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Abstract

A possible notion of nonclassicality for single systems can be defined on the basis of the notion of
memory cost of classically simulating probabilities observed in a temporal sequence of measurements.
We further explore this idea in a theory-independent framework, namely, from the perspective of
general probability theories (GPTs), which includes classical and quantum theory as special examples.
Under the assumption that each system has a finite memory capacity, identified with the maximal
number of states perfectly distinguishable with a single measurement, we investigate what are the
temporal correlations achievable with different theories, namely, classical, quantum, and GPTs
beyond quantum mechanics. Already for the simplest nontrivial scenario, we derive inequalities able
to distinguish temporal correlations where the underlying system is classical, quantum, or more
general.

1. Introduction

Given a single quantum system, in what sense can we say that it has some nonclassical properties? The most
celebrated phenomena where quantum systems depart from their classical counterpart involve notions such as
entanglement [1, 2] and nonlocality [3, 4], which can be defined only in terms of multipartite systems. What if we
are able to perform experiments only on a single, indivisible, system? Can we still say that the observed statistics
has some ‘nonclassical properties’? Some notion of nonclassicality have been proposed for single systems, such
as contextuality [5] and nonmacrorealism [6, 7]. One may argue that such notions are limited to specific
measurement procedures and hence are not fully satisfactory. Contextuality restricts the set of possible
operations to compatible measurements, which in many cases need to be (approximately) projective or at least
satisfy some analogous notion of repeatability and nondisturbance [8, 9], in order to avoid the so-called
‘compatibility loophole’ [8] or other similar classical explanations. Macrorealism has similar strong restrictions
on the set of allowed measurements, namely, they must be noninvasive to avoid the clumsiness loophole or other
forms of classical interpretation of the results [10].

A strong motivation for developing such a notion of nonclassicality for single systems also arises from
quantum information theory. Notions such as entanglement and nonlocality have been proved to play a role in
quantum information tasks related to communication, such as, e.g. device-independent quantum key
distribution [11]. That such notions should play a role also for tasks involving only single systems, such as, e.g.
quantum computation, is less evident. Several recent results connected quantum contextuality with models of
quantum computation such as, e.g. quantum computation via magic state injection or measurement based
quantum computation [12—-18]. However, a natural question arises of whether this connection is fundamental
or just related to the particular model used for quantum computation [19]. If one moves from compatible
projective measurements to general instruments, it is no longer clear whether the notion of quantum
contextuality make sense at all, due to the compatibility loophole mentioned above [8].
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In this paper, we go beyond such notions and introduce a notion of nonclassicality for the measurement
statistics of a single system which is not restricted to specific measurement operations. The main tool of this
investigation is the notion of memory cost of simulating temporal correlations. By temporal correlations we
mean the observed statistics arising from sequences of measurements on a single system and memory roughly
refers the amount of classical information that can be stored in the physical system.

The notion of memory cost has been explored in connection with classical simulations of quantum
contextuality [20, 21], quantum simulation of classical stochastic processes [22] memory asymmetry between
prediction and retrodiction [23], and in relation with the accuracy of classical and quantum clocks [63]. A related
notion, i.e. that of communication cost, has been explored in relation to both Bell nonlocality [24, 25] and
temporal correlations [26, 27]. Similar notions have been explored also in the prepare-and-measure scenario
[28-32] and in connection with quantum information tasks such as random access codes [33-35].

In our approach, we go beyond the prepare-and-measure scenario by exploring arbitrary long sequences of
measurements and we remove any restriction on the type of measurement by considering arbitrary quantum
instruments. Our analysis is not only restricted to the differences between classical and quantum theory, but is
extended to general probabilistic theories (GPTs) [36—39], which embrace also the former theories. In particular,
we derive inequalities on the observed probabilities that are able to discriminate between classical, quantum, and
genuine GPT correlations. Moreover, as a further development of the ideas presented in [20, 21], we show that in
the framework of finite-state machines it is impossible to simulate contextual correlations on a qubit system, for
a fixed initial state and arbitrary instruments.

The paper is organized as follows. In section 2, we will introduce the basic notions and tools necessary for our
analysis, namely, temporal correlations and the arrow of time polytope. In section 3, we will introduce finite-
state machines in GPTs, in particular, also in classical and quantum theory. In section 4, we will discuss the
existence of nontrivial temporal bounds for such theories and the impossibility of simulating contextual
correlations on a qubit. Finally, we present the conclusions and an outlook of the paper.

2. Temporal correlations

We consider a box that accepts certain inputs from an input alphabet X and produces outputs from an output
alphabet A. The box is operated in a sequential fashion, see figure 1(a), such that, for instance, it first receives an
inputlabeled by x € X yieldingan outputlabeledby a € A, subsequently it receives y yielding b, and finally it
receives zyielding c. Prior to this sequence the box is initialized, such that its behavior is independent of anything
except the input sequence xyz. Consequently, for a fixed input sequence xyz € X3, the admissible output
sequences abc € A are governed by a probability distribution. If we now consider all possible inputs, we obtain
the correlations p(abc|xyz). Due to the time ordering of the inputs and outputs, these correlations must satisfy
the arrow of time constraints [40]

Zp(abclxyz) = Zp(abdxyz’), foralla,b € Aand all x, y, z, 2/ € X, )
> plabclxyz) =Y plabelxy'z), foralla € Aand all x, y, y', z, 2/ € X. )
be be

These constraints encode the fact that a future choice of an input, e.g. zor z’ in equation (1), must not influence
previous outputs of the box, e.g. a or b. This is in analogy to the nonsignaling conditions in the usual Bell scenario
[41]. The arrow of time constraints come solely from causality and hence, they must be satisfied not only in
classical and quantum theory, but in any GPT.

We can represent the correlations p(abc|xyz) as a vector with coordinates labeled by the possible sequences
abc and xyz. Due to the linearity of the arrow of time constraints, the set of correlations satisfying those forms a
polytope. Its extremal points have been recently characterized [42—44]. It is instructive to briefly sketch the
central steps for the simple case of sequences of length three. All correlations in the corresponding polytope can
be decomposed as

plabelxyz) = p(alx)p(blas xy)p(clab; xy2), 3)

since the marginals on the right-hand side are well defined (for the pathological cases where p(ab|xy) = 0we
define the right-hand side to be zero). Vice versa, taking valid probability distributions p(alx), p(bla; xy),
p(clab; xyz) over a, b, ¢, respectively, one always obtains an element of the polytope. Its extremal points are
obtained by deterministic strategies, i.e. where each of the probability distributions on the right-hand side of
equation (3) consists only of probabilities 0 or 1. It easily follows that classical and quantum models can reach
extremal points if enough memory is available. In more precise terms, each deterministic strategy can be reached
if the box internally keeps a record of all previous inputs and outputs. Storing this record then requires the box to
have memory. Of course, the notion of memory needs clarification, in particular if the box is described using
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Figure 1. Graphical representation of the possible situations. In each row, the three boxes represent the same physical device at
different times/points in the sequence. (a) Main memory cost scenario. A single box with input sequence xyz and output sequence abc.
No external clock/memory is accessible to the box and hence its behavior is solely governed by its internal state. (b) Time-dependent
operations. Additional time information is provided by a clock, which allows the box to perform time-dependent operations. This
scenario is equivalent to the one used for discussing communication cost. (c) Allowed randomness. At the beginning of each run, the
experimenter chooses with probability A the green box (bottom), or with probability 1 — A the blue box (top) and uses it to generate
the whole sequence. (d) Forbidden randomness. It is not allowed to change the box at some point inside the sequence, since this would
be a time-dependent operation.

quantum theory or a GPT, for details see section 3. Clearly, storing the full record of previous inputs and outputs
is not necessarily memory optimal and gives rise to the question: what is the minimal number of states necessary
to obtain certain correlations? How does such a number depend on the specific theory we use to describe the
internals of the box?

An important element, in order to be able to speak about the memory cost of temporal correlations, is the
requirement that all time-dependent information used to produce the outputs must be stored within the
physical system used to implement the box. This implies that the physical operations performed to produce an
output must be time-independent, e.g. the experimenter is not allowed to look at the wall clock and decide to
implement in a different way the operation associated with a certain input x, as this will result in an additional
source of memory, i.e. the clock keeping track of time. It is interesting to notice that the case where such time-
dependent are admissible is equivalent to the case of quantum communication scenarios such as quantum
random access codes or the scenario described by Brierley et al [26]. In fact, the latter scenario can be modeled as
anetwork with ordered nodes, where a single physical system is transmitted through the nodes, and at each time
step one of the nodes receives the system, performs alocal operation, and transmit the system to the subsequent
node. Since for each node it is known in advance in which part of the sequence it is situated, its local operations
can be adapted to maximize a certain figure of merit defined in terms of probabilities of outcomes. This scenario
covers the notion of ‘communication cost’ and it must be distinguished from the notion of ‘memory cost’ that is
considered here. Moreover, even though in the memory cost scenario we are not allowed to change the
operations throughout the sequence, it still makes sense to use classical randomness at the beginning of a
sequence: at each experimental run, the experimenter can flip a coin and decide to perform the whole sequence
of with one box or another. The resulting correlations will be a convex combination of the correlations obtained
from either box. A graphical representation of the above ideas is presented in figure 1. These intuitive notions are
made more rigorous in the next section.

3. Finite-state machines

In this section, we formally define the classical, quantum, and GPT models for the box used in the previous
section. In this model we assume that the box is implemented as a machine which acts on an internal state. Upon
receiving an input x, the box operates on the internal state and produces the output a. The internal state is the
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specific model of the memory from the previous section. More precisely, we use the finite number of perfectly
distinguishable states as a measure for the memory and for this reason we call this model a finite-state machine.

In a first step we need to describe the internal state w and the operations Z,, of the machine. We choose
ordered vector spaces to describe the machine, which is an appropriate framework for a wide range of GPTs. In
appendix A we give a brief summary of this mathematical formalism. In brief, a GPT is then described by a real
vector space V with partial order ‘<’ and an order unite € V.In quantum theory Vwould be the set of
Hermitian operators, A < B would correspond to B — A being positive semidefinite, and e to the identity
operator. Measurement outcomes are represented by effects f € Vwith 0 < f < e and a measurement M, is
represented by a collection of effects M, = ( fa|x)a with ), falx = e. Theset of states S is a subset of the dual
space of Vsuch that the probability of outcome a in the measurement M, is given by p(alx) = wf, .. Therefore
we = land wf > Oforallf € Vwith f > 0. The operations Z,, represent a specific way to implement a
measurement, taking into account the change of the internal state w. More precisely, the linear map
Zaxt V — Vissuch that fa|x = T, xe is the effect describing the output a. In addition the positivity condition
Ty f = Oforanyf € Vwith f > 0needs to be satisfied and further restrictions to Z,, may apply depending on
the specific GPT. If we group together the transformations 7, = (Z,x)sc 4 for a fixed input x, then Z, is called
an instrument. If we ignore the outcome 4, then the instrument maps states to states, in the sense that
wy_, Zajx € S forany state w.

Given the initial internal state w of the finite-state machine and the instrument Z,, = (Z,)),, the
probabilities associated with a sequence of measurement are given by

plalx) = wZl,e, plablxy) = wl,Iyye, etc. 4)

Note, that we write the transformations in the Heisenberg picture, so that the time ordering proceeds from the
left to the right. For a general sequence of inputs x;%, --- x, = X and outputs a;a, ... a, = d we write

p@@xX) = play -+ aplxi -+ xp) = Wlox -+ Layx,e = wlize. (5)

We exemplify in the next sections how this expression is specialized to the classical and quantum case.

As we discussed previously, we exclude any external source of memory, such as a clock keeping track of time.
This is formalized by the fact that all instruments solely depend on the input and in particular by the fact that all
transformations are time-independent. In general, for a fixed GPT this requirement makes the set of achievable
correlations nonconvex. Nevertheless, we can recover convexity by allowing the use of convex mixtures as
follows. Before starting the experiment we use a random variable ), distributed according to some probability
distribution g(\), to decide which finite-state machine to use subsequently. Since the machine is characterized
by the initial state w, and the instruments 7, this yields the correlations

p@%) =Y gV wIjze. (6)
A

The above procedure allows us to generate all correlations from the convex hull of correlations obtainable from a
family of finite-state machines parametrized by .

Finally, we define the memory of the system using the GPT notion of capacity (see [45]), i.e. the size of the
maximal set of perfectly distinguishable states. More precisely, we say that a GPT defines a d-state machine if d is
the maximal integer such that there exists a collection of d states (wy)r and d effects ( f, )i such that

ka < eand wifj = 4 for all 4, j. 7)
k

Namely, all effects are part of the same measurement, which is able to perfectly (i.e. probability one) discriminate
among the states. This notion of capacity corresponds to the dimension of the Hilbert space in quantum
mechanics and with the number of extremal points of the state simplex in classical probability theory (see,
e.g. [45]).

Itis instructive to discuss in more detail the classical and quantum case, which may be more familiar to the
reader. We subsequently introduce a particular class of capacity-2 GPTs, the dichotomic norm cones [46].

3.1. Classical finite-state machines

A classical finite-state machine [47] is described by its internal rules for state transitions and output probabilities.
Given the classical state C = {1, 2, ..., d}, the observed probability distribution p(d|x) for an input sequence
X oflength n can be written as




10P Publishing

NewJ. Phys. 21 (2019) 093018 CBudronietal

p@x) = Z r(so)q(as, silso, x1) ==+ q(an> SulSn—1, Xn)- (8)

Here, r(s,) describes the probability of preparing the initial state s, of the machine® and q(a, s'[s, x) describes the
probability that the machine yields the output a and transition to the state s’, given that the internal state is s and
the input is x. As in equation (6), those machines can depend on a random variable A generated at the beginning
of each sequence, i.e.

p@@x) = Z p(A)rA(SO)qA(ah silso, x1) - qA(am SalSn—1> Xn). 9

For clarity reasons, we use only equation (8) in the following. The correlations p(d|X) can be rewritten as
p@l®) = @' T (alx) - T(a,lx)n = 7 T (@), (10)

where n = (1, 1, ..., 1)"isthe d-dimensional vector of ones, 7 is the vector representing the initial state, and
T (alx)isthed x dtransition matrix. Hence, 7, = r(s) and [T (a|x)]s,¢y = g(a, s'|s, x). The rules for
probabilities that constrain q(a, s'[s, x) translate to [T (a|x)]s¢ > Oforalls, s', a, x,and >_ [T (alx)n], = 1
foralls, x.

Translating the above in the languages of GPTs, welet V = R¢ and set the order unit e to 17. The partial order
issuch that v < wif v, < w; forall s. Then the set of states is given by by the canonical (4 — 1)-dimensional
simplex

S={wecRYw > 0and wn = 1}. (11)

In particular 7r is a state. Analogously, the transition matrix T (a|x) corresponds to the instruments Z,,
whereas the effects can be obtained as Japx = T (alx)n. It canbe easily seen that d correspond exactly to the
capacity defined according to equation (7).

3.1.1. Classical finite-state machines and Leggett—Garg’s macrorealist models

Itis interesting at this point to briefly compare the model in equation (9) with the macrorealist model of Leggett
and Garg [6]. A macrorealist model can be simply obtained by reducing the set of possible internal states to a
single one, i.e. d = 1, and re-introducing the time-dependence of operations

P@IR) = Y p(Ng @lx) -+ g, (@,lx,), (12)
A

where the dependency on sy, ..., s,, becomes trivial and is then removed. We recall that macrorealist models are
based on two assumptions: macrorealism per se, i.e. the existence of a classical probability, and noninvasive
measurability, i.e. the assumption that the measurement has no effect on the subsequent evolution of the system.
The finite-state machine model can be seen as arising from the macrorealist model via a relaxation of the
assumption of a noninvasive measurement: the measurement can be invasive up to a certain amount quantified
by the internal memory of the system, e.g. for a two state-machine the measurement can encode at most one bit
of information in the system. Notice that, however, usually Leggett—Garg assumptions allow the operations to be
time-dependent.

Itis interesting to remark that similar ideas have been already employed in Leggett—Garg tests to tighten the
clumsiness loophole. Under the assumption of a classical model with two internal states, Knee et al [?] were able
to quantify the measurement invasivity via a control experiment, and consequently modify the classical bound
for the Leggett—Garg inequality. In agreement with our argument above, the work of Knee et al shows how the
notion of finite memory can be used as a relaxation of the assumption of a noninvasive measurement.

3.2. Quantum finite-state machines
The quantum case is perhaps the most familiar to readers from quantum information. The probability
distribution is obtained by sequences of generalized measurements M, = (E,|,), on a single system described by
a Hilbert space of fixed dimension d. The outcomes of the measurement are described by positive semidefinite
operators E,, > Owith >° E,, = L

In order to discuss sequential measurements, however, we need to know the post-measurement state, or,
better, the transformation induced by the measurements. This information is provided by a quantum
instrument Z,, defined as a collection of completely positive maps Z, = (Z,)s» from the space of linear
operators into itself, that sum up to a unital map, i.e. 3, Z,(1) = 1, corresponding to the rule of preservation of
probability in the Heisenberg picture, see, e.g. [48]. Each instrument defines a generalized measurement through
the formula E,|, = Z,,(1). Similarly to the previous cases, we can shorten the notation by defining

Without loss of generality, we could assume a fixed pure initial state sy, since we allow for convex mixtures of different machines.
Nevertheless, we keep the notation with an initial distribution (sy) over all pure states C, i.e. a mixed state, to keep the analogy with the
standard notation for GPT states (w) and quantum states (p).
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Zajg == Zayx, © --- © Ig,x, where © denotes the composition of maps and write
p@@lx) = tr[p Zzz(D]. (13)

As mentioned before, quantum theory is a particular case of a GPT, where the vectors space V'is the set of
Hermitian operators, the partial order is defined through positive semidefiniteness and the order unit eis given
by 1. The set of states is given by the density operators, identified by the Hilbert—Schmidt inner product with the
elements of the dual space of V

S={X—tr(p X)|p = 0 and tr(p) = 1}. (14)

Hence equations (13) and (5) are equivalent. It is then clear that the capacity of the system, defined as the number
of perfectly distinguishable state [44, 49] precisely corresponds to the dimension of the Hilbert space. Itis
important to remark that we need to consider the general formalism of quantum instruments, since if the
measurement devices would merely act projectively, there would be nontrivial limitations on the achievable
correlations that are valid for arbitrary dimensions [50, 51].

3.3. GPT two-state machines

We already provided a definition of GPT finite-state machines at the beginning of section 3. In this section, we
specialize this definition by considering a class GPTs where the effects belong to a dichotomic norm cone. These
theories are a generalization of the classical bit (cbit) and quantum bit (qubit), in the sense that they have capacity
two, i.e. they allow for a set of perfectly distinguishable states, in the sense of equation (7), of at most size two. We
then specialize our discussion to the case of hyperbits (hbits) [52] and generalized bits (gbits) [53]. The former
are a generalization of the Bloch sphere to dimension higher than three, whereas the latter are the local part of a
Popescu—Rohrlich box [41]. We also provide a more detailed discussion of GPTs in appendix A.

Consider the vector space V := R x R", and the partial order where (¢, x) > 0if r > |x|. Here, |x|is any
norm in R”. We define the order unit e := (1, 0). This implies that effects are vectors f = (¢, x) such that
|x| < min {t, 1 — t}. The states for a dichotomic norm cone are the maps w: (¢, x) +— t + wix with the
condition |wlx < 1, where |wlx = sup {w'y||y|<1} is the dual norm of | - |. A peculiarity of this GPT is that it
has exactly capacity two, independent of n or the choice of the norm | - |. We provide a proof of this fact in
appendix C.

Depending on the norm chosen and on # we have different GPTs. If we take |x| to be the Euclidean (or ¢,)
norm, i.e. [x> = 3=, x?, we obtain hbits, and specifically cbits for n = 1, qubits for n = 3 and more general hbits
forn > 3.If wetake n = 2 and the Manhattan (or #;) norm, i.e. |x| = )_|x;|, we obtain a gbit. For the case of the
Euclidean norm, the dual norm is also the Euclidean norm itself, whereas the dual of the Manhattan norm is the
supremum (or £,.) norm, i.e. [w|y = max;|w;|.

4. Bounds on temporal correlations

In this section, we consider the simplest nontrivial scenario, a sequence of two measurements, with inputs x, y
and outputs a, b, with a, b, x, ¥ = 0, 1. We are interested in bounds on the sum of correlations

S = p(01]00) + p(10]10) + p(10]11). (15)

Similar expressions have been considered in [43, 44, 54]. Clearly, the trivial bound S < 3 holds. For hbits the
value S = 3 cannot be reached and therefore there must exist a nontrivial bound S < Qppjt, , for any dimension
n of the hbit, in particular for the cbit (n = 1) and the qubit (n = 3). A simple analytical proof of Qi ,, < 3is
presented in appendix B.

4.1. Measure-and-prepare strategies
The analysis of the case of sequences of length two can be greatly simplified using measure-and-prepare
instruments. These are instruments of the form 7, = ( fa|x‘7alx)a’ where M, = ( fu|x)u is a measurement and
(Ga)x)a is a collection of states. Hence 7 can be implemented by first measuring M, and then, depending on the
outcome g, preparing the state Oa|x-

Now, for a sequence of length two, the correlations are given by

plablxy) = 3~ pNA T\ fy) (16)
A

where w ™ is given by the initialization procedure of the individual finite-state machines participating in the
mixture of machines. Clearly, the extremal values S can be achieved by a single finite-state machine and hence in
the following we will omit the index A and the summation of \.

The instruments Z, can be replaced by measure-and-prepare instruments, by letting f,, = Z,ce and

Olx = wIa|x/w(fa|x) if the denominator is nonzero, or o), = w. Then p(ablxy) = w O’a|xﬁj|y. Hence we can

alx

6
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equivalently replace 7, by the prepare-and-measure strategy 7, = f,, 0ajx- Using this simplification, we
obtain

§=p(0[0) + p(1]1) + p(10]10) — p(00]00) — p(11]11)
= p(0l0)[1 — p(0]0; 00)] + p(11)[1 + p(01; 10) — p(1]1; 11)]
= w(ﬁ)w)[l - 0-0|0(f;)|0)] + w(fi“)[l + O—1|1(f0|0 *ﬁ“)]) (17)

where we used the notation p(b|a; xy) for the probabilities conditioned on previous outputs.

4.2. Analytical and numerical bounds

Since S = 3 cannot be reached with hbits, there must be a finite gap between the actual bound for cbits, qubits,
and hbits with a Bloch sphere of fixed dimension. In fact, the sets of states and effects are compact, and the
expression S can be written as a continuous function from the set of states and effects into the interval [0, 3], so
its image must be compact. In this section, we explore in more detail the bounds for cbits, qubits, and hbits via
numerical methods.

4.2.1. Classical bit
For the cbit case, we use the representation from section 3.1, specifically, wis represented by (1, 0), 5;;; by (s;,
1 — s;),and fi|i by (a;, b))\, wheres;, a;, b; € [0, 1]. Then equation (17) reads

S =ao[l — seap — (1 = so)bol + a[1 + si(ap — @) + (1 — sp)(bo — by)]. (18)

Only g and a, appear nonlinearly in this expression. Therefore, the maximum of S is attained when all
remaining parameters are either 0 or 1. This leaves us with a two-dimensional, at most quadratic optimization,
which can be performed at once. For the maximal value €2 ,;; of S using classical bits we then obtain

9
chit = Z (19)

This maximum occurs at a unique point, wheres, = b, = 0,by = sy = a; = l,and qq = % Hence, an optimal
machine is given by the initial state 7' = (1, 0) and the transition matrices

01

0 0) = T(0[1). (20)

1 1
— 0 — 0

ro =3 ° Tao=|7 °} T<1|1>:(
1 0 00

Note, that while the solution for the chosen parametrization is unique, the transition matrices are not unique.

4.2.2. Quantum bit
For the qubit case, we can proceed similarly to [44]. First we note that in equation (17), the initial state w can be
replaced by a pure state, so that w: X — (0|X|0). The expression S can then be written as

S = (0|Eool0) [1 — tr[ooEojoll + (O|Eij1|0)[1 + tr[oy(Eojo — Evjn)1l, 21

where 0 < Ejj; < lareeffects and 0y and o, are density operators. Since the latter occur only linearly in S, we
can substitute them with pure states |t)o) and |1);), respectively. The maximum of S for qubits is hence given by

Qqubic = max, [{OlE0;0l0) (1 — (%olEojoltPo)) + (OIErj|0) (1 + (¢n|Eojo — Expilioi))]. (22)
Eojo,E1p1

By parametrizing Eqo, Ei 1, |%0), [¢1) with real parameters, one can write the expression in equation (22) as
fourth degree polynomial. This can be further simplified, by taking Egjo Ej 1, [10), |1/1) as real expression, which
lowers the number of parameters to ten”. The reduction to the real part of a qubit does not affect the optimality
as we show in the next section, see equation (28).

It is always possible to obtain a lower bound %

qubit 011 $2qubie by guessing appropriate values for the free

parameters. An upper bound, Qaﬁfﬁ, can be obtained via Lasserre’s method [55] of polynomial optimization

based on moment matrices and semidefinite programming [56], which provides analytical upper bounds up to
the numerical precision. That is

f L

qufgit < Qqubit < qfﬁ)sit- (23)
With the simplifications used above, the upper and lower bounds coincide up to the numerical precision of
107°. We have

Since the upper bound is calculated by polynomial optimization methods, it is more convenient to keep the expression and constraints in
polynomial form, rather than minimizing the number of variables. For example, a parametrization of a pure state as cos 6]0) + sin §|1)
removes one variable and one constraint, but it is no long a polynomial in the parameters.

7
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Qfts & Quasy ~ 2.355 70, (24)

showing a gap between the cbit and qubit case. A feasible solution is given by the post-measurement states and
effects

o) ~ 0.408]0) — 0.913[1), |¢1) ~ 0.640[0) + 0.768|1), (25)
and the effects

4.2.3. Hyperbit

For the case of hbits, and also the more general dichotomic norm cones, we use the parametrization
w: (t, x) — t + wixand oyi (t, x) — t + wfx for the states and fili = (t;, f;) for the effects. Then
equation (17) reads

S=(to+ W)L — to — wg fi] + (i + WL+ to — & + w (f, — F)]. (27)

When maximizing S, we can eliminate the maximization over wy and wy, by choosing appropriate vectors with
|wilx = 1such that w; fo = Ifyland w; ( fo — ) = |fy — £l The maximal value of S for a given dichotomic
norm cone is hence

Qdne = max {(fo + WTf;))[l — 1t + |f0|] + @+ WTfi)[l +tHh—u+ |f() _fll 1} (28)

wito.fy

tf,
where the constraints of the optimization are [w|y < land|f] < min{t;, 1 — ¢;}. For the case of hbits, both |- |
and || correspond to the £, norm , hence the conditions are invariant under orthogonal transformations as it is
the case for the function to be maximized, which depends only on the norm of f; and the scalar products
between w and f. Since the only contribution for w comes from the component in the span of f;, f;, the
problem reduces to a two-dimensional one. This is equivalent to the qubit case with the Bloch ball restricted to
the xz-plane, both for states and effects. This implies that the bound for hbits coincide with the bound for qubits.
We thus have

Qupie & 2.355 70, 29)

asin equation (24).

4.2.4. Generalized bit

The case of gbits differs from the previous one because we can actually reach S = 3 already for a two-state
machine, namely the dichotomic norm cone with n = 2 and the #; norm. This model corresponds to the local
part of a Popescu—Rohrlich box [41, 53]. The space of effects is a polytope with extremal effects given by the
extremal point of the two-dimensional #; norm, i.e. ay; = %(1, +e;), with e, the canonical vectors in R?. Then,
the states are the w = (1, w) with w in the square [—1, 1] x [—1, 1], i.e. the unit ball with respect to the £,
norm. The choices

wh=(1,-1), wi=(-1,1, w =(,1) (30)
and
fi=e fi=-e 31)
yield, according to equation (28), the algebraic maximum for S,i.e. S = 3. We thus have
Qgoie = 3 (32)

for gbits and hence also for the set of all dichotomic norm cones with the same norm and arbitrary .

4.3. Impossibility of simulating contextual correlations with general instruments on a qubit
In this section, we investigate whether qubit machines are able to simulate some contextual correlations that
arise in higher dimensional quantum systems. In [20] it was proved that in order to simulate all deterministic
predictions associated with the observables of the Peres—Mermin square [57, 58], a classical machine with at least
4 states is necessary. This result was obtained in the framework of tests of contextuality involving sequential
measurements [8], in which the relevant compatibility notion is given by the nondisturbance among compatible
measurements and repeatability of outcomes, e.g. if M, and M, are compatible measurements in the
measurement sequence M, M, M, the outcome for the first measurement of M, will be repeated in the second
measurement of M.

We derive here a related result by showing that even a qubit is not sufficient to exhibit contextual
correlations. For this we use a rather broad notion of contextuality. Consider a box with inputs from an alphabet

8



10P Publishing

NewJ. Phys. 21 (2019) 093018 CBudronietal

X and outputs from an alphabet A as before. The input sequences are restricted such that a sequence X is
admissible if and only if all inputs are from the same context C C X, i.e. {x;|i} C C. A context C isasetof
inputs, such that p(d|x) = p[7(a@)|7 (X)] for any inputs sequence X from C, any output sequence 4, and any
permutation 7. In addition we assume that any input is repeatable, i.e. p(d@b|Xx;) = p(d|X) 8,4, for any position i
in any admissible sequence.

Such abox is noncontextual, if all correlations of the box (using only admissible input sequences) can be
reproduced by a box without memory, i.e. by a noncontextual model. We claim that any such box implemented
on a qubit is noncontextual.

We start the proof of this statement by determining those inputs, which cannot require the use of memory.
First, if an input z ever produces only the output ¢, within all admissible input sequences, then we can eliminate
this input from our considerations. This is the case, because in any sequence we can permute z to the end of the
sequence. Then

p(adxz) = p@@x)p(cld; Xz) = p(alx), (33)

where the first equality is due to equation (3) and the second due to the assumption that only the output c ever
occurs. Second, assume that for a certain input z, whenever it occurs in an admissible sequence, the internal state
of the machine before the input zis only ever the state p. Again we can eliminate this input from our
considerations, because the output for zand the state after the output can be determined without considering the
state. Third, we can ignore the pathological cases of inputs, which are not member of any context. In the
following we assume without loss of generality, that the box does not have any input falling under the those three
cases just discussed.

Next, we show that for any input z the instrument (Z,,). must be a measure-and-prepare instrument of the
form

Lozt X = e X We ol X1 )Wl with (Yezlid,z) € {0, 1} (34)

This can be seen as follows. According to the assumptions, there are two input sequences xz and yz and

corresponding output sequences d¢ and bc, so that the state before the inputzis pand p’, respectively, with
p = p'. Using equations (3) and (13) we have

p(dclxz) b, = p(dcc’|Xzz) = p(d|X)p(cc’|d; Xzz) = p@@|X)tr[p Lo, Ze,1] and (35)
p(belj2) .. = p(bec'|Fz2) = p(bl§)p(ec'|b; Fz2) = p(blF)trlp’ Ty Ler A, (36)

where p(d|x) > 0and p(glf) > 0. Therefore for ¢ = ¢’
tl‘[p Ic|ch’|le] =0 (37)

with p = (p + p')/2.Since p = p’ and we assume a qubit system, the mixture p has necessarily rank two, i.e.
p = elforsomee > 0. Wearrive at the condition

> K QQK1 =0, (38)
if
where K;and Qjare the Kraus operators associated, respectively, with the instruments Z.|, and 7, e.g.
Io X= i K]TXK] Then K;Q; = 0 foralli, j. Similarly, exchanging c with ¢/, we obtain QK; = 0 for all 4, ;. This
implies that K;and Q;are of rank one and that K is proportional to K;r as well as Q; being proportional to Q;, for
all4, i’ and j, j’. Hence we can omit the indices 7, jand consider simply K'and Q. Note that from }_. 7.1 = 1,

the condition Q'Q < 1 follows which allows us to write Q = |a)(3| with (o) = 1and (3]3) < 1.Now, for
¢ = ¢’ we obtain

tr(laIclchlz]l) = tr(pIclle)a (39)

which implies (Q")?Q? = Q'Q. It follows that either | 3) = 0 or |«) and | 3) are equal up to a phase and hence
7., isas stated in equation (34).

As final step we need to show that there is no contextuality for projective qubit instruments. Given an
admissible input sequence Xyz, and an output sequence dbc such that p(ab|xXy) > 0, we have

p(@bclXyz) = p(@blxy)|(Vp,lYe.z) I and p(abebliyzy) = p(@blxy) |(¥u,ylve,z) 1" (40)

The left-hand side of both expressions has to be equal, yielding | (15, ,¢..)| € {0, 1}.

Consequently, any two inputs within a context are realized by the same projective instrument, except for
some relabeling of the outcomes. We choose a specific measurement within one context, say y, so that
Lax = 20 Loy f b (alx) with some coefficients f”(alx) € {0, 1}. This way we can write for any correlations of
this context
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p@%) =3 pIN]] foailx, (41)
b i

which is exactly the formula for a one-state machine, i.e. a noncontextual model.

This concludes the proof of our statement, due to the following observation. If two contexts share an
observable, then our argument already applies and the union of both contexts must admit a noncontextual
model and hence the union of both contexts is again a context. Eventually, we can join contexts until all contexts
are mutually disjoint. For each disjoint set we can construct a noncontextual model, and since there are no
admissible sequence involving two different contexts, we have constructed a noncontextual model for all
admissible input sequences.

5. Conclusions and outlook

We introduced the notion memory cost of simulating temporal correlations based on the notion of finite-state
machine, i.e. a physical system accepting an input at each time instant and generating an outcome and an
internal state transition according to probabilistic rules. We investigated the correlations obtainable via such
finite-state machines operating according to different probability theories, i.e. classical, quantum, or GPT. Our
framework allow us to derive inequalities able to discriminate among different theories for the simplest
nontrivial case, i.e. two-state machines, two inputs, two outputs, and sequences of length two. Moreover, we
investigated, from the perspective of quantum finite-state machines, the possibility of simulating contextual
correlations with a qubit and answered this question in the negative.

Our framework provides a notion of nonclassicality for single systems, which is based solely on observed
correlations and does not make any assumption of the type of measurements involved, e.g. compatibility or
noninvasiveness. We believe that several problems in quantum foundations and quantum information could be
studied in this framework. For instance, a notion of nonclassicality for single systems, i.e. quantum
contextuality, has recently been suggested as a resource for quantum computation. On the other hand, memory
hasbeen identified as a resource needed to simulate contextual correlations classically [20, 21]. In addition, a
different notion of contextuality for sequential operations has been defined and connected to speed-up in
quantum computation [59]. Our work could provide a general framework to discuss such different results and
understand better the connection between memory cost of (classical) simulations, contextual correlations, and
advantages in computation. Moreover, the idea of computation in GPTs, such as Spekkens’ toy model [60], that
are intermediate between classical and quantum probability has been recently investigated [61, 62]. In particular,
this GPT can be exactly simulated with two classical bits.
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Appendix A. Brief introduction to GPTs

In quantum theory the set of effects is represented by Hermitian operators Fwith 0 < F < 1. This convex set has
three characteristic properties. (i) Itis a subset of the real vector space of Hermitian operators. (ii) There exists
the special operator 1l representing the all-embracing effect. (iii) Its shape is given by the partial order A < B
which is defined by the condition that B — A is positive semidefinite.

In a GPT, the notion of an effect is generalized by considering a straightforward generalization of those
properties. We start with an arbitrary real vector space V with a partial order a < b. This partial order has to be
linear in the sense that a < b implies A\a < Abforany A € Rt anda < bimpliesa + ¢ < b + difalso
¢ < d. Thisturns (V, <) into an ordered vector space.

The all-embracing effect is a distinct element e € V.Itisis required to dominate all of V, i.e. foranyx € V
there is a positive number A such that x < Ae. This property makes ean order unitand (V, <, e) an order unit
vector space. In addition, it is convenient to assume that the order unitis Archimedean, i.e. if x < Ae holds for
all A > 0, thenalready x < 0. In our paper we implicitly assume that any order unit is Archimedean.
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Itis sometimes convenient tolet V* = {x € V|0 < x}.Since a < bisequivalenttob — a € V", wethen
equivalently describe an AOU space by the tuple (V, V', e). The effects in a GPT are now given by the set
V)=Vt N (e — V). Ameasurement Min a GPT is represented by a collection of elements M = (f )y C V,
with 37 f, = e, where f; represent the outcomes of the measurement.

For the set of states, we note that in quantum theory one can represent a state p equivalently by the linear
map w: X — tr(pX). Then the normalization of p becomes w(l) = 1and the condition p > 0 reads w(X) > 0
forall X > 0.Byanalogy, the set of states in a GPT is given by

S={we V¥w(e) =1and w(f) > 0 for all f > 0}, (Al)

where V* = {: V — R| is linear} is the dual space of V. With this definition, the probability for outcome k
ofameasurement M = ()i is given by px = w(fp).

Appendix B. Bound on S for hbits

The proofis by contradiction. Let us assume 2, = 3, we then have p(01]00) = p(10/10) = p(10]11) = 1,
and p(0]0) = p(1|]1) = 1.From p(0]0) = 1, wehave w(fmo) = toj0 + w"'fow = 1, where fo|o = (to|0aﬂ)|o)- On
the other hand, by the definition of effects and state, we have | f0|0| < min(fgp, 1 — topo) and [wlyx < 1. We
then have

1 ,
) > E and wTﬁ)|0 =1- fo)o- (B1)

From f;,, = e (because p(00]00) = 0), we have fOIO = 0and hence tgy < 1.Then, usingagain |w|x < 1and
|| = |x together with Cauchy—Schwarz inequality, we have

w = fOlO , with |f0|0|:1 — fojo- (B2)
[ forol
Similarly, we obtain
wo fl=1 — (B3)
LAl

and, again, ; < L
We need now to characterize the terms of the form w (Zx f;, ), corresponding to sequences of length two.
We use the constraints that arise from the condition that the transformation must map effects to effects. Then,

we use that Z,, is alinear transformation that maps the identity element to f, o ie e = f, - We, thus, have

tax O
Ty = ), (B4)
fulx Ba|x
where oy, is a n-dimensional vector and B,y an X nmatrix. The expectation value can then be written as
ta) of tb|y
waefy) =4 whi (B5)
fa|x Bajx [\ o1y
i N
= (talx +w- f;zlx’ w Bulx + aa|x) (B6)
ﬁﬂly
= tyy(tapx + W= f.) + iy, - (Bl W + Q). (B7)

We can see the transformation 7y, applied to the left, as a state transformation, i.e. Schrédinger picture and

with normalization corresponding to outcome probability. Then, we have that

|B;|Xw + ol <tge + W fa| .- Notice that such a condition also guarantees that p(ablxy) > 0

and p(ablxy) < p(alx).
This translates to Ilexw + oyelx < 1forthe case (a,x) = (0,0) or (1, 1). In fact, in those cases we have

fax + W+ f;lx = 1, so the dual norm condition guarantee that w(Ia|xfb|y) < 1forall fbly'

From the conditions p(11|11) = 0, we obtain
i +w-f) + £y - Blw + aup) (B8)
:t1|1+fi|1 '(BIT|1W+a1|1):O, (B9)
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which implies together with equation (B3), IBIT| W + oqpilx < 1,and Cauchy-Schwarz inequality, that

1
(B1T|1W +oyp) = —w and t; = > (B10)

On the other hand, we have p(10]10) = 1 that, by equations (B2) and (B10), implies
tojoltipn + w ‘f1|1) Jrfom : (BF“W + o) = to)0 — f0|0 w =2t —1=1, (B11)

which implies o = 1,i.e.a contradiction with £y < 1, which concludes the proof.

Appendix C. Capacity of dichotomic norm cones

In the following we prove that dichotomic norm cones describe systems of capacity two. For convenience, we
repeat equation (7) from the main text.

dYofi <e and w; f; = ; for all i, j.
k
We first show that a capacity of two is an upper bound.

Lemma 1. In a dichotomic norm cone, let (wy); be a collection of d states and ( f, )k a collection of d effects, such that
equation (7) is satisfied. Then d < 2.

Proof. Any effect f = (¢, x) mustsatisfy 0 < f < e,i.e.t > |x|]and1 — ¢ > |x|. Furthermore, a state
w: (s, y) — s + w'y mustobey |[wlx < 1.1t follows that w'x < |x|and hence wf = 1requires t > %.Thus
Y fi < eimpliesfor fi = (#, xi) theinequalities

0SD xm <1 =Y <1 — (C1)
k k

SRR

Which yields at once the assertion. O

In addition, if the dimension of the underlying vector space is finite, we can always find vectors x and w,
suchthat|x| = 1,|wlx = 1,and w'x = 1. Hence, the states w; , = (1, £=w)and effects fi, = (1, £x) /2 obey
equation (7). It follows that the capacity of a dichotomic norm cone is always exactly two.
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