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Abstract
Twin-field (TF)quantumkeydistribution (QKD) represents a novelQKDapproachwhoseprincipal
merit is to beat the point-to-point private capacity of a lossy quantumchannel, thanks to performing
single-photon interference in anuntrusted node. Indeed, recent security proofs of variousTF-QKD type
protocols have confirmed that the secret key rate of these schemes scales essentially as the square root of
the transmittance of the channel.Here,we focus on theTF-QKDprotocol introducedbyCurty et al,
whose secret key rate is nearly anorder ofmagnitudehigher than previous solutions. Its security relies on
the estimationof thedetectionprobabilities associated to various photon-number states through the
decoy-statemethod.Wederive analytical boundson these quantities assuming that eachparty uses
either two, three or four decoy intensity settings, andwe investigate the protocol’s performance in this
scenario.Our simulations show that twodecoy intensity settings are enough to beat the point-to-point
private capacity of the channel, and that the use of four decoys is already basically optimal, in the sense
that it almost reproduces the ideal scenario of infinite decoys.We also observe that the protocol seems to
be quite robust against intensityfluctuations of theoptical pulses prepared by the parties.

The last few decades havewitnessedmajor advancements in thefield of quantum communication [1, 2], with
quantumkey distribution (QKD) [3–13] being itsmost developed application. Recent experiments over about
400 kmof optical fibers [14, 15] and over about 1000 kmof satellite-to-ground links [16, 17] demonstrated that
QKDover long distances is possible. Despite such remarkable experimental achievements, the private capacity
of point-to-pointQKD is intrinsically limited by fundamental bounds [18, 19]. These bounds state that in the
high-loss regime the key rate scales basically linearly with the transmittance of the channel connecting the end-
users Alice and Bob, i.e. it decreases exponentially with the total channel length. This imposes strict practical
constraints on the possibility of achieving point-to-point QKDover arbitrary long distances.

Away to overcome this limitation is to employ one ormore intermediate nodes in the quantum channel
connecting the parties. For instance, the use of quantum repeaters [20] yields a polynomial scaling of the
communication efficiencywith the distance [21].Moreover, a quantum repeater scheme can be arbitrarily
iterated along the quantum channel, thus increasing in principle the total communication distance between
Alice and Bob asmuch as desired. Unfortunately, however, quantum repeaters are very challenging to build in
practice with current technology: they either require quantummemories [20–22] or quantum error correction
[23, 24]. Of course, technology is improving, and quantum repeatersmay become viable in the future.

Other solutions, which attain a square-root improvement in the scaling of the key rate with respect to the
transmittance of the channel, are obtained by placing a single untrusted relay betweenAlice and Bob. Such
protocols include, for instance,measurement-device-independent-QKD [6] (MDI-QKD)with quantum
memories [25, 26] and adaptiveMDI-QKD featuring quantumnon-demolitionmeasurements [27]. The
philosophy behind both types of protocols is that the central relay is able to adapt the pairings of photons
received fromAlice andBob to the photon losses. In this way, for every signal sent by Alice and Bob to the central
relay, just one of the two signals is required to arrive, leading to thementioned square-root improvement in the
key rate scaling.However, both protocols still require two-photon interference in the central node, as in the
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originalMDI-QKD scheme [6].More recently, [28] proposed the twin-field (TF)QKDprotocol, still
characterized by an untrusted central node, and conjectured a square-root improvement in the key rate scaling.
This scaling has been later on confirmed in [29, 30] for two variants of the original scheme. The advantage of TF-
QKD lies in the fact that it is designed to generate key bits from single-photon interference in the central node,
thus naturally retaining the scaling with the square-root of the transmittancewithout the need to adapt to
photon losses via sophisticated devices.

Since the original proposal, there has been an intense research activity to develop different versions of TF-
QKDprotocols equippedwith their security proofs [29–33] as well as to investigate their experimental feasibility
[34–36]. Among these protocols, the one that seems to deliver the higher secret ket rate [37] is that introduced in
[33]. Its security relies on the ability to estimate the detection statistics (usually called yields) of various Fock
states sent byAlice and Bob through the decoy-statemethod [38–40]. The key-rate simulations provided in [33]
indeed exhibit an improved scalingwith the loss, but the estimation of the yields is only carried out bymeans of
numerical tools based on linear programming and considering only the case of three decoy intensity settings.

In this paper, we derive analytical bounds on the yields which are required to evaluate the key rate formula of
[33], assuming two, three and four decoy intensity settings. In so doing, we are able to show, for instance, that the
use of two decoy intensity settings is already enough to beat the point-to-point private capacity bound reported
in [19]. Also, we show that the use of four decoys is basically optimal in the sense that the resulting secret key rate
is already very close to the ideal scenario which assumes infinite decoy intensity settings. Analytical bounds
imply a fully-analytical expression for the protocol’s secret key rate, which could be very convenient for
performance optimization in scenarios where the number of parameters is high, like for instance infinite-key
security analyses. In addition, we study how the performance of TF-QKD is affected under intensity
fluctuations, which are inevitable in practice, andwe demonstrate that the protocol in [33] seems to be actually
quite robust against such fluctuations.

Like in [33], for simplicity, here we focus on the asymptotic-key rate scenario. However, we remark that by
using the techniques reported in [41], it is cumbersome but straightforward to adapt our analyticalmethods also
to thefinite-key rate scenario, where, asmentioned above, it becomes particularly useful to have analytical
bounds for themain quantities that enter the key rate formula.

The article is structured as follows. In section 1we present the TF protocol from [33] and highlight themain
yields that need to be bounded. In section 2we provide the analytical bounds on the yields for the case of two
decoys (the cases of three and four decoys are treated in appendices C andD, respectively). In section 3we
provide simulations of the secret key rate versus the loss for a typical channelmodel (briefly described in
appendix A), andwe also evaluate the effect of intensityfluctuations.We conclude the paper in section 4.

1. The TF-QKDprotocol

As discussed above, we consider the TF-QKDprotocol presented in [33] and sketched infigure 1. Alice and Bob
establish a secret shared key by sending optical pulses to a central untrusted node,C. It is assumed that the node
C shares a phase reference with Alice and Bob, which can be achieved by the transmission of strong optical
pulses. The protocol is composed of the followingfive steps.

(i) Alice (Bob) chooses the X-basis with probability pX and the Z-basis with probability pZ=1−pX. Upon
choosing theX-basis, Alice (Bob) prepares an optical pulse in a coherent state añ∣ or a- ñ∣ at random,
corresponding to the key bit bA=0 (bB=0) or bA=1 (bB=1), respectively. Upon choosing theZ-basis,

Figure 1.The twin-fieldQKDprotocol introduced in [33].
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she (he) prepares an optical pulse in a phase-randomized coherent state:
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(ii) Both parties send their optical pulses to the untrusted node C via optical channels in a synchronized
manner.

(iii) The central node C applies a balanced beamsplitter to the incoming pulses and features two threshold
detectors at its output ports. The detector placed at the output port associated to constructive (destructive)
interference is denoted byDc (Dd).

(iv) The node C announces the measurement outcome kc (kd) of detector Dc (Dd), with kc=0 and kc=1
(kd=0 and =k 1d ) corresponding to a no-click and a click event, respectively.

(v) Alice and Bob form their raw keys with the bits bA and bB collected when both parties chose the X-basis and
nodeC reported a click in only one detector (kc+kd=1). Bobflips his bits bB for which the click occurred
inDd.

1.1. Secret key rate formula
The security analysis performed in [33] yields the following lower bound on the asymptotic key rateR:

 +{ } { } ( )R R Rmax , 0 max , 0 , 1.210 01

where the terms Rk kc d
, for (kc, kd)ä { (1, 0), (0, 1)}, are defined as:

= - -( )[ ( ) ( )] ( )R p p k k f h e h e, 1 , 1.3k k X c d k k k k
2 ph

c d c d c d

with = - - - -( ) ( ) ( )h x x x x xlog 1 log 12 2 being the binary entropy function, f the inefficiency function
associated to error correction, and p(kc, kd) the conditional probability that nodeC announces the outcome
(kc, kd)when both parties selected theX-basis. The probability p(kc, kd) can be expressed as:

å=
=

( ) ( ) ( ∣ ) ( )p k k p b b p k k b b, , , , , 1.4c d
b b

A B c d A B
, 0

1

A B

where p(bA, bB) is the joint probability of Alice and Bob preparing the coherent states a- ñ∣( )1 bA and a- ñ∣( )1 bB ,
respectively. According to the protocol description above, we have: = "( )p b b b b, 1 4 ,A B A B. ( ∣ )p k k b b, ,c d A B

instead denotes the conditional probability that nodeC announced ( )k k,c d given that Alice and Bob sent the
coherent states a- ñ∣( )1 bA and a- ñ∣( )1 bB , respectively. Sincewe consider the asymptotic key-rate scenario, we
assume that ( ∣ )p k k b b, ,c d A B coincides with the correspondent distribution observed by the parties.

Finally, the terms ek kc d
and ek k

ph
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in (1.3) represent the bit-error rate in theX-basis and an upper bound on the
phase-error rate, respectively. The former is defined as:
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2 and the yields Ynm
k k,c d are the conditional probabilities

that nodeC announces the outcome (kc, kd) given that Alice and Bob emitted an n-photon state and anm-
photon state, respectively. Note that the only yields contributing to (1.7) are those Ynm

k k,c d such that n+m is an
even number.

The yields Ynm
k k,c d are quantities that are not directly observed by the parties, however they can be estimated

either numerically or analytically with techniques based on the decoy-statemethod [38–40]. Herewe consider
the analytical approach. In particular, we assume that Alice and Bob have at their disposal either two, three or
four decoy intensity settings when choosing theZ-basis. To each further decoy intensity correspond additional
linear constraints on the yields, leading to tighter estimations of Ynm

k k,c d and thus to a higher key rate. However, a
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finite number of decoys only allows to derive non-trivial upper bounds3 on a limited number of yields in (1.7),
whereas the other yields are set to 1.Nevertheless, even bounding just four yields in a non-trivial way is enough
for the secret key rate to beat the point-to-point private capacity bound (PLOBbound) [19] at high losses (see
section 3). Also, as we showbelow, with four decoy intensity settings one can already obtain a secret key rate very
close to that achievable with infinite decoy intensity settings.

We remark that standard decoy-state-basedQKDprotocols require to lower bound the value of a few yields
(typically those associated to vacuumand single-photon pulses) [42], while the TF-QKDprotocol considered
here upper bounds the value of the phase-error rate (1.7) by upper bounding several yields. In particular, we
upper bound the yields Ynm

k k,c d for Î( )n m, , where  is a certain subset of Î{( )∣ }n m n m, , 0 which
depends on the number of decoys. Thanks to the derived upper bounds on the yields (whichwe shall denote by
Ynm

U k k, ,c d)we are able to estimate the phase error rate (1.7) as follows:
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2. Yields estimation

WhenbothAlice and Bob choose theZ-basis in the first step of the TF-QKDprotocol, they prepare phase-
randomized coherent states with intensities bA

2 and bB
2 , respectively, and send them toC. FromEve’s viewpoint,

she cannot distinguish this scenario from the case inwhich the parties prepared number states ñ∣n and ñ∣m
according to the Poissonian distributions b ( )P n

A
2 and b ( )P m

B
2 (see equation (1.1)), where m=m

m-( ) !P n ne n .

Therefore Eve’s attack can only depend on the number states ñ∣n and ñ∣m but not on the signals’ intensities bA
2

and bB
2 . As a consequence, the probability that Eve announces outcomes (kc, kd) only depends on the number of

photons (n,m) she received fromAlice andBob, i.e. the yields Ynm
k k,c d are independent of the decoy intensities

chosen by the parties.
For this reason, one can derive a set of linear constraints on the yields Ynm

k k,c d by expressing the experimentally

observed gains b bQk k,
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c d

A B
2 2

—which are defined as the conditional probabilities that nodeC announced the outcome

(kc, kd) given that Alice and Bob sent phase-randomized coherent states of intensities bA
2 and bB

2 , respectively—
in terms of the yields:
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As it is clear from (2.1), to every distinct pair of decoy intensities b b( ),A B
2 2 corresponds a new constraint on the

set of infinite yields { }Ynm
k k

n m
,

,
c d , which leads to tighter upper bounds and thus to a higher secret key rate. On the

other hand, having a large number of decoy intensities is experimentally demanding, hence the need to derive
the tightest possible bounds on the yields with a limited number of decoys.

In this sectionwe present a simple analyticalmethod to obtain tight bounds on the yields of largest
contribution4 in (1.7)—i.e. relative to the largest coefficients cn—when the parties use two intensity settings in
theZ-basis. It is basically aGaussian elimination-type technique but involving infinite-size coefficientmatrices.
In particular, the guiding principle that we use is to combine the constraints (2.1) so that in the resulting
expression the yield to be bounded is the onewith the largest coefficient, while the yields which had larger
coefficients in the initial constraints have been removed in the combination. However, in some cases it turns out
that is not possible to remove all the yields with larger coefficients than the one to be bounded, due to a lack of
decoy intensity settings (i.e. constraints). In other cases, wemanage to remove from the resulting expression
even some yields which had a smaller coefficient than the one to be bounded. Such a procedure can be readily
extended to the case of three and four decoy intensity settings. The results for these last two cases are presented in
appendices C andD, respectively.

Fromnowon, we assume that both optical channels linking the parties to the central nodeC have the same
transmittance h . Therefore the set of optimal decoy intensities bA

2 and bB
2 is the same for both parties [43] and

we define it as: {μ0,μ1}. In order to simplify the notation, we also omit themeasurement outcome (kc, kd) from

3
Every yield is a probability, thus it is trivially bounded by 1.

4
The samemethod can-in principle-be applied to any yield, however the limited number of decoy settings prevents fromobtaining a non-

trivial bound on every yield.
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the constraints given by (2.1). Hence the yields are subjected to the following four equality constraints:
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Belowwe derive upper bounds on the yields:Y00,Y11,Y02 andY20.

2.1. Upper bound on Y11

Consider the following combination of gains:
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The subscript inG11 indicates the yield that is going to be boundedwith this combination of gains. In (2.4) the
coefficients of the yieldsY0m andYn0, for any n andm, are identically zero. Thus (2.4) can be rewritten as:
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Weobserve that the coefficients thatmultiply the yieldsYnm are always positive, being the product of two factors
of equal sign. A valid upper bound forY11 is obtained considering theworst-case scenario for the other yields,
taking into account that (2.3) holds. Since all the yield’s coefficients carry the same sign in (2.5)—regardless of
the relation betweenμ0 andμ1—, the yieldY11 ismaximal when all the other yields areminimal. Thus the upper
bound onY11 is extracted by setting all the other yields to zero in (2.5):
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whereG11 is defined in (2.4).
We remark that by combining the gains as in (2.4), wemanage to obtain a closed expression forY11 inwhich

the contribution of all the yieldsY0m andYn0 is removed. Additionally,Y11 is now the yield with the ‘highest
weight’ in (2.5) since it has the largest coefficient. All the yield’s bounds presented in this work follow the same
philosophy.

2.2. Upper bound on Y02

Consider the following combination of gains:
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In (2.7) the coefficients of the yieldsYn0 andY1m are identically zero. Thus (2.7) can be rewritten as:
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Like in the derivation ofY11ʼs bound given by (2.6), a valid upper bound forY02 is obtained by considering the
worst-case scenario for the remaining yields in (2.8).More specifically,Y02 ismaximal when the yields whose
coefficient has the same sign asY02ʼs coefficient areminimal, and the yieldswhose coefficient has opposite sign
toY02ʼs aremaximal. Recalling constraint (2.3), thismeans settingY01 andY0m to zero andYnmwith n 2 and
m 1, to 1 in (2.8). In so doing, after rearranging the termswe obtain:
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2.3. Upper bound on Y20

Consider the following combination of gains:
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Avalid upper bound forY20 is obtained by setting to zero the yields whose coefficient has the same sign asY20ʼs
coefficient, and by setting to 1 the yields whose coefficient has opposite sign toY20ʼs. In the case of (2.12) this
means settingY10 andYn0 to zero andYnmwith n 1 and m 2, to 1. In this waywe obtain:
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which leads to the following upper bound onY20:
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2.4. Upper bound on Y00

Consider the following combination of gains:
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In (2.15) the coefficients of the yieldsY1m andYn1, for any n andm, are identically zero. Thus (2.15) can be
rewritten as:
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As usual we extract an upper bound onY00 by setting to their lowest value the yields whose coefficient has the
same sign asY00ʼs coefficient (which correspond to theYnmwith n m, 2), and by setting to theirmaximum
value the yields whose coefficient has opposite sign toY00ʼs coefficient (which correspond toY0m andYn0).We
know that every yield is trivially bounded by (2.3). However, in order to derive a tighter bound onY00, we employ
non-trivial bounds for all the yieldsYnmwith +n m 4 in (2.16). The upper bound onY00 thus satisfies:
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In this equation Yij
U are upper bounds and Yij

L are lower bounds. From (2.17)we obtain the following upper
bound onY00:
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whereYU
02 and YU

20 are given in (2.10) and (2.14), respectively. The expressions for YU
03 and YU

04 in (2.18) can be
found by starting from the same expression (2.8) that we used to derive YU

02, i.e.:

6

New J. Phys. 21 (2019) 073001 FGrasselli andMCurty



å åm m m m m m m m m m= - - - + - -
=

¥

=
=

¥
- -

!
( )( )

! !
( )( ) ( )G

Y

m

Y

n m
. 2.19

m

m m m

n
m

nm n n m m
02

1

0
0 1 0 1

2
1

0 1 0
1

1
1

0 1

From this expressionwe can extract an upper bound on any genericY0m as follows:
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wherewe employ the constraint (2.3). Similarly, the expressions for YU
30 and YU

40 are obtained starting from (2.12)
and deriving an upper bound on a genericYn0 as follows:
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At last, the expression for Y L
22 can be derived from the same combination of yields which led to YU

11. In particular,
from (2.5)wehave that:
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Then, by setting to 1 all the yields whose coefficient has equal sign toY22ʼs we obtain:
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Note that the upper bounds derived onY04 andY40 in this section could be used to improve the estimation of the
phase error rate given by (1.8). However, the resulting improvement in the secret key ratewould be extremely
small in this case andwe neglect it for simplicity.

3. Simulations

In this sectionwe provide plots of the secret key rate given by (1.2) against the overall loss ( h-10 log10 )measured
in dB of the two optical channels linkingAlice and Bob to nodeC. The channelmodel we use to simulate the

quantities that would be observed experimentally—i.e. the gains ( ∣ )p k k b b, ,c d A B and b bQk k,
,

c d

A B
2 2

—is given in
appendix A [33]. It accounts for: the loss in the optical channels togetherwith the non-unity detection efficiency
ofDc andDd (altogether described by the parameter η), the polarization and phasemisalignments introduced by
the channel and a dark count probability pd in each detector. For concreteness, in all the plots belowwe assume
fixed polarization and phasemisalignments of 2%, independently of the channel loss. Note that, as pointed out
in [33], the TF-QKDprotocol analyzed in this work is quite robust against phasemismatch. This is so because
phasemisalignment only affects the quantumbit error rate but not the phase error rate.

For illustration purposes every plot is obtained for three different values of the dark count rate of the
detectors, pdä {10−6, 10−7, 10−8}. The plots are obtained by numerically optimizing5 the secret key rate—for
every value of the loss—over the signal intensity (α2) and over one decoy intensity, while for simplicity the other
decoy intensities are fixed to near-to-optimal values for all values of the overall loss.More specifically, we
preliminarily performed an optimization of the key rate over thewhole set of intensity settings and noticed that
most of the decoy intensities are roughly constant with the loss and tend to be as low as possible. For instance, if
we consider the case with two decoy intensity settings (μ0 andμ1, withμ0>μ1), we observe that the optimal
value for theweakest decoyμ1 is basically the lowest possible for any value of the loss. In practice, however, it
might be difficult to generate veryweak signals due to the finite extinction ratio of a practical intensitymodulator
[44], sowefixμ1 to a reasonable small value from an experimental point of view, sayμ1=10−5 [34, 36], while
keeping the optimization over the remaining intensities. Similarly, if we consider the case with three decoy
intensity settings (μ0,μ1 andμ2, withμ0>μ1>μ2), wefind that the optimal values for theweakest decoysμ1
andμ2 are also the lowest possible for any value of the loss.Moreover, in this last case, we show in appendix B
that the systemperformance remains basically unchanged if one increases the value of theweakest intensity to
sayμ2=10−3, whichmight be even easier to implement experimentally than 10−5. Thus, we fixμ2=10−3 and
we differentiate it fromμ1 by, for example, one order ofmagnitude (i.e. we takeμ1=10−2). The same argument

5
The optimization is carried out by using the built-in function ‘NMaximize’ of the softwareWolframMathematica 10.0.
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holds in the casewith four decoy intensity settings (see appendixB), wherewefixμ2=10−3,μ1=10−2, and
μ0=10−1.We remark, however, that ourmethod is general in the sense that the analytical upper boundson the
yields canbe evaluatedwith anydesired combinationof intensity settings,whilewe select these particular decoy
intensity values only for illustrationpurposes. Also, let us emphasize that the optimal decoy intensity values in the
finite-key regimemight bedifferent from the valuesmentioned above. The analysis of thefinite-key regime is,
however, beyond the scopeof this paper. Importantly, it turns out that the resulting asymptotic secret key rates in
these scenarios are almost indistinguishable from those obtainedbyoptimizing the value of all the intensity settings.

The optimal values of the signal and decoy intensities which are optimized as a function of the loss are also
plotted in this section. In this regard, we also study how the key rate is affectedwhen the intensities are subjected
tofluctuations around their optimal values in section 3.4.

3.1. Two decoy intensity settings
Infigure 2we plot the secret key rate against the overall loss for the case where Alice andBob use two decoy
intensity settings each. The solid lines are obtained by bounding from above the yieldsY00,Y02,Y20 andY11 by
means of the expressions derived in section 2 and by optimizing the rate over the signal intensityα2 and the
decoy intensityμ0, while the other decoy intensity is fixed toμ1=10−5 as explained above. The optimal values
forα2 andμ0 are shown infigures 3(a) and (b), respectively. The dashed lines are instead obtained by employing
the exact expression of the yields6 which is given by (A.6) for the channelmodel considered. This represents the
ideal scenario inwhich the parties have an infinite number of decoys throughwhich they can estimate all the
yields precisely. Note that in order to obtain the dashed lines infigure 2we use the exact expression of the yields
Ynm only for n m, 12 while we set the other yields to 1. This is enough to basically reproduce the behavior of
the secret key ratewhen all the infinite number of yields are computed via the channelmodel’s formula given by
(A.6), as argued in [33]. The dashed lines are only optimized over the signal intensity, since the yields are directly
given by the channelmodel. Finally, we also insert infigure 2 the PLOBbound on the secret key capacity [19],
which reads as follows in terms of the transmittance η :

h h= - -( ) ( ) ( )K log 1 . 3.12

Infigure 2we observe that even bymeans of just two decoy intensity settings the key rate can beat the PLOB
bound, provided that the dark count rate is pd10−7. This happens becausewith two decoys the parties can
already non-trivially estimate the yieldsYnmwith +n m 2 as we showed in section 2, and these yields are the
most relevant terms in the phase-error rate formula given by (1.7) [33]. Note that we did not estimate the yields
Y01 andY10 since only the yieldsYnmwith n+m an even number contribute to the phase-error rate (1.7).

However, figure 2 also shows that there is a sensible gap between the rates where the yields are estimatedwith
two decoys (solid lines) and the best possible rates one could achieve (dashed lines) if all the yieldswere known.
This clearly indicates that, although two decoys allow to estimate the yields of largest contribution in the phase-
error rate, such estimations are not sufficiently tight and the ability to estimate a larger number of yields would
increase the performance of the protocol.

Figure 2. Secret key rate in logarithmic scale as a function of the overall loss in the channels Alice-C andBob-C for three different dark
count rates (10−6 green, 10−7 red, 10−8 blue). The solid lines correspond to the casewhere the yieldsY00,Y02,Y20 andY11 are estimated
bymeans of two decoy intensity settings through the bounds presented in section 2 and the key rate is optimized over the signal
intensityα2 (seefigure 3(a)) and the decoy intensityμ0 (seefigure 3(b)). The other decoy intensity,μ1, isfixed toμ1=10−5. The
dashed lines assume that all the yields are known from the channelmodel and the secret key rate is optimized overα2. That is, these
lines show themaximumvalue of the secret key ratewhich could be achievedwith an infinite number of decoy intensity settings and
the security analysis reported in [33]. The solidmagenta line illustrates the PLOBbound [19]. The plot shows that in the presence of a
dark count rate of atmost about pd=10−7 the protocol can beat the PLOBbound evenwith just two decoy intensity settings.

6
By ‘exact expression’wemean that if the experimental apparatus were accurately described by the channelmodel in appendix A, then the

yields associated to that experimental setupwould be precisely predicted by (A.6).
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By considering figure 3 and thefixed value of the decoy intensityμ1, one notices that the optimal intensities
are rather small and thus, in a real experimental implementation, intensity fluctuationsmight be an issue. In
section 3.4we address this problemby studying how the key rate is affected under intensity fluctuations and
show that forfluctuations up to about 40% the change in the key rate performance isminimal.

Also, we notice that the optimal values of the signal intensityα2 (seefigure 3(a)) and the decoy intensityμ0

(see figure 3(b)) are almost constant with the loss, for losses20 dB. Thismeans that in a scenario where the loss
in the quantum channels varies dynamically with timewithin a reasonable interval, one could stillfix the signal
intensity and both decoy intensities to constant values which happen to be close to the optimal ones. This
argument also holds in the case of three (see section 3.2) and four decoy intensity settings (see section 3.3).

3.2. Three decoy intensity settings
Infigure 4weplot the secret key rate against the overall loss for the casewhereAlice andBobuse three decoy intensity
settings each.The solid lines are obtainedbybounding fromabove the relevant yields +Y n msuch that 4nm (i.e.
weupperbound the yieldsY00,Y02,Y20,Y11,Y13,Y31,Y04,Y40 andY22). The exact expressions for thedifferent upper
boundson the yields canbe found in appendixC, andweomit themhere for simplicity. The solid lines are optimized
over the signal intensityα2 and thedecoy intensityμ0,while theweakest decoy intensities arefixed for simplicity to
μ1=10−2 andμ2=10−3. As explained above, the resulting secret key rate in this scenario is almost

Figure 3.Optimal values of the signal and decoy intensities a2 andμ0 for the TF-QKDprotocol [33]when the parties have at their
disposal two decoy intensity settings to estimate the yields. (a)Optimal values of the signal intensityα2 as a function of the loss between
Alice and Bob for three different dark count rates. These values are obtained from the optimization of the secret key rate (solid lines) of
figure 2. (b)Optimal values of the decoy intensityμ0 as a function of the loss betweenAlice and Bob for three different dark count
rates. These values are obtained from the optimization of the secret key rate (solid lines) of figure 2. The other decoy intensity is set to:
μ1=10−5.

Figure 4. Secret key rate in logarithmic scale as a function of the overall loss in the channels Alice-C andBob-C for three different dark
count rates (10−6 green, 10−7 red, 10−8 blue). The solid lines correspond to the casewhere the yieldsY00,Y02,Y20,Y11,Y13,Y31,Y04,Y40
andY22 are estimated bymeans of three decoy intensity settings through the bounds presented in appendix C and the key rate is
optimized over the signal intensityα2 (see figure 5(a)) and the decoy intensityμ0 (see figure 5(b)). The other decoy intensities arefixed
toμ1=10−2 andμ2=10−3. The dashed lines assume that all the yields are known from the channelmodel and the secret key rate is
optimized overα2. That is, these lines show themaximumvalue of the secret key rate which could be achievedwith an infinite number
of decoy intensity settings and the security analysis reported in [33]. The solidmagenta line illustrates the PLOBbound [19]. The plot
shows that alreadywith three decoy intensity settings the key rate (solid lines) is sensibly close to the ideal one inwhich all the yields are
known (dashed lines), meaning that the contribution of the other yields trivially bounded by 1 in the phase error rate isminimal.
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indistinguishable from that obtainedbyoptimizing over all the intensity settings.Theoptimal values forα2 andμ0 are
shown infigures 5(a) and (b), respectively. Thedashed lines are againobtainedby employing the exact expressionof
the yields givenby the channelmodel (A.6) and coincidewith thoseplotted infigure 2.

Weobserve infigure 4 that theuse of three decoys yields a significant improvement in theprotocol’s
performancewith respect to the two-decoys case (seefigure 2). As amatter of fact, infigure 4 the solid lines are almost
overlapping thedashed lines formost values of the channel loss. This is due to the fact thatwith three decoys the
parties constrain the yieldswithnine independent equations (instead of four equations as in the two-decoys case),
which enable a tighter estimationofY Y Y, ,00 02 20 andY11 and thenon-trivial estimationoffive additional yields.

Moreover, in the case of three decoys the optimal signal intensityα2 (see figure 5(a)) is roughly double the
value of the correspondent intensity when using two decoys (see figure 3(a)). The reason for this is connected to
the role ofα2 in the protocol’s key rate. In fact, the prefactor p(kc, kd)with kc+kd=1 of the key rate formula
given by (1.3) increases for increasingα2: the higher themean number of photons sent by the parties (within
certain limits) the higher the probability of having a click in one of the two detectors. On the other hand,
increasingα2 excessively also affects the phase-error rate. Note that by setting some yields to 1 in the phase error
rate formula given by (1.7)we give rise to addends like c2n c2m and + +c cn m2 1 2 1which increase for increasingα

2,
leading to an overall increase of the phase-error rate and thus decrease of the key rate. The optimal value ofα2 is
thus given by the trade-off between the effect of the prefactor p(kc, kd) and that of the terms c2n c2m and

+ +c cn m2 1 2 1. Now, by noting that the contribution of the therms c2n c2m and + +c cn m2 1 2 1decreases for increasing n,
m, we understand that their negative effect on the key rate is diminished in the case of three decoys sincewe non-
trivially estimatemore yields, i.e. a lower number of yields is set to 1. This allowsα2 to acquire higher values with
respect to the two-decoys case, as we observed infigure 5(a).

Finally we point out that such an argument does not apply to the discussion about the optimal value of the
decoy intensityμ0 in the case of two and three decoys. As amatter of fact, the key rate does not depend on the
decoy intensities in the sameway as on the signal intensity: the decoy intensities only appear in the yield’s bounds
inserted in the phase-error rate. Additionally, the analytical bounds on the yields when using two or three decoys
cannot be compared in a straightforwardway.Nonetheless we observe a similar behavior of the optimalμ0 for
two (see figure 3(b)) and three decoys (see figure 5(b)).

3.3. Four decoy intensity settings
Infigure 6weplot the secret key rate against the overall loss for the casewhereAlice andBobuse four decoy intensity
settings each. Like in the three-decoys case, the solid lines are obtainedbybounding fromabove the yieldsY00,Y02,
Y20,Y11,Y13,Y31,Y04,Y40 andY22 bymeansof four decoys. Inparticular, for the yieldsY00,Y02,Y20,Y11 andY22weuse
the exact same analytical boundsderivedwith three decoys since they are tight enough, and theuse of a fourthdecoy
intensitywould justmake themmore cumbersomewithout providing a significant improvement of the resulting
secret key rate. For the remaining four yieldswe insteadderived tighter boundswith thehelpof the fourth intensity
μ3 (see appendixD). The solid lines are obtainedbyoptimizing the rate over the signal intensityα2 and the fourth
decoy intensityμ3. It turns out that the optimal values for the other decoy intensities are basically the lowest possible

Figure 5.Optimal values of the signal and decoy intensitiesα2 andμ0 for the TF-QKDprotocol [33]when the parties have at their
disposal three decoy intensity settings to estimate the yields. (a)Optimal values of the signal intensityα2 as a function of the loss
betweenAlice and Bob for three different dark count rates. These values are obtained from the optimization of the secret key rate (solid
lines) offigure 4.Weobserve that the optimal signal intensity is roughly doubledwith respect to the two-decoys case (figure 3(a)). (b)
Optimal values of the decoy intensityμ0 as a function of the loss betweenAlice and Bob for three different dark count rates. These
values are obtained from the optimization of the secret key rate (solid lines) offigure 4. The other decoy intensities are set to:
μ1=10−2 andμ2=10−3.
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for any value of the loss, so, as explained above, for simplicitywefix the smallest one to an experimentally reasonable
small value (sayμ2=10−3), and thenwedifferentiate it from theother twodecoys,μ1 andμ0, by oneorder of
magnitude, i.e. we takeμ1=10−2 andμ0=10−1. Importantly, this decisionhas aneglectable effect on the resulting
secret key rate,when compared to that obtainedbyoptimizing over all intensity settings. Theoptimal values forα2

andμ3 are shown infigures 7(a) and (b), respectively. The dashed lines are the same as infigures 2 and4.
With fourdecoys (seefigure 6) thekey rates basically reproduces the ideal ones (dashed lines) inwhich all the yields

areknown,with the gapbeing atmaximumof1dBat thevery endof theplot lines (i.e. in theveryhigh loss regime).
This demonstrates that there is noneed tobound further yields than thenine yieldswebounded in the cases of three and
fourdecoys.Of course, the tighter estimationof the yieldsY13,Y31,Y04 andY40 achievedwith fourdecoys results in an
improvementof thekey ratewith respect to the caseof threedecoys (seefigure4), especially in the regionofhigh losses.

Concerning the optimal signal intensity (see figure 7(a)), we notice a slight increase with respect to the three-
decoys case (see figure 5(a)) due to the tighter estimation of some yields in the phase-error rate formula, which
allows their correspondent coefficients to acquire a slightly higher value under an increase ofα2.

Finally, the reasonwhy the optimalμ3 plot (see figure 7(b)) looks quite different (with values above 1) from
the optimalμ0 plots for the cases of two and three decoys (see figures 3(b) and 5(b)) is the following. In the TF-
QKDprotocol considered, themost important yields (i.e. thosewith a bigger impact on the resulting phase error

Figure 6. Secret key rate in logarithmic scale as a function of the overall loss in the channels Alice-C andBob-C for three different dark
count rates (10−6 green, 10−7 red, 10−8 blue). The solid lines correspond to the casewhere the yieldsY00,Y02,Y20,Y11 andY22 are
estimated bymeans of three decoys through the bounds presented in appendix C (i.e. for simplicity herewe disregard the information
provided by the additional fourth decoy intensity setting) andY13,Y31,Y04 andY40 are estimatedwith four decoys via the bounds in
appendixD. The key rate is optimized over the signal intensityα2 (seefigure 7(a)) and the decoy intensityμ3 (seefigure 7(b)), while the
other decoy intensities arefixed toμ0=10−1,μ1=10−2 andμ2=10−3. The dashed lines are optimized overα2 and assume that all
the yields are known from the channelmodel. They correspond to themaximumvalue of the secret key rate which could be achieved
with an infinite number of decoy intensity settings. The solidmagenta line illustrates the PLOBbound [19]. The plot indicates that the
tighter estimation of the yieldsY13,Y31,Y04 andY40 with respect to the case of three decoy intensity settings is enough to basically
reproduce the ideal scenario inwhich all the yields are known (dashed lines).

Figure 7.Optimal values of the signal and decoy intensitiesα2 andμ3 for the TF-QKDprotocol [33]when the parties have at their
disposal four decoy intensity settings to estimate the yields. (a)Optimal values of the signal intensityα2 as a function of the loss
betweenAlice and Bob for three different dark count rates. These values are obtained from the optimization of the secret key rate (solid
lines) offigure 6. (b)Optimal values of the decoy intensityμ3 as a function of the loss betweenAlice and Bob for three different dark
count rates. These values are obtained from the optimization of the secret key rate (solid lines) of figure 6. The other decoy intensities
are set to:μ0=10−1,μ1=10−2 andμ2=10−3. The difference between this plot and the optimalμ0 plots (see figures 3(b) and 5(b))
in the case of two and three decoys is due to the fact that, unlikeμ0, the intensityμ3 does not appear in all the yield’s bounds since we
used the fourth decoy just for boundingY13,Y31,Y04 andY40.
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rate) are those associated to pairs of pulses with zero orwith a very lownumber of photons. It is therefore very
important to be able to estimate these yields as tightly as possible. For this, we have that the optimal intensitiesμ0

andμ1 (μ0,μ1 andμ2) for the case with two (three) decoys arewell below 1, just like in standard decoy-state QKD
protocols [39, 40]. However, as explained above, herewe use the intensityμ3 to improve the upper bounds for
the yieldsY13,Y31,Y04 andY40. That is, the intensityμ3 is only used to estimate yields associated to pairs of pulses
with a total number of photons equal to four. Thus, it is natural that the optimal value ofμ3 is not too low and
greater than 1.

3.4. Intensityfluctuations
Herewe investigate the robustness of the TF-QKDprotocol against intensity fluctuations thatmay occur in the
preparation of the pulses sent by Alice and Bob. This ismotivated by the fact that the optimal signal and decoy
intensities that the parties should adopt in order tomaximize the key rate for a given loss are quite small, thus the
effect of intensity fluctuationsmight be an issue in practice. On the other hand, we also note that the optimal
value of a given decoy or signal intensity is either constant or varies verymoderately with the loss.

Here we consider the simple scenario inwhich the intensity fluctuations are symmetric, i.e. we assume that
the intensity of Alice’s signalmatches perfectly with the intensity of Bob’s signal. Or, to put it in other words, we
consider that Alice’s and Bob’s signals suffer from the same intensity fluctuations and thus their intensities are

Figure 8.Comparison of the secret key rate with optimal signal and decoys intensities (dashed lines, computed in section 3)with the
secret key rates affected by increasing intensity fluctuations (solid lines): 30%, 40%and 50% (brighter colors; right to left).We assume
that thefluctuations affect each decoy intensity and the signal intensity as well. The plots show that the TF-QKDprotocol is quite
robust against intensity fluctuations, and that its robustness increaseswith the number of decoys.
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equal. Thismeans that such analysis is only valid to evaluate auto-compensating TF-QKD set-ups like, for
instance, the one introduced in [36]. It cannot be used however to analyze set-upswheremore than one laser
source is used [34, 35]. Althoughwe do not expect a dramatic change of our results when asymmetric intensity
fluctuations are considered in the latter case, specially if they are not too large.

Also,we assume that the signal and all the decoy intensities suffer fromafluctuationofmagnitude 30%, 40%or
50%around their optimal value. Thismeans for example that, for afluctuation say of 30%, the signal intensityα2

and all the decoy intensitiesμkfluctuate in the intervals:  a a a0.7 1.3opt
2 2

opt
2 and  m m m0.7 1.3k k k

opt opt,

respectively,where aopt
2 and mk

opt represent theoptimal values.We then account for theworst-case scenario by
numericallyminimizing the key rate over all the intensities constrained in their respectivefluctuation interval.
Only in thiswaywe can still guarantee that the resulting key rate is associated to a secure protocol.

The results of this study are given infigure 8.Herewe plot the original key rates—i.e. withoutfluctuations of
the signal and decoy intensities—as dashed lines7 and the key rates affected by intensityfluctuations as solid
lines. The plots are given for the same dark count rates andmisalignments used in section 3, in the case of two,
three and four decoy intensity settings. The color of the solid lines becomes brighter for increasing fluctuation
magnitude.

We observe that the performance of the protocol is considerably affected by intensity fluctuations in the case
of two decoys, while the effect becomes almost negligible for three and four decoys. The reason for this lies in the
fact that the tightness of the yield’s bounds has a stronger dependence on the value of the decoy intensities when
the number of decoys—and thus constraints on the yields—is low. In other words, if the parties have at their
disposal a larger number of decoys, they can properly combine the numerous constraints on the yields and
obtain inherently tight bounds, i.e. bounds that are tight regardless of the actual values of the intensities
involved. If, instead, the parties have few decoys, say two, then the bounds they derive on the yields can be tight
or loose depending on the values assigned to the decoy intensities, since the constraints on the yields are fewer.

In conclusion, in the case of two decoys the parties can tolerate intensity fluctuations up to 40%,which
correspond to a decrease in the protocol’s key rate especially in the high-loss region, quantified by a reduction of
about 5–6 dB of themaximum tolerated loss8. Remarkably, with three decoys the decrease of themaximum
tolerated loss would be under 5 dB forfluctuations up to 50%. Finally, for four decoys the protocol’s
performance remains almost the same forfluctuations up to about 50% around the optimal values (except when
the dark count probability is the smallest considered: pd=10−8).We deduce that the TF-QKDprotocol
introduced in [33] seems to be quite robust against intensityfluctuations.

4. Conclusions

In this paper we have investigated in detail the performance of the TF-QKDprotocol presented in [33] in the
realistic scenario of afinite number of decoy intensity settings at the parties’ disposal. Indeed, the protocol
requires that Alice and Bob use the decoy-statemethod [38–40] to estimate the phase-error rate by upper
bounding certain yields. UnlikemostQKDprotocols which employ suchmethod, in this case the protocol’s key
rate depends-in principle-on infinitelymany yields and it is essential to upper bound (rather than lower bound)
their values. Clearly, themore yields the parties tightly upper bound, the better the protocol’s performance is.
We have introduced an analyticalmethod to perform such estimationwhenAlice andBob use two, three or four
decoy intensity settings each. The yield’s analytical bounds provided in this work imply a fully-analytical
expression for the protocol’s secret key rate, which is very convenient for performance optimization (e.g. in the
finite-key scenario). Also, we remark that the secret key rates obtainedwith our analytical bounds basically
overlap those achievable with numerical tools like linear programming formost values of the overall loss, which
confirms that the analytical approach is actually quite tight.

In so doing, we have shown that the TF-QKDprotocol can beat the PLOBbound [19] evenwith just two
decoys for reasonable values of the setup parameters, which include: the loss, the dark count rate, the
polarizationmisalignment and the phasemismatch. Furthermore the plots assuming four decoys demonstrate
that one can approximately achieve the best possible performance by tightly estimating only nine yields. The
optimization of the key rate over the signal and decoy intensities indicates that their optimal values are all either
constant orweakly-dependent on the loss of the channel. Thismeans that the protocol is particularly suitable for
contexts where the channel loss varies in time, for instance in the scalableMDI-QKDnetworks conceived in
[43]. Finally we have investigated the scenariowhere the intensities of the optical states prepared byAlice and
Bob are affected by fluctuations and observed that the protocol seems to be very robust against such phenomena.

7
The dashed lines of the key rateswithout fluctuations correspond to the solid lines in figures 2, 4 and 6.

8
By ‘maximum tolerated loss’wemean the loss threshold abovewhich the protocol’s key rate becomes roughly zero.

13

New J. Phys. 21 (2019) 073001 FGrasselli andMCurty



Anatural continuation of this workwould take into account the finite-key effects due to the finite number of
pulses sent by the parties to the central relay. This could be done by combining the results presented in this paper
with thefinite-keys estimation techniques used in [41].
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AppendixA. Channelmodel

The channelmodel that we employ to simulate the gains that would be observed experimentally in theX-basis
(i.e. the probabilities ( ∣ )p k k b b, ,c d A B ) andZ-basis (i.e. the probabilities Qk k

k l
,
,

c d
) is taken from [33]. In all the

expressions of this sectionwe assume kc+kd=1.
In particular, a beam splitter of transmittance h accounts for the loss in thequantumchannel linkingAlice

(Bob) to nodeC and for the non-unity detection efficiency of detectorsDc andDd. Thepolarizationmisalignment
introduced by the channel Alice-C (Bob-C) ismodeledwith a unitary operationmapping thepolarization input
modes †ain ( †bin) to the orthogonal polarization outputmodes †aout and ^

†aout ( †bout and ^
†bout ) according to:

q q - ^
† † †a a acos sinA Ain out out ( q q - ^

† † †b b bcos sinB Bin out out ), for an angle θA (θB).Moreover, the phase
mismatch betweenAlice andBob’s signals arriving at nodeC ismodeled by shifting the phase ofBob’s signals by an
anglef=δ π, for a certain parameter δ. Finally themodel considers that both detectors are affected by a dark
count probability pd, which is independent of the signals received andhas the same value for both detectors.

With this setup, the gains in theX-basis can bewritten as:

= - +g-( ∣ ) ( )[ ( ∣ )] ( )p k k b b p p q k k b b, , 1 e , , , A.1c d A B d d c d A B
2

where g ha= 2 (withα being the amplitude of the signal states) and

=
- Å Å =
- Å Å =

g f q g

g f q g

- - -

- + -
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e e if 0
A.2c d A B

c A B

c A B

1 cos cos 2

1 cos cos 2

with θ=θA−θB. Starting from (A.1), one can readily compute the probability p(kc, kd) and the bit-error rate
ek k,c d

bymeans of equations (1.4) and (1.5), (1.6), respectively:

= - + - -g f q g f q g g- - -( ) ( )( ) ( ) ( )p k k p p,
1

2
1 e e e 1 e , A.3c d d d

cos cos cos cos 2 2

=
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,
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The gains in theZ-basis instead read:

hm m q= - - +h m m h m m- + - +( )[( ) ( )] ( )( ) ( )Q p p I1 1 e e cos , A.5k k
k l

d d k l,
, 2

0c d
k l k l

where the function =
p

+ -∮( ) ( )( )I z t te dz t t1

2 i
2 1 1 is themodified Bessel function offirst kind.

In the simulations shown in section 3we compare the key rate computedwith our analytical bounds on the
yieldswith the key rate evaluatedwith the exact expressions of the yields, i.e. the expressions obtained directly
from the channelmodel. According to the above channelmodel, the yields read:

h= - - - ++( )[( )( ) ] ( )Y p p y1 1 1 , A.6nm
k k

d d
n m

nm
k k, ,c d c d
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To conclude, we remark that all the quantities entering the key rate formula (1.2)—i.e. (A.3), (A.4) and the gains
(A.5) indirectly through the yield’s bounds—are symmetric under the swap «k kc d due to the symmetries of
the channelmodel.
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In all the simulations shown in section 3wefix both polarization and phasemisalignments to 2%,which
means that: q q= - = arcsin 0.02A B and δ=0.02.

Appendix B. Stronger andweaker decoy intensities

As explained in section 3, the optimal key rates are basically not affected if their optimization is only performed
over the signal intensity (α) and over one decoy intensity, while having the remainingweaker decoy intensities
fixed to near-to-optimal values for all losses. Infigure B1, we compare the optimal key rate that the parties can
achievewhen fixing their weaker decoy intensities to substantially different values, in the case of three (left) and
four (right) decoy intensity settings. In particular, the solid lines are the same plotted infigures 4 and 6 for the
three- and four-decoys case, respectively, i.e. they are obtained by fixing theweaker decoy intensities to
m = -102

3 andμ1=10−2 (three decoy intensity settings) and toμ2=10−3,μ1=10−2 andμ0=10−1 (four
decoy intensity settings). The dotted–dashed lines, instead, are obtained by fixing theweaker intensities to values
which are two orders ofmagnitude lower, that isμ2=10−5 andμ1=10−4 in the case of three decoy intensity
settings andμ2=10−5,μ1=10−4 andμ0=10−3 in the case of four decoy intensity settings. Clearly, the
optimal key rates are basically not affected by employing relatively stronger pulses (thosewithμ2=10−3 as the
weakest intensity) for theweaker decoy intensity settings. Such stronger pulses could bemore easily
implemented experimentally and, for this, have been chosen in our simulations.

AppendixC. Yield’s boundswith three decoys

Herewe derive analytical upper bounds on the yields appearing in (1.7), following the same lines of section 2. In
this case we assume that Alice and Bob can prepare their phase-randomized coherent pulses with three different
intensity settings: {μ0,μ1,μ2}, which are the same for both parties. This choice is optimal sincewe assumed that
the two optical channels linking the parties to the central nodeC have equal transmittance h [43].

Thewhole set of infinite yields is subjected to the following nine equality constraints:

å m mº = Îm m+

=

¥
˜

! !
{ } ( )Q Q

Y

n m
k le , 0, 1, 2 , C.1k l k l

n m

nm
k

n
l
m, ,

, 0

k l

and to the inequality constraints given by (2.3).
We derive bounds on the yieldsY00,Y11,Y02,Y20,Y22,Y13,Y31,Y04 andY40.

C.1.Upper bound on Y22

Consider the following combinations of gains inwhich all the termsY1m andYn1 are removed (i.e. their
coefficients are equal to zero):

Figure B1.Comparison of the optimal key rates achievable with different fixed values of theweaker decoy intensities. The two cases
analyzed (solid and dotted–dashed lines) are almost indistinguishable. (a)Optimal key rate as a function of the overall loss when the
parties use three decoy intensity settings, for three different values of the dark count rate (pd). The solid lines are obtained by fixing the
weaker decoy intensities to m = -102

3 andμ1=10−2, while the dotted–dashed lines are obtained by fixing the same intensities to
μ2=10−5 andμ1=10−4. The dashed lines assume that all the yields are known from the channelmodel and themagenta line is
the PLOBbound [19]. Note that the green dotted–dashed lines and green solid lines (pd=10−6) are almost perfectly overlapping.
(b)Optimal key rate as a function of the overall loss when the parties use four decoy intensity settings, for three different values of
the dark count rate (pd). The solid lines are obtained by fixing theweaker decoy intensities toμ2=10−3,μ1=10−2 andμ0=10−1,
while the dotted–dashed lines are obtained byfixing the same intensities toμ2=10−5,μ1=10−4 andμ0=10−3. The dashed lines
assume that all the yields are known from the channelmodel and themagenta line is the PLOBbound [19].
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where the superscripts in G k l
22

, indicate which intensities are involved, while the subscripts indicate the yield that
is going to be bounded.

Wenow combine G G,22
0,1

22
0,2 and G22

1,2 with arbitrary real coefficients c0 and c1 and impose that the resulting
expression has the yieldsY0m andYn0 removed as well:
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Note that the linear combination above is already themost general for our needs. As amatter of fact, for every
linear combination of G G,22

0,1
22
0,2 and G22

1,2 one can always factor out the coefficient in front of G22
0,1, as far as it is

not zero.However, if the particular combination of gains which removes the termsY0m andYn0 has a null
coefficient in front of G22

0,1, for symmetry reasons therewould also exist another combination—that also
removes the yieldsY0m andYn0—with a null coefficient in front of say G22

0,2, and this one could be found in our
case given by (C.3).

For Y m0 andYn0 to be removed in (C.3) it suffices that:
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Substituting (C.6) and (C.7) back into (C.3) andmultiplying both sides byμ2, we get an expressionwhere all the
termsY0m,Y1m,Yn0 andYn1 are removed andwhere the termY22 gives the largest contribution:
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In order to extract a bound forY22 we need to recast the yield’s coefficients in such away that their sign becomes
manifest. Each termof the sum in (C.8)may be recast as follows:
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Wecannow rewrite factorA22 as:

å å

å å

å

å

å å

å

m m m m m m m m m m m m m

m m m m m m m m m m m m m m

m m m m m m m m m m

m m m m m m m m m m m
m

m

m m m m m m m m

m m m m m m m m

m m m m m m m

= - - - + -

= - - - + -

= - - +

= - + - + -

= - - - + -

= - - -

= - - -

- - -

-

=

-
- -

=

-
- -

=

-
- -

=

-
- -

=

-
- - - -

-

=

-
- -

=

-
- -

=

-
- -

=

-
- - - -

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( ) [ ( ) ( )] ( )

( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( )

( )( )

( )( ) ( ) ( )

A m, , ,

. C.12

m m m m m

m

k

m
m k k

j

m
m j j

m

k

m
m k k

j

m
m j j

m

k

m
k m k m k

m

m m

k

m
k m k

k

m
k m k

j

m
j m j

k

m
k m k m k

22 0 1 2 1 1
1

0 2 0 2 0 2 0
1

2
1

1 1
1

0 2 0 2
0

1

0
1

2 0 2 0 2
0

2

0
2

2

0 2 1 1
0

1

0
1

2 0 2
0

2

0
2

2

0 2 1
0

1

2 1 0
1

0 2 0
2

0 2
2

1

0

0 2 2 1
0

1

2 0
1

2 1

0 2 2 1
0

1

2 0
1

0

1

2 1
1

0 2 2 1
0

1

2 0
1

1
1

Of course we can employ this expression also for m m m( )A n, , ,22 0 1 2 , under the substitution m n.Wewill
apply this consideration fromnowon to similar scenarios. By substituting (C.12) into (C.10), we get thefinal
expression for each term of the sum in (C.8):
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That is, the sign ofYnmʼs coefficient is independent of n andm and it is the same for all terms in (C.8) (note that
the product of the two sums in (C.13) is always positive). Thus a valid upper bound forY22 is obtained by setting
all the other yields to zero in (C.8), except forY22.We obtain:
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which implies the following expression for the upper bound onY22:
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We remark that the bound given by (C.15) is not validwhen any of the intensitiesμ0,μ1 orμ2 is equal to zero. As
amatter of fact, in any of these cases the starting expression given by (C.8) becomes trivial. However, inmost
practical situations, due to thefinite extinction ratio of amplitudemodulators, none of the decoy intensities is
actually equal to zero.

C.2.Upper bound on Y11

Consider the following combinations of gains inwhich all the termsY0m andYn0 are removed:
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Wenow combine G G,11
0,1

11
0,2 and G11

1,2 with arbitrary real coefficients c0 and c1 and impose that the resulting
expression has the yieldsY2m andYn2 also removed:
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ForY2m andYn2 to be removed it suffices:
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Substituting these terms back into (C.17) yields a combination of gains inwhich the termsY0m,Yn0,Y2m andYn2
are removed:
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In order to get a valid upper bound forY11 we need to determine the signs of the coefficients of the remaining
yields.We start by recasting each termof the sum in (C.21) corresponding to theYnm, with n m, 3, as follows:
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where the factor  "( )F m m0, 3. Substituting (C.24) back into (C.22), we recast each termof the sum in
(C.21) corresponding to theYnm, with n m, 3, as:
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so that its sign ismanifestly dependent on the factor m m m m- -( )( )0 2 1 2 .
In a similar fashion, one can rewrite each termof the sum in (C.21) corresponding to theY1m, with m 3,

as:
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thus deducing that this expression has opposite signwith respect to that given by (C.25). Same holds forYn1,
since it can be shown that its coefficient is exactly (C.26)with thesubstitution m n.

Finally, by showing that the term corresponding toY11 in (C.21) can be factorized as:
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one concludes that this expression has the same sign as that given by (C.25).
Putting together these considerations into (C.21), a valid upper bound onY11 is obtainedwhen the yields

Ynm, with n m, 3, are set to zero and the yieldsY1m andYn1 are set to theirmaximumallowed value. Since in
appendices C.5 andC.6we derive upper bounds onY13 andY31 (see (C.65)and (C.73)), we can employ them in
(C.21) instead of trivially bounding these yields with 1. In this waywe obtain:
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C.3.Upper bound on Y02 and Y04

Consider the following combinations of gains inwhich all the termsY1m and ,Yn0 are removed:
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Wenow combine G G,02
0,1

02
0,2 and G02

1,2 with arbitrary real coefficients c0 and c1 and impose that the resulting
expression has the yieldsY2m andYn1 also removed:
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ForY2m andYn1 to be removed the coefficients c0 and c1must satisfy:
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A sufficient condition for this is that the coefficient of every mi
n and every mi

m is identically zero. This imposes six
conditions on c0 and c1, however thanks to the inherent symmetries of the system a solution exists, and reads:

m m m
m m m

= -
-
-

( )
( )

( )c , C.350
1 0 1

2 0 2

m m m
m m m

=
-
-

( )
( )

( )c . C.361
0 0 1

2 1 2

Substituting these expressions back into (C.32) andmultiplying both sides byμ2, yields a combination of gains in
which the termsYn0,Yn1,Y1m andY2m are removed. In particular, we obtain:
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In order to get a valid upper bound forY02 andY04 we need to study the sign of the coefficients of the remaining
yields.We start by recasting each termof the sum corresponding to theYnm, with n 3 and m 2, in (C.37) as
follows:
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andA22 is the one foundwhen boundingY22, thuswe know from (C.12) it can be recast as:
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Employing (C.40) and (C.41) into (C.38)we get:
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whichmeans that the sign of this expression is fully determined by the factor m m m m- -( )( )1 2 0 2 (note that the
product of the two sums in (C.42) is always positive).

Concerning the terms that appear in the sum in (C.37) corresponding to theY0m, with m 2, we have:
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wherewe used (C.11) in the first equality and (C.40) in the second equality. Expression (C.43) implies that its
sign is always equal to the sign of the terms given by (C.42), since it is determined by the same factor
m m m m- -( )( )1 2 0 2 (note that the product of the last two factors in (C.43) is always positive).

A valid upper bound onY02 is thus obtained by setting all the other yields to zero in (C.37). By doing so, we
obtain:
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One can do the samewhen boundingY04, i.e. setting all the other yields to zero except forY04, in (C.37).Wefind
that:
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C.4.Upper bound on Y20 and Y40

Consider the following combinations of gains inwhich all the termsY0m andYn1 are removed:
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Wenow combine G G,20
0,1

20
0,2 and G20

1,2 with arbitrary real coefficients c0 and c1 and impose that the resulting
expression has the yieldsY1m andYn2 also removed:
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ForY1m andYn2 to be removed the coefficients c0 and c1must satisfy:
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This systemof linear equations coincides with the one given by (C.33) that we foundwhen boundingY02, thus
the solution is given by (C.35) for c0 and by (C.36) for c1. Substituting these expressions back into (C.47) and
multiplying both sides byμ2, yields a combination of gains inwhich the termsYn1,Yn2,Y0m andY1m are
removed:
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Since the coefficients ofYn0 andYnm coincidewith those foundwhen bounding Y02 if one exchanges ⟷m n,
we can directly use the results obtained in appendix C.3 to recast the terms that contain theYnmwith n 2 and
m 3. In particular, according to (C.42), we obtain:
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and according to (C.43) the terms that contain the yieldsYn0 can bewritten as:
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Like in the case ofY02 (see appendix C.3), a valid upper bound onY20 is thus obtained setting all the other yields
to zero in (C.49).We obtain:
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One can do the same to boundY40, i.e. to set all the other yields to zero, except forY40. In this case we obtain:
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C.5.Upper bound on Y13

We look for that combination of gains inwhich all the terms proportional toYn0,Yn1,Y0m andY2m are removed.
In order tofind it, we consider themost general combination of all gains:
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The conditions given by equations (C.55)–(C.58) form an overdetermined systemof equations for the nine
variables ci,j. However, thanks to the symmetries of the problem, a unique solution for ci,j exists and reads (we
rescale every coefficient by requiring c0,0=1):
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By substituting (C.59) back into (C.54)we get an expression inwhich the termsYn0,Yn1,Y0m andY2m are
removed:
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whereA22 is the factor given by (C.11) also present in the bounds forY02 andY22, whereasA11 is the factor given
by (C.23)which appears in the bound onY11. Note that this is somehow expected: when boundingY02 andY22
we removed the termsYn0 andYn1 as we just did forY13, and in boundingY11 we removed the termsY0m andY2m
aswe did here. Therefore, by exploiting the result given by (C.12)we can recast each termof the sum
corresponding to theY1m, with m 2, in (C.60) as:
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and realize that it is always negative, regardless of the value of the intensities.
By employing the results (C.12), (C.24)we can recast each termof the sum corresponding to theYnmwith

n 3 and m 2, in (C.60) as:

å
m m m m
m m m m

m m m m m
- -
- +

- -
=

-
- - - -

! !
( ) ( )
( ) ( )

( ) ( ) ( ) ( )Y

n m
F n , C.62nm

k

m
k m k m k0 2

2
1 2

2

1 2
2

1 2
0 1

0

1

2 0
1

1
1

and realize that it is always positive9, regardless of the intensities.

9
F(n) is defined in (C.24).
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Avalid upper bound onY13 is then obtained by setting Y 0m1 (except forY13) and Y 1nm for all n 3
and m 2 in (C.60). As a result we obtain:
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We thus obtain the following upper bound onY13:
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whereG13 is defined in (C.54) and the coefficients of the combination of gains in (C.59).

C.6.Upper bound on Y31

We look for that combination of gains inwhich all the terms proportional toYn0,Yn2,Y0m andY1m are removed.
In order tofind it, we proceed like in the previous case. That is, we consider themost general combination of all
gains:
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and impose proper conditions on the real coefficients ci,j:
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The conditions (C.67)–(C.70) form an overdetermined systemof equations for the nine variables ci,j. However,
thanks to the symmetries of the problem, a unique solution for ci,j exists and reads (we rescale every coefficient by
requiring c0,0=1):
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By substituting (C.71) back into (C.66)we get an expression inwhich the termsYn0,Yn2,Y0m andY1m are
removed:
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whereA22 andA11 are again the factors fromY22 andY11 bounds given by equations (C.11), (C.23), similarly to
what happens when bounding Y13 (see appendix C.5). Therefore the analysis of the coefficient’s sign is the same
as in appendix C.5.Hence a valid upper bound onY31 is obtained by setting Y 0n1 (except forY31) and

Y 1nm in (C.72) for all n 2 and m 3 in (C.72). Analogous steps to those in appendix C.5 lead to the
following upper bound:
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whereG31 is defined in (C.66) and the coefficients of the combination of gains in (C.71).

C.7.Upper bound on Y00

Consider the following combinations of gains inwhich all the termsY1m andYn1 are removed:
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Wenow combine G G,00
0,1

00
0,2 and G00

1,2 with arbitrary real coefficients c0 and c1 and impose that the termsY2m and
Yn2 are also removed in the resulting expression:
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ForY2m andYn2 to be removed it suffices that for everym it holds:
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Substituting (C.77) and (C.78) back into (C.75) andmultiplying both sides by m2
2, we get an expressionwhere all

the termsY0m,Y2m,Yn0 andYn2 are removed andwhere the termY00 gives the largest contribution.More
precisely, wefind that:
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In order to extract an upper bound onY00 we need to study the sign of the yield’s coefficients.We start by
recasting the term corresponding toY00 as:
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Weobserve that the sign of this expression is determined by the factors m m m m- -( )( )1 2 0 2 .
We then proceed by recasting each termof the sum corresponding to theYnm, with n m, 3 in (C.79) as:
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This factor can be rewritten as:
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whereA22 is defined as (C.11) in appendix C.1. Thuswe can use the result (C.12) obtained in appendix C.1 to
directly recastA00 as:
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By substituting (C.84) back into (C.81), we get thefinal expression for each termof the sum corresponding to the
Ynm, with n m, 3 in (C.79):
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which hasmanifestly the same sign as the expression given by (C.80), for any value of the intensities (the product
of the last two factors is always positive).
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Finally, we recast theY0mʼs terms (Yn0ʼs terms are identical under the replacement m n) as:
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wherewe employed (C.83) in the first equality and (C.84) in the second one.We observe that the sign of the
Y0mʼs terms is again determined by the factors m m m m- -( )( )0 2 1 2 .

We conclude that the coefficients of Y m0 ,Yn0 andYnm, with n m, 3, carry the same sign asY00ʼs, which
implies that a valid upper bound onY00 is obtained by setting all the other yields to zero in (C.79). In so doing, we
find that:
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AppendixD. Yield’s boundswith four decoys

Herewe derive analytical upper bounds on the yields appearing in (1.7), following the same lines of section 2. In
this case we assume that Alice and Bob can prepare their phase-randomized coherent pulses with four different
intensity settings: {μ0,μ1,μ2,μ3}, which are the same for both parties. This choice is optimal sincewe assumed
that the two optical channels linking the parties to the central nodeC have equal transmittance h [43].

Thewhole set of infinite yields is subjected to the following sixteen equality constraints:
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and to the same inequality constraints given by (2.3).
In this appendixwe only obtain bounds on the yieldsY13,Y31,Y04 andY40 since the bounds derived on the

yieldsY00,Y11,Y02,Y20 andY22 in appendix C are already good enough, i.e bounding themwith one additional
decoy intensity would not result in a significant improvement of the performance of the protocol.

D.1.Upper bound on Y04

Consider the following combinations of gains inwhich all the termsY1m andYn0 are removed:
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We now take the linear combination of the G i j
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, such that even the yieldsY2m,Y3m,Yn1 andYn2 are removed:
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wherewe implicitly assume that both indexes i, j run over the set {0, 1, 2, 3}. ForY2m,Y3m,Yn1 andYn2 to be
removed, the real coefficients ci,jmust satisfy:
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In order to solve system (D.4), we look for those coefficients ci,j such that themultiplicative factors of mi
m and mi

n

(for i=0, 1, 2, 3) are all set to zero. This corresponds to imposing sixteen conditions on the six coefficients ci,j.
These conditions are not all independent, and a solution can be found evenwhenwe require (for simplicity) that
c0,1=1:
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By substituting the solution for the coefficients given by (D.5) back into (D.3), one gets:
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In (D.7), (D.8)we again assume that the indexes in the sums run over the set {0, 1, 2, 3} andwe define
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. From (D.7)we deduce that the sign ofY0mʼs coefficient is independent
ofm, while from (D.8)wededuce thatYnmʼs coefficient has always opposite sign to that ofY0m. Therefore a valid
upper bound onY04 is obtained by setting to zero all the other yieldsY0m and to 1 the yieldsYnmwith n 4 and
m 3 in (D.6).We thus obtain:
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and the sumover the coefficientB04 reads:
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D.2.Upper bound on Y40

Consider the following combinations of gains inwhich all the termsY0m andYn1 are removed:
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wherewe implicitly assume that both indexes i, j run over the set {0, 1, 2, 3}. ForY1m,Y2m,Yn2 andYn3 to be
removed, the real coefficients ci,jmust satisfy:
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Wenownotice that the system (D.15) is exactly the same system solved in appendixD.2while boundingY04,
thus the solution for the coefficients ci,j is given in (D.5). By substituting the solution (D.5) back into (D.14), one
gets:
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whereA04 andB04 are the coefficients defined in (D.7), (D.8)while bounding Y04. Hencewe can adopt the
observationsmade on the sign ofA04 andB04 from appendixD.1 and conclude that a valid upper bound onY40 is
obtained by setting to zero all the other yieldsYn0 and to 1 the yieldsYnmwith n 3 and m 4 in (D.16). The
upper bound onY40 then reads:
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where ci,j, Gi j
40
, , m m m m( )A , , , , 404 0 1 2 3 and the sumoverB04 are given in (D.5), (D.13), (D.11) and (D.12),

respectively.
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D.3.Upper bound on Y13

Weconsider themost general combination of all sixteen gains:
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and require that the termsYn0,Yn1,Yn2,Y0m,Y2m andY3m are removed, by imposing proper conditions on the
real coefficients ci,j:
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The twenty-four conditions given by (D.19)–(D.24) form anover-determined systemof equations for the sixteen
variables ci,j. However, thanks to the symmetries of the problem, a unique solution for ci,j exists and reads (we
rescale every coefficient by requiring c0,0=1 ):
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By substituting these expressions back into (D.18) and bymaking some simplifications, one gets:
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andCn ( n 5) is defined recursively as:
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In (D.27), (D.28)we assume that the indexes ij in the sums run over the set {0, 1, 2, 3} andwe define
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. From (D.27)wededuce that the sign ofY1mʼs coefficient is always
positive, while from (D.28)we deduce thatYnmʼs coefficient has always equal sign to that ofY1m, sinceCn is
always a positive quantity. Therefore a valid upper bound onY13 is obtained by setting to zero all the other yields
in (D.26). The upper bound onY13 then reads:
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where ci j, are defined in (D.25) and m m m m( )A , , , , 313 0 1 2 3 reads:
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D.4.Upper bound on Y31

Weconsider themost general combination of all sixteen gains:
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and require that the termsYn0,Yn2,Yn3,Y0m,Y1m andY2m are removed, by imposing proper conditions on the
real coefficients ci,j:
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The twenty-four conditions (D.32)–(D.37) form an over-determined systemof equations for the sixteen
variables ci,j. However, thanks to the symmetries of the problem, a unique solution for ci,j exists and reads (we
rescale every coefficient by requiring c0,0=1):
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By substituting these expressions back into (D.31) and bymaking some simplifications, one gets:
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whereA13 andCm also appear in appendixD.3when boundingY13 and are defined as (D.27) and (D.28),
respectively. Thus, following the same lines of appendixD.3, we conclude that all yields in (D.39) aremultiplied
by a positive factor. A valid upper bound onY31 is then obtained by setting to zero all the other yields in (D.39).
We obtain:
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where ci,j and m m m m( )A , , , , 313 0 1 2 3 are defined in (D.38) and (D.30), respectively.
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