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CORRIGENDUM

Corrigendum: Heisenberg uncertainty relation for relativistic
electrons (2019New J. Phys.21 073036)

IwoBialynicki-Birula1 andZofia Bialynicka-Birula2

1 Center for Theoretical Physics, Polish Academy of Sciences Aleja Lotników 32/46, 02-668Warsaw, Poland
2 Institute of Physics, Polish Academy of Sciences Aleja Lotników 32/46, 02-668Warsaw, Poland

E-mail: birula@cft.edu.pl

In the equations (19) and (23) themixed terms containing the products of the amplitudes pf , +( ) and pf , -( )
aremissing. Therewas also an additionalmisprint.

The corrected formof equation (19) is:
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The corrected formof equation (23) is:
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These changes do not influence ourfinal conclusion since all omitted terms contain the derivatives with respect
to angular variables while the functions thatminimize the product of uncertainties are spherically symmetric.
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Abstract
TheHeisenberg uncertainty relation is derived for relativistic electrons described by theDirac
equation. The standard nonrelativistic lower bound 3/2ÿ is attained only in the limit and thewave
function that reproduces this value is singular. At the other end, in the ultrarelativistic limit, the bound
is the same as that found before for photons.

1. Introduction

Recent progress in the generation of relativistic beams of electrons calls for adequate theoretical tools, based on
theDirac equation, that would allow to account precisely for quantumproperties of these electrons. The
problem raised and answered in this paper is that ofHeisenberg uncertainty relation (HUR) for relativistic
electrons. It is shown that the relativisticHUR ismarkedly different from its original nonrelativistic form.

Inmostmonographs [1–8] devoted to relativistic quantummechanics of electrons theHURs has not been
mentioned. In those few places where there is a reference to uncertainty relations in a relativistic theory, the
authors [9, 10] follow the early paper by Landau and Peierls [11] giving only a qualitative analysis of limitations
imposed by relativity onmeasurements. In this workwe present a complementary approach to uncertainty
relations. It could be said thatwe dowhatKennard [12] had done for the nonrelativistic formof the uncertainty
relation.He derived an exactmathematical inequality which expressed precisely the heuristic explanation
(Bohr–Heisenbergmicroscope) of the nonrelativistic uncertainty relation.We do the same for relativistic
electrons.

In nonrelativistic quantummechanics onemay rely directly on the interpretation of themodulus squared of
thewave function y∣ ( )∣r t, 2 and its Fourier transform y∣ ˜ ( )∣p t, 2 as the probability densities in position and
momentum space. In relativistic quantummechanics there is an ambiguity in the definition of the probability
density in position space because there are various properties of relativistic particles thatmay be used to define
their position. In particular, wemay use the energy distribution, as we have done for photons [13], or the rest
mass distribution.

In this workwe followDirac [3]whopostulated (p 258) that ‘The square of themodulus of thewave
function, summed over the four components, should give the probability per unit volume of the electron being
at a certain place’. This quantity is also ([3] p 260) the time component j0 of the electromagnetic current density
jμ. The continuity equation ¶ =m

mj 0 guarantees the conservation of the total probability,

ò r =∣ ( ) ( )rr td , const, 1r
3

where

åyr y= =
a

a( ) ∣ ( )∣ ∣ ( )∣ ( )r r rt t t, , , , 2r
2 2

and ya ( )r t, are the components of theDirac bispinor. Thus, the localization of the electron is determined by its
interactionwith the electromagnetic field: the electron is where its charge is. A natural definition of the
probability density inmomentum space is themodulus squared of the Fourier transformof y ( )r ,
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Thus, the relation between r ( )r t,r and r ( )p t,p , based on the Fourier transformation, is the same as in the
nonrelativistic quantummechanics.

From the probability densities in position and inmomentum space we construct the standard expressions
for the dispersionsΔr2 andΔp2:
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whereN2 is the normalization constant

ò òy y= =∣ ( )∣ ∣ ˜ ( )∣ ( )r pN r pd d . 72 3 2 3 2

Weomitted the time dependence because the uncertainty relations are always formulated at afixed time.
A simple textbook proof of theHUR in nonrelativistic quantummechanics [14, 15] can be extended to the

relativistic theory. This extension starts from the following non-negative expression built from theDirac
bispinor:
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After the rearrangement, this inequality becomes a quadratic form in ζ:

 z z z= D + D +( ) ( )Q r p 3 0, 92 2 2

wherewe used the expression forΔp2 in the position representation
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The requirement thatQ(ζ) has atmost one real zero (the discriminant cannot be positive) leads to the standard
nonrelativisticHUR in three-dimensions
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Our task is to determinewhether in the relativistic theory this inequality is saturated orwhether it is a strict
inequality. Saturationwouldmean that there exists a bispinor describing an electronic state which obeys the set
of three equations
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In the nonrelativistic quantummechanics, these equations are satisfied by aGaussianwave function but in the
relativistic case it is not so simple. Of course, aGaussianwave function is a solution the equation (12) but such a
wave function does not describe a state of an electron but it will also have a part describing the positron.We shall
analyze this problem in detail in the next sectionwith the use of a variational procedure.

2. Evaluation of the variational functional

The variational procedure is simplified if we put á ñ =r 0 and á ñ =p 0 in the definitions (5) and (6). In the case of
Δr2 the prescription is simple.We just choose the origin of the coordinate system at the center of the probability
distribution. In the case ofΔp2 the solution ismore subtle because the space ofmomenta is not homogeneous
andwe cannot choose its origin at will.Wemay, however,make the following replacement:
y y á ñ( ) ( · ) ( )r p r rexp i which does not restrict the freedom in the choice of the variational trial function.
Such a replacement does not changeΔr2 but it eliminates á ñp in (10), so thatwe obtain:

ò rD = ( ) ( )p pp
N

p
1

d . 13p
2

2
3 2

In this waywe can eliminate completely the average values of position andmomentum from the formulas for the
dispersions.

2
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Wewill express now the productΔr2Δp2 in terms of the independent degrees of freedom that can be
subjected to unrestricted variations. The solution of the differential equation obtained from the variational

procedure will determine theminimal value of D Dr p2 2 .
The states of an electron are described by thewave functions obeying theDirac equation (c=1,ÿ=1),

yg ¶ - =m
m[ ] ( ) ( )rm ti , 0. 14

Sincewe are interested in thewave functions of an electron and not of a positron, we consider only positive
energy solutions of theDirac equation. Such bispinors ya ( )r t, can be expressed in terms of two complex
amplitudes ( )pf , :
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Thewave functions ( )pf s, ofmomentumvariables and the spin index s are not subjected to any
restrictions; they represent the independent degrees of freedomof an electronmoving in free space. They form a
representation of the Poincaré group (inhomogeneous Lorentz group) formassive spin 1/2 particles, as has been
described byWigner [16].

Two orthonormal bispinors a ( )pu s, in theWeyl (chiral) representation of γmatrices [17]will be chosen in
the form:
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They are linear combinations of the simpler bispinors used before [18] but they aremore convenient in setting
up the variational functional. TheWeyl representation of γμmatrices is better suited for the relativistic analysis
than the commonly usedDirac representation because the upper and lower components are then genuine
relativistic spinors.

To set up the stage for the variational calculation, we shall express the dispersions in terms the amplitudes
( )pf s, . Orthonormality of the bispinors ( )pu s, leads immediately to simple forms of andN2 andΔp2,
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is obtainedwith the use of the following identity:
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Double arrows in (19) denote the antisymmetrized derivative, i.e. ¶
«

= ¶ - ¶f g f g g fx x x .We now express these
formulas in spherical coordinates to simplify the variational equations.
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The product D Dr p2 2 of the dispersions is awell defined functional of the electron amplitudes f (p, θ,f, s). The
minimal value of this product that appears on the right-hand side of the uncertainty relation (11)will be found in
the next section.

3. Solutions of the variational equations

Wewill search for the function thatminimizes the uncertainty relation only among spherically symmetric
functions f (p). In this case the variation ofΔr2Δp2 with respect to f * gives the following ordinary differential
equation for f:
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where g = D Dr p2 2 .We dropped the index s because the equations for both components of ( )f p s, are
identical. In terms of the dimensionlessmomentumvariable q and the dimensionless parameter d, the
variational equation takes on the following form:

g-¶ - ¶ + -
+

+
+

+ =
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( ) ( ) ( )
q q q d q

d

d q
q f q f q

1

2

2 1 1

1 4 1
, 25q q d d

2
2 2 2 2

2

2 2 2
2

where


= =

D
D

⎛
⎝⎜

⎞
⎠⎟ ( )q

p

mcd
d

mc

p

r
,

1
, 26

2 2

2

1 4

andwe explicitly indicated the dependence of the function f on the parameter d.
Thus, our variational equation has the formof the eigenvalue problem for the radial wave equationwith a

modified harmonic oscillator potential. The lowest value of γ (the energy of the ground state)will be the best
bound in the uncertainty relation. Shouldwe allow for the angular dependence, the effective potential would
pick up the centrifugal term l(l+1)/q2. This would definitely increase the ground state energy.

The eigenvalue problem (25) has no analytic solution but considering the potentialV(q),
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as a function of the parameter dwefind (see figure 1) that the smaller the value of d, the deeper the potential.
Therefore, wewill obtain lower values of the eigenvalue γ for smaller values of d. In the formal nonrelativistic
limit (when  ¥m or  ¥c )wehave d→0 and the variational equation is that of the harmonic oscillator
in 3D
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Therefore, thewave function f0(q) is aGaussian,

= g-( ) ( )f q e , 29q
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20
2

andwe obtain the nonrelativistic result γ0=3/2. The physical limit of d→0 is achievedwhen either the
dispersion in p tends to 0 or the dispersion in r tends to infinity. Of course, these limits cannot be reached for
regular, integrable functions. Thus, in relativistic quantummechanics of electrons theHURhas the formof the
strict inequality:

D D > ( )r p
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. 302 2
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In contrast to the nonrelativistic case, this inequality is never saturated. There is no square integrable function
thatwould give the equality in (30), but onemay get arbitrarily close to 3

2
.

An exact formof the relativistic uncertainty relation can be obtained also in the other extreme case; in the
ultra-relativistic limit, when  ¥d . In this case, the variational equation
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again has an analytic solution. Thewave function of the lowest energy state and the corresponding value of γ are:

g= = + = +¥
- -

¥( ) ( )( )f q q e , 3 2 1
4 5

9
1 5 2. 32q5 1 2 22

Quite unexpectedly, this value of g¥ is the same as for photons [13], even though the definition ofΔr2 for
photons is different; it is based on the energy density and not on the charge density.

4. Two explicit examples

The general results presented here arewell illustrated by two analytic solutions of theDirac equation: Ground
state of the electron in theCoulombpotential and theDirac hopfion (discovered by us recently [19]).

4.1.Hydrogen-like ion
TheDirac bispinor describing the ground state of the electron in a hydrogen-like ion has the form ([5] p 55):
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where g a= - Z1 2 2 , the unit of length is the electronComptonwave length ÿ/mc, and the normalization
constantNG is:

g g
p g
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4 1 2
. 34G

2 3 2 1 2

Weuse the standard notation for the hydrogenic wave functions, hoping that the use of γ in this subsectionwill
not be confusedwith its use in the uncertainty relations. For the bispinor (33) both dispersionsΔr2 andΔp2 can
be analytically evaluated and theHUR reads:

Figure 1.Dependence of the potentialV(q) on the parameter d. The horizontal linesmark the values of thefive ground state energies γ
of the eigenvalue problem (25) obtained for the same values of d. The eigenvalues for the limiting cases d=0 and = ¥d are
represented by dashed lines.
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Our parameter dwhich characterizes the transition from the nonrelativistic to the highly relativistic regime has
the form:
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For hydrogen, when theCoulombfield is weak (γ≈1, d≈0) the rhs in (35) is  7 2 , so it is stillmuch higher
than the lower bound 3/2ÿ. The singularity of theDiracwave function at the originmakesΔp2 infinite at γ=1/
2 (ultra-relativistic regime = ¥d ). This value of γ givesZ=116which corresponds to the very end of the
Mendeleev table.

4.2.Dirac hopfion
The localized solution theDirac equation for a free electronΨH, called theDirac hopfion [19], can be
represented as the following Fourier integral (ÿ=1):

òY = Y - +( ) ˜ ( ) ( )·r pt N p, d e , 37p rE t
H H

3 i ip

where

Y =

-

-
-

+

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
˜ ( ) ( )p

E

e

1
0

. 38
aE

p

E p

m
p p

m

i

p
p z

x y

The integral (38) can be evaluated in terms ofMacdonald functions [19] but for our purpose the Fourier
representation is sufficient. The normalization coefficient can be expressed in terms of theMacdonald function
K2,

ò= Y =- ∣ ˜ ( )∣ ( ) ( )pN p
K ma

a
d

2
. 39H

2 3 2 2

In the present case, we have a specific function at hand so thatwe cannot avoid the inclusion of the average value
of themomentum á ñp in the definition (6) of dispersion.

The relevant integrals inmomentum space have been evaluated numerically withMathematica [20] and the
results are shown infigure 2. The nonrelativistic limit 3/2ÿ is approachedwhen  ¥a , i.e. when the extension
of thewave packet ismuch larger than the electronComptonwave length.

5. Conclusions

Webelieve thatwe have shown that the differences between the relativistic and the nonrelativistic uncertainty
relations are substantial. Onemay trace these differences to the presence in relativistic quantummechanics of
the scale factor, the Comptonwave length ÿ/mc. This fact is reflected in the appearance of the dimensionless

Figure 2.Dependence of g = D Dr pH
2 2 on the parameter a. The parameter a ismeasured in units of theComptonwave length.
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parameter d in our calculations. The parameter d allows one to compare directly the values of the two
dispersionsΔr2 andΔp2. Onemay tell that we are in the nonrelativistic regime, when thewave function ismore
squeezed in themomentum space than in the position space. The nonrelativistic limit is reached in two distinct
physical situations, whenD  ¥r2 orΔp2→0. The dependence of the lower bound on d in the uncertainty
relation, as illustrated infigure 1 stands in contrast to the standard nonrelativistic quantummechanics where all
Gaussians saturate the uncertainty relation.
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