
            

PAPER • OPEN ACCESS

Memory cost of temporal correlations
To cite this article: Costantino Budroni et al 2019 New J. Phys. 21 093018

 

View the article online for updates and enhancements.

You may also like
Optimizing the optical and electrical
properties of graphene ink thin films by
laser-annealing
Sepideh Khandan Del, Rainer Bornemann,
Andreas Bablich et al.

-

Load identification approach based on
basis pursuit denoising algorithm
D Ginsberg, M Ruby and C P Fritzen

-

Electro-magnetoencephalography for a
spherical multiple-shell model: novel
integral operators with singular-value
decompositions
S Leweke, V Michel and A S Fokas

-

This content was downloaded from IP address 3.146.37.35 on 26/04/2024 at 21:55

https://doi.org/10.1088/1367-2630/ab3cb4
/article/10.1088/2053-1583/2/1/011003
/article/10.1088/2053-1583/2/1/011003
/article/10.1088/2053-1583/2/1/011003
/article/10.1088/1742-6596/628/1/012030
/article/10.1088/1742-6596/628/1/012030
/article/10.1088/1361-6420/ab291f
/article/10.1088/1361-6420/ab291f
/article/10.1088/1361-6420/ab291f
/article/10.1088/1361-6420/ab291f


New J. Phys. 21 (2019) 093018 https://doi.org/10.1088/1367-2630/ab3cb4

PAPER

Memory cost of temporal correlations

CostantinoBudroni1,2,5, Gabriel Fagundes3 andMatthias Kleinmann4

1 Institute forQuantumOptics andQuantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090Vienna,
Austria

2 Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090Vienna, Austria
3 Departamento de Física, Universidade Federal deMinasGerais UFMG, POBox 702, 30123-970, BeloHorizonte,MG, Brazil
4 Naturwissenschaftlich–Technische Fakultät, Universität Siegen,Walter-Flex-Straße 3, D-57068 Siegen, Germany
5 Author towhomany correspondence should be addressed.

E-mail: costantino.budroni@oeaw.ac.at, gabrielf@fisica.ufmg.br andmatthias.kleinmann@uni-siegen.de

Keywords: temporal correlations, Leggett–Garg inequalities, finite-statemachines, quantum contextuality

Abstract
Apossible notion of nonclassicality for single systems can be defined on the basis of the notion of
memory cost of classically simulating probabilities observed in a temporal sequence ofmeasurements.
We further explore this idea in a theory-independent framework, namely, from the perspective of
general probability theories (GPTs), which includes classical and quantum theory as special examples.
Under the assumption that each systemhas afinitememory capacity, identifiedwith themaximal
number of states perfectly distinguishable with a singlemeasurement, we investigate what are the
temporal correlations achievable with different theories, namely, classical, quantum, andGPTs
beyond quantummechanics. Already for the simplest nontrivial scenario, we derive inequalities able
to distinguish temporal correlations where the underlying system is classical, quantum, ormore
general.

1. Introduction

Given a single quantum system, inwhat sense canwe say that it has some nonclassical properties? Themost
celebrated phenomenawhere quantum systems depart from their classical counterpart involve notions such as
entanglement [1, 2] and nonlocality [3, 4], which can be defined only in terms ofmultipartite systems.What if we
are able to perform experiments only on a single, indivisible, system?Canwe still say that the observed statistics
has some ‘nonclassical properties’? Some notion of nonclassicality have been proposed for single systems, such
as contextuality [5] and nonmacrorealism [6, 7]. Onemay argue that such notions are limited to specific
measurement procedures and hence are not fully satisfactory. Contextuality restricts the set of possible
operations to compatiblemeasurements, which inmany cases need to be (approximately) projective or at least
satisfy some analogous notion of repeatability and nondisturbance [8, 9], in order to avoid the so-called
‘compatibility loophole’ [8] or other similar classical explanations.Macrorealism has similar strong restrictions
on the set of allowedmeasurements, namely, theymust be noninvasive to avoid the clumsiness loophole or other
forms of classical interpretation of the results [10].

A strongmotivation for developing such a notion of nonclassicality for single systems also arises from
quantum information theory.Notions such as entanglement and nonlocality have been proved to play a role in
quantum information tasks related to communication, such as, e.g. device-independent quantumkey
distribution [11]. That such notions should play a role also for tasks involving only single systems, such as, e.g.
quantum computation, is less evident. Several recent results connected quantum contextuality withmodels of
quantum computation such as, e.g. quantum computation viamagic state injection ormeasurement based
quantum computation [12–18]. However, a natural question arises of whether this connection is fundamental
or just related to the particularmodel used for quantum computation [19]. If onemoves from compatible
projectivemeasurements to general instruments, it is no longer clear whether the notion of quantum
contextualitymake sense at all, due to the compatibility loopholementioned above [8].
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In this paper, we go beyond such notions and introduce a notion of nonclassicality for themeasurement
statistics of a single systemwhich is not restricted to specificmeasurement operations. Themain tool of this
investigation is the notion ofmemory cost of simulating temporal correlations. By temporal correlationswe
mean the observed statistics arising from sequences ofmeasurements on a single system andmemory roughly
refers the amount of classical information that can be stored in the physical system.

The notion ofmemory cost has been explored in connectionwith classical simulations of quantum
contextuality [20, 21], quantum simulation of classical stochastic processes [22]memory asymmetry between
prediction and retrodiction [23], and in relationwith the accuracy of classical and quantum clocks [63]. A related
notion, i.e. that of communication cost, has been explored in relation to both Bell nonlocality [24, 25] and
temporal correlations [26, 27]. Similar notions have been explored also in the prepare-and-measure scenario
[28–32] and in connectionwith quantum information tasks such as randomaccess codes [33–35].

In our approach, we go beyond the prepare-and-measure scenario by exploring arbitrary long sequences of
measurements andwe remove any restriction on the type ofmeasurement by considering arbitrary quantum
instruments. Our analysis is not only restricted to the differences between classical and quantum theory, but is
extended to general probabilistic theories (GPTs) [36–39], which embrace also the former theories. In particular,
we derive inequalities on the observed probabilities that are able to discriminate between classical, quantum, and
genuineGPT correlations.Moreover, as a further development of the ideas presented in [20, 21], we show that in
the framework offinite-statemachines it is impossible to simulate contextual correlations on a qubit system, for
afixed initial state and arbitrary instruments.

The paper is organized as follows. In section 2, wewill introduce the basic notions and tools necessary for our
analysis, namely, temporal correlations and the arrow of time polytope. In section 3, wewill introduce finite-
statemachines inGPTs, in particular, also in classical and quantum theory. In section 4, wewill discuss the
existence of nontrivial temporal bounds for such theories and the impossibility of simulating contextual
correlations on a qubit. Finally, we present the conclusions and an outlook of the paper.

2. Temporal correlations

Weconsider a box that accepts certain inputs from an input alphabet and produces outputs from an output
alphabet. The box is operated in a sequential fashion, see figure 1(a), such that, for instance, itfirst receives an
input labeled by Îx yielding an output labeled by Îa , subsequently it receives y yielding b, andfinally it
receives z yielding c. Prior to this sequence the box is initialized, such that its behavior is independent of anything
except the input sequence xyz. Consequently, for afixed input sequence Îxyz 3, the admissible output
sequences Îabc 3 are governed by a probability distribution. If we now consider all possible inputs, we obtain
the correlations ( ∣ )p abc xyz . Due to the time ordering of the inputs and outputs, these correlationsmust satisfy
the arrowof time constraints [40]

 å å= ¢ Î ¢ Î( ∣ ) ( ∣ ) ( )p abc xyz p abc xyz a b x y z z, for all , and all , , , , 1
c c

 å å= ¢ ¢ Î ¢ ¢ Î( ∣ ) ( ∣ ) ( )p abc xyz p abc xy z a x y y z z, for all and all , , , , . 2
bc bc

These constraints encode the fact that a future choice of an input, e.g. z or ¢z in equation (1), must not influence
previous outputs of the box, e.g. a or b. This is in analogy to the nonsignaling conditions in the usual Bell scenario
[41]. The arrow of time constraints come solely from causality and hence, theymust be satisfied not only in
classical and quantum theory, but in anyGPT.

We can represent the correlations ( ∣ )p abc xyz as a vector with coordinates labeled by the possible sequences
abc and xyz. Due to the linearity of the arrow of time constraints, the set of correlations satisfying those forms a
polytope. Its extremal points have been recently characterized [42–44]. It is instructive to briefly sketch the
central steps for the simple case of sequences of length three. All correlations in the corresponding polytope can
be decomposed as

=( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )p abc xyz p a x p b a xy p c ab xyz; ; , 3

since themarginals on the right-hand side arewell defined (for the pathological cases where =( ∣ )p ab xy 0 we
define the right-hand side to be zero). Vice versa, taking valid probability distributions ( ∣ )p a x , ( ∣ )p b a xy; ,

( ∣ )p c ab xyz; over a, b, c, respectively, one always obtains an element of the polytope. Its extremal points are
obtained by deterministic strategies, i.e. where each of the probability distributions on the right-hand side of
equation (3) consists only of probabilities 0 or 1. It easily follows that classical and quantummodels can reach
extremal points if enoughmemory is available. Inmore precise terms, each deterministic strategy can be reached
if the box internally keeps a record of all previous inputs and outputs. Storing this record then requires the box to
havememory.Of course, the notion ofmemory needs clarification, in particular if the box is described using
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quantum theory or aGPT, for details see section 3. Clearly, storing the full record of previous inputs and outputs
is not necessarilymemory optimal and gives rise to the question: what is theminimal number of states necessary
to obtain certain correlations?Howdoes such a number depend on the specific theory we use to describe the
internals of the box?

An important element, in order to be able to speak about thememory cost of temporal correlations, is the
requirement that all time-dependent information used to produce the outputsmust be storedwithin the
physical systemused to implement the box. This implies that the physical operations performed to produce an
outputmust be time-independent, e.g. the experimenter is not allowed to look at thewall clock and decide to
implement in a different way the operation associatedwith a certain input x, as this will result in an additional
source ofmemory, i.e. the clock keeping track of time. It is interesting to notice that the case where such time-
dependent are admissible is equivalent to the case of quantum communication scenarios such as quantum
randomaccess codes or the scenario described by Brierley et al [26]. In fact, the latter scenario can bemodeled as
a networkwith ordered nodes, where a single physical system is transmitted through the nodes, and at each time
step one of the nodes receives the system, performs a local operation, and transmit the system to the subsequent
node. Since for each node it is known in advance inwhich part of the sequence it is situated, its local operations
can be adapted tomaximize a certain figure ofmerit defined in terms of probabilities of outcomes. This scenario
covers the notion of ‘communication cost’ and itmust be distinguished from the notion of ‘memory cost’ that is
considered here.Moreover, even though in thememory cost scenariowe are not allowed to change the
operations throughout the sequence, it stillmakes sense to use classical randomness at the beginning of a
sequence: at each experimental run, the experimenter can flip a coin and decide to perform thewhole sequence
of with one box or another. The resulting correlations will be a convex combination of the correlations obtained
from either box. A graphical representation of the above ideas is presented infigure 1. These intuitive notions are
mademore rigorous in the next section.

3. Finite-statemachines

In this section, we formally define the classical, quantum, andGPTmodels for the box used in the previous
section. In thismodel we assume that the box is implemented as amachinewhich acts on an internal state. Upon
receiving an input x, the box operates on the internal state and produces the output a. The internal state is the

Figure 1.Graphical representation of the possible situations. In each row, the three boxes represent the same physical device at
different times/points in the sequence. (a)Mainmemory cost scenario. A single boxwith input sequence xyz and output sequence abc.
No external clock/memory is accessible to the box and hence its behavior is solely governed by its internal state. (b)Time-dependent
operations. Additional time information is provided by a clock, which allows the box to perform time-dependent operations. This
scenario is equivalent to the one used for discussing communication cost. (c)Allowed randomness. At the beginning of each run, the
experimenter chooseswith probabilityλ the green box (bottom), or with probability 1−λ the blue box (top) and uses it to generate
the whole sequence. (d) Forbidden randomness. It is not allowed to change the box at some point inside the sequence, since this would
be a time-dependent operation.
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specificmodel of thememory from the previous section.More precisely, we use the finite number of perfectly
distinguishable states as ameasure for thememory and for this reasonwe call thismodel afinite-statemachine.

In afirst stepwe need to describe the internal stateω and the operations  ∣a x of themachine.We choose
ordered vector spaces to describe themachine, which is an appropriate framework for a wide range ofGPTs. In
appendix Awe give a brief summary of thismathematical formalism. In brief, a GPT is then described by a real
vector spaceVwith partial order ‘’ and an order unit eäV. In quantum theoryVwould be the set of
Hermitian operators, A B would correspond toB−A being positive semidefinite, and e to the identity
operator.Measurement outcomes are represented by effects fäVwith  f e0 and ameasurementMx is
represented by a collection of effectsM = ( )∣fx a x a with å =∣f ea a x . The set of states  is a subset of the dual

space ofV such that the probability of outcome a in themeasurementMx is given by w=( ∣ ) ∣p a x fa x. Therefore

ωe=1 and wf 0 for all fäVwith f 0. The operations  ∣a x represent a specificway to implement a
measurement, taking into account the change of the internal stateω.More precisely, the linearmap
 ∣ V V:a x is such that =∣ ∣f ea x a x is the effect describing the output a. In addition the positivity condition

 ∣ f 0a x for any fäVwith f 0 needs to be satisfied and further restrictions to  ∣a x may apply depending on
the specificGPT. If we group together the transformations   = Î( )∣x a x a for afixed input x, then x is called
an instrument. If we ignore the outcome a, then the instrumentmaps states to states, in the sense that

 wå Î∣a a x for any stateω.
Given the initial internal stateω of thefinite-statemachine and the instrument  = ( )∣x a x a, the

probabilities associatedwith a sequence ofmeasurement are given by

  w w= =( ∣ ) ( ∣ ) ( )∣ ∣ ∣p a x e p ab xy e, , etc. 4a x a x b y

Note, that wewrite the transformations in theHeisenberg picture, so that the time ordering proceeds from the
left to the right. For a general sequence of inputs = 

x x x xn1 2 and outputs ¼ =


a a a an1 2 wewrite

  w wº = º
      ( ∣ ) ( ∣ ) ( )∣ ∣ ∣p a x p a a x x e e. 5n n a x a x a x1 1 n n1 1

Weexemplify in the next sections how this expression is specialized to the classical and quantum case.
Aswe discussed previously, we exclude any external source ofmemory, such as a clock keeping track of time.

This is formalized by the fact that all instruments solely depend on the input and in particular by the fact that all
transformations are time-independent. In general, for afixedGPT this requirementmakes the set of achievable
correlations nonconvex. Nevertheless, we can recover convexity by allowing the use of convexmixtures as
follows. Before starting the experiment we use a randomvariableλ, distributed according to some probability
distribution q(λ), to decidewhich finite-statemachine to use subsequently. Since themachine is characterized
by the initial stateωλ and the instruments lx , this yields the correlations

å l w=
l

l
l   ( ∣ ) ( ) ( )∣p a x q e. 6a x

The above procedure allows us to generate all correlations from the convex hull of correlations obtainable from a
family offinite-statemachines parametrized byλ.

Finally, we define thememory of the systemusing theGPTnotion of capacity (see [45]), i.e. the size of the
maximal set of perfectly distinguishable states.More precisely, we say that aGPTdefines a d-statemachine if d is
themaximal integer such that there exists a collection of d states w( )k k and d effects ( )fk k such that

å w d= ( )f e f i jand for all , . 7
k

k i j ij

Namely, all effects are part of the samemeasurement, which is able to perfectly (i.e. probability one) discriminate
among the states. This notion of capacity corresponds to the dimension of theHilbert space in quantum
mechanics andwith the number of extremal points of the state simplex in classical probability theory (see,
e.g. [45]).

It is instructive to discuss inmore detail the classical and quantum case, whichmay bemore familiar to the
reader.We subsequently introduce a particular class of capacity-2GPTs, the dichotomic norm cones [46].

3.1. Classicalfinite-statemachines
A classicalfinite-statemachine [47] is described by its internal rules for state transitions and output probabilities.
Given the classical state  = ¼{ }d1, 2, , , the observed probability distribution

 ( ∣ )p a x for an input sequence
x of length n can bewritten as
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
å=
¼ Î

-
  ( ∣ ) ( ) ( ∣ ) ( ∣ ) ( )p a x r s q a s s x q a s s x, , , , . 8

s s
n n n n

, ,
0 1 1 0 1 1

n0

Here, r(s0) describes the probability of preparing the initial state s0 of themachine6 and ¢( ∣ )q a s s x, , describes the
probability that themachine yields the output a and transition to the state ¢s , given that the internal state is s and
the input is x. As in equation (6), thosemachines can depend on a randomvariableλ generated at the beginning
of each sequence, i.e.


å l=

l

l l l

¼ Î
-

  ( ∣ ) ( ) ( ) ( ∣ ) ( ∣ ) ( )p a x p r s q a s s x q a s s x, , , , . 9
s s

n n n n
, , ,

0 1 1 0 1 1

n0

For clarity reasons, we use only equation (8) in the following. The correlations
 ( ∣ )p a x can be rewritten as

p h p h= º
    ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )† †p a x T a x T a x T a x , 10n n1 1

where h = ¼( )†1, 1, , 1 is the d-dimensional vector of ones, p is the vector representing the initial state, and
( ∣ )T a x is the d×d transitionmatrix. Hence,πs=r(s) and = ¢¢[ ( ∣ )] ( ∣ )T a x q a s s x, ,s s, . The rules for

probabilities that constrain ¢( ∣ )q a s s x, , translate to ¢[ ( ∣ )]T a x 0s s, for all ¢s s a x, , , , and hå =[ ( ∣ ) ]T a x 1a s

for all s, x.
Translating the above in the languages of GPTs, we let =V d and set the order unit e to h. The partial order

is such that v w if v ws s for all s. Then the set of states is given by by the canonical (d−1)-dimensional
simplex

  v v v h= Î ={ ∣ } ( )†0 and 1 . 11d

In particular p is a state. Analogously, the transitionmatrix ( ∣ )T a x corresponds to the instruments  ∣a x,
whereas the effects can be obtained as h≔ ( ∣ )∣f T a xa x . It can be easily seen that d correspond exactly to the
capacity defined according to equation (7).

3.1.1. Classical finite-statemachines and Leggett–Garg’smacrorealist models
It is interesting at this point to briefly compare themodel in equation (9)with themacrorealistmodel of Leggett
andGarg [6]. Amacrorealistmodel can be simply obtained by reducing the set of possible internal states to a
single one, i.e. d=1, and re-introducing the time-dependence of operations

å l=
l

l l  ( ∣ ) ( ) ( ∣ ) ( ∣ ) ( )p a x p q a x q a x , 12
t t n n1 1

n1

where the dependency on s0,K, sn becomes trivial and is then removed.We recall thatmacrorealistmodels are
based on two assumptions:macrorealism per se, i.e. the existence of a classical probability, and noninvasive
measurability, i.e. the assumption that themeasurement has no effect on the subsequent evolution of the system.
Thefinite-statemachinemodel can be seen as arising from themacrorealistmodel via a relaxation of the
assumption of a noninvasivemeasurement: themeasurement can be invasive up to a certain amount quantified
by the internalmemory of the system, e.g. for a two state-machine themeasurement can encode atmost one bit
of information in the system.Notice that, however, usually Leggett–Garg assumptions allow the operations to be
time-dependent.

It is interesting to remark that similar ideas have been already employed in Leggett–Garg tests to tighten the
clumsiness loophole. Under the assumption of a classicalmodel with two internal states, Knee et al [?]were able
to quantify themeasurement invasivity via a control experiment, and consequentlymodify the classical bound
for the Leggett–Garg inequality. In agreementwith our argument above, thework of Knee et al shows how the
notion of finitememory can be used as a relaxation of the assumption of a noninvasivemeasurement.

3.2.Quantumfinite-statemachines
The quantum case is perhaps themost familiar to readers fromquantum information. The probability
distribution is obtained by sequences of generalizedmeasurementsM = ( )∣Ex a x a on a single systemdescribed by
aHilbert space offixed dimension d. The outcomes of themeasurement are described by positive semidefinite
operators ∣E 0a x with å =∣Ea a x .

In order to discuss sequentialmeasurements, however, we need to know the post-measurement state, or,
better, the transformation induced by themeasurements. This information is provided by a quantum
instrument x, defined as a collection of completely positivemaps  = ( )∣x a x a, from the space of linear
operators into itself, that sumup to a unitalmap, i.e.  å =( )∣a a x , corresponding to the rule of preservation of
probability in theHeisenberg picture, see, e.g. [48]. Each instrument defines a generalizedmeasurement through
the formula = ( )∣ ∣Ea x a x . Similarly to the previous cases, we can shorten the notation by defining

6
Without loss of generality, we could assume a fixed pure initial state s0, sincewe allow for convexmixtures of differentmachines.

Nevertheless, we keep the notationwith an initial distribution r(s0) over all pure states  , i.e. amixed state, to keep the analogywith the
standard notation forGPT states (ω) and quantum states (ρ).
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  ¼  ≔ ◦ ◦∣ ∣ ∣ ,a x a x a xn n1 1
where ◦denotes the composition ofmaps andwrite

r=
   ( ∣ ) [ ( )] ( )∣p a x tr . 13a x

Asmentioned before, quantum theory is a particular case of aGPT,where the vectors spaceV is the set of
Hermitian operators, the partial order is defined through positive semidefiniteness and the order unit e is given
by . The set of states is given by the density operators, identified by theHilbert–Schmidt inner product with the
elements of the dual space ofV

 r r r= ={ ( )∣ ( ) } ( )X Xtr 0 and tr 1 . 14

Hence equations (13) and (5) are equivalent. It is then clear that the capacity of the system, defined as the number
of perfectly distinguishable state [44, 49] precisely corresponds to the dimension of theHilbert space. It is
important to remark that we need to consider the general formalism of quantum instruments, since if the
measurement devices wouldmerely act projectively, therewould be nontrivial limitations on the achievable
correlations that are valid for arbitrary dimensions [50, 51].

3.3. GPT two-statemachines
Wealready provided a definition ofGPTfinite-statemachines at the beginning of section 3. In this section, we
specialize this definition by considering a class GPTswhere the effects belong to a dichotomic norm cone. These
theories are a generalization of the classical bit (cbit) and quantumbit (qubit), in the sense that they have capacity
two, i.e. they allow for a set of perfectly distinguishable states, in the sense of equation (7), of atmost size two.We
then specialize our discussion to the case of hyperbits (hbits) [52] and generalized bits (gbits) [53]. The former
are a generalization of the Bloch sphere to dimension higher than three, whereas the latter are the local part of a
Popescu–Rohrlich box [41].We also provide amore detailed discussion ofGPTs in appendix A.

Consider the vector space  ´≔V n, and the partial order where ( )xt , 0 if  ∣ ∣xt . Here, ∣ ∣x is any
norm in n.We define the order unit ≔ ( )e 1, 0 . This implies that effects are vectors = ( )xf t , such that

 -∣ ∣ { }x t tmin , 1 . The states for a dichotomic norm cone are themaps w +( ) †x w xt t: , with the
condition * ∣ ∣w 1, where * ∣ ∣ ≔ { ∣∣ ∣ }†w w y ysup 1 is the dual normof ∣ · ∣. A peculiarity of this GPT is that it
has exactly capacity two, independent of n or the choice of the norm ∣ · ∣.We provide a proof of this fact in
appendix C.

Depending on the norm chosen and on nwehave different GPTs. If we take ∣ ∣x to be the Euclidean (orℓ2)
norm, i.e. = å∣ ∣x xi i

2 2, we obtain hbits, and specifically cbits for n=1, qubits for n=3 andmore general hbits
for n>3. If we take n=2 and theManhattan (orℓ1)norm, i.e. = å∣ ∣ ∣ ∣x xi i , we obtain a gbit. For the case of the
Euclidean norm, the dual norm is also the Euclidean norm itself, whereas the dual of theManhattan norm is the
supremum (or ¥ℓ )norm, i.e. * =∣ ∣ ∣ ∣w wmaxi i .

4. Bounds on temporal correlations

In this section, we consider the simplest nontrivial scenario, a sequence of twomeasurements, with inputs x, y
and outputs a, b, with a, b, x, y=0, 1.We are interested in bounds on the sumof correlations

= + +( ∣ ) ( ∣ ) ( ∣ ) ( )S p p p01 00 10 10 10 11 . 15

Similar expressions have been considered in [43, 44, 54]. Clearly, the trivial bound S 3 holds. For hbits the
value =S 3 cannot be reached and therefore theremust exist a nontrivial bound  WS nhbit, for any dimension
n of the hbit, in particular for the cbit (n=1) and the qubit (n=3). A simple analytical proof of W < 3nhbit, is
presented in appendix B.

4.1.Measure-and-prepare strategies
The analysis of the case of sequences of length two can be greatly simplified usingmeasure-and-prepare
instruments. These are instruments of the form  s= ( )∣ ∣fx a x a x a, whereM = ( )∣fx a x a is ameasurement and

s( )∣a x a is a collection of states. Hence x can be implemented byfirstmeasuringMx and then, depending on the
outcome a, preparing the state s ∣a x.

Now, for a sequence of length two, the correlations are given by

å l w=
l

l l l( ∣ ) ( ) ( )∣ ∣p ab xy p f , 16a x b y

whereωλ is given by the initialization procedure of the individual finite-statemachines participating in the
mixture ofmachines. Clearly, the extremal values S can be achieved by a singlefinite-statemachine and hence in
the followingwewill omit the indexλ and the summation ofλ.

The instruments x can be replaced bymeasure-and-prepare instruments, by letting =∣ ∣f ea x a x and

s w w= ( )∣ ∣ ∣fa x a x a x if the denominator is nonzero, or s w=∣a x . Then w s=( ∣ ) ∣ ∣ ∣p ab xy f fa x a x b y . Hencewe can

6
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equivalently replace  ∣a x by the prepare-and-measure strategy  s=∣ ∣ ∣fa x a x a x. Using this simplification, we
obtain

w s w s

= + + - -
= - + + -
= - + + -

( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ )
( ∣ )[ ( ∣ )] ( ∣ )[ ( ∣ ) ( ∣ )]
( )[ ( )] ( )[ ( )] ( )∣ ∣ ∣ ∣ ∣ ∣ ∣

S p p p p p

p p p p p

f f f f f

0 0 1 1 10 10 00 00 11 11

0 0 1 0 0; 00 1 1 1 0 1; 10 1 1; 11

1 1 , 170 0 0 0 0 0 1 1 1 1 0 0 1 1

wherewe used the notation ( ∣ )p b a xy; for the probabilities conditioned on previous outputs.

4.2. Analytical andnumerical bounds
Since =S 3 cannot be reachedwith hbits, theremust be afinite gap between the actual bound for cbits, qubits,
and hbits with a Bloch sphere offixed dimension. In fact, the sets of states and effects are compact, and the
expression S can bewritten as a continuous function from the set of states and effects into the interval [0, 3], so
its imagemust be compact. In this section, we explore inmore detail the bounds for cbits, qubits, and hbits via
numericalmethods.

4.2.1. Classical bit
For the cbit case, we use the representation from section 3.1, specifically,ω is represented by (1, 0), s ∣i i by (si,
1−si), and ∣fi i by ( )†a b,i i , where si, ai, biä[0, 1]. Then equation (17) reads

= - - - + + - + - -[ ( ) ] [ ( ) ( )( )] ( )S a s a s b a s a a s b b1 1 1 1 . 180 0 0 0 0 1 1 0 1 1 0 1

Only a0 and a1 appear nonlinearly in this expression. Therefore, themaximumof S is attainedwhen all
remaining parameters are either 0 or 1. This leaves uswith a two-dimensional, atmost quadratic optimization,
which can be performed at once. For themaximal valueΩcbit of S using classical bits we then obtain

W = ( )9

4
. 19cbit

Thismaximumoccurs at a unique point, where s1=b1=0, b0=s0=a1=1, and =a0
1

2
. Hence, an optimal

machine is given by the initial state p = ( )† 1, 0 and the transitionmatrices

= = = =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )†T T T T0 0

1

2
0

1 0
, 1 0

1

2
0

0 0
, 1 1 0 1

0 0
0 1 . 20

Note, that while the solution for the chosen parametrization is unique, the transitionmatrices are not unique.

4.2.2. Quantum bit
For the qubit case, we can proceed similarly to [44]. First we note that in equation (17), the initial stateω can be
replaced by a pure state, so that w á ñ ∣ ∣X X: 0 0 . The expression S can then bewritten as

s s= á ñ - + á ñ + -∣ ∣ [ [ ]] ∣ ∣ [ [ ( )]] ( )∣ ∣ ∣ ∣ ∣S E E E E E0 0 1 tr 0 0 1 tr , 210 0 0 0 0 1 1 1 0 0 1 1

where  ∣E0 i i are effects andσ0 andσ1 are density operators. Since the latter occur only linearly in S, we
can substitute themwith pure states y ñ∣ 0 and y ñ∣ 1 , respectively. Themaximumof S for qubits is hence given by

y y y yW = á ñ - á ñ + á ñ + á - ñ
y yñ ñ

[ ∣ ∣ ( ∣ ∣ ) ∣ ∣ ( ∣ ∣ )] ( )∣ ∣ ∣ ∣ ∣
∣ ∣

∣ ∣
E E E E Emax 0 0 1 0 0 1 . 22

E E

qubit

,

0 0 0 0 0 0 1 1 1 0 0 1 1 1

0 0 1 1
0 , 1

By parametrizing ∣E0 0, ∣E1 1, y yñ ñ∣ ∣,0 1 with real parameters, one canwrite the expression in equation (22) as
fourth degree polynomial. This can be further simplified, by taking ∣E0 0 ∣E1 1, y yñ ñ∣ ∣,0 1 as real expression, which
lowers the number of parameters to ten7. The reduction to the real part of a qubit does not affect the optimality
aswe show in the next section, see equation (28).

It is always possible to obtain a lower bound Wqubit
feas onΩqubit by guessing appropriate values for the free

parameters. An upper bound, Wqubit
Lass , can be obtained via Lasserre’smethod [55] of polynomial optimization

based onmomentmatrices and semidefinite programming [56], which provides analytical upper bounds up to
the numerical precision. That is

 W W W ( ). 23qubit
feas

qubit qubit
Lass

With the simplifications used above, the upper and lower bounds coincide up to the numerical precision of
10−5.We have

7
Since the upper bound is calculated by polynomial optimizationmethods, it ismore convenient to keep the expression and constraints in

polynomial form, rather thanminimizing the number of variables. For example, a parametrization of a pure state as q qñ + ñ∣ ∣cos 0 sin 1
removes one variable and one constraint, but it is no long a polynomial in the parameters.

7
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W » W » ( )2.355 70, 24qubit
feas

qubit
Lass

showing a gap between the cbit and qubit case. A feasible solution is given by the post-measurement states and
effects

y yñ » ñ - ñ ñ » ñ + ñ∣ ∣ ∣ ∣ ∣ ∣ ( )0.408 0 0.913 1 , 0.640 0 0.768 1 , 250 1

and the effects

 y y f f f= - ñá = ñá ñ » ñ - ñ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )∣ ∣E E, and , where 0.971 0 0.238 1 . 260 0 0 0 1 1

4.2.3. Hyperbit
For the case of hbits, and also themore general dichotomic norm cones, we use the parametrization
w +( ) †x w xt t: , and s +( )∣

†x w xt t: ,i i i for the states and = ( )∣ ff t ,i i i i for the effects. Then
equation (17) reads

= + - - + + + - + -( )[ ] ( )[ ( )] ( )† † † †w f w f w f w f fS t t t t t1 1 . 270 0 0 0 0 1 1 0 1 1 0 1

Whenmaximizing S, we can eliminate themaximization over w0 and w1, by choosing appropriate vectors with

* =∣ ∣w 1i such that = ∣ ∣†w f f0 0 0 and - = -( ) ∣ ∣†w f f f f1 0 1 0 1 . Themaximal value of S for a given dichotomic
norm cone is hence

W = + - + + + + - + -{( )[ ∣ ∣ ] ( )[ ∣ ∣ ]} ( )† †w f f w f f ft t t t tmax 1 1 , 28
w f

f

t

t

dnc
, ,

,

0 0 0 0 1 1 0 1 0 1
0 0

1 1

where the constraints of the optimization are * ∣ ∣w 1 and  -∣ ∣ { }f t tmin , 1i i i . For the case of hbits, both *∣·∣
and ∣·∣correspond to theℓ2 norm , hence the conditions are invariant under orthogonal transformations as it is
the case for the function to bemaximized, which depends only on the normof fi and the scalar products
between w and fi. Since the only contribution for w comes from the component in the span of f f,0 1, the
problem reduces to a two-dimensional one. This is equivalent to the qubit casewith the Bloch ball restricted to
the xz-plane, both for states and effects. This implies that the bound for hbits coincide with the bound for qubits.
We thus have

W » ( )2.355 70, 29hbit

as in equation (24).

4.2.4. Generalized bit
The case of gbits differs from the previous one becausewe can actually reach =S 3 already for a two-state
machine, namely the dichotomic norm conewith n=2 and theℓ1 norm. Thismodel corresponds to the local
part of a Popescu–Rohrlich box [41, 53]. The space of effects is a polytopewith extremal effects given by the
extremal point of the two-dimensionalℓ1 norm, i.e. =  ( )ea 1,i i

1

2
, with ei the canonical vectors in 2. Then,

the states are the w = ( )w1, with w in the square [−1, 1]×[−1, 1], i.e. the unit ball with respect to the ¥ℓ
norm. The choices

= - = - =( ) ( ) ( ) ( )† † †w w w1, 1 , 1, 1 , 1, 1 300 1

and

= = - ( )f e f e, 310 1 1 2

yield, according to equation (28), the algebraicmaximum for S, i.e. =S 3.We thus have

W = ( )3 32gbit

for gbits and hence also for the set of all dichotomic norm cones with the same norm and arbitrary n.

4.3. Impossibility of simulating contextual correlationswith general instruments on a qubit
In this section, we investigate whether qubitmachines are able to simulate some contextual correlations that
arise in higher dimensional quantum systems. In [20] it was proved that in order to simulate all deterministic
predictions associatedwith the observables of the Peres–Mermin square [57, 58], a classicalmachinewith at least
4 states is necessary. This result was obtained in the framework of tests of contextuality involving sequential
measurements [8], inwhich the relevant compatibility notion is given by the nondisturbance among compatible
measurements and repeatability of outcomes, e.g. ifMx andMy are compatiblemeasurements in the
measurement sequenceM M Mx y x, the outcome for the firstmeasurement ofMx will be repeated in the second
measurement ofMx.

We derive here a related result by showing that even a qubit is not sufficient to exhibit contextual
correlations. For this we use a rather broad notion of contextuality. Consider a boxwith inputs from an alphabet

8
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 and outputs from an alphabet as before. The input sequences are restricted such that a sequence

x is

admissible if and only if all inputs are from the same context  Ì , i.e. Ì{ ∣ }x ii . A context  is a set of
inputs, such that p p=

   ( ∣ ) [ ( )∣ ( )]p a x p a x for any inputs sequence

x from  , any output sequence


a , and any

permutationπ. In additionwe assume that any input is repeatable, i.e. d=
   ( ∣ ) ( ∣ )p ab xx p a xi b a, i

for any position i
in any admissible sequence.

Such a box is noncontextual, if all correlations of the box (using only admissible input sequences) can be
reproduced by a boxwithoutmemory, i.e. by a noncontextualmodel.We claim that any such box implemented
on a qubit is noncontextual.

We start the proof of this statement by determining those inputs, which cannot require the use ofmemory.
First, if an input z ever produces only the output c, within all admissible input sequences, thenwe can eliminate
this input fromour considerations. This is the case, because in any sequence we can permute z to the end of the
sequence. Then

= =
       ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )p ac xz p a x p c a xz p a x; , 33

where thefirst equality is due to equation (3) and the second due to the assumption that only the output c ever
occurs. Second, assume that for a certain input z, whenever it occurs in an admissible sequence, the internal state
of themachine before the input z is only ever the state ρ. Againwe can eliminate this input fromour
considerations, because the output for z and the state after the output can be determinedwithout considering the
state. Third, we can ignore the pathological cases of inputs, which are notmember of any context. In the
followingwe assumewithout loss of generality, that the box does not have any input falling under the those three
cases just discussed.

Next, we show that for any input z the instrument ( )∣c z c must be ameasure-and-prepare instrument of the
form

 y y y y y yñá ñá á ñ Î ∣ ∣ ∣ ∣ ∣ { } ( )∣ X X: with 0, 1 . 34c z c z c z c z c z c z c z, , , , , ,

This can be seen as follows. According to the assumptions, there are two input sequences

xz and


y z and

corresponding output sequences

ac and


bc , so that the state before the input z is ρ and r¢, respectively, with

r r¹ ¢. Using equations (3) and (13)we have

 d r= ¢ = ¢ =¢ ¢
         ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) [ ] ( )∣ ∣p ac xz p acc xzz p a x p cc a xzz p a x; tr and 35c c c z c z,

 d r= ¢ = ¢ = ¢¢ ¢
         ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) [ ] ( )∣ ∣p bc y z p bcc y zz p b y p cc b y zz p b y; tr , 36c c c z c z,

where >
 ( ∣ )p a x 0 and >

 ( ∣ )p b y 0. Therefore for ¹ ¢c c

 r =¢[ ¯ ] ( )∣ ∣tr 0 37c z c z

with r r r= + ¢¯ ( ) 2. Since r r¹ ¢ andwe assume a qubit system, themixture r̄ has necessarily rank two, i.e.
r̄ for some ò>0.We arrive at the condition

å =[ ] ( )† †K Q Q Ktr 0, 38
i j

i j j i
,

whereKi andQj are theKraus operators associated, respectively, with the instruments  ¢∣c z and  ∣c z , e.g.
 = å¢∣

†X K XKc z j j j. ThenKiQj=0 for all i, j. Similarly, exchanging cwith ¢c , we obtainQjKi=0 for all i, j. This
implies thatKi andQj are of rank one and thatKi is proportional to ¢Ki aswell asQj being proportional to ¢Qj , for
all ¢i i, and ¢j j, . Hencewe can omit the indices i, j and consider simplyK andQ. Note that from  å =∣c c z ,
the condition †Q Q followswhich allows us towrite a b= ñá∣ ∣Q with a aá ñ =∣ 1and b bá ñ∣ 1. Now, for
= ¢c c we obtain

   r r=( ¯ ) ( ¯ ) ( )∣ ∣ ∣tr tr , 39c z c z c z

which implies =( )† †Q Q Q Q2 2 . It follows that either bñ =∣ 0 or añ∣ and bñ∣ are equal up to a phase and hence
 ∣c z is as stated in equation (34).

Asfinal stepwe need to show that there is no contextuality for projective qubit instruments. Given an
admissible input sequence


xyz , and an output sequence


abc such that >

 ( ∣ )p ab xy 0, we have

y y y y= á ñ = á ñ
       ( ∣ ) ( ∣ )∣ ∣ ∣ ( ∣ ) ( ∣ )∣ ∣ ∣ ( )p abc xyz p ab xy p abcb xyzy p ab xyand . 40b y c z b y c z, ,

2
, ,

4

The left-hand side of both expressions has to be equal, yielding y yá ñ Î∣ ∣ ∣ { }0, 1b y c z, , .
Consequently, any two inputs within a context are realized by the same projective instrument, except for

some relabeling of the outcomes.We choose a specificmeasurement within one context, say y, so that
 = å ( ∣ )∣ ∣ f a xa x b b y

b with some coefficients Î( ∣ ) { }f a x 0, 1b . This waywe canwrite for any correlations of
this context

9
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å =
 ( ∣ ) ( ∣ ) ( ∣ ) ( )p a x p b y f a x , 41

b i

b
i i

which is exactly the formula for a one-statemachine, i.e. a noncontextualmodel.
This concludes the proof of our statement, due to the following observation. If two contexts share an

observable, then our argument already applies and the union of both contextsmust admit a noncontextual
model and hence the union of both contexts is again a context. Eventually, we can join contexts until all contexts
aremutually disjoint. For each disjoint set we can construct a noncontextualmodel, and since there are no
admissible sequence involving two different contexts, we have constructed a noncontextualmodel for all
admissible input sequences.

5. Conclusions and outlook

We introduced the notionmemory cost of simulating temporal correlations based on the notion of finite-state
machine, i.e. a physical system accepting an input at each time instant and generating an outcome and an
internal state transition according to probabilistic rules.We investigated the correlations obtainable via such
finite-statemachines operating according to different probability theories, i.e. classical, quantum, orGPT.Our
framework allow us to derive inequalities able to discriminate among different theories for the simplest
nontrivial case, i.e. two-statemachines, two inputs, two outputs, and sequences of length two.Moreover, we
investigated, from the perspective of quantumfinite-statemachines, the possibility of simulating contextual
correlationswith a qubit and answered this question in the negative.

Our framework provides a notion of nonclassicality for single systems, which is based solely on observed
correlations and does notmake any assumption of the type ofmeasurements involved, e.g. compatibility or
noninvasiveness.We believe that several problems in quantum foundations and quantum information could be
studied in this framework. For instance, a notion of nonclassicality for single systems, i.e. quantum
contextuality, has recently been suggested as a resource for quantum computation.On the other hand,memory
has been identified as a resource needed to simulate contextual correlations classically [20, 21]. In addition, a
different notion of contextuality for sequential operations has been defined and connected to speed-up in
quantum computation [59]. Ourwork could provide a general framework to discuss such different results and
understand better the connection betweenmemory cost of (classical) simulations, contextual correlations, and
advantages in computation.Moreover, the idea of computation inGPTs, such as Spekkens’ toymodel [60], that
are intermediate between classical and quantumprobability has been recently investigated [61, 62]. In particular,
this GPT can be exactly simulatedwith two classical bits.
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AppendixA. Brief introduction toGPTs

In quantum theory the set of effects is represented byHermitian operators Fwith  F0 . This convex set has
three characteristic properties. (i) It is a subset of the real vector space ofHermitian operators. (ii)There exists
the special operator  representing the all-embracing effect. (iii) Its shape is given by the partial order A B
which is defined by the condition thatB−A is positive semidefinite.

In aGPT, the notion of an effect is generalized by considering a straightforward generalization of those
properties.We start with an arbitrary real vector spaceVwith a partial order a b. This partial order has to be
linear in the sense that a b implies l la b for any l Î + and a b implies + +a c b d if also
c d . This turns ( )V , into an ordered vector space.
The all-embracing effect is a distinct element eäV. It is is required to dominate all ofV, i.e. for any xäV

there is a positive numberλ such that  lx e. This propertymakes e an order unit and ( )V e, , an order unit
vector space. In addition, it is convenient to assume that the order unit is Archimedean, i.e. if  lx e holds for
allλ>0, then already x 0. In our paper we implicitly assume that any order unit is Archimedean.

10
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It is sometimes convenient to let = Î+ { ∣ }V x V x0 . Since a b is equivalent to b−aäV+, we then
equivalently describe anAOU space by the tuple (V,V+, e). The effects in aGPT are now given by the set

= Ç -+ + +( )V V e Ve . AmeasurementM in aGPT is represented by a collection of elementsM = Ì +( )f Vk k e

with å =f ek , where fk represent the outcomes of themeasurement.
For the set of states, we note that in quantum theory one can represent a state ρ equivalently by the linear

map w r ( )X X: tr . Then the normalization of ρ becomes w =( ) 1and the condition r 0 reads w ( )X 0
for all X 0. By analogy, the set of states in aGPT is given by

*  w w w= Î ={ ∣ ( ) ( ) } ( )V e f f1 and 0 for all 0 , A1

where * j j= { ∣ }V V: is linear is the dual space ofV.With this definition, the probability for outcome k
of ameasurementM = ( )fk k is given by pk=ω( fk).

Appendix B. Bound on S for hbits

The proof is by contradiction. Let us assumeΩhbit=3, we then have = = =( ∣ ) ( ∣ ) ( ∣ )p p p01 00 10 10 10 11 1,
and = =( ∣ ) ( ∣ )p p0 0 1 1 1. From =( ∣ )p 0 0 1, we have w = + =( )∣ ∣

†
∣w ff t 10 0 0 0 0 0 , where = ( )∣ ∣ ∣ff t ,0 0 0 0 0 0 . On

the other hand, by the definition of effects and state, we have  -∣ ∣ ( )∣ ∣ ∣f t tmin , 10 0 0 0 0 0 and * ∣ ∣w 1.We
then have

 = - ( )∣
†

∣ ∣w ft t
1

2
and 1 . B10 0 0 0 0 0

From ¹∣f e0 0 (because =( ∣ )p 00 00 0), we have ¹∣f 00 0 and hence <∣t 10 0 . Then, using again * ∣ ∣w 1 and

*=∣·∣ ∣·∣ , together withCauchy–Schwarz inequality, we have

= = -
∣ ∣

∣ ∣ ( )∣

∣
∣ ∣w

f

f
f t, with 1 . B2

0 0

0 0
0 0 0 0

Similarly, we obtain

= = -
∣ ∣

∣ ∣ ( )∣

∣
∣ ∣w

f

f
f t, with 1 , B3

1 1

1 1
1 1 1 1

and, again, <∣t 11 1 .
We need now to characterize the terms of the form w ( )∣ ∣fa x b y , corresponding to sequences of length two.

We use the constraints that arise from the condition that the transformationmustmap effects to effects. Then,
we use that  ∣a x is a linear transformation thatmaps the identity element to ∣fa x, i.e.  =∣ ∣e fa x a x.We, thus, have


a

=
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )∣

∣ ∣
†

∣ ∣f

t

B
, B4a x

a x a x

a x a x

wherea ∣a x is a n-dimensional vector and ∣Ba x a n×nmatrix. The expectation value can then bewritten as


a

w =
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )∣ ∣

† ∣ ∣
†

∣ ∣

∣

∣
w

f f
f

t

B

t
1, B5a x b y

a x a x

a x a x

b y

b y

a= + +
⎛
⎝⎜

⎞
⎠⎟( · ) ( )∣ ∣

†
∣ ∣

† ∣

∣
w f w

f
t B

t
, B6a x a x a x a x

b y

b y

a= + + +( · ) · ( ) ( )∣ ∣ ∣ ∣ ∣
†

∣w f f wt t B . B7b y a x a x b y a x a x

Wecan see the transformation  ∣a x, applied to the left, as a state transformation, i.e. Schrödinger picture and
with normalization corresponding to outcome probability. Then, we have that

* a+ +∣ ∣ ·∣
†

∣ ∣ ∣w w fB ta x a x a x a x. Notice that such a condition also guarantees that ( ∣ )p ab xy 0
and ( ∣ ) ( ∣ )p ab xy p a x .

This translates to * a+∣ ∣∣
†

∣wB 1a x a x for the case (a, x)=(0, 0) or (1, 1). In fact, in those cases we have
+ =·∣ ∣w ft 1a x a x , so the dual norm condition guarantee that  w ( )∣ ∣f 1a x b y for all ∣fb y .

From the conditions =( ∣ )p 11 11 0, we obtain

a+ + +( · ) · ( ) ( )∣ ∣ ∣ ∣ ∣
†

∣w f f wt t B B81 1 1 1 1 1 1 1 1 1 1 1

a= + + =· ( ) ( )∣ ∣ ∣
†

∣f wt B 0, B91 1 1 1 1 1 1 1
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which implies togetherwith equation (B3), * a+∣ ∣∣
†

∣wB 11 1 1 1 , andCauchy–Schwarz inequality, that

a+ = - =( ) ( )∣
†

∣ ∣w wB tand
1

2
. B101 1 1 1 1 1

On the other hand, we have =( ∣ )p 10 10 1 that, by equations (B2) and (B10), implies

a+ + + = - = - =( · ) · ( ) · ( )∣ ∣ ∣ ∣ ∣
†

∣ ∣ ∣ ∣w f f w f wt t B t t2 1 1, B110 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0

which implies =∣t 10 0 , i.e. a contradictionwith <∣t 10 0 , which concludes the proof.

AppendixC. Capacity of dichotomic norm cones

In the followingwe prove that dichotomic norm cones describe systems of capacity two. For convenience, we
repeat equation (7) from themain text.

å w d=f e f i jand for all , .
k

k i j ij

Wefirst show that a capacity of two is an upper bound.

Lemma1. In a dichotomic norm cone, let w( )k k be a collection of d states and ( )fk k a collection of d effects, such that
equation (7) is satisfied. Then d 2.

Proof.Any effect = ( )xf t , must satisfy  f e0 , i.e.  ∣ ∣xt and - ∣ ∣xt1 . Furthermore, a state

w +( ) †y w ys s: , must obey * ∣ ∣w 1. It follows that  ∣ ∣†w x x and hence w =f 1 requires t 1

2
. Thus

å f ek k implies for = ( )xf t ,k k k the inequalities

  å å- -∣ ∣ ( )x t
d

0 1 1
2

. C1
k

k
k

k

Which yields at once the assertion. ,

In addition, if the dimension of the underlying vector space is finite, we can alwaysfind vectors x and w,
such that =∣ ∣x 1, * =∣ ∣w 1, and =†w x 1. Hence, the states w = ( )w1,1,2 and effects = ( )xf 1, 21,2 obey
equation (7). It follows that the capacity of a dichotomic norm cone is always exactly two.
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