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Abstract
Several studies have proposed constraints underwhich a low-dimensional representation can be
derived from large-scale real-world networks exhibiting complex nonlinear dynamics. Typically, these
representations are formulated under certain assumptions, such aswhen solutions converge to
attractor states using linear stability analysis or using projections of large-scale dynamical data into
a set of lower dimensionalmodes that are selected heuristically. Here, we propose a generative
framework for selection of lower dimensionalmodes ontowhich the entire network dynamics can be
projected based on the symmetry of the input distribution for a large-scale network driven by external
inputs, thus relaxing the heuristic selection ofmodesmade in the earlier reduction approaches. The
proposedmode reduction technique is tractable analytically and applied to different kinds of real-
world large-scale network scenarios with nodes comprising of (a)Van der Pol oscillators (b)
Hindmarsh–Rose neurons. These two demonstrations elucidate howorder parameter is conserved at
original and reduced descriptions thus validating our proposition.

Large-scale dynamical systems are useful tools to explain awide variety of complex phenomena in nature e.g.
financialmarkets [1], jamming transitions [2], humanmobility dynamics [3], weather patterns [4] and brain
dynamics [5].While increase in scale or dimensionsmay increase the predictive power of themodel system,
nonetheless a reduction to simpler descriptions at lower dimensions is critical for having relevance to empirical
observations and analytical tractability of underlyingmechanisms governing empirical observations. One
robust approach of reducing dimensions is definingmodes onwhich the original system can be projected [4, 6].
The selection of amode is often heuristicallymotivated, and themode can also be an order parmeter from the
perspective of the paradigmatic framework of Synergetics [7]. InNeuroscience, reduction of dynamical systems
with respect tomodes constructed fromdistribution of external input has been performed earlier on small-scale
network of linearly coupled excitable systems [6]. Since this reduction retain important network dynamics,
large-scale networkswere conceptualized by coupling these reduced systemswith long-range coupling [8, 9], the
later being heuristically argued from symmetry properties. In present work, we perform reduction on a large-
scale networkwhere connection among nodes involve global and local couplingmimicking a real-world system.
Subsequently, long-range coupling termbetweenmodes in the reduced system is derived analytically as part of
the reduction process. Global coherence (GC) is an order parameter that can be computed both at the level of
original dynamical system aswell as from themode dynamics in the reduced system. Conservation ofGC at both
levels is used to validate the generality of our approach in two distinct networks. First, we simulate a large-scale
networkwhere each node is a Van der Pol oscilator having two-dimensional dynamics and coupled using local
and global parameters. Second each node is aHindmarsh–Rose (HMR)neuron, a three-dimensional dynamical
systemwhich can exhibit different time scales of oscillations resulting in bursting alongwith tonic spiking
behavior.

Each ith excitable system in node n is represented by a vector of state variables (state vector) ( )xi
n . Input to ith

excitable system from interactionwith other excitable systemswithin nth node is given by a vector function
({ } )( )g x K i, ,j

n whereK is coupling constant and { }( )xj
n is a set of J state-vectors ( j=1,K, J) in nth node. Input
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to every excitable system innth node fromother nodes is given by another vector function ({ } )( )h x W n, ,j
m where

elements ofmatrixW ( Î ´RW J N ) are theweights of connections betweennodes and { }( )xj
m is a set of state-

vectors inNnodes (m=1,K,N) (figure 1(A)). Vector function ( )( )f xi
n contributes to the local dynamics of ith

excitable system innth node. Then, the dynamics of the entire system is describedby the following set of equations

ft = + + +˙ ( ) ({ } ) ({ } ) ( ) ( )( ) ( ) ( ) ( ) ( )x f x g x h x IK i W n, , , , , 1n i
n

i
n

j
n

j
m

i
n

where ẋ is time derivative of state vectors,f is a function of the external input (I ) and tn is the time-constant of
nth nodewhich is a differentiating factor between nodes. However, within nth node, external current to ith
excitable system ( ( )Ii

n ) differentiates it from the rest. For a large scale network comprising of individual excitable
nodes, (1) can bewritten as

ft = + + +˙ ( ) ( ) ( ) ({ } ) ( ) ( )( ) ( ) ( ) ( )x I f x g x h x It K W n i, , , , , , 2n
n n n m

where I is a continuous variable having normal distribution  m s( ), .
Now,we can represent ( )x t I, as a superposition ofM bi-orthogonalmodes {vi}

å x= +
=

( ) ( ) ( ) ( ) ( )x I I It t v R t, , , 3
i

M

i i
1

where ( )IR t , is the residual and M J (figure 1(B)). The nature of reduction is such that dynamical system
given in (1) is reduced to solving for themode coefficients xi as described in the following set of equations

x x x xt = + + + ( ) ({ } ) ({ } ) ( )( ) ( ) ( ) ( ) ( )F G H IIK i W n i, , , , , , 4n i
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and +{ }vi are the adjoint basis for the bi-orthogonalmodes { }vi .

Large-scale network ofVan der Pol oscillators

AVander Pol oscillator [10] has two state variables x and ywhich follows the following equations

=
=- - -

˙
˙ ( ) ( )
x y

y a x y x1 . 52

Figure 1. (A) Large-scale network architecture of complete systemwhere input to a node is theweighted sumof expected value of
state-variables (B) large-scale network architecture of proposed reduced systemwhere input to a target-mode is weighted sumof
target-mode specific expectedmode activity fromother nodes.
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A large-scale networkwhere individual node is essentially a Van der Pol oscillator can be cast into equation (1)
with the following relations
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where a is a constant and [{ }]xj is the expected value of the state-variables {xj}.K is the coupling constant
within each node between excitable units. For the reduced systemdescribed in (4)with x a b= [ ],i i i

T , we derive

å

å å

a

a

a

b
a b b a

a a

a

=
- + -

= -

=

=

=

= =

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤

⎦

⎥⎥⎥
⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡
⎣⎢

⎤
⎦⎥

( )

({ } )

({ } )( )
( )

F

G

H

II

a a

K i
K A

W n i
W A

II

, ,

0

, , ,

0

0
,

i
i

i i i i i

j j

M

ij j i

j
m

m

N

nm
j

M

ij j
m

2

1

1 1

where the constants ai andAij are computed by applying bi-orthogonal assumption ofmodes as stated in
appendix A.

Large-scale network ofHMRneurons

InNeuroscience,HMRneuron is a three-dimensionalmodel of single neuron firing dynamics having three state
variables [11]

= - + + -
= - -
= - -

˙
˙
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x y ax bx I z

y c dx y

z r s x x z0 , 6

3 2

2

where a, b, c, d, r, s and x0 are the constants. A network of excitatory and inhibitoryHMRneurons have been
used to describe a small-scale network of neurons [6]. Thus, a node in the brain (figure 1(a)) can be
expressed as a six-dimensional state spacewith 3 excitatory and 3 inhibitory variables represented as
= [ ]x x y z x y z, , , , , T

1 1 1 2 2 2 . Extending this architecture, for the large-scale system in (1), we obtain
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whereK11,K12 andK21 are coupling constants between individual excitable units (excitatory aswell as
inhibitory)within a node. Each node is thus identical in terms of local connectivity, the only source of difference
comes from the time constants whichwere set at different values (seefigure 2 captions). For the reduced system
in (4), ξi=[α1,β1, γ1,α2,β2, γ2]

T, we derive
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Figure 2. Improved error performance and preservation of global coherence spectra for the proposed reduction approach in
comparison to previous heuristic approaches [8, 9] (A) error computed forHindmarsh–Rosemodel for a=1, b=3, c=1, d=5,
r=0.006, s=4, x0=−1.6,K11=0.5,K21=0.5, - Î( ) ( )Inhibition excitation ratio IER 0, 2.5 ,μä (0, 2.5),σ=0.4,w ä
(0, 1),Mä (1, 150), τ1=0.05 ms, τ2=1 ms and τ3=2.5 ms (B) error computed forVanderPolmodel for a=0.1,Kä (0, 0.5),
μä (0, 0.5),wä(0, 1), τ1=τ2=τ3=0.05 ms,σ=0.4 andMä(1, 150) (C) global coherence spectra is plotted for varying node
interaction levels in the large-scale network forHindmarsh–Rosemodel withμ=1.75 and IER=2.0 for full and reduced cases
(30modes).

4

New J. Phys. 21 (2019) 072001



å

å

å

x

a a

a a

a a

=

- -

-

-

=

=

=

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

({ } )G K i

K A

K B

K C

, , 0
0

0
0

j

j

M

ij j i

j

M

ij j i

j

M

ij j i

11
1

1 1

12
1

2 1

21
1

1 2

å å

x

a

=

= =

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

({ } )( )

( )

H W n i

W A

, , ,
0
0
0
0
0

j
m

m

N

nm
j

M

ij j
m

1 1
1

=

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
II

II

II

1
0
0
2

0
0

,

where the constants a i1 , a i2 , b i1 , b i2 , c i1 , c i2 , d i1 , d i2 , p i1 , p i2 ,Aij,Bij andCij are defined in appendix.
We simulated a network of three nodes with each functional unit in a node is governed by (1)Vander Pol

(VDP) oscillator or (2)HMRneurons. Such three node-interactions are capable of addressing dynamical
properties of perceptual behavior as well as neuronal oscillations [12]. The results are generalizable to arbitrary
number of nodes since equation (4) is valid for any number of nodes with slight increase inmathematical
complexity.We select the node connectionmatrix for the exemplarmodel of the given form

= -
- -

´
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥W w

0 1 1
1 0 1
1 1 0

,

wherew is a scalar in the range 0–1 representing negligible node interaction to strong node interaction.We also
considered different values ofK for VDP (and inhibition− excitation ratio, =IER K

K
12

11
forHMR) and for

different values ofmean currentμ. For validating reduced systemwithMmodes, we compare theGC evaluated
using the complete system (Cp)withGC evaluated using the reduced system (Rp) using the following equation

å= -
m=á ñ

( ) ( ) ( )M C Rerror , 7
p f w K

T

p p
, , ,

2

where f is frequency andT is total number of pairs má ñf w K, , , . GC is computed betweenmean activities of
each node. For the reduced system, themean activity of each node is themean of individual excitable systems’
activities estimated using (3)without the residual.

AsM increases, error inproposed reductionprocess decreasesmore rapidly as compared toprevious approaches
[8, 9] (figures 2(A) and (B)) for both large-scale networks usingVander-Pol andHMRmodels as nodes, thus,
validating our reduction approach. ForVander-Polmodel, reductionproposed in [9] generatednumerical instability
during simulation.GCcalculated fromproposed reduction for an exemplar parameter spacematches closelywith the
original systemunlike heuristic approaches (figure 2(C)).We further validate our frameworkby showing the
reproductionof time-series ofmean-field activity of eachHMRandVDPnode (figure 3) for several different
parameters spaces. Finally,we validate our claimof preserving the long-range couplingby showing that the long-
range coupling term inproposed reduction is preservedunlike heuristic approaches (figure 4).

In [6], local-interactionbetween state-variableswas facilitated via themeanfield activity of thenodewhichby itself
is a small-scalenetwork. In the reducedmodel this interactionwaspreserved as the input to state variableofmode iwas
characterizedviamode-specificoutputof thenode ( aå = Aj

M
ij j1 )governedbymatrixAwhich is obtained as apart of

reduction.However, in the caseof the large-scalenetworkof these reducednodes the input to state-variable ofmode i
ofnodemwas either the activityof state-variable ofmode i fromothernodes [8]or itwas the sumof activities of
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state-variablesof allmodes fromothernodes [9]. In this paper, the input tomode iofnodem is derivedbyprojecting
the long-range interaction termof complete large-scalenetwork tomodesof the external input.Thus, the close
resemblanceof the results fromour reduction approach to the completenetwork (figures 2 and3) is due to the
preservationof the long-range coupling (figure 4)which is derived fromthe completenetworkusing (4).

In summary, we propose a generalized scheme for reduction of the dynamics of a large-scale network into
lower dimensionalmode description based on properties of the external input. Obviously, any such reduction
lowers the computational complexity. However an important point to note is amodel’s benefit is not necessarily
limited tomimicking the complex dynamics of real-world system. For example, a detailedmodel of the cortical
layer will be highly informative [13], but not necessarily insightful for explaining the cortical interactions during
a specific behavioral task. Since the functional properties of brain networks are related to its topology [14, 15], in
futurewewould like to advance our approach by investigating the interaction of local-global connection
topologies and external input distributionswhere implementing inhomogeneity inKmay be very useful.

The proposed reduction approach ismost relevant for studying the dynamical properties of interactions
between external input and nonlinear networkwhose architecture is unambiguous. Our approach also validates
that in the presence of an external input, complex large-scale networks show low-dimensional functional
properties and thus can be reduced to lower dimensionalmodes shaped by the external input distribution
without significant loss of information.Our reduction approachpreserves the coherence spectra at different

Figure 3.Preservation ofmean-field activity of each node in the reducedmodel with 30modes forHindmarsh–Rosemodel
(A)w=0.5,μ=2.5, IER=0.8 andK11=0.5 (B)w=0.5,μ=2.5, IER=0.8 andK11=30 and (C)w=0.5,μ=2.5,
IER=2.5 andK11=30 and for Vander-Polmodel (D)w=0.5,K=0.1 andμ=1 and (E)w=0.5,K=0.1 andμ=0.1.

Figure 4.Preservation of input to each node due to long-range coupling term in the proposed reducedmodel with 30modes for
Hindmarsh–Rosemodel whenw=1.0,μ=1.75, IER=2.0 andK11=0.5 as compared to heuristic approaches [8, 9].
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frequencieswhendifferent nodes areweakly connected aswell aswhen they are strongly connected (figure 2(C)).
Such transition is seen inneural circuits during transition fromdeep sleep to light sleep [16], andhence theproposed
reduction approach can explainhowdynamicalmodes of brainnetworks aremodulatedbybrainplasticity.

More generally, our approach is best-placed to any applicationwhere task inevitably involves reduction from
high-dimensional state space to functionally well defined lower dimensionalmodes. Such problems are also not
necessarily exclusively brain specific, but also pertinent for climate dynamics, traffic problems, or anywhere
dynamical systems are driven by external time varying and distributed input.Hence, the approach presented in
this articlemay be insightful for a wide range of scientific disciplines.
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AppendixA. Reduction coefficients forVan der Pol oscillator network
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Appendix B. Reduction coefficients forHMRneuronal network
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g1(I) and g2(I) are the pdfs of external input to excitatory and inhibitory sub-populations respectively.
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