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Abstract
TheDickemodel—a paradigmatic example of superradiance inquantumoptics—describes an
ensemble of atomswhich are collectively coupled to a leaky cavitymode.As a result of the cooperative
nature of these interactions, the system’s dynamics is capturedby the behavior of a singlemean-field,
collective spin. In thismean-field limit, it has recently been shown that the interplay between photon
losses and periodic driving of light–matter coupling can lead to time-crystalline-like behavior of the
collective spin (Gong et al2018Phys. Rev. Lett. 120 040404). In thiswork,we investigatewhether such a
Dicke time crystal (TC) is stable toperturbations that explicitly break themean-field solvability of the
conventionalDickemodel. In particular, we consider the additionof short-range interactions between
the atomswhichbreaks the collective coupling and leads to complexmany-bodydynamics. In this
context, the interplay betweenperiodic driving, dissipation and interactions yields a rich set of dynamical
responses, including long-lived andmetastableDicke-TCs,where losses can cool down themany-body
heating resulting from the continuouspumpof energy from the periodic drive. Specifically, when the
additional short-range interactions are ferromagnetic, weobserve time crystalline behavior at non-
perturbative values of the coupling strength, suggesting the possible existence of stable dynamical order
in a driven-dissipative quantummany-body system. Thesefindings illustrate the richnature of novel
dynamical responseswithmany-body character in quantumoptics platforms.

1. Introduction

The study of emergent dynamical phenomena in interacting quantummany-body systems constitutes a frontier
of research inmodern quantumoptics and condensedmatter physics. In this quest for phases of quantum
matter without equilibrium counterpart, time crystals (TCs) represent a promising candidate for a novel formof
dynamical order out-of-equilibrium. In TCs, observables dynamically entrain at a frequency subharmonic of
the one imposed by an external periodic drive [1–18], and they have been currently realizedwith trapped ions
[19] and solid state systems [20–22]. Inmost previous studies, TCs are realized in closed interacting quantum
many-body systems, which are prone to heating towards an infinite temperature state under the action of
periodic drive [23, 24], therefore, a slowdown of energy absorption is customarily entailed via a disorder induced
many-body localized phase [25–28], or by fast driving [8, 29–33].

An alternative pathway could consist in ‘cooling’TCvia coupling to a cold bath, which can absorb the energy
pumped by the periodic drive [32]. A natural candidate to explore this avenue is represented by a recent line of
inquiry on the exploration of TC-like behavior in the openDickemodel, which describes an ensemble of atoms
collectively coupled to a leaky photon cavitymode. The periodic drive of Dicke light–matter interactions in the
superradiant regime can entail sub-harmonic dynamical responses [1], however, the collective nature of
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interactions renders the dynamics of this class of TCs equivalent to a single body problem consisting of amean-
field collective spin degree of freedommoving on the Bloch sphere. Our key goal is to understand the stability of
theDicke-TCwhen one breaks themean-field nature of themodel.

To this end, we explore the robustness ofDicke-TCs to local interactionswhich break the collective coupling
of the originalmodel (figure 1).We observe that this class ofDicke-TCs can remain stable to suchmean-field
breaking perturbations in certain limits. Crucially, this lifts the phenomenon froman inherently collective,
mean-field effect to the steady-state behavior of a dissipativemany-body system.Wenote however, that unlike
the traditional venue for discrete TC [9–13], where short-range interactions are essential for stabilizing time
crystalline order, here, the short-range interactions are rather viewed as perturbations to the originalmean-field
Dicke-TC.

The interplay between Floquet driving, dissipation, and interactions results in a rich set of dynamical
responses. In particular, wefind regimeswhere TCs are stabilized by the bath, which counteracts the energy
pumped into the systemby the drive.We also observe the emergence ofmetastable dissipative TCs,
characterized by a slowly decaying envelope evolving eventually into a trivial steady state dominated by
dissipation. In addition, we find a family of ferromagnetic driven-dissipative TCswith strong resilience tomany-
body heating.

2. Themodel

Weconsider a chain ofN two-level atomswith short-range interactions among each other

å=
=

+
ˆ ˆ ˆ ( )H J s s , 1

i

N

i
x

i
x

int
1

1

where s=ˆ ˆs 2x y z x y z, , , , , and ŝx y z, , are Paulimatrices. The atoms are collectively coupled to a photonfield, e.g. by
placing them inside an optical cavity (figure 1), which can be described by theHamiltonian [34, 35]
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, , .We allow the light–matter coupling to be varied in time,λ(t). Dissipation occurs when

photons leak out of the cavity, as encoded by the quantummaster equation
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for the total densitymatrix of the system, r̂, where = +ˆ ˆ ˆH H Hac int, andκ characterizes the rate of photon loss.
When J=0, the above reduces to thewell-known openDickemodel [36–53]. As the coupling is only

between the single photonmode and the collective spin operator, Ŝx, theDickemodel is exactly solvable in the
thermodynamic limit  ¥N : its dynamics can be described by themean-fieldmotion of the photonic
amplitude, = á ñˆa a , coupled to three classical degrees of freedom, = á ñ( ) ˆ ( )S t S tx y z x y z, , , , , evolving on the Bloch

sphere.When ¹J 0, short-range atom-atom interactions break the exact solvability of Ĥac, spoiling the
collective character of theDickeHamiltonian. In addition to the collectivemode


S , which corresponds to the

k=0 Fouriermode º å =
- 

s sek j
N kj

j1
i , all other ¹k 0 modes could also be excited. Hence Ĥint introduces

quantumfluctuations in the spin (or atomic) degrees of freedom,which require treating the dynamics in
equation (3) as a quantummany-body problem.

We simultaneously account for dissipation and quantumfluctuations using a time-dependent spin-wave
approach, which has been demonstrated effective in capturing dynamical quantummany-body effects [54–56].
Specifically, we first perform a time-dependent rotating frame transformation to align the time-dependent

Figure 1.The driven-dissipativemany-bodyDickemodel studied in this work. An ensemble of atoms are collectively coupled to a
photon field â with a time-varying strengthλ(t), which consistutes a Floquet driving that injects energy into the system. The atoms
also interact with each other via a short-range interaction of strength J, which breaks the collective nature of the system.Dissipation of
energy into a bath is included through the loss of photons at a rateκ.
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ẑ-axis with the collective Bloch vector


( )S t , and then in this co-moving ‘frame’weperform aHolstein–
Primakoff transformation in order to expand the spin operators in Ĥint to the lowest-order in the density of
spin-wave excitations, ò(t) (see appendix A for details). Themany-body effects introduced by Ĥint are encoded in
the dynamical coupling between spin-waves, and the collective spin aswell as photon field. Excitation of spin
waves leads to a depletion of the k=0mode, = -


∣ ( )∣ ( )S t N t2 1 , similarly in spirit to approaches which

incorporate self-consistently the effect of quantum fluctuations in the dynamics of a ‘condensate’ [57]. The spin-
wave density, ò(t), representing the total population of all ¹k 0 spin-wave excitations, is required to remain
small at all times in order to have a self-consistent lowest-orderHolstein–Primakoff expansion. Bymonitoring
the growth of spin-wave density, we can identify regions of ‘heating’, where the collective spin order shrinks
under the effect of strongmany-body interactions, accompanied by a large value of ò(t) in dynamics(see
appendix A).

3.Dynamical responses

We impose a periodicmodulation on the light–matter couplingλ(t): during a first ‘bright-time’,
 < +( )nT t n T1 2 , we setλ(t)=λ=Ω, and during the ‘dark-time’, + <( )n T t nT1 2 , we switch

offλ(t). Here,Ω=2π/T=(ω0+ω)/2 denotes the driving frequency. This periodic driving counteracts
with the energy loss through photon leaking, and as previously found in [1] for the collective Dickemodel
(Ĥint absent), it entails a period-doubling response in spin observables. The presence of such TC-like behavior
can be understood from the 2 symmetry of theDickemodel with constantλ, under the parity operator

= p + +( ˆ ˆ ˆ )†
P e a a Si z

N
2 . For l l w k w w> = +( )4c

1

2
2 2

0 , a quantumphase transition that breaks the 2

symmetry occurs, and the system enters a superradiant phase, featuring two steady states, with spin projection

Sx/N=±X, Sy=0 and non-vanishing photon amplitude l w k= - ( )a N X i 2 ( l l= -X 1 c
1

2
4 4 ).

When δ≡(ω0−ω)/Ω=0, the free evolution during the ‘dark-time’ accumulates a phase of π for both Sx
and a, and the system switches fromone steady state to another, i.e. Sx −Sx and  -a a. As a result, the
dynamics repeats after two cycles of the driving and a sub-harmonic response with period 2T appears. In such
a picture, atoms are simply described as a single classical spin, which becomes invalid in the presence of Ĥint,
and thus it deserves a careful investigationwhether theDicke-TC exists in amany-body systemwith
nonzero J.

We explore the spin dynamics for various interaction strength J and dissipation rateκ, using the time-
dependent spin-wave approach. Our analysis shows that theDicke-TCorder can exist beyond the collective case
(J=0) and survivemany-body interactions. For a range offinite W J 1 and 0<κ/Ω1, we observe a
stable subharmonic response in Sx(t), as plotted infigure 2(a) for an instance, where the spin-wave density
remains small and therefore it is robust to heating(see appendix B). Upon increasing the values of J, the inelastic
scattering induced bymany-body interactions becomes efficient, provoking a sizeable growth of spin-wave
density, which invalidates the lowest-order spin-wave expansion andmakes the collective spin,


S , crumble. In

this regime of strong interactions, the system is prone to heating under the action of the Floquet driving (see
also7). However, as shown in figure 2(b), formoderate strengths of J/Ω1, such effect of heating can still be
remediatedwith sufficient dissipationκ/Ω1 (see also appendices B andD). In this case, strong dissipation
acts as a ‘contractor’ for the dynamics, guiding swiftly the system towards the desired non-equilibrium steady
state and enables stable oscillations of Sx.Meanwhile, the combination of strong dissipation and driving leads to
remarkable disturbance of the spin state within each period, resulting in a larger value of Sy compared to the
Dicke-TC at smallκ (seefigures 2(a) and (b)). Here, the enhanced fluctuation of photon field associatedwith
strong dissipation can induce large phase noise and destroy theDicke-TC aswell; however, for sufficiently large
atomnumberN, the phase noise can still be suppressed, since the amplitude of photon field scales as~ N in
the superradiant regime (see appendix A), and thus allows the observation of theDicke-TC.

While period doubling is a fragile dynamical response in one-particle periodically driven systems, i.e. it
disappears as a tiny d ¹ 0 is switched on, the collective (J=0)Dicke-TC is robust in a range of small d ¹ 0,
thanks to themacroscopic Sx-order built during the superradiant ‘bright-time’ and thanks to the ‘contractive’
role of dissipationwhich guides the system towards the desired non-equilibrium steady state. Such robustness to
deviations from the δ=0 limit, persists upon inclusion ofmany-body interactions, ¹J 0 (as an example,
δ=−0.12 is used for figure 2). The persistence ofmany-bodyDicke-TCs on timescalesmuch longer than
tκ∼1/κ (see the exemplary dynamics infigure 2(a)), indicates that they represent a long-lived phenomenon,
since in the presence of dissipation, relaxation is typically expected to occur on timescales inversely proportional
to the system-bath coupling,κ. Indeed, we never observe decay of theDicke-TCorder on the longest timescales

7
In this work, we choose as upper threshold for spinwave density the value, ò=0.2, in order to delimit the heating region from the other

dynamical responses. This choice ismotivated by previous studies in [56].
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accessible to our numerical study (e.g. see figure 2(a) and footnote8). The existence ofDicke-TC is also insenstive
to initial conditions. Aswe checked in our numerical simulations, similar responses are observed over awide
range of initial conditions (see appendix B).

Here, dissipation is capable of stabilizing rather than destroying theDicke-TC order in ( )S tx since it acts on
the photonmode and therefore collectively on spin order. On the contrary, when local losses are introduced,
dissipation is intrusive and detrimental, and it destroys TCs (see for instance [58]). Note that in conventional
discrete TCs, instead, the interactions serve to lock single-spin dynamics into a stable subharmonic response that
is robust to perturbations or imperfections of the drive [13, 19].

When the rate of dissipation is intermediate,κ/Ω∼1, we recognize a region of irregular (IR) dynamics,

where the trajectory of


( )S t is scattered on the Bloch sphere (figure 2(c)). In this case, the photon amplitude is
sizeably reduced, and since it contributes to building the Sx-order via the light–matter coupling term∝λ, the
systemdoes not develop a Sx component sufficiently strong in order to counteract the dephasing induced by the
‘transverse field’ wµ Ŝz0 during the ‘dark-time’, and this results into a featureless dynamical response lacking
period-doubling.We also notice that in this regime a relatively small value of J can lead to a proliferation of spin-
wave excitations, suggesting a tendency to heating (see appendixD).

Complementarily, with excessively large k W  1, while dissipation is sufficient to cool the system and
preventsmany-body heating, it also destroysDicke-TC order: in this case, dissipation overdamps dynamics, and
the collective spin of the system relaxes to a trivial steady statewhere all spins point down towards the south pole
of the Bloch sphere (see figure 2(d))9. This overdamped (OD) regime is thus characterized by a vanishing
magnitude of the spin projection, +∣ ∣S Six y .

The different dynamical responses discussed above are summarized in a qualitative cartoon, figureD1, in
appendixD. It is interesting to note that, with increasing J, wefind the system tends to be overdampedwith a
smallerκ, which is indicated by the downward bending of the boundary between theODandDicke-TC regions
shown infigureD1.Hence fast ‘cooling’ does not always protect, but can instead destroyDicke-TCbehavior.
Nevertheless, dissipation plays a crucial role in establishing the rich phenomena infigureD1 (see appendix E,
where the impact of Ĥint onTCs in the Lipkin–Meshkov–Glick (LMG)model is addressed).We note that, in this
work, the frequency of the drive,Ω, only plays the role of an overall energy scale.

Figure 2. Instances of the stroboscopic dynamics of the collective spin projections, Sx, Sy, and Sz (colored in blue, red and green
respectively and each normalized by atomnumberN), forDicke-TC ((a) and (b)), IR (c), andOD (d) dynamical responses.
(a) J/Ω=0.056,κ/Ω=0.375. (b) J/Ω=0.2,κ/Ω=1.45. (c) J/Ω=0,κ/Ω=0.9. (d) J/Ω=0.04,κ/Ω=3.2. The insets show
the stroboscopic snapshots on the Bloch sphere for the last 1000 periods.

8
In principle, we cannot exclude that collapse of the order parametermight occur atmuch later times, and establishing the stability to

infinite timesmay require another approach, which is beyond the scope of this work. However, this effect, even if present, would be of no
practical relevance on experimentally accessible timescales.
9
Sz/N−1/2, since part of the collective spin is dissipated in the bath of spinwaves.
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4.Metastable dissipative TC

For intermediate values of both J andκ (see for instance figureD1), our systemhosts another type of nontrivial
behavior: a dissipativemetastable time crystal (MTC) characterized by a slowly decaying envelope, which
deteriorates, in the long time, into a trivial asymptotic state with vanishing Sx (see figure 3(a)). This behavior is
distinct from theDicke-TC: infigure 3(b)weplot the associated spin-wave density (dark blue line), which
exhibits a discontinuous jump at a non-vanishing value of J, when the lifetime of the TC starts also to
decrease(purple dashed line); this suggests that themetastability is not expected tomanifest for small values of J,
and therefore the conventional Dicke-TC represents a long-lived phenomenon (see10). The lifetime, τ, of this
MTCgradually decreases with J, following the empirical law, t µ - W[ ( ) ]A Jexp 1.6 (withA a positive
prefactor), and vanishes when the system enters theOD regime, where also the spin-wave density becomes small
since the system reaches the fully polarized state in the negative ẑ-direction of the Bloch sphere (corresponding
to spin-waves vacuum). TheMTC found here appears as a genuine interplay of periodic driving, dissipation and
interaction.We remark here that it does not result from a high-frequency expansion [29, 30], and thus is distinct
from the ‘prethermal’ Floquet TCs found in previous studies [20, 32], sinceΩ is an overall energy scale in our
system (see figureD1). A possible explanation for the phenomenon is suggested by the dynamics of ò(t): during
themetastable evolution, the density of spinwaves strongly fluctuates and is out of phasewith the dynamics of
the photon amplitude, accumulating at every cycle a tiny dephasing, which eventually leads Sx(t) to collapse.

5. Ferromagnetic driven-dissipative TC

Asdiscussed above, the steady state underlying theDicke-TCorder possesses a ferromagnetic nature.When the
many-body interaction Ĥint is also ferromagnetic (J<0), inter-spin interactions can reinforce theordering along
thex̂-direction, giving rise to robustness against heating and the overdamping caused bydissipation. Indeed, for
non-perturbative values of W ~∣ ∣ ( )/J O 1 , wefind that a ferromagnetic (J<0)dissipativeDicke-TC canbe
stabilized at intermediate dissipation ratewithout significantly heating up the system (see footnote11). This is
shown infigure 4, whereweplot the spin-wave density for antiferro-(J>0) and ferro-(J<0)magnetic TCs: a
sizeable spin-wavedensity denotes fragility tomany-body interactions and a dynamics prone toheating, and such
effects are expected to bepronounced at large J. Remarkably, this doesnot occur for ferromagnetic inter-spin
interactionswhichdevelop tiny values of ò(t) even for W ~∣ ∣ ( )/J O 1 . The emergence of such aDicke-TCresponse
within the coexistence of significantmany-body interactions anddissipation rate, appears to us a strong
incarnation of TC-like behavior in driven-dissipative platforms: it is a novel formofdynamical order out-of-
equilibrium,which significantly departs both from themean-fieldDicke-TC response (where J;0), and from
conventional (many-body)discrete TCswhere dissipation is not a constitutive ingredient (κ=0). In this
perspective, such ferromagnetic TC represents a non-equilibrium state of strongly coupled, driven-dissipative,
quantummatter exhibiting rich dynamics that can triggermotivation towards the searchof other non-trivial
dynamical phases inmany-bodyquantumoptics.

Figure 3. (a)The stroboscopic dynamics of theMTC forκ/Ω=2.5, J/Ω=0.08, δ=−0.12. The dynamics of Sx(t) (blue, normalized
byN) appears indistinguishable from a conventional Dicke-TC response on timewindows of the order of a few decades of cycles
(inset); on longer timescales it displays instead a slowly decaying envelope. (b)The lifetime of theMTC (defined as the timewhen the
stroboscopic amplitude of +∣ ∣S S Nix y decays to0.1), and spin-wave density of theMTCafter 5×103 cycles.Wefind that the
lifetime falls to zero following an empirical law µ - W[ ( ) ]A Jexp 1.6 , withA a positive factor.

10
Wehave checkedwith a finite-size analysis that these conclusions do not depend onN.

11
In this case, we switch off the Ĥint termduring the ‘dark-time’, in order to avoid inhomogeneous dephasing resulting from inter-spin

interactions.

5

New J. Phys. 21 (2019) 073028 BZhu et al



6. Summary and outlook

TheDickemodel is currently engineered in several experimental platforms [59–64].We expect our results to be
qualitatively insensitive to the details of themicroscopic structure of the interaction term Ĥint, and to hold in a
broader set ofmodels, and thuswould be relevant for experiments where collectivity of the system is inevitably
broken by inhomogeneous fields, or spatially varying light–matter couplings, or genuine inter-particle
interactions such as using Rydberg atoms [65–68]. The stabilization ofDicke-TCorder seen for strong
ferromagnetic spin–spin interactions can also be generalized to systemswhere the inter-spin interactions have
an anti-ferromagnetic character (J>0), given the capability to control atom-light coupling in cavity
experiments [69]. For coupling l sµ + å -( ˆ ˆ ) ( ) ˆ†a a 1j

j
j
x, a similarDicke-TC response exists in this case but with

anti-ferromagnetic ordering. Hence a Ĥint with certain J>0would be expected to extend theDicke-TC to a
many-body regime. Another interesting possibility offered by the control of light–matter coupling consists in
realizingDicke-TC responses with higher integer periods (nTwith n>2)without employing high-spin atoms
(see for instance [20]). In the appendix Fwe show that aDickemodel with coupling of the
form l sµ + å - ++( ˆ ˆ ) [( ) ˆ ]†a a 1 h.c.j

j
j

2 realizes a dynamical responsewith quadruple period.
The setupanalyzed inourwork is closely related toquantumopticsplatform,but can alsobe relevant for condensed

matter and solid stateplatforms,where the systemcanbemodeled as aquantumspin chain coupled to aphononbath.
Webelieve that theoutreachofour results has thepotential tomotivate anewgenerationof experimentsonTCs in
many-body systems,where thepresenceof abathplays a crucial role at variancewith current realizations [19, 20].
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AppendixA. Time-dependent spin-wave theory

In this sectionwe provide further information on the time-dependent spin-wave expansion, referring the reader
to [54, 56] for a comprehensive discussion on themethod.

We use the shorthand º á ñˆO O for expectation values of operators Ô, and define the coordinates for the

collective spin vector, q f q f q=


( )S sin cos , sin sin , cosN

2
, in terms of the polar, θ, and azimuthal angle,f, on

the Bloch sphere, which allowswriting compactly the equations ofmotion:

Figure 4.Comparison between the stroboscopic dynamics of spin-wave densities of a ferromagnetic (cyan dashed line, J/Ω=−2.4)
and of an anti-ferromagnetic (blue line, J/Ω=0.2)Dicke-TC for δ=0.04 andκ/Ω=0.4. The orange area denotes the region of
values of spin-wave density where the lowest orderHolstein–Primakoff breaks down and the systembecomes prone tomany-body
heating (see footnote 7).
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The effect of Ĥint enters the dynamics of the collective spin vector via the spin-wave correlations δαβ (α,β=q, p)
and the spin-wave density ò, which are in turndynamically coupled to the collective spin andphotonfield.Here
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where q̂k and p̂k are the canonically conjugate bosonic variables associatedwith spinwaveswithwave-vector ¹k 0.
Following the procedure in [56], we derive the equations ofmotion for the spin-wave correlations
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These quantities intertwinewith the equations ofmotion (A1), and represent the feedback of the non-
equilibriumGaussian fluctuations of spinwaves on themotion of the collective spin (the k=0mode). The self-
consistent solution of equations (A1) and(A6) yields the dynamics of the light–matter system.Wenote that
these equations ofmotion are derived in the thermodynamic limit [56]; therefore we expect our results to be
insensitive to the choice ofN, as we checked for themain results of ourwork.

In equation (A1c), the phasefluctuation accompaniedwith photon loss has been neglected. This is valid in
the largeN limit, since the TCs under scrutiny here exist in the superradiant regime, where the photon number is
∝N, and thus photon noises become subleading. For smallN, the effect of phasefluctuation can be incorporated
in the spin-wave approach by adding a Langevin noise term in equation (A1c).

To derive equations (A1) and (A6), only terms quadratic in q̂k, p̂k have been kept and quartic terms, which
scale as ò2, have been neglected.Hence the spinwave density òhas to remain small during the course of the
evolution, in order to render consistent the lowest orderHolstein–Primakoff expansion. This restriction of the
spin-wave approach limits resolving possible structures in the dynamical responses when the heating from J is
significant, whichmight be interesting to explore in futureworks. For J=0, one can readily see from the above
equations that ò(t)=0 at any time, while for ¹J 0, the length of the collective spin is shrinked via

Figure A1. In the time-dependent spin-wave theory, quantum fluctuations introduced by the short-range interaction term Ĥint are
included as a self-generated bathwhich couples to the order parameter,


( )S t . The latter couples also to the photonicmodewhich is

cooled by a zero temperature bath. Therefore, the dynamics of the order parameter results from the competing interactions with an
internal spinwave bath (represented by spinwave’s density, ò(t), in the sketch above), andwith an external cold bath,mediated by the
cavity photon, a(t).
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= -


∣ ( )∣ ( )S t N t2 1 . A pictorial description of themethod is provided infigure A1. The correction from
terms higher order than ò in the expansion corresponds to interactions between spin-wave excitations andmay
become quantitatively relevant at long times. As demonstrated in [56], the spin-wave approach can still well
capture the dynamics qualitatively evenwhen a sizeable ò is developed.

Appendix B. Persistence ofDicke-TC

In this sectionwe providemore details of theDicke-TCbehavior discussed in section 3. Infigure B1(a), we plot
themaximum spin-wave density over the 5000 periods of dynamics obtained from the above time-dependent
spin-wave approach at stroboscopic times, when increasing the interaction strength J. As discussed in themain
text, when the system is prone tomany-body heating, sizeable amount of spin-waves develops, and the
Holstein–Primakoff expansion breaks down.Here, we choose as upper threshold for spin-wave density at the

Figure B1.Themaximum spin-wave density ò(t)within 5000 periods of dynamics (a) and the variance of Fourier spectrum (b) for
various interaction strengths J atfixed dissipation rateκ corresponding to theDicke-TC shown infigures 2(a) (blue dots), and
2(b) (green squares) and δ=−0.12. The variance is not calculated for those values of J corresponding to spin-wave density above the
threshold (orange region). As a reference, the dotted line in (b)shows the variance obtained for the IR dynamics in figure 2(c).

Figure B2.Dicke-TCs for different initial conditions, with the same parameters as in figures 2(a) (upper panels), and 2(b) (lower
panels). The initial state in panels (a) and (c) is a collective spin state with θ=0.5π andf=0.3π (see notation in appendix A), while
the initial state in panels (b) and (d) is characterized by θ=0.3π andf=0.3π. Blue, Red and green lines plot the stroboscopic
evolution of Sx, Sy and Sz (each normalized byN), respectively. The system exhibits similarDicke-TC order for these different initial
states.
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value, ò=0.2. From the spin dynamics, we can also calculate the varianceχ of the Fourier spectrumof Sx+iSy,
defined as ò ò òc n n n n n= - W +

n n n> > <
( )( ) ( )p pd 0.5 d

0 0 0 òn n n n n+ W
n<

( )( ) ( )p pd 0.5 d
0

, where p(ν) is
the height of the Fourier spectrum at frequency ν. TCs feature stable subharmonic responses, with the spectrum
composed of two sharp peaks located at ν=±0.5Ω, and thus a small value ofχ. The variance for increasing J is
plotted infigure B1(b).With a smallκ/Ω<1, the spin-wave density quickly growswith J, which is reducedwith
a largeκ/Ω>1. The varianceχ remains negligible for values of Jwith low spin-wave density, indicating the
existence of theDicke-TCwith finite J.

Infigure 2 an initial state with θ=0.5π andf=0 has been used.We have also checked in our numerical
simulations that theDicke-TC is insensitive to initial conditions, thanks to the dissipative nature of dynamics:
we observe similar sub-harmonic dynamics over a wide range of different initial states, as demonstrated in
figure B2.

AppendixC.Mean-field analysis of dynamical responses

Tounderstand the dynamical responses in our driven-dissipativemany-body system, here, we first apply a
mean-field treatment to solve dynamics from themaster equation (3). InfigureC1we display the various
dynamical responses of the system. The boundaries between the IR and theDicke-TC regions are dictated by a
transition in the variance of the Fourier spectrumof +( ) ( )S t iS tx y , which is negligible in the case of theDicke-
TC. TheOD regime is identifiedwith a vanishing +∣ ∣S Six y at 5000 periods, which exhibits a second-order phase
transitionwhen crossing into theDicke-TC regime. In amean-field analysis, quantum fluctuations are neglected
and thus it does not predict theMTC, the heating region, and the enhanced robustness for ferromagnetic Dicke-
TC,which are the genuinemany-body results of our study. Instead, it shows as an artifact the persistence of
Dicke-TCdespite strong interactions.

FigureC1.Mean-field dynamical responses for δ=−0.12, as a function of dissipation rate,κ, andmany-body interaction strength, J.
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AppendixD. Summary of dynamical responses from time-dependent spin-wave analysis

To account for quantummany-body effects, we solve equations (A1) and(A6) in the time-dependent spin-wave
approach toobtain the spindynamics. For the numerical integration,we adopt the fouth orderRunge–Kutta
method andkeep afixed time step of 0.0005T.Wehave also checked byhalving the time step the conclusions
drawndonot change.We explore over a range of parametersκ and J andfind richdynamical responses. FigureD1
shows a qualitative sketchof regionswhere different dynamical behaviors are observed.We label the regionwith
large spin-wavedensity  ( )t 0.2 as heating (H), where the spin-wave treatment breaks down. IR regime is
characterizedwith a large varianceχof the Fourier spectrum togetherwith ò(t)<0.2.As discussed in [1] for the
case of J=0, chaotic dynamicsmay arise in the collectiveDickemodel,which can result in largenumerical errors.
Here,we alsofind thatwhenκ/Ω∼1 thenumerical integration tends to beunstable, andwe associate these
instanceswith IR aswell infigureD1. TheMTCregion is identifiedwith a slowdecay of +∣ ∣S iSx y to a nonzero
value at 5000 periods,with a smallχ and ò(t) remaining below0.2. The boundary between theODand theDicke-
TC regime resembles theone in amean-field analysis, except that at a small value of J it is interruptedby the
emergence of other dynamical behaviors andheating: for increasing J, the boundary is set by a smaller, rather than a
largerκ, suggesting that faster dissipationdoesnot always protect the systemagainst theheating frommany-body
interactions. Asnoted in appendixA, limited by the choice of truncation in ò(t), a quantitative identificationof the
parameter regime for all dynamical responses and thenature of their boundaries is beyond the scope of thiswork.

Appendix E. Comparisonwith integrability breaking of the periodically kicked LMG
model

In order to exemplify the non-trivial interplay that dissipation can havewithmany-body interactions, we have
considered a similar analysis in a case governed by purely unitary dynamics.We have studied the LMGmodel
perturbed by Ĥint

l
¢ = + = - -ˆ ˆ ˆ ˆ ˆ ˆ ( )( ) ( )H H H H

N
S gS, with . E1x zLMG int LMG

2

The dynamics entailed by ¢Ĥ is periodically perturbed by a collective rotation along the ẑ-axis; the evolution
operator reads in a period

= - ¢ˆ ˆ ( ˆ ) ( )U U H Texp i , E2kick

with fº -ˆ ( ˆ )U Sexp i zkick . This protocol has been shown in [70] to display TCbehavior when f p= (in the
dynamics of the stroboscopic transversemagnetization). The TC in this case is robust to displacements around
thef=π point, i.e. for anglesf=π±δ′ (with d p< ¢0 ).We have chosen this system as a comparison for
theDicke dynamics studied in themain text, since the latter effectively reduces to the LMGmodel via adiabatic
elimination of the photonmode for large cavity detunings.

The periodically driven unitary dynamics in equation (E2) does not entail a rich set of dynamical responses as
infigureD1: the TCpersists (most likely in a prethermal fashion) for values of J smaller than a certain critical
threshold, Jc, abovewhich the systemdevelops sizeable spin-wave density and therefore crosses over into a
regime of ‘heating’. This suggests that the presence of dissipation enriches the dynamical responses of a
periodically driven interacting quantummany-body system.

FigureD1.Aqualitative cartoon of the dynamical responses in the driven-dissipativemany-bodyDickemodel, for varied dissipation
rate,κ/Ω, andmany-body interaction strength, J>0, with δ=−0.12. Lines separate regimeswith qualitatively different dynamical
responses; dotted lines at the boundarywith the heating (H) regime indicate a crossover into regionswhere the collective spin order
decays and the systembecomes prone tomany-body heating. TheDicke-TC responses are stable in the long-time limit, while the
MTC represents a slowly decaying dynamical response, with vanishing dynamical order at long times. TheOD region describes a
regime dominated by dissipationwhere the order parameter quickly drops to zero.
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Appendix F.Quadruple-period dynamical response

Weconsider theHamiltonian

å åw
w

s
l

s= + + + ++ˆ ˆ ˆ ˆ ( ˆ ˆ) [ ˆ ] ( )† † ·H a a
N

a a
2

e h.c. , F1
j

j
z

j
j

k x0 i j

with the coupling strength between atoms and cavity controlled by tuning the phase factor∝k·xj. Such
coupling can be realized by choosing proper laser dressing in a quantumoptics setup.When =·e 1k xi j , the
Hamiltonian (F1) becomes the conventional Dickemodel. In the case of ¹·e 1k xi j , the coupling strength varies
from site to site.We choose = -( )·e 1 jk xi 2j , therefore, theHamiltonian becomes

å åw
w

s
l

s p s p= + + + -ˆ ˆ ˆ ˆ ( ˆ ˆ) [ ˆ ( ) ˆ ( )] ( )† †H a a
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cos 2 sin 2 . F2
j

j
z

j
j
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j
y0

Wedivide the system into four sublattices,A,B,C andD, withmod[j, 4]={0, 1, 2, 3}, respectively.Within
each sublattice, atoms are collectively coupled to cavity photons. In the limit of  ¥N , the stationary solution
of the correspondingmaster equation hostsmultiple possible steady states, depending on the value =Q
l w w

k w+4

2
0

2 2 . The caseQ<1/4 corresponds to the normal state without superradiance.When  Q1 4 1 2,

the system is superradiant, with photon occupation

w
w

=
-( ) ( ) ( )n

N Q

Q

1 16
group I , F3cav

0
2

and similar to conventional Dicke superradiance, there are two possible spin states:
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with = -X Q Q1 162 , and bothwith s s s s= = = = - - X1A
z

B
z

C
z

D
z 2 . In this case the spin state at

each site is in phasewith the corresponding photon state.WhenQ>1/2, the steady state consists of two groups.
Thefirst group is the same as in equation (F4), while the photon occupation in the second group is given by

w
w

=
-( ) ( ) ( )n

N Q
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1 4

4
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0
2

This group includes eight different spin configurations
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Figure F1. Stroboscopic dynamics (a) of å S Nj j
y (for j in every second site, i.e. sublatticesB andD), and (b) of å S Nj j

z (for j in
sublatticesA andB), displaying quadruple response.
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with ¢ = -X Q Q1 42 , and ¢ = - ¢Z X1 2 . These states correspond to having a ‘defect’ in the spin
configurations, and thus result in a lower photon number. A linear stability analysis suggests that the above states
can all be stable. The existence ofmultiple steady states provides the possibility of producing subharmonic
responses to external driving.

When  Q1 4 1 2, we can have a period-doubled dynamical response if we apply a Floquet driving
scheme similar to the one discussed in themain text.

WhenQ>1/2, in addition to period doubling, we can have a dynamics with period T4 . However, this
would require driving that can convert one steady state to another in equation (F6). A possible procedure is as
follows:We initialize spins close to s s s s= = - = = 1A

x
B
y

C
x

D
y , and let the atom-cavity system interact for

some time to reach steady state, which can be diagnosed viamonitoring the photon emission from cavity. Then
we start to apply a driving pulse q̃ at the end of each periodT. q̃ consists of single-site rotations. Specifically, we
apply pˆ ( )Rz rotation ( q qº -a aˆ ( ) ( ˆ )R Sexp i , withα=x, y, z) to all odd sites (A andC); even sites (B andD) are
rotated depending on themeasurement outcome of å Î Sj A j

x prior to the pulse: pˆ ( )Rz for negative outcome, and

pˆ ( )Ry for positive outcome. The pulse strength is kept equal to cavity detuning.
If wemeasureå Sj j

y for j in all even sites, we observe a quadruple period in dynamics, as plotted infigure F1,
demonstrating that the system indeed undergoes several steady states during the Floquet dynamics. Including
small photon loss during q̃, we still see oscillations at a stable 4T period. An alternative order parameter is the
inversion å Sj j

z in sublatticesA andB, the dynamics of which also exhibits a period 4T (see again figure F1).
The above analysis assumed that atomswithin each sublattice remain in the collectivemanifold and that

there are no quantum correlations.When atomnumber is sufficiently large, this represents a reliable
approximation; notice, however, that even for a small number of atoms, period doubling has been observed in
[1] to persist for times longer than the decay time, therefore we can expect similar conclusions to hold for the
quadruple period dynamics discussed here.
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