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The Dicke model—a paradigmatic example of superradiance in quantum optics—describes an
ensemble of atoms which are collectively coupled to aleaky cavity mode. As a result of the cooperative
nature of these interactions, the system’s dynamics is captured by the behavior of a single mean-field,
collective spin. In this mean-field limit, it has recently been shown that the interplay between photon
losses and periodic driving of light—matter coupling can lead to time-crystalline-like behavior of the
collective spin (Gong et al 2018 Phys. Rev. Lett. 120 040404). In this work, we investigate whether such a
Dicke time crystal (TC) is stable to perturbations that explicitly break the mean-field solvability of the
conventional Dicke model. In particular, we consider the addition of short-range interactions between
the atoms which breaks the collective coupling and leads to complex many-body dynamics. In this
context, the interplay between periodic driving, dissipation and interactions yields a rich set of dynamical
responses, including long-lived and metastable Dicke-TCs, where losses can cool down the many-body
heating resulting from the continuous pump of energy from the periodic drive. Specifically, when the
additional short-range interactions are ferromagnetic, we observe time crystalline behavior at non-
perturbative values of the coupling strength, suggesting the possible existence of stable dynamical order
in a driven-dissipative quantum many-body system. These findings illustrate the rich nature of novel
dynamical responses with many-body character in quantum optics platforms.

1. Introduction

The study of emergent dynamical phenomena in interacting quantum many-body systems constitutes a frontier
of research in modern quantum optics and condensed matter physics. In this quest for phases of quantum
matter without equilibrium counterpart, time crystals (TCs) represent a promising candidate for a novel form of
dynamical order out-of-equilibrium. In TCs, observables dynamically entrain at a frequency subharmonic of
the one imposed by an external periodic drive [ 1-18], and they have been currently realized with trapped ions
[19] and solid state systems [20—22]. In most previous studies, TCs are realized in closed interacting quantum
many-body systems, which are prone to heating towards an infinite temperature state under the action of
periodic drive [23, 24], therefore, a slowdown of energy absorption is customarily entailed via a disorder induced
many-body localized phase [25-28], or by fast driving [8, 29-33].

An alternative pathway could consist in ‘cooling’ TC via coupling to a cold bath, which can absorb the energy
pumped by the periodic drive [32]. A natural candidate to explore this avenue is represented by a recent line of
inquiry on the exploration of TC-like behavior in the open Dicke model, which describes an ensemble of atoms
collectively coupled to aleaky photon cavity mode. The periodic drive of Dicke light—matter interactions in the
superradiant regime can entail sub-harmonic dynamical responses [1], however, the collective nature of
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Figure 1. The driven-dissipative many-body Dicke model studied in this work. An ensemble of atoms are collectively coupled to a
photon field 4 with a time-varying strength A\(¢), which consistutes a Floquet driving that injects energy into the system. The atoms
also interact with each other via a short-range interaction of strength J, which breaks the collective nature of the system. Dissipation of
energy into a bath is included through the loss of photons at a rate .

interactions renders the dynamics of this class of TCs equivalent to a single body problem consisting of a mean-
field collective spin degree of freedom moving on the Bloch sphere. Our key goal is to understand the stability of
the Dicke-TC when one breaks the mean-field nature of the model.

To this end, we explore the robustness of Dicke-TCs to local interactions which break the collective coupling
of the original model (figure 1). We observe that this class of Dicke-TCs can remain stable to such mean-field
breaking perturbations in certain limits. Crucially, this lifts the phenomenon from an inherently collective,
mean-field effect to the steady-state behavior of a dissipative many-body system. We note however, that unlike
the traditional venue for discrete TC [9—13], where short-range interactions are essential for stabilizing time
crystalline order, here, the short-range interactions are rather viewed as perturbations to the original mean-field
Dicke-TC.

The interplay between Floquet driving, dissipation, and interactions results in a rich set of dynamical
responses. In particular, we find regimes where TCs are stabilized by the bath, which counteracts the energy
pumped into the system by the drive. We also observe the emergence of metastable dissipative TCs,
characterized by a slowly decaying envelope evolving eventually into a trivial steady state dominated by
dissipation. In addition, we find a family of ferromagnetic driven-dissipative TCs with strong resilience to many-
body heating.

2. The model

We consider a chain of N two-level atoms with short-range interactions among each other
N
Hiy = ]Z §°85 1 M
i=1

where §%7% = %% /2, and §*** are Pauli matrices. The atoms are collectively coupled to a photon field, e.g. by

placing them inside an optical cavity (figure 1), which can be described by the Hamiltonian [34, 35]

2A(1)
JN

where S, vz =2 N'§52 Weallow the light—matter coupling to be varied in time, A(£). Dissipation occurs when

photons leak out of the cavity, as encoded by the quantum master equation

H, = wa'd + w,S, + @+ a"hs,, )

b= —ilA, p] + g(zapaf — a'ap — pata), ©)

for the total density matrix of the system, p, where H= FIac + Flim, and k characterizes the rate of photon loss.

When ] = 0, the above reduces to the well-known open Dicke model [36-53]. As the coupling is only
between the single photon mode and the collective spin operator, S,, the Dicke model is exactly solvable in the
thermodynamic limit N — oo: its dynamics can be described by the mean-field motion of the photonic
amplitude, a = (a), coupled to three classical degrees of freedom, S, (t) = (S,,,.(¢)), evolving on the Bloch
sphere. When J == 0, short-range atom-atom interactions break the exact solvability of I:Iac, spoiling the
collective character of the Dicke Hamiltonian. In addition to the collective mode S , which corresponds to the
k = 0 Fourier mode 5, = Zﬁ-": e %5}, all other k = 0 modes could also be excited. Hence A, introduces
quantum fluctuations in the spin (or atomic) degrees of freedom, which require treating the dynamics in
equation (3) as a quantum many-body problem.

We simultaneously account for dissipation and quantum fluctuations using a time-dependent spin-wave
approach, which has been demonstrated effective in capturing dynamical quantum many-body effects [54-56].
Specifically, we first perform a time-dependent rotating frame transformation to align the time-dependent
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2-axis with the collective Bloch vector S (t), and then in this co-moving ‘frame’ we perform a Holstein—
Primakoff transformation in order to expand the spin operators in Hiy to the lowest-order in the density of
spin-wave excitations, €(t) (see appendix A for details). The many-body effects introduced by A, are encoded in
the dynamical coupling between spin-waves, and the collective spin as well as photon field. Excitation of spin
waves leads to a depletion of the k = 0 mode, 21SMI/N=1— e, similarly in spirit to approaches which
incorporate self-consistently the effect of quantum fluctuations in the dynamics of a ‘condensate’ [57]. The spin-
wave density, €(f), representing the total population of all k = 0 spin-wave excitations, is required to remain
small at all times in order to have a self-consistent lowest-order Holstein—Primakoff expansion. By monitoring
the growth of spin-wave density, we can identify regions of ‘heating’, where the collective spin order shrinks
under the effect of strong many-body interactions, accompanied by a large value of €(f) in dynamics (see
appendix A).

3. Dynamical responses

We impose a periodic modulation on the light—matter coupling A(¢): during a first ‘bright-time’,

nT <t < (n+ 1/2)T,weset \(f) = A = (), and during the ‘dark-time’, (n + 1/2)T < t < nT, we switch
off A(#). Here, 2 = 2m/T = (wy + w)/2 denotes the driving frequency. This periodic driving counteracts
with the energy loss through photon leaking, and as previously found in [1] for the collective Dicke model
(Flins absent), it entails a period-doubling response in spin observables. The presence of such TC-like behavior
can be understood from the Z, symmetry of the Dicke model with constant A, under the parity operator

P = eim@a+8+5) For A > ), = %\/(wz + K?/4)wy/w,a quantum phase transition that breaks the Z,
symmetry occurs, and the system enters a superradiant phase, featuring two steady states, with spin projection
S¢/N = £X,S, = 0and non-vanishing photon amplitude a = FINXX/(w — ik/2) (X = %«/ 1 — A/,
When § = (wg — w)/Q2 = 0, the free evolution during the ‘dark-time’ accumulates a phase of 7 for both S,
and g, and the system switches from one steady state to another, i.e. S, — —S,and a — —a. Asaresult, the
dynamics repeats after two cycles of the driving and a sub-harmonic response with period 2T appears. In such

a picture, atoms are simply described as a single classical spin, which becomes invalid in the presence of Hiy,
and thus it deserves a careful investigation whether the Dicke-TC exists in a many-body system with
nonzero J.

We explore the spin dynamics for various interaction strength J and dissipation rate &, using the time-
dependent spin-wave approach. Our analysis shows that the Dicke-TC order can exist beyond the collective case
(J = 0) and survive many-body interactions. For a range of finite J /{2 < 1and0 < x/2 < 1, we observea
stable subharmonic response in S,(¢), as plotted in figure 2(a) for an instance, where the spin-wave density
remains small and therefore it is robust to heating (see appendix B). Upon increasing the values of J, the inelastic
scattering induced by many-body interactions becomes efficient, provoking a sizeable growth of spin-wave
density, which invalidates the lowest-order spin-wave expansion and makes the collective spin, S ,crumble. In
this regime of strong interactions, the system is prone to heating under the action of the Floquet driving (see
also”). However, as shown in figure 2(b), for moderate strengths of J/€2 < 1, such effect of heating can still be
remediated with sufficient dissipation /€2 2 1 (see also appendices B and D). In this case, strong dissipation
acts as a ‘contractor’ for the dynamics, guiding swiftly the system towards the desired non-equilibrium steady
state and enables stable oscillations of S,. Meanwhile, the combination of strong dissipation and driving leads to
remarkable disturbance of the spin state within each period, resulting in a larger value of S, compared to the
Dicke-TC at small x (see figures 2(a) and (b)). Here, the enhanced fluctuation of photon field associated with
strong dissipation can induce large phase noise and destroy the Dicke-TC as well; however, for sufficiently large
atom number N, the phase noise can still be suppressed, since the amplitude of photon field scales as ~~/N in
the superradiant regime (see appendix A), and thus allows the observation of the Dicke-TC.

While period doubling is a fragile dynamical response in one-particle periodically driven systems, i.e. it
disappearsasatiny 6 = 0 is switched on, the collective (J = 0) Dicke-TC is robust in a range of small § = 0,
thanks to the macroscopic S,-order built during the superradiant ‘bright-time” and thanks to the ‘contractive’
role of dissipation which guides the system towards the desired non-equilibrium steady state. Such robustness to
deviations from the § = 0 limit, persists upon inclusion of many-body interactions, J = 0 (as an example,

6 = —0.12is used for figure 2). The persistence of many-body Dicke-TCs on timescales much longer than

t.. ~ 1/k (see the exemplary dynamics in figure 2(a)), indicates that they represent a long-lived phenomenon,
since in the presence of dissipation, relaxation is typically expected to occur on timescales inversely proportional
to the system-bath coupling, . Indeed, we never observe decay of the Dicke-TC order on the longest timescales

7 In this work, we choose as upper threshold for spin wave density the value, e = 0.2, in order to delimit the heating region from the other
dynamical responses. This choice is motivated by previous studies in [56].
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Figure 2. Instances of the stroboscopic dynamics of the collective spin projections, S, S,, and S, (colored in blue, red and green
respectively and each normalized by atom number N), for Dicke-TC ((a) and (b)), IR (c), and OD (d) dynamical responses.

@)J/Q = 0.056, 5/ = 0.375.(b)J/Q = 0.2,/ = 1.45.(c)J/Q = 0,5/ = 0.9.(d) J/Q = 0.04, k/Q = 3.2. The insets show
the stroboscopic snapshots on the Bloch sphere for the last 1000 periods.

accessible to our numerical study (e.g. see figure 2(a) and footnote”). The existence of Dicke-TC is also insenstive
to initial conditions. As we checked in our numerical simulations, similar responses are observed over a wide
range of initial conditions (see appendix B).

Here, dissipation is capable of stabilizing rather than destroying the Dicke-TC order in S, (¢) since itacts on
the photon mode and therefore collectively on spin order. On the contrary, when local losses are introduced,
dissipation is intrusive and detrimental, and it destroys TCs (see for instance [58]). Note that in conventional
discrete TCs, instead, the interactions serve to lock single-spin dynamics into a stable subharmonic response that
is robust to perturbations or imperfections of the drive [13, 19].

When the rate of dissipation is intermediate, /€2 ~ 1, we recognize aregion of irregular (IR) dynamics,
where the trajectory of S (t) is scattered on the Bloch sphere (figure 2(¢)). In this case, the photon amplitude is
sizeably reduced, and since it contributes to building the S,-order via the light—matter coupling term o, the
system does not develop a S, component sufficiently strong in order to counteract the dephasing induced by the
‘transverse field” oc wy S, during the ‘dark-time’, and this results into a featureless dynamical response lacking
period-doubling. We also notice that in this regime a relatively small value of ] can lead to a proliferation of spin-
wave excitations, suggesting a tendency to heating (see appendix D).

Complementarily, with excessively large /€2 > 1, while dissipation is sufficient to cool the system and
prevents many-body heating, it also destroys Dicke-TC order: in this case, dissipation overdamps dynamics, and
the collective spin of the system relaxes to a trivial steady state where all spins point down towards the south pole
of the Bloch sphere (see figure 2(d))’. This overdamped (OD) regime is thus characterized by a vanishing
magnitude of the spin projection, [S, + iS,|.

The different dynamical responses discussed above are summarized in a qualitative cartoon, figure D1, in
appendix D. It is interesting to note that, with increasing J, we find the system tends to be overdamped with a
smaller , which is indicated by the downward bending of the boundary between the OD and Dicke-TC regions
shown in figure D1. Hence fast ‘cooling’ does not always protect, but can instead destroy Dicke-TC behavior.
Nevertheless, dissipation plays a crucial role in establishing the rich phenomena in figure D1 (see appendix E,
where the impact of A, on TCsin the Lipkin—Meshkov—Glick (LMG) model is addressed). We note that, in this
work, the frequency of the drive, €2, only plays the role of an overall energy scale.

In principle, we cannot exclude that collapse of the order parameter might occur at much later times, and establishing the stability to
infinite times may require another approach, which is beyond the scope of this work. However, this effect, even if present, would be of no
practical relevance on experimentally accessible timescales.

? S./N 2z —1/2,since part of the collective spin is dissipated in the bath of spin waves.

4
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Figure 3. (a) The stroboscopic dynamics of the MTC for /2 = 2.5,]/2 = 0.08,6 = —0.12. The dynamics of S,(t) (blue, normalized
by N) appears indistinguishable from a conventional Dicke-TC response on time windows of the order of a few decades of cycles
(inset); on longer timescales it displays instead a slowly decaying envelope. (b) The lifetime of the MTC (defined as the time when the
stroboscopic amplitude of |S, + iS,|/N decays to <0.1), and spin-wave density of the MTCafter 5 x 10° cycles. We find that the
lifetime falls to zero following an empirical law ccexp [—A(J /)], with A a positive factor.

4. Metastable dissipative TC

For intermediate values of both Jand « (see for instance figure D1), our system hosts another type of nontrivial
behavior: a dissipative metastable time crystal (MTC) characterized by a slowly decaying envelope, which
deteriorates, in the long time, into a trivial asymptotic state with vanishing S, (see figure 3(a)). This behavior is
distinct from the Dicke-TC: in figure 3(b) we plot the associated spin-wave density (dark blue line), which
exhibits a discontinuous jump at a non-vanishing value of J, when the lifetime of the TC starts also to

decrease (purple dashed line); this suggests that the metastability is not expected to manifest for small values of J,
and therefore the conventional Dicke-TC represents a long-lived phenomenon (see'’). The lifetime, 7, of this
MTC gradually decreases with J, following the empirical law, 7 o< exp[—A (J /Q)!°] (with A a positive
prefactor), and vanishes when the system enters the OD regime, where also the spin-wave density becomes small
since the system reaches the fully polarized state in the negative Z-direction of the Bloch sphere (corresponding
to spin-waves vacuum). The MTC found here appears as a genuine interplay of periodic driving, dissipation and
interaction. We remark here that it does not result from a high-frequency expansion [29, 30], and thus is distinct
from the ‘prethermal’ Floquet TCs found in previous studies [20, 32], since 2 is an overall energy scale in our
system (see figure D1). A possible explanation for the phenomenon is suggested by the dynamics of €(#): during
the metastable evolution, the density of spin waves strongly fluctuates and is out of phase with the dynamics of
the photon amplitude, accumulating at every cycle a tiny dephasing, which eventually leads S,(#) to collapse.

5. Ferromagnetic driven-dissipative TC

As discussed above, the steady state underlying the Dicke-TC order possesses a ferromagnetic nature. When the
many-body interaction H, is also ferromagnetic (J < 0), inter-spin interactions can reinforce the ordering along
the +X-direction, giving rise to robustness against heating and the overdamping caused by dissipation. Indeed, for
non-perturbative values of |J| /£ ~ O(1), we find that a ferromagnetic (J < 0) dissipative Dicke-TC can be
stabilized at intermediate dissipation rate without significantly heating up the system (see footnote'"). This is
shown in figure 4, where we plot the spin-wave density for antiferro-(J > 0) and ferro-(J < 0) magnetic TCs: a
sizeable spin-wave density denotes fragility to many-body interactions and a dynamics prone to heating, and such
effects are expected to be pronounced at large J. Remarkably, this does not occur for ferromagnetic inter-spin
interactions which develop tiny values of () even for |J| /€2 ~ O(1). The emergence of such a Dicke-TC response
within the coexistence of significant many-body interactions and dissipation rate, appears to us a strong
incarnation of TC-like behavior in driven-dissipative platforms: it is a novel form of dynamical order out-of-
equilibrium, which significantly departs both from the mean-field Dicke-TC response (where J ~ 0), and from
conventional (many-body) discrete TCs where dissipation is not a constitutive ingredient (£ = 0). In this
perspective, such ferromagnetic TC represents a non-equilibrium state of strongly coupled, driven-dissipative,
quantum matter exhibiting rich dynamics that can trigger motivation towards the search of other non-trivial
dynamical phases in many-body quantum optics.

10 . . . . .
We have checked with a finite-size analysis that these conclusions do not depend on N.

11 . . A . . . L1 . . . .
In this case, we switch off the Hj,, term during the ‘dark-time’, in order to avoid inhomogeneous dephasing resulting from inter-spin
interactions.




I0OP Publishing NewJ. Phys. 21 (2019) 073028 B Zhuetal

0.30
=
‘®
c
[0}
©
o
>
@
=

]

=
a
2]

O . O O L L L L L

0 1000 2000 3000 4000 5000
nT
Figure 4. Comparison between the stroboscopic dynamics of spin-wave densities of a ferromagnetic (cyan dashed line, J/Q = —2.4)

and of an anti-ferromagnetic (blue line, J/€2 = 0.2) Dicke-TC for 6 = 0.04and x/Q = 0.4. The orange area denotes the region of
values of spin-wave density where the lowest order Holstein—Primakoff breaks down and the system becomes prone to many-body
heating (see footnote 7).

6. Summary and outlook

The Dicke model is currently engineered in several experimental platforms [59-64]. We expect our results to be
qualitatively insensitive to the details of the microscopic structure of the interaction term H,,,andtoholdina
broader set of models, and thus would be relevant for experiments where collectivity of the system is inevitably
broken by inhomogeneous fields, or spatially varying light-matter couplings, or genuine inter-particle
interactions such as using Rydberg atoms [65—68]. The stabilization of Dicke-TC order seen for strong
ferromagnetic spin—spin interactions can also be generalized to systems where the inter-spin interactions have
an anti-ferromagnetic character (J > 0), given the capability to control atom-light coupling in cavity
experiments [69]. For coupling xA (4 + d*)zj( —1)/ [7]?‘ ,asimilar Dicke-TC response exists in this case but with
anti-ferromagnetic ordering. Hence a I:Iim with certain J > 0 would be expected to extend the Dicke-TC to a
many-body regime. Another interesting possibility offered by the control of light—matter coupling consists in
realizing Dicke-TC responses with higher integer periods (T with n > 2) without employing high-spin atoms
(see for instance [20]). In the appendix F we show that a Dicke model with coupling of the

form ocA (4 + ﬁT)Zj[(— 1)i/ 267" + h.c]realizes a dynamical response with quadruple period.

The setup analyzed in our work is closely related to quantum optics platform, but can also be relevant for condensed
matter and solid state platforms, where the system can be modeled as a quantum spin chain coupled to a phonon bath.
We believe that the outreach of our results has the potential to motivate a new generation of experiments on TCs in
many-body systems, where the presence of a bath plays a crucial role at variance with current realizations [19, 20].
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Appendix A. Time-dependent spin-wave theory

In this section we provide further information on the time-dependent spin-wave expansion, referring the reader
to [54, 56] for a comprehensive discussion on the method.

We use the shorthand O = (O) for expectation values of operators O, and define the coordinates for the
collective spin vector, S = g(sin 0 cos ¢, sin @ sin ¢, cos 6), in terms of the polar, #, and azimuthal angle, ¢, on
the Bloch sphere, which allows writing compactly the equations of motion:

6
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a(t) |e=|S(t)|¢=| €(2)

Figure Al. In the time-dependent spin-wave theory, quantum fluctuations introduced by the short-range interaction term Hiy are
included as a self-generated bath which couples to the order parameter, S (t). The latter couples also to the photonic mode which is
cooled by a zero temperature bath. Therefore, the dynamics of the order parameter results from the competing interactions with an
internal spin wave bath (represented by spin wave’s density, (t), in the sketch above), and with an external cold bath, mediated by the
cavity photon, a(t).

0= _ 220 (a+ a*)sing — J(1 — €)sinf sin ¢ cos ¢
N
+ J6pp sin @ sin ¢ cos ¢ — J6p, sin 6 cos 6 cos? ¢, (Ala)
¢ =wy — 2j%) (a + a*)cotfcosp — J(1 — €)cos B cos’p
+ J6gq €08 0 cos® p — 4]6,4 sin & cos ¢, (Alb)
4= —iwa — ga — AN — €)sinf cos b. (Alc)

The effect of Hyy, enters the dynamics of the collective spin vector via the spin-wave correlations 6,5 (v, 3 = g, p)
and the spin-wave density €, which are in turn dynamically coupled to the collective spin and photon field. Here

Oap = — Z cos kA‘“, and (A2)
k=0
e= = S(AP 4+ AW 1), (A3)
N k=0
with
AR = (6 (D) &_i (1)), with = g, p, (A4)
1 . n n ~
A = E(<Pk(t)q,k(t)> + (3, (Op (D)), (A5)

where g, and p, are the canonically conjugate bosonic variables associated with spin waves with wave-vector k = 0.
Following the procedure in [56], we derive the equations of motion for the spin-wave correlations

A% _ 2D
FETUN

— 2] cosk cos 0 sin ¢ cos pAM,

(a+ a*)%qu — 2J (cos? ¢ — cosk sin? ) AP
sin

APP — 4)\(t)( + *) €0 S¢qu + 2J(cos® ¢ — cosk cos*§ cos* p) AL
JN no
+2 coskcos@smqﬁcos YANLR

AP = 220 a+ a* )COS(b Al — APy 4 J(cos? ¢ — cosk cos?§ cos® o) A
JN sin @

— J(cos* ¢ — cosksin® p) AP (A6)

These quantities intertwine with the equations of motion (A1), and represent the feedback of the non-
equilibrium Gaussian fluctuations of spin waves on the motion of the collective spin (the k = 0 mode). The self-
consistent solution of equations (A1) and (A6) yields the dynamics of the light—matter system. We note that
these equations of motion are derived in the thermodynamic limit [56]; therefore we expect our results to be
insensitive to the choice of N, as we checked for the main results of our work.

In equation (A1c), the phase fluctuation accompanied with photon loss has been neglected. This is valid in
the large Nlimit, since the TCs under scrutiny here exist in the superradiant regime, where the photon number is
N, and thus photon noises become subleading. For small N, the effect of phase fluctuation can be incorporated
in the spin-wave approach by adding a Langevin noise term in equation (Alc).

To derlve equations (A1) and (A6), only terms quadraticin g, p, have been kept and quartic terms, which
scale as €7, have been neglected. Hence the spin wave density € has to remain small during the course of the
evolution, in order to render consistent the lowest order Holstein—Primakoff expansion. This restriction of the
spin-wave approach limits resolving possible structures in the dynamical responses when the heating from J is
significant, which might be interesting to explore in future works. For ] = 0, one can readily see from the above
equations that e(f) = 0 atany time, while for J = 0, the length of the collective spin is shrinked via
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2|§ 3] / N =1 — (). Apictorial description of the method is provided in figure A1. The correction from
terms higher order than € in the expansion corresponds to interactions between spin-wave excitations and may
become quantitatively relevant at long times. As demonstrated in [56], the spin-wave approach can still well
capture the dynamics qualitatively even when a sizeable ¢ is developed.

Appendix B. Persistence of Dicke-TC

In this section we provide more details of the Dicke-TC behavior discussed in section 3. In figure B1(a), we plot
the maximum spin-wave density over the 5000 periods of dynamics obtained from the above time-dependent
spin-wave approach at stroboscopic times, when increasing the interaction strength J. As discussed in the main
text, when the system is prone to many-body heating, sizeable amount of spin-waves develops, and the
Holstein—Primakoff expansion breaks down. Here, we choose as upper threshold for spin-wave density at the
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Figure B1. The maximum spin-wave density e(f) within 5000 periods of dynamics (a) and the variance of Fourier spectrum (b) for
various interaction strengths J at fixed dissipation rate x corresponding to the Dicke-TC shown in figures 2(a) (blue dots), and

2(b) (green squares) and 6 = —0.12. The variance is not calculated for those values of J corresponding to spin-wave density above the
threshold (orange region). As a reference, the dotted line in (b)shows the variance obtained for the IR dynamics in figure 2(c).
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Figure B2. Dicke-TCs for different initial conditions, with the same parameters as in figures 2(a) (upper panels), and 2(b) (lower
panels). The initial state in panels (a) and (c) is a collective spin state with § = 0.5mand ¢ = 0.3 (see notation in appendix A), while
the initial state in panels (b) and (d) is characterized by § = 0.3wand ¢ = 0.37. Blue, Red and green lines plot the stroboscopic
evolution of S, S, and S, (each normalized by N), respectively. The system exhibits similar Dicke-TC order for these different initial
states.
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value, € = 0.2. From the spin dynamics, we can also calculate the variance x of the Fourier spectrum of S, + iS,,,
definedasx = [ dipw)(v — 050/ [ dp@w) + [ _ dup@)(w + 0.5Q)/ [ _ dup(v), where p(v)is
the height of the Fourier spectrum at frequency v. TCs feature stable subharmonic responses, with the spectrum
composed of two sharp peaks located at v = +0.5(2, and thus a small value of x. The variance for increasing J is
plotted in figure B1(b). With asmall k /2 < 1, the spin-wave density quickly grows with ], which is reduced with
alarge x/2 > 1. The variance x remains negligible for values of ] with low spin-wave density, indicating the
existence of the Dicke-TC with finite J.

In figure 2 an initial state with = 0.5mand ¢ = 0 has been used. We have also checked in our numerical
simulations that the Dicke-TC is insensitive to initial conditions, thanks to the dissipative nature of dynamics:
we observe similar sub-harmonic dynamics over a wide range of different initial states, as demonstrated in
figure B2.

Appendix C. Mean-field analysis of dynamical responses

To understand the dynamical responses in our driven-dissipative many-body system, here, we firstapply a
mean-field treatment to solve dynamics from the master equation (3). In figure C1 we display the various
dynamical responses of the system. The boundaries between the IR and the Dicke-TC regions are dictated by a
transition in the variance of the Fourier spectrum of S,.(t) + S, (), which is negligible in the case of the Dicke-
TC. The OD regime is identified with a vanishing S, + iS,|at 5000 periods, which exhibits a second-order phase
transition when crossing into the Dicke-TC regime. In a mean-field analysis, quantum fluctuations are neglected
and thus it does not predict the MTC, the heating region, and the enhanced robustness for ferromagnetic Dicke-
TC, which are the genuine many-body results of our study. Instead, it shows as an artifact the persistence of
Dicke-TC despite strong interactions.

3.0}
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2.0}

K/IQ

1.5}

1.0} IR

0.0! : :
0.00 0.05 0.1 0.15

JIQ

0.5

Figure C1. Mean-field dynamical responses for § = —0.12, as a function of dissipation rate, x, and many-body interaction strength, J.
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Dicke-TC|Dicke time crystal

IR irregular dynamics

H heating regime

0D over-damped regime

MTC metastable time-crystal

Figure D1. A qualitative cartoon of the dynamical responses in the driven-dissipative many-body Dicke model, for varied dissipation
rate, /€2, and many-body interaction strength, J > 0, with § = —0.12. Lines separate regimes with qualitatively different dynamical
responses; dotted lines at the boundary with the heating (H) regime indicate a crossover into regions where the collective spin order
decays and the system becomes prone to many-body heating. The Dicke-TC responses are stable in the long-time limit, while the
MTC represents a slowly decaying dynamical response, with vanishing dynamical order at long times. The OD region describes a
regime dominated by dissipation where the order parameter quickly drops to zero.

Appendix D. Summary of dynamical responses from time-dependent spin-wave analysis

To account for quantum many-body effects, we solve equations (A1) and (A6) in the time-dependent spin-wave
approach to obtain the spin dynamics. For the numerical integration, we adopt the fouth order Runge—Kutta
method and keep a fixed time step of 0.0005T. We have also checked by halving the time step the conclusions
drawn do not change. We explore over a range of parameters x and J and find rich dynamical responses. Figure D1
shows a qualitative sketch of regions where different dynamical behaviors are observed. We label the region with
large spin-wave density € (t) > 0.2 as heating (H), where the spin-wave treatment breaks down. IR regime is
characterized with a large variance x of the Fourier spectrum together with €(f) < 0.2. Asdiscussed in [1] for the
case of ] = 0, chaotic dynamics may arise in the collective Dicke model, which can result in large numerical errors.
Here, we also find that when /€ ~ 1 the numerical integration tends to be unstable, and we associate these
instances with IR as well in figure D1. The MTC region is identified with a slow decay of | S, + iS,|toanonzero
value at 5000 periods, with a small y and €(#) remaining below 0.2. The boundary between the OD and the Dicke-
TC regime resembles the one in a mean-field analysis, except that at a small value of J it is interrupted by the
emergence of other dynamical behaviors and heating: for increasing /, the boundary is set by a smaller, rather than a
larger k, suggesting that faster dissipation does not always protect the system against the heating from many-body
interactions. As noted in appendix A, limited by the choice of truncation in €(#), a quantitative identification of the
parameter regime for all dynamical responses and the nature of their boundaries is beyond the scope of this work.

Appendix E. Comparison with integrability breaking of the periodically kicked LMG
model

In order to exemplify the non-trivial interplay that dissipation can have with many-body interactions, we have
considered a similar analysis in a case governed by purely unitary dynamics. We have studied the LMG model
perturbed by Hiy,

N N N . N A a2 A
H = H(LMG) =+ Hint) with H(LMG) = 7N5x — gSZ (El)

The dynamics entailed by H’ is periodically perturbed by a collective rotation along the 2-axis; the evolution
operator reads in a period

U = Uy exp (—iH'T), (E2)

with U = exp(—i¢§z). This protocol has been shown in [70] to display TC behavior when ¢ = 7 (in the
dynamics of the stroboscopic transverse magnetization). The TC in this case is robust to displacements around
the ¢ = mwpoint,ie.forangles¢ = m £ § (with 0 < ¢ < 7). We have chosen this system as a comparison for
the Dicke dynamics studied in the main text, since the latter effectively reduces to the LMG model via adiabatic
elimination of the photon mode for large cavity detunings.

The periodically driven unitary dynamics in equation (E2) does not entail a rich set of dynamical responses as
in figure D1: the TC persists (most likely in a prethermal fashion) for values of ] smaller than a certain critical
threshold, ], above which the system develops sizeable spin-wave density and therefore crosses over into a
regime of ‘heating’. This suggests that the presence of dissipation enriches the dynamical responses of a
periodically driven interacting quantum many-body system.
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Figure F1. Stroboscopic dynamics (a) of Z S’ /N (forjin every secondsite, i.e. sublattices Band D), and (b) of Z /N (forjin
sublattices A and B), displaying quadruple response.

Appendix F. Quadruple-period dynamical response

We consider the Hamiltonian

A = wiia + %E + —(a + 4) Z[elkxf + h.c], (F1)
j j

with the coupling strength between atoms and cavity controlled by tuning the phase factor ock - x;. Such
coupling can be realized by choosing proper laser dressing in a quantum optics setup. When e** = 1, the
Hamiltonian (F1) becomes the conventional Dicke model. In the case of e**i == 1, the coupling strength varies
from site to site. We choose el*% = (—1)i/2, therefore, the Hamiltonian becomes

A = wata + 20 Z o7 + —(aT + 4) Z[ i cos(jm/2) — a7 sin(jm/2)]. (F2)
2 5 JN
We divide the system into four sublattices, A, B, Cand D, with mod[j, 4] = {0, 1,2, 3}, respectively. Within
each sublattice, atoms are collectively coupled to cavity photons. In the limit of N — o0, the stationary solution

of the corresponding master equation hosts multiple possible steady states, depending on the value Q =
Nw / wy

K2/ 4+ w?

the system is superradiant, with photon occupation

Nuwy(Q* — 1/16)

. The case Q < 1/4 corresponds to the normal state without superradiance. When1/4 < Q < 1/2,

Neay = T (group I), (F3)

and similar to conventional Dicke superradiance, there are two possible spin states:
oy =X, 05=-X 08t =-X,0,=X, (F4a)
oy =-X o0=X 05=X, 0, =X, (F4b)

with X = {/Q? — 1/16/Q, andbothwith 6% = 0} = ¢& = 0§, = —+/1 — X?.Inthis case the spin state at
each site is in phase with the corresponding photon state. When Q > 1/2, the steady state consists of two groups.
The first group is the same as in equation (F4), while the photon occupation in the second group is given by

Nuwo(Q* — 1/4)

Neay = T (group ID). (F5)
This group includes eight different spin configurations
oy=X,05=-2"04=X",05=2,0f = -X/,
ce=-2" oh=X,0h=-2 (F6a)
ocy=X,04=-2,04=—-X,03=—-2", 0t =-X,
ot =-2'0h=-X',0h =2, (Fob)

Loh,=X,0h=2 (F6¢)

oh=-X',oh=-2 (F6d)
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ov=X,05=2,0s=X',05=-2" 0t =X,
Ué - _Zl; Ué - _Xl) Ui) = _Z/) (F6e)
!/ ! !/ ! !
oi=X',04=-2o4=-X,05=-2,05=X,
ot=2"0h=X"05=-2, (Féf)
oyn==-X,04=-2"05=X',05=-2', 0t = =X,
ot=2"0h=-X,0h=-2, (F6g)
! !/ ! !
oy=-X,04=20p=-X,05=-2", 05 =-X,
oce=-2",0h=X,0},=-2, (F6h)

with X’ = {/Q? — 1/4 /Q, and Z' = /1 — X'?. These states correspond to having a ‘defect’ in the spin
configurations, and thus result in alower photon number. A linear stability analysis suggests that the above states
can all be stable. The existence of multiple steady states provides the possibility of producing subharmonic
responses to external driving.

When 1/4 < Q < 1/2, wecan have a period-doubled dynamical response if we apply a Floquet driving
scheme similar to the one discussed in the main text.

When Q > 1/2,inaddition to period doubling, we can have a dynamics with period 4T. However, this
would require driving that can convert one steady state to another in equation (F6). A possible procedure is as
follows: We initialize spins close to 0, = o = —0& = ¢}, = 1,and let the atom-cavity system interact for
some time to reach steady state, which can be diagnosed via monitoring the photon emission from cavity. Then
we start to apply a driving pulse 8 at the end of each period T. @ consists of single-site rotations. Specifically, we
apply R, () rotation (R, (0) = exp(— i0S,,), with o = x, ¥, z) to all odd sites (A and C); even sites (Band D) are

rotated depending on the measurement outcome of 3 ie 4S; prior to the pulse: R, () for negative outcome, and

R , () for positive outcome. The pulse strength is kept equal to cavity detuning.

Ifwe measure 3, S jy for jin all even sites, we observe a quadruple period in dynamics, as plotted in figure F1,
demonstrating that the system indeed undergoes several steady states during the Floquet dynamics. Including
small photon loss during @, we still see oscillations at a stable 4T period. An alternative order parameter is the
inversion 3, S in sublattices A and B, the dynamics of which also exhibits a period 4T (see again figure F1).

The above analysis assumed that atoms within each sublattice remain in the collective manifold and that
there are no quantum correlations. When atom number is sufficiently large, this represents a reliable
approximation; notice, however, that even for a small number of atoms, period doubling has been observed in
[1] to persist for times longer than the decay time, therefore we can expect similar conclusions to hold for the
quadruple period dynamics discussed here.
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