically [25, 27, 30]: (i) e0 1tw< , whereα is real and positive and x(t) decays exponentially to 0with
lifetime tR; (ii) 1/e<τω<π/2, whereα is complexwith a positive real part, producing exponentially damped
oscillations of x(t)with frequencyΩ and lifetime tR; and (iii)π/2<τω, whereα is complexwith a negative real
part, corresponding to exponentially diverging oscillations of x(t)with frequencyΩ. For τω=π/2, 1/tR=0
andλ(t) oscillates with frequencyΩwithout any decay.

In the panel (a) offigure A1, we show that for long times theGreen’s functionλ(t) for equation (A.1) is well
approximated by the exponential solution (A.7). The above described dynamical regimes are reflected in the
behavior of the decay rate 1/tR and the frequencyΩ of oscillations, plotted in the panels (c) and (d), respectively.
The panel (b) of the figure shows the steady auto correlation of x(t) calculated in appendix C,which is alsowell
described by the formula (A.7).

Appendix B. Solutionwith noise

B.1.One dimension
Let us now solve equation (A.1)with an additional noise term. For simplicity, we present the detailed derivation
first in one dimension.We thuswant to solve the equation

x t x t t , B.1w t sh= - - +˙ ( ) ( ) ( ) ( )

where η(t) is a white noise fulfilling t 0há ñ =( ) and t t t th h dá ¢ ñ = - ¢( ) ( ) ( ). Due to the time delay, this is a
time-nonlocal (and consequently non-Markovian) Langevin equation, which, however, can be transformed into
a time-local Langevin equationwith a colored noise via the so-called time-convolutionless transform [35]. The
time-local equation can then be used to derive the FPE for the PDFs for x(t). In order to do that, wewrite the
formal solution of equation (B.1) as

x t x t s t s s td , B.2
t

0
0
òl s l h y= + - +( ) ( ) ( ) ( ) ( ) ( )

whereλ(t) is given by equation (A.5) and t s t s x sd
0

òy w l t= - - -
t-

( ) ( ) ( ) is determined by the initial

condition x(t) for t<0. Aswe show in the next section, the formula (B.2) can already be used for the calculation
of the time-correlation function for x(t). Here, we differentiate the solution (B.2)which yields the time-local
Langevin equation

x t t x t b t t . B.3w sx= - + +t˙ ( ) ( ) ( ) ( ) ( ) ( )

Due to the time-nonlocal nature of equation (B.1), the potential in the time-local equation (B.3) possess the
time-dependent stiffness
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and the time-varying position of theminimum b t tw- t( ) ( ), with b t t t tw y yº +t( ) ( ) ( ) ˙ ( ) vanishing for the
special initial condition x(t)=0 for all t<0. Furthermore, equation (B.3) includes theGaussian colored noise
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WhileMarkov processes are completely determined by the the transition probability density P x t x t, ,1 0 0( ∣ ) for
going from the initial state x0 at time t0 to thefinal state x at time t, non-Markov processes in general require a full
hierarchy of joint probability densities. Nevertheless, similarly to theMarkovian case, theGaussian non-Markov
process (B.3) is completely determined by the joint probability distribution P x t x t x, ; , , 02 0¢ ¢( ∣ ) [35].

The FPEs for the one- and two-time probability distributions P x t x x x t, , 01 0 d= á - ñ( ∣ ) [ ( )] and
P x t x t x x x t x x t, ; , , 02 0 d d¢ ¢ = á - ¢ - ¢ ñ( ∣ ) [ ( )] [ ( )] , where the averages are taken over all realizations of the
process x t( ) departing from state x0 at time 0, are found to be
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Similarly as the trap stiffnessωτ(t), also the effective diffusion coefficient, corresponding to the time-local
description, is time dependent if τ>0. It reads
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Because of the oscillatory nature ofλ(t) in the dynamical regimes (ii) and (iii), the coefficientsωτ, b, c andDτ

in the FPEs (B.6) and (B.7) change their signs and they can even diverge. These divergences, however, always
mutually balance each other such that the solutions of the FPEs, as given by the equations (19) and (20), are
always reasonable [35].

B.2.Higher dimensions
Let us now consider the problem

t t tx x , B.9hw t s= - - +˙ ( ) ( ) ( ) ( )

with generalmatricesω andσ and the vector th ( ) ofwhite noises fulfilling t 0há ñ =( ) and t ti jh há ¢ ñ =( ) ( )
t tijd d - ¢( ). Since this systemof Langevin equations is linear, the one- and two-time probability distributions

P tx x, , 01 0( ∣ ) and P t tx x x, ; , , 02 0¢ ¢( ∣ ) for tx( ) defined in the preceding sectionmust beGaussian [63] as in the
one-dimensional case and also the corresponding FPEs can be derived along similar lines as in one dimension.
Instead of deriving these equations, we nowprovide a simpler alternative derivation of the properties of the
Gaussian distribution
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based solely on the formal solution of the Langevin system (B.9)
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with the initial condition x(t)=0 for all t<0 and x(0)=x0 andwith theGreen’s functionλ(t) of the Langevin
system given by equation (A.5).

Themean value t txm = á ñ( ) ( ) and the elements tij ( ) of the covariancematrix t t tx x = á ñ -( ) ( ) ( )
t tx xá ñá ñ( ) ( ) defining the PDF (B.10) can be obtained by inserting xi(t) from equation (B.11) into the definitions

and averaging over the noise η(t). The results are
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and
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These formulas can be generalized straightforwardly to arbitrary initial conditions, where x(t) for t 0 is drawn
from some probability distribution P t tx , 0[ ( ) ]. Then the formal solution of the system (B.1) reads
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Themeanvalue tm( ) is givenby t ty tx 0m = á ñ( ) ( ) ( ), and t t t s t s t sy y dt
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The averages • tx 0á ñ ( ) above are takenwith respect to thePDF P t tx , 0[ ( ) ]. The long-timebehavior of the
covariancematrix (B.13) is studied in thenext sectionof this appendix.

AppendixC. Time-correlationmatrix and stationary covariancematrix

The coefficients in theGaussian two-time PDF P t tx x x, ; , , 02 0¢ ¢( ∣ ) can be obtained in a similarmanner
as in appendix B.2. Here, we calculate only the stationary space-time correlationmatrix t =( )
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sxlim 0s á ñ =¥ ( ) . Itsmatrix elements can be calculated in an analogous fashion as the elements of t( ). The
result

t s s t s s slim d C.1
s

s

0
  ò l ss l= ¢ + - ¢ - ¢

¥
( ) ( ) ( ) ( )

can be evaluated numerically. It is possible to rewrite it in a simpler form. Taking the derivative of t( )with
respect to t reveals that for t>0 the correlationmatrix obeys the sameDDE as theGreen’s functionλ(t), i.e.
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t t t, 0. C.2 w t= - - >˙ ( ) ( ) ( )
The restriction t>0 for validity of this equation comes fromdiscontinuity (and thus non-differentiability) of
λ(t) at t=0. The solution to equation (C.2) is given by equation (A.4) and hence the stationary space-time
correlationmatrix can bewritten as

t t s t s sd , C.30

0
  òl w l t= - - -

t-
( ) ( ) ( ) ( ) ( )

where t0 limt0  = ¥( ) ( ) is given by the long time limit of the covariancematrix. The stationary correlation
matrix is thus solely determined by the unknown initial condition t( ), tä[−τ, 0]. Fortunately, this initial
condition can be calculated using the approach of Frank et al [31]who calculated the time-correlation function

t( ) for tä[0, τ] in one-dimension (see also [32]). They utilized the symmetry t t = -( ) ( ) following from
equation (C.1) to rewrite theDDE (C.2) as t t w t= - -˙ ( ) ( ) for tä (0, τ). Taking the derivative of this
equation and using equation (C.2) yields the second order ordinary differential equation

t t t¨ , 0, C.42 w t= - Î( ) ( ) ( ) ( )
for the initial condition t t = -( ) ( ), tä[−τ, 0]. The solution of this equation reads t tcos0  w= +( ) ( )

tsin0
1 w w-˙ ( ), wherewe still need to determine the unknown coefficients 00 = ( ) and tlimt0 0 =  +

˙ ˙ ( ). To
this end, we need to evaluate independently t( ) and/or t̇( ) for two times tä(0, τ). Specifically, we show at the
end of this appendix that 0.5 1 t w ss= -( ) and 0.50 ss= -˙ . Using these results, thefinal expression for the
correlationmatrix for tä[−τ, τ] reads

t t tcos 0.5 sin C.50
1  w ss w w= - -( ) ( ) ( ∣ ∣) ( )

with the initial value

s0 lim
1

2
sin cos C.6

s
0

1 1 1    w ss ss w wt wt= = = +
¥

- - -( ) ( ) [ ( )] ( ) ( )

given by the stationary value of the covariancematrix. Thewhole time-dependence of t( ) for t 0 is thus
described by the formulas (C.3), (C.5), and (C.6). The correlationmatrix for negative times then follows from
the symmetry t t = -( ) ( ). Finally, let us note than in the one-dimensional case, whereω andσ stand for real
numbers and,more generally, if thematricesω−1 and ss commute, we can rewrite equation (C.6) as

2
sin cos , C.70

1 
ss
w

wt wt= + -[ ( )] ( ) ( )

where  denotes the identitymatrix. An example of the time-correlation function for a one dimensional system
is depicted infigure A1(b) in appendix A.

The expression forC(τ) can beobtainedbymultiplying equation (B.9)by sx( ), averaging the result over the
noise, using the assumed stationarity of the process implying the formula s s sx x0 d lim d 0s = á ñ =¥

˙ ( ) [ ( ) ( ) ] ,
and applying the symmetry t t = -( ) ( ). The result is s sx 0.51 1  ht w s w ss= á ñ =- -( ) ( ) ( ) , where the last
equality comes after inserting the formal solution (B.11) forx(t) into the average, using the covariance of the noise,
andnoticing that in the resulting integral we integrate over half of the emerging δ-function only. The expression
for 0̇ then comes simply fromequation (C.2), which is invalid for t=0, but can beused for t arbitrarily close to 0
from the right, andusing the result for  t( ).
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