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Abstract

Twin-field (TF) quantum key distribution (QKD) represents a novel QKD approach whose principal
merit is to beat the point-to-point private capacity of a lossy quantum channel, thanks to performing
single-photon interference in an untrusted node. Indeed, recent security proofs of various TE-QKD type
protocols have confirmed that the secret key rate of these schemes scales essentially as the square root of
the transmittance of the channel. Here, we focus on the TF-QKD protocol introduced by Curty et al,
whose secret key rate is nearly an order of magnitude higher than previous solutions. Its security relies on
the estimation of the detection probabilities associated to various photon-number states through the
decoy-state method. We derive analytical bounds on these quantities assuming that each party uses
either two, three or four decoy intensity settings, and we investigate the protocol’s performance in this
scenario. Our simulations show that two decoy intensity settings are enough to beat the point-to-point
private capacity of the channel, and that the use of four decoys is already basically optimal, in the sense
that it almost reproduces the ideal scenario of infinite decoys. We also observe that the protocol seems to
be quite robust against intensity fluctuations of the optical pulses prepared by the parties.

The last few decades have witnessed major advancements in the field of quantum communication [1, 2], with
quantum key distribution (QKD) [3—13] being its most developed application. Recent experiments over about
400 km of optical fibers [ 14, 15] and over about 1000 km of satellite-to-ground links [ 16, 17] demonstrated that
QKD over long distances is possible. Despite such remarkable experimental achievements, the private capacity
of point-to-point QKD is intrinsically limited by fundamental bounds [18, 19]. These bounds state that in the
high-loss regime the key rate scales basically linearly with the transmittance of the channel connecting the end-
users Alice and Bob, i.e. it decreases exponentially with the total channel length. This imposes strict practical
constraints on the possibility of achieving point-to-point QKD over arbitrary long distances.

A way to overcome this limitation is to employ one or more intermediate nodes in the quantum channel
connecting the parties. For instance, the use of quantum repeaters [20] yields a polynomial scaling of the
communication efficiency with the distance [21]. Moreover, a quantum repeater scheme can be arbitrarily
iterated along the quantum channel, thus increasing in principle the total communication distance between
Alice and Bob as much as desired. Unfortunately, however, quantum repeaters are very challenging to build in
practice with current technology: they either require quantum memories [20-22] or quantum error correction
[23, 24]. Of course, technology is improving, and quantum repeaters may become viable in the future.

Other solutions, which attain a square-root improvement in the scaling of the key rate with respect to the
transmittance of the channel, are obtained by placing a single untrusted relay between Alice and Bob. Such
protocols include, for instance, measurement-device-independent-QKD [6] (MDI-QKD) with quantum
memories [25, 26] and adaptive MDI-QKD featuring quantum non-demolition measurements [27]. The
philosophy behind both types of protocols is that the central relay is able to adapt the pairings of photons
received from Alice and Bob to the photon losses. In this way, for every signal sent by Alice and Bob to the central
relay, just one of the two signals is required to arrive, leading to the mentioned square-root improvement in the
key rate scaling. However, both protocols still require two-photon interference in the central node, as in the
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Figure 1. The twin-field QKD protocol introduced in [33].

original MDI-QKD scheme [6]. More recently, [28] proposed the twin-field (TF) QKD protocol, still
characterized by an untrusted central node, and conjectured a square-root improvement in the key rate scaling.
This scaling has been later on confirmed in [29, 30] for two variants of the original scheme. The advantage of TF-
QKD lies in the fact that it is designed to generate key bits from single-photon interference in the central node,
thus naturally retaining the scaling with the square-root of the transmittance without the need to adapt to
photon losses via sophisticated devices.

Since the original proposal, there has been an intense research activity to develop different versions of TF-
QKD protocols equipped with their security proofs [29—33] as well as to investigate their experimental feasibility
[34-36]. Among these protocols, the one that seems to deliver the higher secret ket rate [37] is that introduced in
[33]. Its security relies on the ability to estimate the detection statistics (usually called yields) of various Fock
states sent by Alice and Bob through the decoy-state method [38—40]. The key-rate simulations provided in [33]
indeed exhibit an improved scaling with the loss, but the estimation of the yields is only carried out by means of
numerical tools based on linear programming and considering only the case of three decoy intensity settings.

In this paper, we derive analytical bounds on the yields which are required to evaluate the key rate formula of
[33], assuming two, three and four decoy intensity settings. In so doing, we are able to show, for instance, that the
use of two decoy intensity settings is already enough to beat the point-to-point private capacity bound reported
in [19]. Also, we show that the use of four decoys is basically optimal in the sense that the resulting secret key rate
is already very close to the ideal scenario which assumes infinite decoy intensity settings. Analytical bounds
imply a fully-analytical expression for the protocol’s secret key rate, which could be very convenient for
performance optimization in scenarios where the number of parameters is high, like for instance in finite-key
security analyses. In addition, we study how the performance of TF-QKD is affected under intensity
fluctuations, which are inevitable in practice, and we demonstrate that the protocol in [33] seems to be actually
quite robust against such fluctuations.

Like in [33], for simplicity, here we focus on the asymptotic-key rate scenario. However, we remark that by
using the techniques reported in [41], it is cumbersome but straightforward to adapt our analytical methods also
to the finite-key rate scenario, where, as mentioned above, it becomes particularly useful to have analytical
bounds for the main quantities that enter the key rate formula.

The article is structured as follows. In section 1 we present the TF protocol from [33] and highlight the main
yields that need to be bounded. In section 2 we provide the analytical bounds on the yields for the case of two
decoys (the cases of three and four decoys are treated in appendices C and D, respectively). In section 3 we
provide simulations of the secret key rate versus the loss for a typical channel model (briefly described in
appendix A), and we also evaluate the effect of intensity fluctuations. We conclude the paper in section 4.

1. The TF-QKD protocol

As discussed above, we consider the TF-QKD protocol presented in [33] and sketched in figure 1. Alice and Bob
establish a secret shared key by sending optical pulses to a central untrusted node, C. Itis assumed that the node
Cshares a phase reference with Alice and Bob, which can be achieved by the transmission of strong optical
pulses. The protocol is composed of the following five steps.

(i) Alice (Bob) chooses the X-basis with probability py and the Z-basis with probability p, = 1 — px. Upon
choosing the X-basis, Alice (Bob) prepares an optical pulse in a coherent state |«) or |— «) at random,
corresponding to the keybitb, = 0(by = 0) orbs = 1 (bp = 1), respectively. Upon choosing the Z-basis,
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she (he) prepares an optical pulse in a phase-randomized coherent state:

R o g iy (BR)e
- do i 0] — A 1.1
po, =5 J. d01e") (Bae"] 5 ol (L.1)
?g,) whose intensity 3% (3%) is drawn randomly fromaset Sy = {37} (S = { ﬂ?} j) of real non-negative
numbers.

(ii) Both parties send their optical pulses to the untrusted node C via optical channels in a synchronized
manner.

(iii) The central node C applies a balanced beamsplitter to the incoming pulses and features two threshold
detectors at its output ports. The detector placed at the output port associated to constructive (destructive)
interference is denoted by D (D).

(iv) The node C announces the measurement outcome k, (k;) of detector D, (D), with k. = 0 and k. =1
(ks = 0and k; = 1) corresponding to a no-click and a click event, respectively.

(v) Alice and Bob form their raw keys with the bits b, and bp collected when both parties chose the X-basis and
node Creported a click in only one detector (k. + k; = 1). Bob flips his bits b for which the click occurred
in Dd.

1.1. Secret key rate formula
The security analysis performed in [33] yields the following lower bound on the asymptotic key rate R:

R > max{Ryy, 0} + max{Rg, 0}, (1.2)
where the terms Ry i, for (k,, k) € { (1,0),(0, 1)}, are defined as:
Ry, = pi plkes k)[1 — f hlerx,) — h(ef3 )], (1.3)

with h(x) = —xlog,x — (1 — x)log,(1 — x) being the binary entropy function, fthe inefficiency function
associated to error correction, and p(k,, k,) the conditional probability that node C announces the outcome
(ko k) when both parties selected the X-basis. The probability p(k, k) can be expressed as:

1
p(kc) kd) = Z p(bAa bB)p(kc’ kd|bA’ bB)’ (14)
ba,bp=0

where p(by, bp) is the joint probability of Alice and Bob preparing the coherent states | (— 1) o) and | (— 1) v},
respectively. According to the protocol description above, we have: p (b, bg) = 1/4 YV by, bg. p(k., k4|ba, bp)
instead denotes the conditional probability that node C announced (k,, k;) given that Alice and Bob sent the
coherent states | (— 1) ) and |(— 1)’ ), respectively. Since we consider the asymptotic key-rate scenario, we
assume that p(k., k4|bs, bp) coincides with the correspondent distribution observed by the parties.

Finally, the terms ey x, and e,i };cd in (1.3) represent the bit-error rate in the X-basis and an upper bound on the
phase-error rate, respectively. The former is defined as:

> oot (b = i b = Dp(ke = 1, ka = Olby = i, by = j) .
€10 = k=1, ks = 0) > (1.5)

> (b = i by = Dp(ke = 0, kg = 1y = i, by = )
€91 = , (1.6)
plkc =0,k = 1)

and the latter as:

o

2 2
1 o0
= —[( > nGmy szf[’%] +( > Gnt1Gmr1y Yool 2m+1] ]) (1.7)

Croky =
p(ko kd) n,m=0 n,m=0

where the coefficients ¢, are defined as ¢, = e * o / Jn! and the yields Y= are the conditional probabilities
that node Cannounces the outcome (k,, k;) given that Alice and Bob emitted an n-photon state and an m-
photon state, respectively. Note that the only yields contributing to (1.7) are those Yo% such that n 4 m isan
even number.

The yields Y- are quantities that are not directly observed by the parties, however they can be estimated
either numerically or analytically with techniques based on the decoy-state method [38—40]. Here we consider
the analytical approach. In particular, we assume that Alice and Bob have at their disposal either two, three or
four decoy intensity settings when choosing the Z-basis. To each further decoy intensity correspond additional
linear constraints on the yields, leading to tighter estimations of Y ¥ and thus to a higher key rate. However, a
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finite number of decoys only allows to derive non-trivial upper bounds’ on a limited number of yields in (1.7),
whereas the other yields are set to 1. Nevertheless, even bounding just four yields in a non-trivial way is enough
for the secret key rate to beat the point-to-point private capacity bound (PLOB bound) [19] at high losses (see
section 3). Also, as we show below, with four decoy intensity settings one can already obtain a secret key rate very
close to that achievable with infinite decoy intensity settings.

We remark that standard decoy-state-based QKD protocols require to lower bound the value of a few yields
(typically those associated to vacuum and single-photon pulses) [42], while the TE-QKD protocol considered
here upper bounds the value of the phase-error rate (1.7) by upper bounding several yields. In particular, we
upper bound the yields Yf;,;kd for (n, m) € Z,where 7 isacertain subset of {(n, m)| n, m € Ny} which
depends on the number of decoys. Thanks to the derived upper bounds on the yields (which we shall denote by
yU-kaki) ye are able to estimate the phase error rate (1.7) as follows:

2

h 1 [y Uskok
HPES Z nGmy Yo 2m" + Z OnGm

e
keka S
ke k) |\ 2n2myez @n2m)¢T
2
U kok
+ > On+10m+1y Y213 sme1 + > Gnt1am+1]| | (1.8)
@n+12m+1)eT @n+12m+1)¢T

2.Yields estimation

When both Alice and Bob choose the Z-basis in the first step of the TF-QKD protocol, they prepare phase-
randomized coherent states with intensities ﬂi and ﬁ%, respectively, and send them to C. From Eve’s viewpoint,
she cannot distinguish this scenario from the case in which the parties prepared number states |n) and |1)
according to the Poissonian distributions Py (n)and P 7 (m) (see equation (1.1)), where P, (n) = e /" /nl.
Therefore Eve’s attack can only depend on the number states |12) and |7) but not on the signals’ intensities 3%
and (3%. As a consequence, the probability that Eve announces outcomes (k,, k;) only depends on the number of
photons (12, m) she received from Alice and Bob, i.e. the yields Y= are independent of the decoy intensities
chosen by the parties.

For this reason, one can derive a set of linear constraints on the yields Y = by expressing the experimentally

82 3 . . .
observed gains Q ,‘f_ Akf B—which are defined as the conditional probabilities that node C announced the outcome

(k. k) given that Alice and Bob sent phase-randomized coherent states of intensities 3% and (3%, respectively—
in terms of the yields:

. . o0 2 n 2 m
Qdi’dé _ Z e,“gi,‘gé (/BA) (ﬂB) lef;;;kd- (21)

koka = -
—— n'm!

Asitis clear from (2.1), to every distinct pair of decoy intensities (3%, (3%) corresponds a new constraint on the
set of infinite yields { Yok} | whichleads to tighter upper bounds and thus to a higher secret key rate. On the
other hand, having a large number of decoy intensities is experimentally demanding, hence the need to derive
the tightest possible bounds on the yields with a limited number of decoys.

In this section we present a simple analytical method to obtain tight bounds on the yields of largest
contribution® in (1.7)—i.e. relative to the largest coefficients c,—when the parties use two intensity settings in
the Z-basis. It is basically a Gaussian elimination-type technique but involving infinite-size coefficient matrices.
In particular, the guiding principle that we use is to combine the constraints (2.1) so that in the resulting
expression the yield to be bounded is the one with the largest coefficient, while the yields which had larger
coefficients in the initial constraints have been removed in the combination. However, in some cases it turns out
thatis not possible to remove all the yields with larger coefficients than the one to be bounded, due to a lack of
decoy intensity settings (i.e. constraints). In other cases, we manage to remove from the resulting expression
even some yields which had a smaller coefficient than the one to be bounded. Such a procedure can be readily
extended to the case of three and four decoy intensity settings. The results for these last two cases are presented in
appendices C and D, respectively.

From now on, we assume that both optical channels linking the parties to the central node Chave the same
transmittance ./7]. Therefore the set of optimal decoy intensities 3% and 3} is the same for both parties [43] and
we defineitas: { (g, 21 }. In order to simplify the notation, we also omit the measurement outcome (k, k;) from

? Everyyield is a probability, thus it is trivially bounded by 1.

The same method can-in principle-be applied to any yield, however the limited number of decoy settings prevents from obtaining a non-
trivial bound on every yield.
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the constraints given by (2.1). Hence the yields are subjected to the following four equality constraints:

o0
~ Y,
Q¥ = emtmQbl = S =y k, 1€ {0, 1}, (2.2)
nm=o 1im!
and to the inequality constraints:
0< Ym<1 Vn, m (2.3)

Below we derive upper bounds on the yields: Yy, Y71, Y, and Ys,.

2.1. Upper bound on Yj;
Consider the following combination of gains:

~ . ~ ~ X Yo - "
Gi= 0" 4+ Q" — (™ + O™ = > o (ty — ) (g — . (2.4)
n,m=0 ciiEe

The subscript in Gy, indicates the yield that is going to be bounded with this combination of gains. In (2.4) the
coefficients of the yields Yy,,, and Y,,o, for any n and m, are identically zero. Thus (2.4) can be rewritten as:
= Ynm n
G = Yaluy — m)* + > n'—m'(ﬂg = p) g — ") (2.5

nm=1 .m.:

n+m>2
We observe that the coefficients that multiply the yields Y,,,,, are always positive, being the product of two factors
of equal sign. A valid upper bound for Y7, is obtained considering the worst-case scenario for the other yields,
taking into account that (2.3) holds. Since all the yield’s coefficients carry the same sign in (2.5)—regardless of
the relation between (49 and p11—, the yield Y7, is maximal when all the other yields are minimal. Thus the upper
bound on Y7, is extracted by setting all the other yields to zero in (2.5):

GH

YH =
(kg — 1)

(2.6)
where G, is defined in (2.4).

We remark that by combining the gains as in (2.4), we manage to obtain a closed expression for Y;; in which
the contribution of all the yields Yy,,, and Y,,o is removed. Additionally, Y7, is now the yield with the ‘highest
weight’ in (2.5) since it has the largest coefficient. All the yield’s bounds presented in this work follow the same
philosophy.

2.2. Upper bound on Y,
Consider the following combination of gains:

o0
~ ~ ~ ~ Y,
Gor = 11, Q% + 1o Q" — 1, Q™' — 1, @0 = S n'"m' (g = pro ) (g — ). (2.7)
nm=0 -1

In (2.7) the coefficients of the yields Y,,o and Yy, are identically zero. Thus (2.7) can be rewritten as:

Ye — Yom m_ o om
Gop = —Yoi1(py — ﬂl)z - %(Uo + pp) (g — :LL1)2 - Z %(No - Ul)(ﬂo - ,ul)
m=3 :
e Y;NH n— n— m m
+ 2 e (g = DG — - (2.8)
n=2 N.M.

m=1

Like in the derivation of Y;,’s bound given by (2.6), a valid upper bound for Yy, is obtained by considering the
worst-case scenario for the remaining yields in (2.8). More specifically, Yy, is maximal when the yields whose
coefficient has the same sign as Yy, ’s coefficient are minimal, and the yields whose coefficient has opposite sign
to Yy, s are maximal. Recalling constraint (2.3), this means setting Y,; and Yy, to zero and Y,,,,, with n > 2 and
m > 1,to 1in (2.8). In so doing, after rearranging the terms we obtain:

U 2 _ Mo M)[ss, Mo M
Yo _Nl)zl G02+[Z ! Zuln! l‘on! ’ 29

(g + 1) (kg mmt o oml U5

which leads to the following upper bound on Yy,:

2t — eM)(py — i + e — poe™) — 2Go

vy =
(o + p) (g — 1)?

(2.10)
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2.3. Upper bound on Y5,
Consider the following combination of gains:

~ A ~ ~ Yo
Gao = 1, Q™" + 11,Q"" = py Q" — 11, Q" = > ]

n,m=0 "**

(g — 1) (g g — oty (2.11)

In (2.11) the coefficients of the yields Y,,; and Yj,,, are identically zero. Thus (2.11) can be rewritten as:

Y e Y n n
Gao = —Yio(pg — f1))* — %(Ho + 1) (g — ) = Z nL,O(uO = ) (g = )
n=3 :
> Ynm n - -
+ 30 g (g — ) (g = . 212
n=1 nlm!

m=2

Avalid upper bound for Y, is obtained by setting to zero the yields whose coefficient has the same sign as Y54s
coefficient, and by setting to 1 the yields whose coefficient has opposite sign to Y’s. In the case of (2.12) this
means setting Y1gand Y,,gto zeroand Y,,,,, with n > land m > 2, to 1. In this way we obtain:

2 o0 ,un Iun o0 Mm Ium
Y5 —Gp+ Y- 2L e R 2.13
20 — N1)2[ 20 [Z o l Zlﬁm! Ho ol (2.13)

(kg + py) (g n=11: m=2

which leads to the following upper bound on Y5

2(efo — e (g — py + et — pger) — 2Gy

Yy =
(ko + ) (g — 111)?

(2.14)

2.4. Upper bound on Yy,
Consider the following combination of gains:

o0
= = ~ ~ Y,
Goo = 11 Q™ + pg Q" = o (Q™ + Q") = >0 Ity — pop (i — poi). (2.15)

1m!
nm—o 1im!

In (2.15) the coefficients of the yields Y3 ,,, and Y,;;, for any n and m, are identically zero. Thus (2.15) can be
rewritten as:

>~y B _ = Y B
Goo = Yoo(trg — 11)* — frotiy (g — ul)[z %(MS“ e + znifwg bl 1)]
n=2 "

m=2 :
+ peps i Lo =t ey =y ey (2.16)
ot atmt Ho 1 0 ) :
n,m=2 siiEe

As usual we extract an upper bound on Yy, by setting to their lowest value the yields whose coefficient has the
same sign as Yy,'s coefficient (which correspond to the Y,,,,, with #, m > 2), and by setting to their maximum
value the yields whose coefficient has opposite sign to Yyo’s coefficient (which correspond to Yy, and Y,,0). We
know that every yield is trivially bounded by (2.3). However, in order to derive a tighter bound on Y, we employ
non-trivial bounds for all the yields Y,,,,, with n + m < 4in (2.16). The upper bound on Y, thus satisfies:

Geoo = YU 2 (kg — 1) U U (“é*lﬁz) U U
00 = Yoo(pg — f49)™ — Hohty (g — f19) T(Yoz + Y + ——Yp3 + Y3o)
( 3 _ 3) 00 ( n—1 _ n—l) 2 2( _ )2
+7“°24“1 (VG + YY) + 23 n"”“ 4 Lot 7 MOy 2.17)
n=>5 .

In this equation Yiy are upper bounds and Yi]L are lower bounds. From (2.17) we obtain the following upper
bound on Yy:

33
(Y(%+Y§é>+%

G (g — py)
00 + oo oy [No My (Y(§Jz+ Yz%)"‘

(1o — M1)2 Mo — My

2 3 4 2 3 4 2 2
—+ - 2 ,U1 eto — 1 — @ — ﬂ — & _ :uO et — 1 — ﬂ _ ﬂ - ﬂ - lu()lul YZLZ,
Ho — 2 6 24 4

(g — 17)
% (Yé{; + Y%)

(2.18)

where YO% and Y3 are givenin (2.10) and (2.14), respectively. The expressions for Y and Y3 in (2.18) can be
found by starting from the same expression (2.8) that we used to derive Y, i.e.:
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<y, >y, ) )
Gn=-Y_ %(uo — )y — ") + Zz ok (g A (T TiON (2.19)
m=1 . n= . .

m=1

From this expression we can extract an upper bound on any generic Yy, as follows:

|
Y5, = min ” [ Gox + (e — e (g — py + pyefo — poefl, 1o, (2.20)
(g — pp) (g — ")

where we employ the constraint (2.3). Similarly, the expressions for Y5 and Y[ are obtained starting from (2.12)
and deriving an upper bound on a generic Y, as follows:

|
YY = min i - -
(kg — py) (g — 117)

Atlast, the expression for Y2 can be derived from the same combination of yields which led to Y\ . In particular,
from (2.5) we have that:

[—Gao + (eHo — e!) (g — g + pryefo — e, 1}. (2.21)

o~ Vi
Gu= Y, o = DG — )

n,m=1

Then, by setting to 1 all the yields whose coefficient has equal sign to Y,,’s we obtain:

o =y =t (g = ) (g — p)?
G11 — z 0 n' 1 0 m' 1 0 7 1 + 0 1 YZLZ, (2.22)
n,m=1 : .
which yields:
L 4 I )2
Y,, = max ” G +u)2[G117(e o—ef) ]+ 1, O0p. (2.23)
0~ M)y 1

Note that the upper bounds derived on Yy, and Yy, in this section could be used to improve the estimation of the
phase error rate given by (1.8). However, the resulting improvement in the secret key rate would be extremely
small in this case and we neglect it for simplicity.

3. Simulations

In this section we provide plots of the secret key rate given by (1.2) against the overall loss (—10log, ,7) measured
in dB of the two optical channels linking Alice and Bob to node C. The channel model we use to simulate the
quantities that would be observed experimentally—i.e. the gains p(k,, k4|bs, bp) and Q ,‘i i‘kdﬁ s given in
appendix A [33]. Itaccounts for: the loss in the optical channels together with the non-unity detection efficiency
of D.and D, (altogether described by the parameter 1), the polarization and phase misalignments introduced by
the channel and a dark count probability p,; in each detector. For concreteness, in all the plots below we assume
fixed polarization and phase misalignments of 2%, independently of the channel loss. Note that, as pointed out
in [33], the TF-QKD protocol analyzed in this work is quite robust against phase mismatch. This is so because
phase misalignment only affects the quantum bit error rate but not the phase error rate.

For illustration purposes every plot is obtained for three different values of the dark count rate of the
detectors, p; € {107%,1077, 10~ ®}. The plots are obtained by numerically optimizing” the secret key rate—for
every value of the loss—over the signal intensity () and over one decoy intensity, while for simplicity the other
decoy intensities are fixed to near-to-optimal values for all values of the overall loss. More specifically, we
preliminarily performed an optimization of the key rate over the whole set of intensity settings and noticed that
most of the decoy intensities are roughly constant with the loss and tend to be as low as possible. For instance, if
we consider the case with two decoy intensity settings (o and i1, with g > pi1), we observe that the optimal
value for the weakest decoy 1, is basically the lowest possible for any value of the loss. In practice, however, it
might be difficult to generate very weak signals due to the finite extinction ratio of a practical intensity modulator
[44], so we fix (11 to a reasonable small value from an experimental point of view, say pi; = 107> [34, 36], while
keeping the optimization over the remaining intensities. Similarly, if we consider the case with three decoy
intensity settings (tto, £, and g, with 19 > p; > 1), we find that the optimal values for the weakest decoys 1,
and (1, are also the lowest possible for any value of the loss. Moreover, in this last case, we show in appendix B
that the system performance remains basically unchanged if one increases the value of the weakest intensity to
say j1, = 10>, which might be even easier to implement experimentally than 10>, Thus, we fix 1, = 10> and
we differentiate it from y, by, for example, one order of magnitude (i.e. we take 1; = 10~ ). The same argument

5 e . . P I o .
The optimization is carried out by using the built-in function ‘NMaximize’ of the software Wolfram Mathematica 10.0.
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Figure 2. Secret key rate in logarithmic scale as a function of the overall loss in the channels Alice-C and Bob-C for three different dark
count rates (10~° green, 10~ " red, 103 blue). The solid lines correspond to the case where the yields Yoo, Yoz, Y0 and Y7, are estimated
by means of two decoy intensity settings through the bounds presented in section 2 and the key rate is optimized over the signal
intensity o’ (see figure 3(a)) and the decoy intensity 1, (see figure 3(b)). The other decoy intensity, jy, is fixed to i; = 10>, The
dashed lines assume that all the yields are known from the channel model and the secret key rate is optimized over o*. That is, these
lines show the maximum value of the secret key rate which could be achieved with an infinite number of decoy intensity settings and
the security analysis reported in [33]. The solid magenta line illustrates the PLOB bound [19]. The plot shows that in the presence of a
dark count rate of at most about p; = 10~ the protocol can beat the PLOB bound even with just two decoy intensity settings.

holds in the case with four decoy intensity settings (see appendix B), where we fix 1, = 10, y1; = 10~ %, and
to = 107", We remark, however, that our method is general in the sense that the analytical upper bounds on the
yields can be evaluated with any desired combination of intensity settings, while we select these particular decoy
intensity values only for illustration purposes. Also, let us emphasize that the optimal decoy intensity values in the
finite-key regime might be different from the values mentioned above. The analysis of the finite-key regime is,
however, beyond the scope of this paper. Importantly, it turns out that the resulting asymptotic secret key rates in
these scenarios are almost indistinguishable from those obtained by optimizing the value of all the intensity settings.
The optimal values of the signal and decoy intensities which are optimized as a function of the loss are also
plotted in this section. In this regard, we also study how the key rate is affected when the intensities are subjected
to fluctuations around their optimal values in section 3.4.

3.1. Two decoy intensity settings

In figure 2 we plot the secret key rate against the overall loss for the case where Alice and Bob use two decoy
intensity settings each. The solid lines are obtained by bounding from above the yields Yy, Yo,, Y29 and Yy, by
means of the expressions derived in section 2 and by optimizing the rate over the signal intensity o and the
decoy intensity 1o, while the other decoy intensity is fixed to 1; = 10~ as explained above. The optimal values
for o® and j1y are shown in figures 3(a) and (b), respectively. The dashed lines are instead obtained by employing
the exact expression of the yields® which is given by (A.6) for the channel model considered. This represents the
ideal scenario in which the parties have an infinite number of decoys through which they can estimate all the
yields precisely. Note that in order to obtain the dashed lines in figure 2 we use the exact expression of the yields
Y., only for n, m < 12 while we set the other yields to 1. This is enough to basically reproduce the behavior of
the secret key rate when all the infinite number of yields are computed via the channel model’s formula given by
(A.6), as argued in [33]. The dashed lines are only optimized over the signal intensity, since the yields are directly
given by the channel model. Finally, we also insert in figure 2 the PLOB bound on the secret key capacity [19],
which reads as follows in terms of the transmittance 77:

K(n) = —log,(1 — n). (3.1)

In figure 2 we observe that even by means of just two decoy intensity settings the key rate can beat the PLOB
bound, provided that the dark count rate is p; < 10~ . This happens because with two decoys the parties can
already non-trivially estimate the yields Y,,,,, with n + m < 2 as we showed in section 2, and these yields are the
most relevant terms in the phase-error rate formula given by (1.7) [33]. Note that we did not estimate the yields
Yy; and Y4 since only theyields Y,,,,, with n + 7 an even number contribute to the phase-error rate (1.7).

However, figure 2 also shows that there is a sensible gap between the rates where the yields are estimated with
two decoys (solid lines) and the best possible rates one could achieve (dashed lines) if all the yields were known.
This clearly indicates that, although two decoys allow to estimate the yields of largest contribution in the phase-
error rate, such estimations are not sufficiently tight and the ability to estimate a larger number of yields would
increase the performance of the protocol.

6 By ‘exact expression’ we mean that if the experimental apparatus were accurately described by the channel model in appendix A, then the
yields associated to that experimental setup would be precisely predicted by (A.6).




10P Publishing

NewJ. Phys. 21(2019) 073001 F Grasselliand M Curty

0.05 2.5
— pd=10_8 — pd:10'8
0.04 2.0 0
— pa=107 - pa=10
s =1 10
< 0.03 pa=10¢| ] 1.5 pa=10"
£ £
£ 0.02 210
& o
0.01 0.5
0.00 0.0
0 20 40 60 80 100 0 20 40 60 80 100
Loss Alice-Bob (dB) Loss Alice-Bob (dB)

(a) (b)

Figure 3. Optimal values of the signal and decoy intensities a2 and y1 for the TF-QKD protocol [33] when the parties have at their
disposal two decoy intensity settings to estimate the yields. (a) Optimal values of the signal intensity o’ as a function of the loss between
Alice and Bob for three different dark count rates. These values are obtained from the optimization of the secret key rate (solid lines) of
figure 2. (b) Optimal values of the decoy intensity yiy as a function of the loss between Alice and Bob for three different dark count
rates. Theze values are obtained from the optimization of the secret key rate (solid lines) of figure 2. The other decoy intensity is set to:
o= 1075,

— PLOB bound

o 1072 — pa=107
§ — pa=107
> 107
9
% 10
Q
3

1078

1071

0 20 40

Loss Alice-Bob (dB)

Figure 4. Secret key rate in logarithmic scale as a function of the overall loss in the channels Alice-C and Bob-C for three different dark
count rates (10~° green, 10 " red, 10~® blue). The solid lines correspond to the case where the yields Yoo, Y02, Y20, Y115 Y13, Y31, Yo Yao
and Y, are estimated by means of three decoy intensity settings through the bounds presented in appendix C and the key rate is
optimized over the signal intensity a? (see figure 5(a)) and the decoy intensity 1, (see figure 5(b)). The other decoy intensities are fixed
top; = 10 2and 1, = 10>, The dashed lines assume that all the yields are known from the channel model and the secret key rate is
optimized over o?. That s, these lines show the maximum value of the secret key rate which could be achieved with an infinite number
of decoy intensity settings and the security analysis reported in [33]. The solid magenta line illustrates the PLOB bound [19]. The plot
shows that already with three decoy intensity settings the key rate (solid lines) is sensibly close to the ideal one in which all the yields are
known (dashed lines), meaning that the contribution of the other yields trivially bounded by 1 in the phase error rate is minimal.

By considering figure 3 and the fixed value of the decoy intensity 1i;, one notices that the optimal intensities
are rather small and thus, in a real experimental implementation, intensity fluctuations might be an issue. In
section 3.4 we address this problem by studying how the key rate is affected under intensity fluctuations and
show that for fluctuations up to about 40% the change in the key rate performance is minimal.

Also, we notice that the optimal values of the signal intensity o (see figure 3(a)) and the decoy intensity /1,
(see figure 3(b)) are almost constant with the loss, for losses 220 dB. This means that in a scenario where the loss
in the quantum channels varies dynamically with time within a reasonable interval, one could still fix the signal
intensity and both decoy intensities to constant values which happen to be close to the optimal ones. This
argument also holds in the case of three (see section 3.2) and four decoy intensity settings (see section 3.3).

3.2. Three decoy intensity settings

In figure 4 we plot the secret key rate against the overall loss for the case where Alice and Bob use three decoy intensity
settings each. The solid lines are obtained by bounding from above the relevant yields Y,,,, such that n + m < 4 (i.e.
we upper bound the yields Yy, Yo2, Y20, Y115 Y13, Y31, You, Yao and Y55). The exact expressions for the different upper
bounds on the yields can be found in appendix C, and we omit them here for simplicity. The solid lines are optimized
over the signal intensity o* and the decoy intensity /1, while the weakest decoy intensities are fixed for simplicity to

p1 = 10"%and 1, = 10, As explained above, the resulting secret key rate in this scenario is almost

9
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Figure 5. Optimal values of the signal and decoy intensities o and 11, for the TE-QKD protocol [33] when the parties have at their
disposal three decoy intensity settings to estimate the yields. (a) Optimal values of the signal intensity o as a function of the loss
between Alice and Bob for three different dark count rates. These values are obtained from the optimization of the secret key rate (solid
lines) of figure 4. We observe that the optimal signal intensity is roughly doubled with respect to the two-decoys case (figure 3(a)). (b)
Optimal values of the decoy intensity 11 as a function of the loss between Alice and Bob for three different dark count rates. These
values are 2obtained from t3he optimization of the secret key rate (solid lines) of figure 4. The other decoy intensities are set to:

=10 “and p, = 10",

indistinguishable from that obtained by optimizing over all the intensity settings. The optimal values for o* and 1 are
shown in figures 5(a) and (b), respectively. The dashed lines are again obtained by employing the exact expression of
the yields given by the channel model (A.6) and coincide with those plotted in figure 2.

We observe in figure 4 that the use of three decoys yields a significant improvement in the protocol’s
performance with respect to the two-decoys case (see figure 2). As a matter of fact, in figure 4 the solid lines are almost
overlapping the dashed lines for most values of the channel loss. This is due to the fact that with three decoys the
parties constrain the yields with nine independent equations (instead of four equations as in the two-decoys case),
which enable a tighter estimation of Yy, Y55, Y20 and Y37 and the non-trivial estimation of five additional yields.

Moreover, in the case of three decoys the optimal signal intensity o (see figure 5(a)) is roughly double the
value of the correspondent intensity when using two decoys (see figure 3(a)). The reason for this is connected to
the role of o in the protocol’s key rate. In fact, the prefactor p(k,, k;) with k. + k; = 1 of the key rate formula
given by (1.3) increases for increasing o*: the higher the mean number of photons sent by the parties (within
certain limits) the higher the probability of having a click in one of the two detectors. On the other hand,
increasing o excessively also affects the phase-error rate. Note that by setting some yields to 1 in the phase error
rate formula given by (1.7) we give rise to addends like ¢,,, ¢,,,, and ¢, +16,,+1 which increase for increasing a?,
leading to an overall increase of the phase-error rate and thus decrease of the key rate. The optimal value of o is
thus given by the trade-off between the effect of the prefactor p(k,, k;) and that of the terms ¢, ¢,,,, and
Gn+10m+1- Now, by noting that the contribution of the therms ¢,,, ¢;,, and 6,1 16,11 decreases for increasing ,
m, we understand that their negative effect on the key rate is diminished in the case of three decoys since we non-
trivially estimate more yields, i.e. alower number of yields is set to 1. This allows a” to acquire higher values with
respect to the two-decoys case, as we observed in figure 5(a).

Finally we point out that such an argument does not apply to the discussion about the optimal value of the
decoy intensity 11 in the case of two and three decoys. As a matter of fact, the key rate does not depend on the
decoy intensities in the same way as on the signal intensity: the decoy intensities only appear in the yield’s bounds
inserted in the phase-error rate. Additionally, the analytical bounds on the yields when using two or three decoys
cannot be compared in a straightforward way. Nonetheless we observe a similar behavior of the optimal i, for
two (see figure 3(b)) and three decoys (see figure 5(b)).

3.3. Four decoy intensity settings

In figure 6 we plot the secret key rate against the overall loss for the case where Alice and Bob use four decoy intensity
settings each. Like in the three-decoys case, the solid lines are obtained by bounding from above the yields Y40, Yoy,
Y20, Y115 Y13, Y31, You, Yao and Y5, by means of four decoys. In particular, for the yields Yo, Yo, Y20, Y11 and Y5, we use
the exact same analytical bounds derived with three decoys since they are tight enough, and the use of a fourth decoy
intensity would just make them more cumbersome without providing a significant improvement of the resulting
secret key rate. For the remaining four yields we instead derived tighter bounds with the help of the fourth intensity
13 (see appendix D). The solid lines are obtained by optimizing the rate over the signal intensity o” and the fourth
decoy intensity (5. It turns out that the optimal values for the other decoy intensities are basically the lowest possible
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Figure 6. Secret key rate in logarithmic scale as a function of the overall loss in the channels Alice-C and Bob-C for three different dark
count rates (10~° green, 10~ " red, 103 blue). The solid lines correspond to the case where the yields Yoo, Y2, Y20, Y17 and Yy, are
estimated by means of three decoys through the bounds presented in appendix C (i.e. for simplicity here we disregard the information
provided by the additional fourth decoy intensity setting) and Y13, Y31, Y4 and Yy, are estimated with four decoys via the bounds in
appendix D. The key rate is optimized over the signal intensity o (see figure 7(a)) and the decoy intensity j5 (see figure 7(b)), while the
other decoy intensities are fixed to 1o = 10~ ', yt; = 10 2and i, = 10 . The dashed lines are optimized over o and assume that all
the yields are known from the channel model. They correspond to the maximum value of the secret key rate which could be achieved
with an infinite number of decoy intensity settings. The solid magenta line illustrates the PLOB bound [19]. The plot indicates that the
tighter estimation of the yields Y13, Y31, Yo4 and Yy with respect to the case of three decoy intensity settings is enough to basically
reproduce the ideal scenario in which all the yields are known (dashed lines).
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Figure 7. Optimal values of the signal and decoy intensities o and 5 for the TE-QKD protocol [33] when the parties have at their
disposal four decoy intensity settings to estimate the yields. (a) Optimal values of the signal intensity o as a function of the loss
between Alice and Bob for three different dark count rates. These values are obtained from the optimization of the secret key rate (solid
lines) of figure 6. (b) Optimal values of the decoy intensity 15 as a function of the loss between Alice and Bob for three different dark
count rates. These values are obtained from the optimization of the secret key rate (solid lines) of figure 6. The other decoy intensities
aresetto: 1o = 107", p1; = 10"2and pi, = 107>, The difference between this plot and the optimal 1, plots (see figures 3(b) and 5(b))
in the case of two and three decoys is due to the fact that, unlike /4, the intensity 113 does not appear in all the yield’s bounds since we
used the fourth decoy just for bounding Y3, Y3, Yo, and Y.

for any value of the loss, 5o, as explained above, for simplicity we fix the smallest one to an experimentally reasonable
small value (say p, = 1072), and then we differentiate it from the other two decoys, 14, and 11y, by one order of
magnitude, i.e. we take ;1; = 10~ >and y4o = 10~ " Importantly, this decision has a neglectable effect on the resulting
secret key rate, when compared to that obtained by optimizing over all intensity settings. The optimal values for o
and pi; are shown in figures 7(a) and (b), respectively. The dashed lines are the same as in figures 2 and 4.

With four decoys (see figure 6) the key rates basically reproduces the ideal ones (dashed lines) in which all the yields
are known, with the gap being at maximum of 1 dB at the very end of the plot lines (i.e. in the very high loss regime).
This demonstrates that there is no need to bound further yields than the nine yields we bounded in the cases of three and
four decoys. Of course, the tighter estimation of the yields Y13, Y31, Yo, and Y, achieved with four decoys results in an
improvement of the key rate with respect to the case of three decoys (see figure 4), especially in the region of high losses.

Concerning the optimal signal intensity (see figure 7(a)), we notice a slight increase with respect to the three-
decoys case (see figure 5(a)) due to the tighter estimation of some yields in the phase-error rate formula, which
allows their correspondent coefficients to acquire a slightly higher value under an increase of o>,

Finally, the reason why the optimal 15 plot (see figure 7(b)) looks quite different (with values above 1) from
the optimal 4 plots for the cases of two and three decoys (see figures 3(b) and 5(b)) is the following. In the TF-
QKD protocol considered, the most important yields (i.e. those with a bigger impact on the resulting phase error
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Figure 8. Comparison of the secret key rate with optimal signal and decoys intensities (dashed lines, computed in section 3) with the
secret key rates affected by increasing intensity fluctuations (solid lines): 30%, 40% and 50% (brighter colors; right to left). We assume
that the fluctuations affect each decoy intensity and the signal intensity as well. The plots show that the TF-QKD protocol is quite
robust against intensity fluctuations, and that its robustness increases with the number of decoys.

rate) are those associated to pairs of pulses with zero or with a very low number of photons. It is therefore very
important to be able to estimate these yields as tightly as possible. For this, we have that the optimal intensities 1o
and pu; (o, 14 and p,) for the case with two (three) decoys are well below 1, just like in standard decoy-state QKD
protocols [39, 40]. However, as explained above, here we use the intensity y; to improve the upper bounds for
theyields Y3, Y31, Yos and Yyo. That is, the intensity 3 is only used to estimate yields associated to pairs of pulses
with a total number of photons equal to four. Thus, it is natural that the optimal value of 5 is not too low and
greater than 1.

3.4. Intensity fluctuations
Here we investigate the robustness of the TF-QKD protocol against intensity fluctuations that may occur in the
preparation of the pulses sent by Alice and Bob. This is motivated by the fact that the optimal signal and decoy
intensities that the parties should adopt in order to maximize the key rate for a given loss are quite small, thus the
effect of intensity fluctuations might be an issue in practice. On the other hand, we also note that the optimal
value of a given decoy or signal intensity is either constant or varies very moderately with the loss.

Here we consider the simple scenario in which the intensity fluctuations are symmetric, i.e. we assume that
the intensity of Alice’s signal matches perfectly with the intensity of Bob’s signal. Or, to put it in other words, we
consider that Alice’s and Bob’s signals suffer from the same intensity fluctuations and thus their intensities are
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equal. This means that such analysis is only valid to evaluate auto-compensating TF-QKD set-ups like, for
instance, the one introduced in [36]. It cannot be used however to analyze set-ups where more than one laser
sourceis used [34, 35]. Although we do not expect a dramatic change of our results when asymmetric intensity
fluctuations are considered in the latter case, specially if they are not too large.

Also, we assume that the signal and all the decoy intensities suffer from a fluctuation of magnitude 30%, 40% or
50% around their optimal value. This means for example that, for a fluctuation say of 30%, the signal intensity *
and all the decoy intensities /1 fluctuate in the intervals: 0.7 aj, < o? < 1.3 o, and 0.7 ufP < 1 < 1.3 p,
respectively, where oaf,pt and 17" represent the optimal values. We then account for the worst-case scenario by
numerically minimizing the key rate over all the intensities constrained in their respective fluctuation interval.
Only in this way we can still guarantee that the resulting key rate is associated to a secure protocol.

The results of this study are given in figure 8. Here we plot the original key rates—i.e. without fluctuations of
the signal and decoy intensities—as dashed lines” and the key rates affected by intensity fluctuations as solid
lines. The plots are given for the same dark count rates and misalignments used in section 3, in the case of two,
three and four decoy intensity settings. The color of the solid lines becomes brighter for increasing fluctuation
magnitude.

We observe that the performance of the protocol is considerably affected by intensity fluctuations in the case
of two decoys, while the effect becomes almost negligible for three and four decoys. The reason for this lies in the
fact that the tightness of the yield’s bounds has a stronger dependence on the value of the decoy intensities when
the number of decoys—and thus constraints on the yields—is low. In other words, if the parties have at their
disposal a larger number of decoys, they can properly combine the numerous constraints on the yields and
obtain inherently tight bounds, i.e. bounds that are tight regardless of the actual values of the intensities
involved. If, instead, the parties have few decoys, say two, then the bounds they derive on the yields can be tight
orloose depending on the values assigned to the decoy intensities, since the constraints on the yields are fewer.

In conclusion, in the case of two decoys the parties can tolerate intensity fluctuations up to 40%, which
correspond to a decrease in the protocol’s key rate especially in the high-loss region, quantified by a reduction of
about 5-6 dB of the maximum tolerated loss”. Remarkably, with three decoys the decrease of the maximum
tolerated loss would be under 5 dB for fluctuations up to 50%. Finally, for four decoys the protocol’s
performance remains almost the same for fluctuations up to about 50% around the optimal values (except when
the dark count probability is the smallest considered: p; = 10~*). We deduce that the TE-QKD protocol
introduced in [33] seems to be quite robust against intensity fluctuations.

4, Conclusions

In this paper we have investigated in detail the performance of the TF-QKD protocol presented in [33] in the
realistic scenario of a finite number of decoy intensity settings at the parties’ disposal. Indeed, the protocol
requires that Alice and Bob use the decoy-state method [38—40] to estimate the phase-error rate by upper
bounding certain yields. Unlike most QKD protocols which employ such method, in this case the protocol’s key
rate depends-in principle-on infinitely many yields and it is essential to upper bound (rather than lower bound)
their values. Clearly, the more yields the parties tightly upper bound, the better the protocol’s performance is.
We have introduced an analytical method to perform such estimation when Alice and Bob use two, three or four
decoy intensity settings each. The yield’s analytical bounds provided in this work imply a fully-analytical
expression for the protocol’s secret key rate, which is very convenient for performance optimization (e.g. in the
finite-key scenario). Also, we remark that the secret key rates obtained with our analytical bounds basically
overlap those achievable with numerical tools like linear programming for most values of the overall loss, which
confirms that the analytical approach is actually quite tight.

In so doing, we have shown that the TF-QKD protocol can beat the PLOB bound [19] even with just two
decoys for reasonable values of the setup parameters, which include: the loss, the dark count rate, the
polarization misalignment and the phase mismatch. Furthermore the plots assuming four decoys demonstrate
that one can approximately achieve the best possible performance by tightly estimating only nine yields. The
optimization of the key rate over the signal and decoy intensities indicates that their optimal values are all either
constant or weakly-dependent on the loss of the channel. This means that the protocol is particularly suitable for
contexts where the channel loss varies in time, for instance in the scalable MDI-QKD networks conceived in
[43]. Finally we have investigated the scenario where the intensities of the optical states prepared by Alice and
Bob are affected by fluctuations and observed that the protocol seems to be very robust against such phenomena.

7 The dashed lines of the key rates without fluctuations correspond to the solid lines in figures 2, 4 and 6.

8 By ‘maximum tolerated loss’ we mean the loss threshold above which the protocol’s key rate becomes roughly zero.
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A natural continuation of this work would take into account the finite-key effects due to the finite number of
pulses sent by the parties to the central relay. This could be done by combining the results presented in this paper
with the finite-keys estimation techniques used in [41].
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Appendix A. Channel model

The channel model that we employ to simulate the gains that would be observed experimentally in the X-basis
(i.e. the probabilities p (k., k4|bs, bp)) and Z-basis (i.e. the probabilities Q If;lkd) is taken from [33]. In all the
expressions of this section we assume k, + k; = 1.

In particular, abeam splitter of transmittance /7 accounts for the loss in the quantum channel linking Alice
(Bob) to node Cand for the non-unity detection efficiency of detectors D, and D,;. The polarization misalignment
introduced by the channel Alice-C (Bob-C) is modeled with a unitary operation mapping the polarization input

moades a. : o the orthogonal polarization output modes a anda a an according to:
d J, (by,) to the orthogonal pol t tput mod Jut d (jutL b(jut db;uti dingt

af; — cosByaly, — sinfual | (bif1 — cosOgb,, — sinfgb], ), foranangle 6, (05). Moreover, the phase

mismatch between Alice and Bob’s signals arriving at node Cis modeled by shifting the phase of Bob’s signals by an
angle ¢ = ¢, for a certain parameter 0. Finally the model considers that both detectors are affected by a dark
count probability p,, which is independent of the signals received and has the same value for both detectors.

With this setup, the gains in the X-basis can be written as:

p(kca kdle) bB) = (1 - Pd)[Pde_h + Q(kc, kdle) bB)]) (Al)
where v = /7o (with o being the amplitude of the signal states) and

efv(lfcosgécosH) _ e72'y if kc &) b @ bp =1
qke, kalba, bp) =1~ 0 L (A2)
e V(Itcospeost) _ =27 ifk Dby @ bg=0
with§ = 04 — 0p. Starting from (A.1), one can readily compute the probability p(k, k;) and the bit-error rate
ek, by means of equations (1.4) and (1.5), (1.6), respectively:
P(kc> kd) _ %(1 o pd)(efq/cosmose + e’ycosacosé)ef'y _ (1 _ Pd)zefzy’ (A3)

e—/coszbcosQ _ (1 _ pd)e—fy

ef'ycos@‘cosﬁ + e’ycosécos@ o 2(1 — pd)e*W'

€l kg = (A4)

The gains in the Z-basis instead read:
Qe = (1 = pp(py — Ve ~Tutr) 4 =Mt i) 21 ( [y cos 0)], (A.5)

where the function I (z) = ﬁ 55 e@/D+1/D¢=14¢ js the modified Bessel function of first kind.

In the simulations shown in section 3 we compare the key rate computed with our analytical bounds on the
yields with the key rate evaluated with the exact expressions of the yields, i.e. the expressions obtained directly
from the channel model. According to the above channel model, the yields read:

Yk = (1= ppl(py — DA = ym)" " + yyoa], (A.6)
where

w-EEC =2 0)s0), 5 )

k=0 =0 r=0\7T p=0 p q = max(0,r+p—1I) q

( N ! )(r + Pk + 1 —r — p)lcos’™ 9(04)cos™ 2 ~9(Op)sin>* ~"=9(0,)sin? ~ "2 F4(0y). (A7)
r—p—4

To conclude, we remark that all the quantities entering the key rate formula (1.2)—i.e. (A.3), (A.4) and the gains
(A.5) indirectly through the yield’s bounds—are symmetric under the swap k. < k; due to the symmetries of
the channel model.
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Figure B1. Comparison of the optimal key rates achievable with different fixed values of the weaker decoy intensities. The two cases
analyzed (solid and dotted—dashed lines) are almost indistinguishable. (a) Optimal key rate as a function of the overall loss when the
parties use three decoy intensity settings, for three different values of the dark count rate (p,). The solid lines are obtained by fixing the
weaker decoy intensities to y, = 107> and y; = 10”7, while the dotted—dashed lines are obtained by fixing the same intensities to

sz = 10> and iy = 10~ *. The dashed lines assume that all the yields are known from the channel model and the magentaline is

the PLOB bound [19]. Note that the green dotted—dashed lines and green solid lines (p; = 10~ °) are almost perfectly overlapping,

(b) Optimal key rate as a function of the overall loss when the parties use four decoy intensity settings, for three different values of

the dark count rate (p,). The solid lines are obtained by fixing the weaker decoy intensities to ji, = 10>, yu; = 10 *and i = 10,
while the dotted—dashed lines are obtained by fixing the same intensities to y, = 107>, y1; = 10~ *and iy = 10>, The dashed lines
assume that all the yields are known from the channel model and the magenta line is the PLOB bound [19].

In all the simulations shown in section 3 we fix both polarization and phase misalignments to 2%, which
means that: 4, = —0z = arcsin/0.02 and 6 = 0.02.

Appendix B. Stronger and weaker decoy intensities

As explained in section 3, the optimal key rates are basically not affected if their optimization is only performed
over the signal intensity («) and over one decoy intensity, while having the remaining weaker decoy intensities
fixed to near-to-optimal values for all losses. In figure B1, we compare the optimal key rate that the parties can
achieve when fixing their weaker decoy intensities to substantially different values, in the case of three (left) and
four (right) decoy intensity settings. In particular, the solid lines are the same plotted in figures 4 and 6 for the
three- and four-decoys case, respectively, i.e. they are obtained by fixing the weaker decoy intensities to

tt, = 10~2and y1; = 10> (three decoy intensity settings) and to 1, = 10, y1; = 10~ *and 1 = 10" (four
decoy intensity settings). The dotted—dashed lines, instead, are obtained by fixing the weaker intensities to values
which are two orders of magnitude lower, thatis 1, = 10> and y; = 10~ *in the case of three decoy intensity
settingsand 1, = 1072, j1; = 10~ *and 1y = 107 in the case of four decoy intensity settings. Clearly, the
optimal key rates are basically not affected by employing relatively stronger pulses (those with 1, = 107> as the
weakest intensity) for the weaker decoy intensity settings. Such stronger pulses could be more easily
implemented experimentally and, for this, have been chosen in our simulations.

Appendix C. Yield’s bounds with three decoys

Here we derive analytical upper bounds on the yields appearing in (1.7), following the same lines of section 2. In
this case we assume that Alice and Bob can prepare their phase-randomized coherent pulses with three different
intensity settings: { 1o, £41, tt2 }, which are the same for both parties. This choice is optimal since we assumed that
the two optical channels linking the parties to the central node Chave equal transmittance /7 [43].

The whole set of infinite yields is subjected to the following nine equality constraints:

oo
~ Y,
Qk,l = e/”k+/"1Qk’l — Z nm Nkn:ulm kle {0, 1, 2}, (C.D
nm—o nim!

and to the inequality constraints given by (2.3).
We derive bounds on the Yields Yoo, Yl 1> Yoz, Yzo, Y22, Y13, Y31, Y04 and Y40.

C.1.Upper bound on Y,
Consider the following combinations of gains in which all the terms Y7, and Y,,; are removed (i.e. their
coefficients are equal to zero):
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Gl = Q™ + QM — popy (@™ + QM) = — Lol (g 1y — fro )3

n,m=0
52,2 50,2 2,0 n m m

G22 - /u’zQ + ,qu - HOMZ(Q + Q ) = /LO.U’z)(.uO ,u2 - :uoluz);

n,m=0
N o s Ynm n

Gy =3Q" + Q¥ — Q7 + QP = Y ol (' 1y = ) (" py = iy 25 (C.2)

n,m=0 ""000"

where the superscripts in G5! indicate which intensities are involved, while the subscripts indicate the yield that
is going to be bounded.

We now combine G33', Gs3> and G,3* with arbitrary real coefficients ¢y and ¢, and impose that the resulting
expression has the yields Yy, and Y, removed as well:

[o¢]

0,1 0,2 12 _
Gy + Gy +aGy =

Y,
LGt = o) g f = o)

n,m=0
4 colpag fy — topts) (gt — Hopy) 4 (g thy — py pa5) (g g — pay )] (C3)

Note that the linear combination above is already the most general for our needs. As a matter of fact, for every
linear combination of G;3', Gs5” and G,3” one can always factor out the coefficient in front of G5, as far as it is
not zero. However, if the particular combination of gains which removes the terms Yj,,, and Y,,o has a null
coefficient in front of Gy3', for symmetry reasons there would also exist another combination—that also
removes the yields Yy, and Y, ,—with a null coefficient in front of say G53°, and this one could be found in our
case given by (C.3).

For Y, and Y,,o to be removed in (C.3) it suffices that:

(g — 1) (g 1y — Koty + co(iy — po) (g 1y — fopty) + alpty — ) (' — pypy) =0V m, (C.4)
which implies:

po Liy Gy — pg) + copa(pty — po)] + pi" [—=po(pty — ptg) + apty(pty — pap)]

+ iy [—copto(tty — o) — apy(py — p)l =0 V. (C.5)
A sufficient condition for this is that every coefficient of 1./ is identically zero, which happens for:
o= — P (g — f49) ) (C.6)
to (kg = H15)
o= ol = 1) 7
to (e — fiy)

Substituting (C.6) and (C.7) back into (C.3) and multiplying both sides by 11,, we get an expression where all the
terms Yo,,;, Y1, Yioand Y, are removed and where the term Y5, gives the largest contribution:

(NJ - )u’) (M B /‘L) s m n n m m
1,Gas' = iy G5’ + g Gy = L (g iy = o) (g fiy = oy
(/~L0 - ;U/z) (/1’1 - IU’Z) nm=2 nim
(o = 1) (o — 1) N m
— (kg — Moﬂz)(ﬂo Mo — Noﬂz) + No—(ﬂl By = B k) (" ey — pypy) |- (C.8)
(o = 1) (= 1)

In order to extract a bound for Y5, we need to recast the yield’s coefficients in such a way that their sign becomes
manifest. Each term of the sum in (C.8) may be recast as follows:

}’nm n— n— m ( ) n— n— m m
,—m,uomuz[(uo b Y g ey — o) — ﬁ(u b T g ey — o)
: Ho
(l’L ) n— n— m m
PO Y iy — ) |, (C9)
(b = 1)
or equivalently as:
Vo oty 1
0172 AZZ(,LLO) My Hos m) : AZZ(M(): M Ko T’l), (Clo)
nim! (g — p1) (g — f15)
where
A (s s fgs M) = " (g — po) + p1y (ly — pg) + pg (i — f1y)- (C.11)
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We can now rewrite factor A,, as:

A (Bgr s Hp 1) = g [ (g — 113) — (i — D] + popn (g™ = py™h

=u1[ui’”( — 1) — uz)(Zu’" ok "]]+uouz(uo uz)[z > é]

= (g — po)| —uIZ//” - ku§+uou22u’” > ]

[ m—1 m—1
L L 1
= (g — )| 1"+ D pE (=gl - po gyl Y = pop ; }
k=0 0

[ m—1
= (o — )| =y — ) + D pypg ™ (y — ul)]
k=0

= (ttg — 1) (bty — 11y) Zu’z‘uo’” k- Zuzu’” ! ’}
= (o — 1) (1, — ) Z T (TS T} (C.12)

Of course we can employ this expression also for Ay, (14, (45> [y, 1), under the substitution m — n. We will
apply this consideration from now on to similar scenarios. By substituting (C.12) into (C.10), we get the final
expression for each term of the sum in (C.8):

Yim
Holu/ts (o — Mz)z(ﬂz - /1'1)2
nlm! (g — 1) (g — 1)
[Zuz(u’" e u{"lk)][Zuﬁ(u” It (C.13)

That s, the sign of Y,,,,,’s coefficient is independent of n and m and it is the same for all terms in (C.8) (note that
the product of the two sums in (C.13) is always positive). Thus a valid upper bound for Y5, is obtained by setting
all the other yields to zero in (C.8), except for Y,,. We obtain:

(g — 1) (g — 1) Y3 g i o
o Z B Gop oy gt Y gl = TR Gy = i) (g — )% (C14)

0,1
B G3 — 1y
(No - ,Uz) (,U1 - Nz) 4

which implies the following expression for the upper bound on Y5,:

0,1 0,2 1,2
GZZ GZZ GZZ

,“'0.“1(.“'0 - .“'1) /"o,uz(/"o - .uz) .“'1/12(,“'1 - .uz)

(g — pp) (g — ) (py — p1p)

YY =4

(C.15)

We remark that the bound given by (C.15) is not valid when any of the intensities j1, £4; Or (1, is equal to zero. As
amatter of fact, in any of these cases the starting expression given by (C.8) becomes trivial. However, in most
practical situations, due to the finite extinction ratio of amplitude modulators, none of the decoy intensities is
actually equal to zero.

C.2.Upper bound on Yj;
Consider the following combinations of gains in which all the terms Yj,,, and Y, are removed:

3 3 3 3 - Yim n m m
Gi't=Q"+ Q" - @+ Q" = (g = )
n,m=0
3 3 - Yom n m m
Gy =Q"+Q” - Q"+ @ = P — s
n,m=0
oS
3 Y, n n m m
GP=Q"+Q” - Q"+ Q) = — (" — . (C.16)
n,m=0

We now combine G}', Gy* and G/;* with arbitrary real coefficients ¢, and ¢; and impose that the resulting
expression has the yields Y,,, and Y, also removed:
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Gh! + 0 Gl + Gl = D~ )
n,m=0
+ colpg — 1) (g — py) + q(u1 - uz)(ui" — )l (C.17)
For Y;,,and Y,,, to be removed it suffices:
(g — g — 1) + colpy — (g — p3) + a(u! — o) (uy — p3) =0 Vn, (C.18)
which is fulfilled by:
(g — 1)
o= ———1-, (C.19)
(/1’0 - ,U/z)
_ =) (C.20)
(,U,l - ,U’2)

Substituting these terms back into (C.17) yields a combination of gains in which the terms Yy,,,, Y,,0, Y2,,and Y,
are removed:

1y — 1y (g — 117 [ (1o + 1)
GO,I _ 0 1 G0)2+ 0 G12 Y ( _ ) ( _ )_ 0 1 ( _ )
11 —(Mé — H%) 11 (M ) 11 1y = U (g — 14y —(Uo ) Ko — Ko
(po + 111)
420 - M7 _
TEYSAS “2)]
Yim (o + 1) (1o + ) m
£yl — gy - 0T gy R0 TR
Z . /1‘0 /’Ll)|:(/j“() /111 ) (/j/o + /.1,2) (MO /1/2 ( 1 2)( )]
Yﬂl n n (MO + lu‘l) n n (H’O + lu‘l) n n
Tty — )| G = gty — PO iy TP
112::3 n! o= M [ o= M (o + 1) Ho = 12 (ko + 1) 1o :|
(Mz ) ﬂ n m m
+ Z (/j/() - ,U/])(IU/O - ) - ﬁ( - uz)(,u() - /1/2)
n,m=3 !
2
- %( e - ug”)]. (C.a1)
2

In order to get a valid upper bound for Y}, we need to determine the signs of the coefficients of the remaining
yields. We start by recasting each term of the sum in (C.21) corresponding to the Y,,,,,, with n, m > 3, as follows:

Yum 1
nlm! (/’1’() - Mz)(ﬂl )

All(ﬂo) ,ul) ,u/za m) AII(M()) Ml) /JQ) n)) (sz)

where

All(,u()a Hps s m) = (,u() - .uz) + 1223 (:ul - ,uo) + o (,uz - ,Ul) (C23)
The factor A, can be rewritten as:
Ai(gs s o M) = [ 2 — 113) — (= ] + pgpa(uy ™ — py >

= (1o — )| 1" (g + o) — o} Zu"’ RS+ g Zu 3%]

[ m—1 Mm72 ,u”“l
= (po — )| 1o + 1) + S g (= p? =R gy — 2( ; + —;2 ]
k=0 0 0

[ m—1
= (o — )| G = Y (g + o) + D prbpn =Rl — uf)]
k=0

= (g — 1) (ttg + 1) (1 — uz)(Zu’" 1= ] (b + 1) (i = 11) Zu’z‘u? - "]
k=0

= (1o — 1) (g — 1) Z 11y + )" = g+ )

= (g — ) (g — Nz){ZMz[Nz(Mm e k)+uou1(um 2=k _ Ly~ 27k
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m—1

+ ol g — ) N — o)}

m—3 ' m—2—k P m—3—k PP
= (o — )by — 1)ty — o) D ps gy D w2l 4 oy D T
k=0 j=0 j=0

m=3 m—3—k
= (o = H2) (g — 1) (ly — f1o) Z ﬂ};[(,uz + 1) Z Miﬂfsz*]‘u‘(]) + quﬂgnZk]
k=0 j=0

= (g — k(g — )y — ) F(m), (C.24)
where the factor F(m) > 0, Vm > 3. Substituting (C.24) back into (C.22), we recast each term of the sum in
(C.21) corresponding to the Y,,,,, with n, m > 3, as:

Yo (g — 11,7 (pty — 1) * (g — 1)
nlm! (g — 13) iy — 13)
so that its sign is manifestly dependent on the factor (1, — 1) (1, — f,)-

In a similar fashion, one can rewrite each term of the sum in (C.21) corresponding to the Yy,,,, with m > 3,
as:

2
F(n)F(m), (C.25)

_&(Uo - M1)2(M1 - Nz)(ﬂo - ,Uz)
m! (kg + po)(py + fip)

F(m), (C.26)

thus deducing that this expression has opposite sign with respect to that given by (C.25). Same holds for Y1,
since it can be shown that its coefficient is exactly (C.26) with thesubstitution m — n.
Finally, by showing that the term corresponding to Y}, in (C.21) can be factorized as:

(g — 1)y — 1) (g — 1)

Yii
(g + ) (py + 1)

(C.27)

one concludes that this expression has the same sign as that given by (C.25).

Putting together these considerations into (C.21), a valid upper bound on Y7, is obtained when the yields
Y,m» with n, m > 3, are set to zero and the yields Y;,,, and Y,,; are set to their maximum allowed value. Since in
appendices C.5 and C.6 we derive upper bounds on Y5 and Y3, (see (C.65)and (C.73)), we can employ them in
(C.21) instead of trivially bounding these yields with 1. In this way we obtain:

GOl (“é - Mlz) Go2 (M(z) - ﬂlz)

. Glh2 — yU (1o — 1) (g — 1) (g — 41
11 2 2 11 2 2 11 — *11
(g — 115) (ki — 13) (g + 1) (g + 1)
(B — ) U U [ 3 3 (o + 1) 5 3 (o + 1) 3 3
+ R R v - e = PR G - )+ R G )
. o ! (kg + f45) 0 2 (g + 14,) ' :
X (= 1) (g + ) (g — 15) (g + py) (y — 1)
+ 20 — 11y) Z[ 0 1) T Iy 0 2 Ko T ) WYy 27 | (C.28)
n=4 n! (Ko + 12) n! (kg + 1) n!
which leads to the following upper bound on Y;:
U (ko + 1) (g + 1) 0,1 (Mé _ “12 0,2 (“(2) - “12 1,2
Yll = ) 1 — P P Glf + 2 P Gli - 2(”0 - M])Ell
(o = p)" (g — ) (g — 112) (g — 13) (g — 1)

( + + )
T My T Holy T Holy (Yg+Y3U1)’

6
(C.29)
where the term E;; is defined as:
Bo |t Mo, M Bl
E=elo — et — — ]+ 0y 7oy 7t ol
11 (/1'0 M1)[ > > 6 6 6
+ woon
_;’_M et — et — (u, — i) 1+ﬂ+ﬂ+_1+_2+w
[t + s 2 2 6 6 6
2 2
—Me%—e%—(uo—uz)1+ﬂ+&+ﬂ+&+w . (C.30)
o + 1y 2 2 6 6 6
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C.3. Upper bound on Yj; and Yy,
Consider the following combinations of gains in which all the terms Y7, and , Y,,o are removed:

o0
~ ~N A N Ynm n n m m
Gos' = 1, Q" + 11, Q" — 1, Q™ = QY = Y (L iy — oD (g — 1M

nm—o im!
0,0 <22 0,2 <20 =Y,
G(g)z’2 =1, Q7" + Q7" — p, Q7" — Q7 = Z - 'nm' (M3M2 - Noﬂg)(ﬂgl - MT)§
nm—o 1im!
1,1 <22 1,2 ~2,1 Y,
Gyt = 1, Q" + 1 Q™ — 1, Q" — 1, Q™ = Y ey = ) (] = ). (C31)
nym=0 """k

We now combine G', G and Gg3* with arbitrary real coefficients ¢, and ¢; and impose that the resulting
expression has the yields Y;,, and Y,,; also removed:

o0
Y,
Gos' + ¢o Gy’ + & G’ = D2 —lugpn = wor) iy = 4y
nm—o nlm!
+ colpg iy = poiy) (g — py) + alpy py — pypy) (g — p3)]. (C.32)

For Y,,, and Y,,; to be removed the coefficients ¢y and ¢; must satisfy:

(g — popy) (g — 1) + colpigrty — poky) (g — fo) + alpy g — pp) (g — pp) =0V n
(ot — pop)(uy — ) + colpg iy — poma) (g — 1) + alug py — pypa) (' — py) = 0¥'m

(C.33)
or equivalently:
tolin (g — 1) + oty (g — )1 + 1y 1= po (ko — 1) + apy (g — 1)l
— iyl Rocoltty = 11y) + mapy — pp)]l = 0V n (€30

p Tty — popty + coCpapty — pop)] + ' T— (g — popd) + a(uypy — py3)]
— ooty — potsd) + alpy iy — pyp3)] = 0V m.

A sufficient condition for this is that the coefficient of every yi' and every ;" is identically zero. This imposes six
conditions on ¢y and ¢;, however thanks to the inherent symmetries of the system a solution exists, and reads:

o= o =1 (C35)
Ho (g — fy)
o= M, (C.36)
B (py — f3)

Substituting these expressions back into (C.32) and multiplying both sides by 5, yields a combination of gains in
which theterms Yy, Y,,1, Y1, and Y5,,, are removed. In particular, we obtain:

MzG(())z’l _ py (g — py) G&,z + Ho(thg — 14y) Gé’zz
(o — #3) (= #)
> Ym m m m m m m
= #(ﬂo — =y (g — ") + (g — w3y — po(py” — p3)l
m=2 .
= Yom n,, o _ nye,,mo_ m_Ml(MO_ul) n _ ne,m _ ,m
2 n!m!["z(%“l Moty = 1) = S T ot = o) (e = 1)
m=2
Ho(fho — f4y)
+ o py — ) (! — ] (C.37)
(g — pp)

In order to get a valid upper bound for Yy, and Yo, we need to study the sign of the coefficients of the remaining
yields. We start by recasting each term of the sum corresponding to the Y,,,,,, with n > 3and m > 2,in(C.37)as
follows:

Yum 1
ntm! (g — 1) (i — 1)

AZZ(MO) M1 Ko m) . BOZ(,U/(); M1 Ko T’l), (C38)

where

Boa(Hg» Hgs Hp 1) = py b iy (i — i) + pgQui iy — by pil) + po(uaplt — pui pih (C.39)
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and A, is the one found when bounding Y>,, thus we know from (C.12) it can be recast as:

m—1
Ay s fhyy M) = (g — )y — 1) D (g~ 5 = =175, (C.40)
k=0

We can rewrite B, as:

n—2 n—3
Boa(thgs fys Hgs 1) = fofiy Hp(py — Nz)lﬂgl — Ho Z/‘Tﬁzik#g + iy ZN;H%]N%
k=0 =0

n—2
= oty fo(pty — Nz)[ﬂgl + ZNTﬁZ?kMI;(Mz — o) — N;hl
k=0

n—2
= gy (B — Nz)[ﬂg_l - Mg_l - ZNT_Z_I(N];(NO — Hy)
k=0 i

n—2 n—2
= froty s (g — o) (g — u2>[2 e Y T T
k=0 k=0

n—2—k

n—2
= oty — 1) (g — f12) :ulz((:“o - /‘Tﬁz*k)- (C.4D)
k=0

Employing (C.40) and (C.41) into (C.38) we get:

Y, n-2 He2e e m—1 . S
ok — H) (o = uz)[Zui(uo 2k k)][Zuﬁ(uo Ik ymtok ] (C.42)
o k=0 k=0

which means that the sign of this expression is fully determined by the factor (1, — p,) (¢, — £,) (note that the
product of the two sums in (C.42) is always positive).
Concerning the terms that appear in the sum in (C.37) corresponding to the Yy,,,, with m > 2, we have:

Ym m m
— (= o) Ly = 1) = Gy = 15+ o = )]

= 7(”1 - /’LO)AZZ(,u/oa Hy> [y m)

Y, m—1 I I
= %wo — 1) (g — o) (g — ) S g (un = F — Ry, (C.43)
: k=0

where we used (C.11) in the first equality and (C.40) in the second equality. Expression (C.43) implies that its
sign is always equal to the sign of the terms given by (C.42), since it is determined by the same factor
(g — 145) (b — 11,) (note that the product of the last two factors in (C.43) is always positive).

A valid upper bound on Yy, is thus obtained by setting all the other yields to zero in (C.37). By doing so, we
obtain:

0,1 0,2 1,2
1Gos 4 Gos #oGo3

Y([)é =2 Fo = ) My = Ky . (C44)
(g — 1) (1y — o) (g — 1)

One can do the same when bounding Yy, i.e. setting all the other yields to zero except for Y4, in (C.37). We find
that:

G Gy 1 Gos”

Y = 4! . . (C.45)
py (g — 1) — fro(py — p15) — iy (g — 1)

C.4. Upper bound on Y3y and Yy
Consider the following combinations of gains in which all the terms Yj,,, and Y,,; are removed:

o0
. . . . Y,
Gyl = 1,Q% + 11 QY — Q™ = 1, QY = YT Tt — (U — o

nom—o nim!
0,0 ~22 ~0,2 ~2,0 Y,
Gog* = 112 Q" + 1o Q™ — 1o Q™ — 1, Q7 = 30 =y — ) 1 — o)
nm—o nim!
1,1 <22 <12 ~2,1 — Y
Gy’ = 1, Q" + 1 Q” — 1, Q7 — 4, Q7 = Y7 %r’;,(uf = ) (" ey = ). (C.46)
nym=0 """k
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We now combine Gy', Gyi> and Gyg* with arbitrary real coefficients ¢ and ¢; and impose that the resulting
expression has the yields Y7, and Y,,, also removed:

o0
Y,
Go' + o Gog” + a Gyt = D2 = Lug — g iy — proy")
n,m=0 n.m.
+ colpg — 1) (g py — popty) + apy — p) () iy — pyps)]. (C.47)

For Y},,,and Y, to be removed the coefficients ¢y and ¢; must satisfy:

(g 11y — Bk (g — ) + colpag by — propy) (g — o) + a(py"py — py ) (g — pp) = 0V m
(gt — poi) (= 11y + colpgpy — popy) (y — p) + alug iy — o) () — ph) = 0V n,
(C.48)
This system of linear equations coincides with the one given by (C.33) that we found when bounding Yy, thus
the solution is given by (C.35) for ¢y and by (C.36) for ¢;. Substituting these expressions back into (C.47) and

multiplying both sides by pi,, yields a combination of gains in which the terms Y,,;, Y,5, Yo,,, and Y7, are
removed:

11,G%! — (g — ) G%2 + oo — Hy) Gl
2
(po — Mz) (M1 - Mz)
=3 n? (o — ) [=po(uy — 1) + sy — ) — po(pf! — )]
n=2 .
= Yom n__ e, m, m_Ml(Mo_Nl) n__ g, m _ m
+ 223 ] [uz(uo 1) (g 1y = foty) e =10 (g = 13) (g by = Ho 1)
Polktg — 1)
+ ﬁ(ﬂl — ) (" ey — muﬁ")]- (C.49)
1 M2

Since the coefficients of Y,,0 and Y,,,,, coincide with those found when bounding Yy, if one exchanges m «— n,
we can directly use the results obtained in appendix C.3 to recast the terms that contain the Y,,,, with n > 2 and
m > 3.In particular, according to (C.42), we obtain:

Ynm m—2 e e n—1 S S
Wuouluz(m — ) (g — Mz)[z Mg(#o 2k Hy : k)][Z/i];(/io ok Hy ok ], (C.50)
A k=0 k=0

and according to (C.43) the terms that contain the yields Y,,o can be written as:
YnO = ko n—1—k n—1—k
o = 1) (g — o) (g — py) D pas (g 5 = 710, (C.51)
: k=0
Like in the case of Y, (see appendix C.3), a valid upper bound on Y5 is thus obtained setting all the other yields
to zero in (C.49). We obtain:

0,1 0,2 12
#2G2o _ #Gag #o G2

Y =o—tot Forle TR (C.52)
(o = 1) (kg — pp) (kg — f1y)

One can do the same to bound Y, i.e. to set all the other yields to zero, except for Y. In this case we obtain:

0.1 0.2 12
#2 G2 _ #1G2g 1o Gag

Y = 4! L . (C.53)
py (g — 1) — pro(py — 1) — iy (g — 1))

C.5.Upper bound on Yj3
Welook for that combination of gains in which all the terms proportional to Y, Y1, Yo,, and Y3, are removed.
In order to find it, we consider the most general combination of all gains:

2 00 2
iy Y,
Gi= )Y Q"= > —'nm' Zci,j,uf,uT , (C.54)
i,j=0 nm=0 -1 i—o

and impose proper conditions on the real coefficients ¢;

2 2
Y,, removed: Z”?[ZQJ] =0Vn < co+tci1+tc,=0 fori=0,1,2, (C.55)
i—o  \i=o
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2 2
Y,,; removed: ZM?[ZMjCi’j] =0Yn < pgcio+ cin + pycip =0 fori=0,1, 2, (C.56)
i=0  \j=0
2 2
Yy,, removed: Z”T(ZQJ] =0Vm < c¢j+aj+o6;=0 forj=0,1,2, (C.57)
=0 " \i=o0

2 2
Y,,, removed: ZM?[ZM?Q,]’) =0Vm <« ,uéco,j + ufcl,j + M;Cz,j =0 forj=0,1,2. (C.58)
j=0 " \i=0

The conditions given by equations (C.55)—(C.58) form an overdetermined system of equations for the nine
variables ¢; ;. However, thanks to the symmetries of the problem, a unique solution for ¢; j exists and reads (we
rescale every coefficient by requiring co o = 1):

co0 =1,
. (g — 145)
o l=—"—»
My — Ko
Cop=—1—con= P B
My — My
(kg — 113)
ao=—""%5 5>
Hy — Hy
(g — 15 (g — 1)
a,1 = 6,0, = > > >
(= )y — 1y)
B B (g = 1) (g — )
G2= 0,0~ a1 = Q06,2 = ——, 2 >
(uy — p) (g — p13)
po — 1
oo=—1—-ap=—F—">
Hy — Hy
(1 — 1) (g — 1)
Q1= —Co1 — a,1 = €,12,0 =

(W2 — 12y — )
(g — 1)) (g — 1)

a2 =—00— 1= 1+ an + o) =-— > . (C.59)
(uy — p) (g — 1)
By substituting (C.59) back into (C.54) we get an expression in which the terms Y,,¢, Y,,1, Yo,, and Y5,,, are
removed:
o~ Vi (g — 1) (g — H15)
G13 = Z 1_?:! Fo ad A Sad] i . AZZ(M()) Hps Hops m)
mez 1! (g = ) (g + f1)
S Y;qm A22(,u0> M Hos m)Z’ All(,ulor Hi> Hos }’l)) (C60)
m=32 nlm! (b = )" (g + )
n—

where A,, is the factor given by (C.11) also present in the bounds for Yy, and Y5,, whereas A is the factor given
by (C.23) which appears in the bound on Y. Note that this is somehow expected: when bounding Yy, and Y5,
we removed the terms Y,,gand Y,,; as we just did for Y73, and in bounding Y;, we removed the terms Y;,,,and Y>,,,
as we did here. Therefore, by exploiting the result given by (C.12) we can recast each term of the sum

corresponding to the Y7, with m > 2,in (C.60) as:
Yim (g — 112)° k. ome1—k —1-k
— (g — ) D Hy(Hy -, (C.61)
m! (py + 1) ’ 112) 2 1

and realize that it is always negative, regardless of the value of the intensities.
By employing the results (C.12), (C.24) we can recast each term of the sum corresponding to the Y,,,,, with
n > 3andm > 2,in(C.60)as:
Yom (B — 12)* (g — p1y)?
ntml (uy — pp)* (i + 1)

m—1

(o — 1) Y piy(uy = 5 = " (m), (C.62)
k=0

and realize that it is always positive’, regardless of the intensities.

° F(n)is defined in (C.24).
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Avalid upper bound on Y3 is then obtained by setting Y;,, — 0 (except for Y13)and Y, — 1foralln > 3
and m > 2in (C.60). As aresult we obtain:
_Y_fé (g = 11,)?

Gz = NP P27 _ 2 2+ _
13 3 T ) (g — p)lpg — py + (g — py)l

0 [ (g — f12) + Ky — b + iy — )] - [l — p2) + gl — ) + pi (el — gl

2

=2 nlml(uy = 12)*(iy + p1y)
(C.63)
which implies:
Y_ﬂ (po — .u2)2(,uo - lh)z(,uo + py + 1) — —Gys
6 Byt
+ (e — puy — Dy — p1y) + ("2 — py — D(py — pag) + (¥ — g — Dy — p1y)
(g — 1)1y + 1)
2 2
1 [
x l[e“l - l]wé — 1) + (e”z e 1](uf = 1)
12
+ (e/'o — 70 — fy — 1](u§ — ) | (C.64)

We thus obtain the following upper bound on Y;3:

_ 6( + 1) Gis n 6

(1o — 12)* (g — 11)* (g + 1y + 415) (19 — 12> (py — ) (pag — fu)* (g + py =+ p13)
X [eF2(py — pro) + ey — pp) + eFolpy — py)l
x [era(py — p) + ey — p3) + eo(ps — 117) — (g — )by — 1) (g — )]s

U o_
Y13 -

(C.65)

where Gy is defined in (C.54) and the coefficients of the combination of gains in (C.59).

C.6. Upper bound on Y3,

We look for that combination of gains in which all the terms proportional to Yo, Y,,», Yo, and Y3,,, are removed.
In order to find it, we proceed like in the previous case. That is, we consider the most general combination of all
gains:

2 L 00 Y, 2
G31 — Z Ci,ij] — Z 'nm' Z Cz,M?NT R (C66)

i,j=0 nm=0 MM 1o

and impose proper conditions on the real coefficients ¢; ;

2 2
Y, oremoved: Z M?[ZQ,]’] =0Yn < co+c1+cr=0 fori=0,1,2, (C.67)
=0 \j=0
2 2
Y, removed: z:() s z:g;t?c,',j =0Vn <« u(z)ci,o + ulzci,l + M;Ci,z =0 fori=0,1,2, (C.68)
i= j=
2 2
Yo,nremoved: Z NT(ZQJ) =0Vm < cj+aj+toj=0forj=0,1,2, (C.69)
j=0 i=0
2 2
Yinremoved: » MT(ZM,‘CL;'] =0Vm <= pgcoj+ o+ 0 =0 forj=0,1, 2. (C.70)
=0 i=0

The conditions (C.67)—~(C.70) form an overdetermined system of equations for the nine variables c; . However,
thanks to the symmetries of the problem, a unique solution for c; ; exists and reads (we rescale every coefficient by
requiring coo = 1):
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co0 =1,
2 2
(:uo — M,
Co,1 = — 2 20
Hy — Hy
2 2
Ho — 4
Cop=—1—co1=— 7>
Hy = Hy
N (o — 1)
Cl,() - >
My — Ky

(e — 12 (g — 11y)

a,1 = a,0¢,1 = >
(i — 13 (g — f1)
by — 1) (g — 11)
2= —4a,0 — Q,1 = q,0C0,2 = 2 > >
(= p) (g — 1y)
Mo — M
ao=-1—¢qo=2—"1
My — Ko
(kg — 13) (g — 1)
Q1= —Co,1 — a,1 = €,10,0 = —

(W — 1Dy — )
(g — 1D (g — 1)

0rx=—00—a1= 1+ a0 + c) = . (C.71)
(1 = 1) (g — p1y)
By substituting (C.71) back into (C.66) we get an expression in which the terms Y9, Y,.», Yo,, and Y7, are
removed:
o Y1 (o — ) (kg — 1)
G31 - — ‘ AZZ(MO) Hy> o> 7’!)
nma M (g — 1) (g + 1)
> Youm AZZ(M()) Hy> Ko 1) ;All(ﬂo) Hy> Ko m), (C.72)
”izs nlm! (g — p)*(py + 1)

where A,; and A;; are again the factors from Y5, and Y7; bounds given by equations (C.11), (C.23), similarly to
what happens when bounding Y5 (see appendix C.5). Therefore the analysis of the coefficient’s sign is the same
asinappendix C.5. Hence a valid upper bound on Y3, is obtained by setting ¥,; — 0 (except for Y3;) and

Y, — 1in(C.72)foralln > 2 and m > 3in(C.72). Analogous steps to those in appendix C.5 lead to the
following upper bound:

B 6(1y + 1,) G " 6

(o — 1) (o — 1) (ko + 11+ 1o) (kg — 1) (g — 112)* (kg — 1) (kg + 1y + 1)
x [efa(py — po) 4 ey — pip) + efolpy — )]
X [era(py — pg) + ey — ) + ero(uy — 1) — (g — )y — 112 (ptg — 1)),

U _
Y5 =

(C.73)
where G3, is defined in (C.66) and the coefficients of the combination of gains in (C.71).
C.7.Upper bound on Yy,
Consider the following combinations of gains in which all the terms Y;,,,and Y,,; are removed:
o0
< ~ < ~ Y,
Goy' = m Q™ + g Q" = po Q™ + QY = X (g = o) (g = poi);
n,m=0 "1
0,0 ~22 ~02 |, A20 = Y,
Go? = 113Q" + 1% — pop Q™ + Q*Y = > (g = ok ey = Hok)s
n,m=0 "FE
~1,1 <22 <12 | A2l N 4
Goy = 15Q" + 1; Q™ — Q7+ Q%H = Y n,";, (' g = py ) (" ey — iy ). (C.74)
n,m=0 "*-11F

We now combine Gi;', Gi> and Ggy* with arbitrary real coefficients ¢y and ¢; and impose that the terms Y, and

Y, are also removed in the resulting expression:

oo

Y,
Goo' + o Goy’ + a Goy' = 35— [y — mop)(pg' i — pro )
nm—o nim!
+ colpag ity — toy) (g ty — Hopy) + alp) ty — pypty) (g py — iy f13)]- (C.75)
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For Y5,, and Y,,, to be removed it suffices that for every m it holds:

(gt — o) (g b — poiy™) + colhghy — Hotin) (g by — Hohy)

+ a(ud py — gy pd) (' py — i) = 0, (C.76)
which is fulfilled by:
2 JR—
co = _M, (C.77)
B (o — o)
2

to(tho — 1)
=0 (C.78)

po(py — )

Substituting (C.77) and (C.78) back into (C.75) and multiplying both sides by 1.3, we get an expression where all

the terms Yo,,;, Y2, Yi0and Y, are removed and where the term Yy gives the largest contribution. More

precisely, we find that:

2 (g = 11) 02 z (ko — :Ll‘l)

i Gog —
(o — 1) ( By — Hy)

= Yoo[uﬁ(uo — )? = g (g — ) (g — 1) + (g — 1) (g — )]

2 0,1
/LzGOO - 00

+ Z —[uz(ul 1ro) (g iy — o) + pas (g — ) gy g — g i) — g (g — k) (" g — g )]
m=3 '

Z (lh 1o (g by — Bk + le(,uo — k) gy — Holty) — lié(,uo — ) (g ey — py )]
n=3 !
Y L e (7 T
_ (HO_M)(Mn 1 1)(Mm L_mety 4 (#o )(,un 1 1)(Mm 1_ o 1]'
(o — H2) (g — 112)

(C.79)
In order to extract an upper bound on Yy, we need to study the sign of the yield’s coefficients. We start by
recasting the term corresponding to Yy, as:
Yoo(tto — 3o — 1) — 15 (g — 1) + (g — 1)1
= Yoo(pro — 1) (g — 112) (g — f1)- (C.80)

We observe that the sign of this expression is determined by the factors (1, — 11,) (1tg — 1)
We then proceed by recasting each term of the sum corresponding to the Y,,,,,, with n, m > 31in (C.79) as:

Yom AOO(lff(p Hi> Ko m) - AOO(,“/()) M o> 1)

, (C.81)
nlm! (o — 1) (g — 1)
where
Ago(fgs s Hop 1) = (13 pg — fhoftg) + oy gty — fohe) + 1y (g fy — iy 03)- (C.82)
This factor can be rewritten as:
Ao (s fys fos M) = fropiy fiy L™ Gy — o) + pi' ™ (g — 1)) + g1y~ (g — 1))
= —HoH1lty AZZ(,U/()’ My Hp 11— 1)) (C83)

where A,, is defined as (C.11) in appendix C.1. Thus we can use the result (C.12) obtained in appendix C.1 to
directly recast Ay as:

m—2

Ago(fgs s s 1) = oy fy (g — Hp) (py — 1) Z T T T (C.84)

By substituting (C.84) back into (C.81), we get the final expression for each term of the sum corresponding to the
Y, with n, m > 3in (C.79):

Yim m— e -
- uouluz(uo 1) (g — uz)[z p g 2R = ")][Zuz(u ke ")], (C.85)

which has manifestly the same sign as the expression given by (C.80), for any value of the intensities (the product
of the last two factors is always positive).
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Finally, we recast the Yj,,,’s terms (Y,,o’s terms are identical under the replacement m — n)as:

1 m—1

Y, . . . ) )
%uouluz(uo L T I T (T Vi W TN (T Vi)

Y;
= %(No — ) Aoo(tgs gy fhyr ™)

m—2
m—2—k

Yom _a
= #Nolﬁﬂz(ﬂo = ) (g — 1) (g — ) Z u’ﬁ(#o — h, (C.86)
! k=0
where we employed (C.83) in the first equality and (C.84) in the second one. We observe that the sign of the
Yo,,’s terms is again determined by the factors (1, — 1) (1ty — f4,)-

We conclude that the coefficients of ¥y,,,, Y,,0and Y,,,,,, with n, m > 3, carry the same sign as Yy,’s, which
implies that a valid upper bound on Y is obtained by setting all the other yields to zero in (C.79). In so doing, we
find that:

20,1 20,2 2412
#;Goo 17 Gog 5 Gob

v =t Rl BT (C.87)
(g — pp (g — p) (g — py)

Appendix D. Yield’s bounds with four decoys

Here we derive analytical upper bounds on the yields appearing in (1.7), following the same lines of section 2. In
this case we assume that Alice and Bob can prepare their phase-randomized coherent pulses with four different
intensity settings: { 149, £41, f42, f43 }, which are the same for both parties. This choice is optimal since we assumed
that the two optical channels linking the parties to the central node Chave equal transmittance /7 [43].

The whole set of infinite yields is subjected to the following sixteen equality constraints:

[o¢]
Yim

Skl — Ltk —
= eMxTH b=
Q Q Z nlm!

n,m=0 "*°

w'w™ k1€ {0, 1, 2,3}, (D.1)

and to the same inequality constraints given by (2.3).

In this appendix we only obtain bounds on the yields Y13, Y31, Yo, and Y, since the bounds derived on the
yields Yoo, Y11, Y02, Y20 and Yy, in appendix C are already good enough, i.e bounding them with one additional
decoy intensity would not result in a significant improvement of the performance of the protocol.

D.1. Upper bound on Yy,
Consider the following combinations of gains in which all the terms Y7, and Y,,o are removed:

o0
.. s s . . Y.
Gol = 11,Q" + 1,Q” — 1, Q" — p, Q" = % n,’x, it — D = ), (D.2)
nym=0 "tk

where i, j € {0, 1, 2, 3}.Since G&/ = 0and Gé;{ = ngf,we only have six distinct combinations that read (for
C N 01 02 ~03 L2 A3 2,3
7> 1:Gois Goi Goi™> Goi> Goi> Gog™-

We now take the linear combination of the Gé:{ such thateven the yields Y>,,,, Y3,,, Y,;; and Y, are removed:

o0
y Y,
> eiiGol= >, ’nm' > cij(pi by — ,M,‘M?)(,U,m - MT), (D.3)
j>i mm=0 -1 g

where we implicitly assume that both indexes , j run over the set {0, 1, 2,3}. For Y5,,,, Y3,,,, Y,;; and Y,,, to be
removed, the real coefficients ¢;; must satisfy:

DGt — ) — @) =0 ¥m
i>i
> ey — ) (U — i) =0 ¥m
)i (D.4)
> il — i)y — 1) = 0 ¥
j>i
> i — i) — pf) =0 Vn
i>i

In order to solve system (D.4), we look for those coefficients ¢; ; such that the multiplicative factors of 4" and p
(fori = 0,1,2,3)areall set to zero. This corresponds to imposing sixteen conditions on the six coefficients ¢; -
These conditions are not all independent, and a solution can be found even when we require (for simplicity) that

Co,1 = 1:
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ca=1,
(pro = p) iy (g — pis)
(o = ) (g — fi3) ’
(o = ) 1y (pty — 1)

€o,2

Co3 = >
(o — H3) ps(pey — pi3)
G = (kg — ) po(frg — H3)
T (= ) oy — i)
s =— (g = 1) po(frg — 1)
’ (b — p3) sy — i3)
(o — 1))
G = Hol\Hog — 14y . (D.5)
B btz (py — fi3)
By substituting the solution for the coefficients given by (D.5) back into (D.3), one gets:
- =Y, >,
> ciiGol= . —'A04(ﬂo’ [y fhos fizs M) + D , '304(/~L0> Hys Hogs fg> 11, 1), (D.6)
j>i m=3 M rr:lzzé n.m:
where:
(po — 144) m
Aoa(gs gy fos pap M) = ———2—1 [0 (g — ) (g — p3) iy — fi3)
Ptz (py — f3)
= 1 (o = 1) (kg — pa) (kg — p3) + iy (g — p) (g — H3) (g — fi3)
- u;”(uo = ) (g — p) (g — )]
(prg = 1) (g = ) (g — p12) (g — p13) (pty — p13)
_ e 1 0 AV 2) (K 3) 3 Z Pty - it | (D.7)
Ha fs <0< Simos
and
Boa(phgs fhys fhos 3> 15 111)
— Koty m
= Lrg Gy — 1) (g — pi3) (g — fi3)
(o — 1)ty — 1) Gy — 1) (g — 1)y — p13)? ‘
=y (g — o) (o — p3)(ky — pi3) + iy (g — p) (o — p3) (pty — f13)
— gy (g — p) (g — B (py — o)1 X [_Ng_l(ﬂl — ) (i — p3) (py — ps)
o g — 1) (g — )y — py) — iy (g — ) (pig — 13) (pty — 13)
+ 1y (o — 1) (g — 1) (g — 1))
= — Lot otz Aoa (s fys fhos fas 1) - Do My ety | (D.8)

<< o Sip—g

In (D.7), (D.8) we again assume that the indexes in the sums run over the set {0, 1, 2, 3} and we define

i< w<in s My, ety lm=3 = 1.From (D.7) we deduce that the sign of Yy, 's coefficient is independent
of m, while from (D.8) we deduce that Y,,,,,’s coefficient has always opposite sign to that of Yy,,,. Therefore a valid
upper bound on Yy, is obtained by setting to zero all the other yields Yy, and to 1 the yields Y,,,,, with n > 4 and
m > 3in(D.6). We thus obtain:

i,j YU OCB04(,LL),U/a,U/)//[/’n3m)
2 6iGol = = Aoi(ltos iy s s D) + - R , (D.9)
i>i 4! =4 n!m!
m=3
which implies the following upper bound on Yy
4' 1,7 > B > ) ) s Iy
Y5, = S Gl — 3 0s(Hor o i i3 11 1) | (D.10)
1m!
A04(,U0: Hy> o> [z 4) j>i n:z; n'm!
m—

where c;jare given in (D.5), Gé;{ isdefined in (D.2), the coefficient Ay, reads:

(kg — /h)z(ﬂo — ) (g — o) (prg — pa3) (i — p3) (g + poy + fy + ft3)
Hops

Aoa(figs fps fos 3 4) = —
(D.11)
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and the sum over the coefficient By, reads:

i Bog(ptgs iy pys pizy 1y M) Ho
nlm! (No — p) (g — 1) (g — p3) (pg — p3) (ptp — Ma)z

§:
u,,;;

2
X (e#o =1 — py— %)(Ml — ) (g — pa) (g — f13)

2
I
e =1 = - 71 (g = 1) (g — p13) (g — f13)

2
I
+ et =1 —p, - 72 (o = 1) (g — 13) (py — f13)
13 ’
—lefs—1—ps— 73 (o = 1) (g — 1)ty — p) | - (D.12)

D.2. Upper bound on Y
Consider the following combinations of gains in which all the terms Yj,,, and Y,,; are removed:

[o¢]
. s s iy . Y,
Gig = 1 Q" + Q" = Q" = Q" = > —E (i — W)y — s, (D.13)
n,m=0 TR

where 7, j e {0 1, 2, 3}.Since Gioi = 0and ng = GA{'(’)i, we only have six distinct combinations that read (for
> 0:Gi', G’y Gy Gighs Gig's Gig” N
We now take the linear combination of the G, such that even the yields Y1,,,, Y, Y;;2 and Y5 are removed:

o0
deiG = >, Liom S i G = ) Gy — ), (D.14)
j>i n,m=0 ]>1

where we implicitly assume that both indexes 7, j run over the set {0, 1, 2, 3}. For Y1,,,, Y3,,,, Y,p and Y, ;3 to be
removed, the real coefficients ¢;; must satisfy:

> i = Wy — i) =0 ¥
j>i

2 i = 1) (g = pyg3) = 0 ¥
j>i

P

> cij(u — 1) (i — ) = 0 ¥'m

j>i

(D.15)

Z Ci,j(,uf - M?)(H]‘N;‘n - Hz‘/"]ﬁ) =0 Vm.

/>t

We now notice that the system (D.15) is exactly the same system solved in appendix D.2 while bounding Yy,
thus the solution for the coefficients c; ; is given in (D.5). By substituting the solution (D.5) back into (D.14), one
gets:

> Gy = Z n—Ao4(uo> [ Ho> f3> 1) + Z Yo B0l pu pas i, 1, 1), (D.16)
>i n=3 '** e 4
where Ay4 and By, are the coefficients defined in (D.7), (D.8) while bounding Y4. Hence we can adopt the
observations made on the sign of Ao, and By, from appendix D.1 and conclude that a valid upper bound on Yy is
obtained by setting to zero all the other yields Y, and to 1 the yields Y,,,, with n > 3and m > 4in(D.16). The
upper bound on Y, then reads:

4! B bl bl bl bl
Yh = S e Gl — Z 0ty 14 '”2' Ha 1, 1) | (D.17)
Aoa(fgs s tos M3 D[ 55 =5 n'm!
m

where ¢;, Gig, Aos(ftgs 4 Hys 3 4) and the sum over By, are given in (D.5), (D.13), (D.11) and (D.12),
respectively.
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D.3. Upper bound on Yj;
We consider the most general combination of all sixteen gains:

3 . 00 Y, 3
> oaQ = 3 = S el |, (D.18)

113!
i,j=0 nm=0 =M1 i

and require that the terms Y0, Y,,1, Y12, You» Y2, and Y3, are removed, by imposing proper conditions on the
real coefficients ¢;:

3 3
Y, o removed: Z cijy =0 Vn <= Zc,-,j =0 for i=0,1,2,3, (D.19)
i,j=0 =0
3 3
Y,; removed: Z c,',ju:?u]- =0Vn <« Zci,j,“j =0 for i=0,1, 2,3, (D.20)
i,j=0 =0
3 3
Y,, removed: Z Ci,jﬂ?ﬂ? =0Vn <« Zc,;,-u? =0 for i=0,1,2,3, (D.21)
i,j=0 =0
3 3
Yy, removed: Z c,',j,u;” =0Vm <« Zci)j =0 for j=0,1,2,3, (D.22)
i,j=0 i=0
3 3
Y,,, removed: Z ci,]-,ufu;." =0Vm <« Zc,—,juiz =0 for j=0,1,2,3, (D.23)
i,j=0 i=0
3 3
Ys,, removed: > c,',j,u?y;.” =0Vm <« Zci,jﬂf =0 for j=0,1,2,3. (D.24)
i,j=0 i=0

The twenty-four conditions given by (D.19)—(D.24) form an over-determined system of equations for the sixteen
variables ¢; ;. However, thanks to the symmetries of the problem, a unique solution for ¢; j exists and reads (we
rescale every coefficient by requiring cg o = 1):

co0=1,
(g = ) (g — 3)
Co,1 = >
(ke — p) (g — f13)
(g = ) (g — )
Co2 = >
(Ml - Nz)(ﬂz - Ms)
- (,uo - ,Ul)(,uo - ,Udz)
€03 = >
(:ul - .Ua)(,u3 - ,Uz)
oo o = 1) (g — pr3) Lo (pty + ) + i)
1,0 — >
(i = 1) Gy = pua) [y iy + pi3) + g pis]
o= (g — Nz)z(ﬂo — Ms)z[ﬂo(ﬂz + p3) + sl
T (= )y — )P (e A ) gy ]
= — (prg = ) (o — 119) (g — f13)*[pao(pty + p3) + p 415
’ (g — 112)* (g — p3) iy — pa) [y Gy =+ pas) + iy ]
s = (g — 1) (g — Nz)z(ﬂo — p3) iy + 113) + iy fis]
’ (g — p) (g — N3)2(,U2 = p3) iy (g + f13) + pa a5l
(g — ) (g — ) Lig ey + 13) + py 5]
Q0= )
(o = ) (g — pa) [y (et + fa3) + gy i3]
6 =— (prg — 1) (prg — 1) (g — 3 [pag (g + pa3) + g 1)

(o — Mz)z(lh — ) (g — ) [y (g + p3) + g5l '
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(o — 1) (g — Na)z[ﬂo(ul + 3) + g sl

@ (i = 1122y — p13)? [y + 13) + o]’
Gy = — (prg = 1) (prg — ) (g — 1) [ (g + f13) + gy pts) ’
’ (= )y = 13) Gy — ) [y (g + p3) + pap 5]

o — (kg — py) (g — 1) [pg(py + 1) + iy iy
3,0 = )

(g = p3) (s — k) [y (g + f13) + pippis]

_ (g — f) (g — 115)° (g — ) (g (g =+ p1y) =+ gy 5]

(g — p) (g — 3>y — ) [y (g =+ ps) + iy i3] ’

G = — (prg = 111)*(prg — ) (g — 1) [ (g + 15) + gy

(ky = po) (g — p3) (g — Ns)z[ﬂl(ﬂz + 13) + pppisl )

N2, 2
C3 = (g — )" (g — po)*Lprg (g + o) + piy i) (D.25)

(py — Ma)z(ﬂz - Ha)z[ﬂ1(ﬂz + p3) + pphisl '

By substituting these expressions back into (D.18) and by making some simplifications, one gets:

3 00 00
.y Y, Y,
E Ci,le’J = E _1H:A13(N0’ Hys Hogs fg> 1) + E : 'nm’AB(No’ [y Hgs fas 1) = Chs (D.26)
=0 s m! n=4 n'm!

m=3

where:

(1o — 1) (kg — 12)*(ptg — 113)°
A13(,LL0, lu]’ ,uz, M3’ m) = 0 1 0 2 0 3 Z
1<y

LA TP R 1A S (D.27)
Hopfbs = fyfly + iy fls e ' 3)

i< e K3

and C,, (n > 5)is defined recursively as:

n—4
Co = | o)+ pl + pd + 1) Coj — uouluzua( Do Mt ""rui,.5]]/(n Y pa2s

j=1 §<H< . Kipos
Ca = otinfty + Mottty + Kooty [y iy [l

In (D.27), (D.28) we assume that the indexes i;in the sums run over the set {0, 1, 2, 3} and we define

Yi<ivg o <in s i iy ety |m=3 = 1.From (D.27) we deduce that the sign of Y}, coefficient is always
positive, while from (D.28) we deduce that Y,,,,,’s coefficient has always equal sign to that of Y7,,,, since C,, is
always a positive quantity. Therefore a valid upper bound on Y13 is obtained by setting to zero all the other yields
in (D.26). The upper bound on Y5 then reads:

6 Iy
Y5 [ S e ’J], (D.29)

A13(M()) Hps Hps s, 3) ,j=0

where c; ; are defined in (D.25) and Ay3(pg, fy5 fiys 13, 3) Teads:
(g = ) (pg — 1) (ptg — p13)°
Hofhs + iy fhy =+ fhy 3

(D.30)

Ais(kgs Hps Hos M35 3) =

D.4. Upper bound on Y3,
We consider the most general combination of all sixteen gains:

3 i o0 Ynm 3 o
> QY= > — lZci,juiuj], (D.31)

!
i,j=0 nm=0 MM\ i—o

and require that the terms Y0, Y,12, Y13, You» Y1, and Y5, are removed, by imposing proper conditions on the
real coefficients ¢;:

3 3
Yy removed: Y ¢yl =0Vn <« > ¢;j=0 for i=0,1,2,3, (D.32)
ij=0 =0
3 3
Y, removed: ) Ci,j#?#? =0Vn <« Zc,;m? =0 for i=0,1,2,3, (D.33)
ij=0 =0
3 3
Y,; removed: Z Ci,jM?M? =0Vn <« Zci,j,u? =0 for i=0,1,2,3, (D.34)
ij=0 i=0
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3 3
Yy, removed: Z ci,j,u;” =0Vm <« Zci,j =0 for j=0,1,2,3, (D.35)
ii=0 i=0
3 3
Yi,, removed: > c,»,juiu;” =0VYm < > cju; =0 for j=0,1,2,3, (D.36)
i=0 i=0
3 3
Y, removed: ) Ci,j/l,%lt;-n =0Vm <« > cju; =0 for j=0,1,2,3. (D.37)
ij=0 i=0

The twenty-four conditions (D.32)—(D.37) form an over-determined system of equations for the sixteen
variables c; ;. However, thanks to the symmetries of the problem, a unique solution for ¢; j exists and reads (we
rescale every coefficient by requiring co o = 1):

coo0=1,
(g — 1) (prg — pa) [pno(py + f3) + poy sl

o (g — 1) (g — ) [y (g + 1) + pppes]”
coz = (o = 1) Qo — p3) [pg(py + p3) + sl ’
(g = o) (g — pa) g (py + p3) + iy ps]
Cos = (g — 1) g — 1) [pag (g 4 f15) + g a5 ,
(g — p3) (s — ) [y (g + 3 + po sl
(o= Ho = 1o = p15)
T (g = )y — )
o= (g — 1) (g — 13) 2 (o (g + f13) + 15105 ,
TGy = ) (g — ) L (g ps) A g ps]
o= — (o — 1) (g — 1) (g — p3)* Lo (pay + ft3) + foy 1] )
’ (o — Mz)z(ﬂl — ) (g — pus) [y (g + p3) 4 pip s
(o = ) (o — 19)* (g — 1) [y + 1) + o)
(1 = )y = pu3)*(py — ) [y (g + p3) + pap s ’
o = (o = 1) (g — p3) ’
T (= ) (uy — ps)
6= — (trg = 1) (pg — 1) (g — pi3)* [ (pty + p3) + iy 1] ,
' (g — Mz)z(ﬂl — ) (g — p3) [y (g + fi3) + iy i3]
b= (o — 1> (g — 13)* Lo (pay + p3) + py 1) ’
T = ) (g — )P [ (g + ps) g ps]
= (1o = 1) (g = o) (g — 1) [ (g + 1) + uluz])
’ (g — pp) (g — p3) (g — )2 [ty (g + pi3) + pip pis]
Crp = (g — 1) (g — Hy) )
T (= ) (s — )
- (1o — 1) (o — 112)* (o — 1) 1oty + 13) + ppis) ’
’ (g = 1)ty = pa3)*(py = pr3) [y (g + p3) + pap ]
by — (pg = 1) (g — o) (g — p3) i (pay + 13) + pypts]

(= 1) (g — p3)(py — M3)2[M1(N2 + ) + ppps] ’
_ (o = m)* (o — 1) Lg(y + 1) + puptal (D.38)
(g — 1) (g — )Ly (g + p13) + pag 5]

By substituting these expressions back into (D.31) and by making some simplifications, one gets:

3 oo

~ii Y, Y,
Z Ci,jQ )= Z _H'IAB (,u(p My o> [z 1’1) + Z LmAlS\ (,LL0> Hps Hos H3s n) ' Cm’ (D39)
=0 a3 n! n=s nlm!
where A3 and C,, also appear in appendix D.3 when bounding Y5 and are defined as (D.27) and (D.28),
respectively. Thus, following the same lines of appendix D.3, we conclude that all yields in (D.39) are multiplied
by a positive factor. A valid upper bound on Y3, is then obtained by setting to zero all the other yields in (D.39).
We obtain:
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6 3 .
Yy = > e, QY, (D.40)
A13(,u0: ,UJp /~‘L2: u3a 3) i,j=0

where ¢;jand Ayj3(ptg, f15, fiy, fi3, 3)are defined in (D.38) and (D.30), respectively.
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