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Abstract
Diffusion describes themotion ofmicroscopic entities from regions of high concentration to regions
of low concentration. Inmultiplex networks, flows can occur bothwithin and across layers, and
super-diffusion, a regimewhere the time scale of themultiplex to reach equilibrium is smaller than
that of single networks in isolation, can emerge due to the interplay of these twomechanisms. In the
limits of strong andweak inter-layer couplingsmultiplex diffusion has been linked to the spectrumof
the supra-Laplacian associated to the system.However, a general theory for the emergence of this
behavior is still lacking.Herewe shed light on how the structural and dynamical features of the
multiplex affect the Laplacian spectral properties. For instance, we find that super-diffusion emerges
the earliest in systemswith poorly diffusive layers, and that its onset is independent from the presence
of overlap, which only influences themaximum relative intensity of the phenomenon.Moreover, a
uniform allocation of resources to enhance diffusionwithin layers is preferable, as highly intra-layer
heterogenous flowsmight hamper super-diffusion. Last, inmultiplex networks formed bymany
layers, diffusion is best promoted by strengthening inter-layer flows across dissimilar layers. Ourwork
can turn useful for the design of interconnected infrastructures in real-world transportation systems,
clarifying the determinants able to drive the system towards the super-diffusive regime.

Introduction

Diffusionprocesses arewidespread innature and are known tobe at theheart ofmany complex emerging collective
behaviors, frombiology tophysics, such as contagions, animalmigration, spreadingof innovations, electric current in
semiconductors, andTuringpatterns [1–4]. A diffusionprocess is amacroscopic phenomenon resulting from the
motion in space ofmicroscopic entities, fromregions of high concentration to regions of lowconcentration. Inmany
cases of interest, it is natural to schematize thehosting spatial support as adiscrete set of points, connectedbymeans
of an intricate skeletonof channels,which canbenaturally represented as a complexnetwork. In this framework, the
microscopic agentsmove fromnode tonode and themobility process is governedby the fact that every discrete step is
performed fromeachnode towards the less crowded adjacent ones [5–8]. This results in aflowingmechanismwhich
asymptotically endswhen all thenodes are equally populated. Suchhomogeneous state,where the concentrationof
agents is uniformly distributed, represents a stable equilibrium for the system, and, differently fromrelatedmobility
processes such as randomwalks [9], does not dependon the structural features of thenetwork.Nevertheless, the
topologyof the interactionshas an important effect on the transient dynamicsof the system,ultimately setting the
time scale needed to reach the eventual equilibrium.

Inmany real-world systems, from social [10] to transportation networks [11], individual units can be
connected through linkswhich differ formeaning and relevance. For instance, the underground, bus and
railway networks coexist inmany cities giving rise tomultimodal transportation systemswhere each network is
associated to a different spatial and temporal scale. These systems are well described bymultiplex networks,
where links of different type are embedded into separate layers of interactions [12–14]. Diffusion processes were
among thefirst dynamics introduced in the context ofmultiplex networks, where diffusion can occur both
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within and across layers [15–18]. In this scenario,flows not only take place through nodes connected at a given
layer, but also across two replicas of the same node belonging to two different layers. This is for instance the case
of severalmain stations inmajor cities like London, where it takes time tomove from the train platforms to those
of the underground network, despite the two locations are both identifiedwith the same name. It is possible to
gain analytical insights onmultiplex diffusion by studying the spectrumof the supra-Laplacian associated to the
multi-layer system. Interestingly [15], showed thatmultiplex networks can have super-diffusive behavior,
meaning that their time scale to relax to the steady state is smaller than that of any layer taken in isolation. Since
then, the spectral properties ofmultiplex networks have beenwidely investigated [19–23], and the formalism has
been extended to describemore complex phenomena, such as reaction-diffusion [24–26] and synchronization
processes [27]. Nevertheless, while it was suggested that low correlation in the structure of the layers can enhance
diffusion in amultiplex [28], a rigorous theory for the emergence of super-diffusion is currently lacking.

In this workwe unveil themain structural and dynamical determinants ofmultiplex super-diffusion. For
instance, low overlap between the edges ofmulti-layer systems alwaysmaximizes the speed of the process when
diffusion across layers is high.However, surprisingly, link correlations across layers do not affect positively the
onset of super-diffusivity, whichwe find to be independent from edge overlap. In the past, the lack of such
correlations has already been found responsible to increase the fragility ofmulti-layer systems [29], tomaximize
themixing of randomwalkers [30], to promotemulticulturality in theAxelrodmodel [31], and hinder the
beneficial effect of interconnectedness to cooperative games [32].

Moreover, wefind that the faster the diffusive structure of the individual layers (higher density, broader
degree distributions, etc), the lower the beneficial effect ofmultiplexity to the velocity of the process.Multiplex
diffusion is promotedwhen the strength of diffusionwithin each layer is of the same order. For instance,
super-diffusionmight not be possible in the system if there exists at least one very slow layer, nomatter the speed
of diffusion across the other layers. Last, inmultiplex networks composed by a large set of partially overlapping
layers, diffusion is promoted by increasing the levels of interactions, and by preferentially enhancing inter-layer
diffusion across networkswith very different structure.

The paper is organized as follows.Wefirst introduce themathematical framework to describe diffusion in
networks composed bymany layers, summarize themain analytical results and define a novel indicator of
multiplex super-diffusion.We then investigate themain structural and dynamical determinants of diffusion in a
simple scenario focusing onmultiplex networks with two layers only, both of them regular random graphs
(RRG). This simple scenario allows us to isolate the effect of some important variables, namely the edge overlap
between the layers, their size and average connectivity, and the inter- and intra-layer diffusion coefficients.We
afterward extend our analysis to scale-free (SF) topologies, and the case of networks formed by a large number of
layers. Finally we conclude by discussing possible further extensions of ourwork.

Model

Let us consider amultiplex network composed byN nodes that can interact acrossMdifferent layers. The
structure of themultiplex network can be described by associating an adjacencymatrix =a a{ }[ ] [ ]A aij ,α=
1,K,M to each layer, where =a[ ]a 1ij if i and j are connected at layerα, and =a[ ]a 0ij otherwise. For the sake of
simplicity, we consider the case where all connections are undirected.

The process of diffusion on this complex support can be studied by considering the time evolution of the
state a[ ]xi of a generic flowing quantity on node i at layerα. The nodes are ordered according to the index

a+ -( )i N1 with i=1,K,N, such that the complete state vector is Î ´x RN M . The diffusion equation reads:
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whereD[α] is the diffusion coefficient within each layerα.Within nodes, diffusion can also occur across layers,
and it ismediated by an inter-layer coefficient a b[ ]Dx

, , with =a a[ ]D 0x
, a" [15, 19]. Inmatricial form equation (1)

takes the form:

= -ẋ x,

where  Î ´RNM NM denotes the supra-Laplacian defined in [15, 19] as:

   = +ℓ .x

The two contributions correspond respectively to the intra-layer and the inter-layer supra-Laplacians. Thefirst
one is a block-diagonalmatrix where the generic blockα is the standard Laplacianmatrix of the individual layer
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α, defined as: d= -a a a[ ] [ ] [ ]L k aij i ij ij , where = åa a[ ] [ ]k ai j ij denotes the degree of node i at layerα, and δij is the
Kronecker delta. Hence, we have:
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The inter-layer supra-Laplacian is instead amatrix composed byM×M blocks, each one being a diagonal
matrix of dimensionN×N:
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where IN is the identitymatrix of dimensionN. For simplicity, wewill only consider processes where the
intensity of diffusion between two layers is equal in both directions, i.e. =a b b a[ ] [ ]D Dx x

, , .
The solution of the systemof equation (1) is found by exploiting the eigenvector basisf( k) of the supra-

Laplacian , which allows to express in exponential form the time evolution of the state of the system as:
 fl= å -( ) ( ) ( )x t texpk k

k , with {λk} the set of supra-Laplacian eigenvalues. The analysis of the process is thus
reduced to studying the supra-Laplacian spectrum, and the convergence to the equilibrium represented by the
homogeneous state is governed by the smallest non-zero eigenvalue, l2 , also called algebraic connectivity [33],
which sets the time scale for the process.

While l2 can in general be computed numerically, an approximate solution has been found in the two
limits of strong andweak inter-layer coupling [15]. Let us considerD[α] of order one∀α, we have that:

(i) In the limit a b [ ]D 1x
, , the smallest eigenvalues coincidewith those of the inter-layer supra-Laplacian, so

the algebraic connectivity is given by l l= ( )x
2 2 . In this limit, indeed, the bottleneck for the diffusion process

is given by theweak connections between layers. This ultimately implies that the time scale of the diffusion
process is set by inter-layer diffusion and does not depend on the structure of the individual layers.

(ii) For a b [ ]D 1x
, , the smallest -N 1non-zero eigenvalues of  can be approximated as the non-zero

eigenvalues of the average single-layer Laplacian = åa
a[ ]L L

M
AV 1 , i.e. l l» ( )L2 2

AV . Here the intra-layer

networks come into play bringingwith them all their topological features, which can promote or hinder the
diffusion process.

In general, the diffusion time scale of themultiplex network  t l~ 1 2 is different from those of its
individual layers in isolation t l~a a[ ] [ ]1 2 , and the intensity of diffusion across layers can dramatically affect the
velocity of the process. Interestingly, it has been found thatmultiplexity can lead to super-diffusion, i.e. when the
multiplex time scale is smaller than that of each layer,meaning that inter-layer diffusion facilitate the diffusion
process [15].

We therefore define a super-diffusion indicator, whichwill be useful for our investigations, as the relative
value of thefirst non-zero eigenvalue of the supra-Laplacian of themultiplex compared to that of the fastest
layer:


z

l l
l
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- a
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a
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[ ]
max

max
. 22 2

2

If themultiplex outperforms the single layers we have super-diffusion and ζ>0.We remark that, given a
networked system, such indicator does not provide a description ofmultiplex diffusion in absolute terms, but
relatively to the performance of the individual layers. For this reason, having z z>1 2 for two structurally distinct
systems does not necessarily imply that diffusion is faster in the former, but rather thatmultiplexity has amore
beneficial effect in this network compared to the latter. In the followingwe provide awide overview of some key
structural and dynamical determinants of the diffusive behavior ofmultiplex networks, unveiling and clarifying
the emergence and the intensity of super-diffusion for awide class of systems.

Results

Structural determinants ofmultiplex diffusion
We start our investigation by consideringmultiplex networks composed by two layers, with

= =[ ] [ ]D D Dx x x
1,2 2,1 . The structural correlation between two layers can be quantified by the edge overlapω

[34, 35]:

3

New J. Phys. 21 (2019) 035006 GCencetti and FBattiston



å
å

w =
+ -
>

>
( )

( )
[ ] [ ]

[ ] [ ] [ ] [ ]

a a

a a a a
, 3

i j i ij ij

i j i ij ij ij ij

,
1 2

,
1 2 1 2

measuring the fraction of connected pairs i and jwhich are linked at both layers, 0�ω�1.Whenω=1 the
two networks are equivalent, hence in the limitDx? 1we have that l l l= =[ ] [ ]

2 2
1

2
2 and ζ=0. As in

undirectedmultiplex networks l2 is an increasing function ofDx, for weaker inter-layer diffusion ζ<0 and
super-diffusion can never be achieved. The intensity of super-diffusive behavior has been linked to high
dissimilarity across layers in the past [28]. Herewe systematically investigate the effect of the overlap in
controlled settings wherewe can tune at will the structural correlations across the layers of themultiplex,
focusing both on themaximumachievable super-diffusion, as well as its onset.

Infigure 1(a)we show the super-diffusion index ζ as a function of both the overlapω and the inter-layer
coefficientDx formultiplex networks withN=1000 nodes composed by twoRRGwith the same degree

= = =[ ] [ ]k k k 41 2 . Given two identical layers, it is possible to tune at will the value of edge overlap by rewiring a
fraction of edges f in one of the layers so that w = - +( ) ( )f f1 1 [32, 36]. The lack of structure in RRGs layers
is functional to quantify the role ofmultiplex correlations for super-diffusion in a set upwhere intra-layer effects
areminimized. Intra-layer diffusion coefficientsD[1] andD[2] are set equal to 1without loss of generality. This
figure and the following ones have been obtained by averaging over 50 independent realization of amultiplex
networkwith the indicated features.

As shown, as long asω<1,multiplex super-diffusion occurs in the system, and, surprisingly, in this simple
scenario its onset does not depend on the overlap. The super-diffusive regime (in red) is indeed only triggered by
values of the inter-layer diffusion coefficient higher than a critical valueDx,c≈0.28. The onset of super-
diffusion is independent fromω also for different choices of sizeN and connectivity k (results not shown).
However, the overlap is still important to determine the intensity of super-diffusion: in the regionDx>Dx,cwe
observe a clear gradient indicating that high values of ζ can only be obtained for small overlap, with amaximum
of ζmax=1.45whenω=0. Super-diffusion is hencemaximized byminimizing the similarity in the structure of
the layers, in this way also reducing the overall robustness of the system, as no pair of nodes is connected across
multiple layers [29].

In contrast, when the system is not super-diffusive, i.e. ζ<0 (in blue), multiplex diffusion is independent
fromω. This can be easily observed infigure 1(b), wherewe report ζ as a function ofDx for a few selected values
of overlap. This is in agreement with the previouslymentioned limit for a b [ ]D 1x

, , according towhich the
algebraic connectivity of themultiplex does not explicitly depend on the structure of layers, nor their overlap.
The lack of effect ofω for <D Dx x c, is also reminiscent of the existence of structural transitions inmultiplex
networks [20], meaning that sufficiently strong values of the inter-layer links are needed for the system to feel as a
whole and give rise tomultiplex emergent dynamics.

Infigures 1(c), (d), we investigate also the effect of additional structural features of the system, namely the
degree k of the RRGs and the number of nodesN in the system. As shown, the lower the k the sooner the onset of
super-diffusion, and the higher its intensity. At a first glance this resultmight seem counter-intuitive, as in
single-layer networks the algebraic connectivity is typically an increasing function of themean degree [37].
However, thismeans that, when coupling denser layers with higher intra-layer diffusions, larger inter-layer
values ofDx are necessary formultiplexity to be beneficial to diffusion in the system. In contrast, the size of the

Figure 1. Structural determinants ofmultiplex diffusion in regular randomnetworks. (a) Super-diffusion index ζ as a function of the
inter-layer diffusion coefficientDx (in logarithmic scale) and of the overlapω formultiplex networks composed by two regular
randomgraphs with degree k=4 andN=1000 nodes, where the intra-layer diffusion coefficientsD[1] andD[2]have been set equal
to one. The onset of super-diffusion is independent fromω, while its intensity ismaximized in absence of overlap. The critical value
for super-diffusion is =D 0.28x c, . (b) ζ as a function ofDx for five selected values of overlap. In the non super-diffusive regime, ζ is
independent fromω.Multiplex super-diffusion is harder for increasing values of degree k (c), while it is not strongly dependent on the
system sizeN (d).
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systemdoes not affect significantlymultiplex diffusion. This suggests that in real-worldmultiplex transportation
networks, the addition of newnodes into the systemmight harm the beneficial effect ofmultiplexity, driving the
networks outside the super-diffusive regime, unless the number of new links is adequately well-connected to the
existing infrastructure. Results in these last twofigures are shown forω=0, but similar effects are observed for
all values ofω<1.

Dynamical determinants ofmultiplex diffusion
Having clarified the basic structural determinants ofmultiplex diffusion, we now focus on the joint effect of the
three dynamical parameters of themodel, namely the inter-layer diffusion coefficientsDx, governing the
intensity of the flow across layers, and the two intra-layer diffusion coefficientsD[1] andD[2] governing flows
within layers.

Infigure 2(a)we show the super-diffusion index ζ as a function ofD[1] andD[2] for amultiplex network
composed by twoRRGswith k=4 andω=0, andwherewe setDx=1. The diffusion process is clearly
facilitated by high values ofD[1] andD[2], as expected. It is interesting to notice thatmultiplex networks
corresponding to the same value of the sumD[1]+D[2], i.e. characterized by on average the same intra-layer
diffusion across the two layers, are not associated to the same diffusion time scale. In particular, ζ decreases while
the difference betweenD[1] andD[2] increases andmultiplex diffusion ismaximizedwhen the two coefficients
are identical. In the case of real-world infrastructures, wherewe can assume that intra-layer coefficientsD[α]

reflect the size of channels connecting nodes at the different layers (whose building cost is the same), thismeans
that resources should not be allocated in away to preferentially facilitate diffusion in one of the layers, as this
could not simply slow down the system, but even carry themultiplex out of the super-diffusive phase.

Infigure 2(b)we show ζ for amultiplex networkwithmaximumoverlapω=1. As shown, because of the
correlated structure of the two layers, super-diffusion generally emerges at higher values of intra-layer
coefficients. Also in the limit where one of the two coefficients, sayD[1], tends to zero, interestingly super-
diffusion is still achievable as long asD[2] is greater than a critical value ( »[ ]D 3.6c

2 for the systemunder
consideration). Interestingly such value is independent fromω.We refer to this latter case as themaximally
asymmetric dynamic configurationmax that sustains super-diffusion. Conversely, we indicate the case

= =[ ] [ ]D D D1 2 as a dynamically symmetric configuration  .We quantify the relative additional cost to
achieve super-diffusion in asymmetric configurations by the indexσ, which accounts for the relative difference

Figure 2.Dynamical determinants ofmultiplex diffusion in regular randomnetworks. Phase diagrams of ζ as a function of the
two intra-layer diffusion coefficientsD[1] andD[2] forω=0 (a) andω=1 (b) for regular randomgraphswith k=4 andDx=1.
Symmetric configurationswith =[ ] [ ]D D1 2 are themost convenient for the onset of super-diffusion, though the difference is the
greatest forω=0. This effect can be quantified byσ, accounting for the relative additional cost associated to achieve super-diffusion
in asymmetric dynamical configurations where ¹[ ] [ ]D D1 2 , shown as a function ofω (c).While in symmetric configurations super-
diffusion is always achievable, this is not true for asymmetric configurations for values of inter-layer diffusionDx lower than 0.60 (d).
As an example, we report ζ as a function ofD[1] andD[2] forω=1 andDx=0.28 (e).
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between the critical value of the sumof the intra-layer diffusion coefficients for themaximally asymmetric and
symmetric configurations. In formulae

 


s =

+ - +
+

( ) ( )
( )

( )
[ ] [ ] [ ] [ ]

[ ] [ ]
D D D D

D D
, 4c c

c

1 2
,

1 2
,

1 2
,

max

whereσ=0 indicates that there is no additional cost formultiplex super-diffusion in asymmetric dynamical
configurations. As shown infigure 2(c), the higher the overlap the lower the relative costσ, with aminimumof
σmin≈0.78 forω=1. In contrast, forω=0 the increased cost of the asymmetric configurations are
maximum, andσmax≈2.65.

Interestingly, in this case whereDx=1,multiplex super-diffusion is always achievable also in such
asymmetric configurations.However, this is not always true. Infigure 2(d)we show the critical value of intra-
layer diffusions for both  (black crosses) andmax (orange triangles) as a function ofDx. In general, the lower
Dx the harder it is to achieve super-diffusion.More importantly, for values ofDx smaller than »D 0.6x c,

( )[ ] [ ]D D 0c
2 1 diverges,meaning that super-diffusion can not be achieved if contributions tomultiplex

diffusion from the two layers are very unbalanced, independently from the value of overlap. As an example, in
figure 2(e)we show ζ as a function ofD[1] andD[2] forω=1 andDx=0.28. In contrast, symmetric
configurations always allow to reach super-diffusion, and for this reason are to be preferred.

Multiplex super-diffusion in heterogenous networks
For the sake of simplicity, in the first two sections we focused on the effects of structural correlations and
diffusion coefficients onmultiplex diffusion by consideringmultiplex networks composed by RRGs, where all
nodes have the same degree k. However, the layers ofmany real-world systems are typically characterized by
broad degree distributions. In this sectionwe investigatemultiplex diffusion on SF networks, characterized by
power-law degree distributions g-( )p k k .

Infigure 3(a)we show the super-diffusion index ζ as a function of bothDx andω for two SF networks, both
of themwith γ=2.5 and á ñ =k 4, wherewe set = =[ ] [ ]D D 11 2 . Similarly to the case of homogenous layers, in
the limit of largeDx super-diffusion ismaximized in absence of overlap. Besides, the onset of the super-diffusive
regime is independent fromω.We numerically estimated the critical value of inter-layer diffusion at

»D 0.08x c, , a value smaller than that obtained for RRG. As for sparser layers, networks with a broad degree
distribution typically have a smaller algebraic connectivity, associated to slower intra-layer diffusion,meaning
that smaller inter-layer values ofDx are sufficient for diffusion to benefit from the interconnected nature of the
system.We remark that the rewiring process used to generatemultiplex networks with different values of
overlap preserves the original degree sequence. Thus, all considered configurations here have inter-layer degree
correlationsmaximumand equal to 1 [38]. For afixed overlap, sayω=0, the absence of inter-layer degree
correlations fosters the emergence of super-diffusion (results not shown).

Infigure 3(b)we show ζ as a function ofD[1] andD[2] forω=0 andDx=1.High values of intra-layer
coefficients facilitate diffusion, which ismaximized for =[ ] [ ]D D1 2 . Compared to the analogous case for RRGs
shown infigure 2(a), dynamical asymmetry in intra-layer diffusion is less penalizing in SF networks, as wefind

Figure 3.Multiplex super-diffusion in heterogenous networks. (a) Super-diffusion index ζ as a function of the inter-layer diffusion
coefficientDx (in logarithmic scale) and of the overlapω formultiplex networks composed by two SF networks with average degree
á ñ =k 4,N=1000 and γ=2.5. In the limit of largeDx the intensity of super-diffusion ismaximum for low overlap, whereas its onset
is independent fromω and occurs atDx,c≈0.08, a value smaller than the corresponding scenario for regular randomgraphs. Phase
diagrams of ζ as a function ofD[1] andD[2] (Dx=1) for two layers withω=0 and (b) γ[1]=γ[2]=2.5, (c) γ[1]=2.8, γ[2]=2.2. The
first symmetric case facilitates super-diffusion. In the latter case, super-diffusion ismore easily achieved by promoting diffusion in the
layer with the broadest degree distribution.
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s w s w= = < = =( ) ( )0 1.69 0 2.65SF RRG . Finally, infigure 3(c)we show ζ for two SF layers withω=0,
á ñ =k 4 and different power-law exponents, namely γ[1]=2.8 and γ[2]=2.2. First, we notice that the
structural asymmetry does not help the the relative velocity of the diffusion process, nor the onset ofmultiplex
super-diffusion. In bothfigures 3(b) and (c), we consideredmultiplex networks without inter-layer degree
correlations.

Differently frombefore, because of the structural asymmetry in the system, for constant values of
+[ ] [ ]D D1 2 super-diffusion is notmaximized for =[ ] [ ]D D1 2 . As g g<[ ] [ ]2 1 , the second layer has a broader

degree distribution and is diffusing faster than the first one. Consequently, if increasing the diffusive potential of
the two layers has the same cost, it is preferable to allocate resources on the second layer.

Multiplex super-diffusion in networkswithmany layers
All the above considerations can be easily extended tomultiplex networks formed bymany layers, i.e.M>2. In
this type of system, the overlap is often quantified as the average overlap [32]

åw wá ñ =
- a b a

a b

>( )
( )[ ]

M M

2

1
, 5

,

,

whereω[α, β] is the overlap between layersα andβ. Infigure 4(a)we report the super-diffusion index ζ as a
function of wá ñ in the limit of largeDx formultiplex networks formed by different number of layersM, each one
of them anRRGwith á ñ =k 4. As shown, for the samemean overlap,multiplex networks withmore layers are
able to achieve a highermultiplex super-diffusion. In the inset offigure 4(a), we report ζ as a function of a
differentmeasure of aggregate overlap, defined as

W =
á ñ -

-
( )e

M

1

1
, 6

Figure 4.Multiplex super-diffusion in networks withmany layers. (a) Super-diffusion index ζ formultiplex networksmade of
different number of layers as a function of two generalizedmeasures of overlap wá ñ andΩ (inset). The higher the number of layers, the
stronger the super-diffusion, and the earlier its onset, as shown in (b) in absence of overlap. ForM=3, phase diagramof ζ as a
function of different inter-layer diffusion coefficients for completely uncorrelated layers, i.e. wá ñ = 0 (c). Forω[1,2]=1, w =[ ]1,3

w =[ ] 02,3 , ζ as a function of different inter-layer diffusion coefficients (d) and (e). In all three cases the onset of super-diffusion is not
affected by the overlap. For partially overlapping layers,multiplex diffusion is best enhancedwhen promoting diffusion across
different layers.
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is themean number of layers at which connected pairs of nodes in themultiplex networks are linked. Similarly to
themean overlap, 0�Ω�1, and themeasure reduces to equation (3) for a systemwith two layers only.
Differently from themean overlap, however, thismeasure of overlap is not limited to capturing structural
correlations between two layers at a time. As shown, curves for different number of layers appear to collapse, at
least for sufficiently high values of aggregate overlapΩ>1/3. This hints at the necessity to investigate the effect
of higher-order non-pairwise layer correlations for dynamical processes onmultiplex networks, a direction that
we leave for future work. Infigure 4(b), we report ζ for wá ñ = W = 0 as a function ofDx. As shown, a higher
number of layer not only facilitates the intensity of super-diffusion, but also its onset.

Finally, we investigate the effect of heterogenous inter-layer diffusion coefficients a b[ ]Dx
, inmultiplex

networks. For the sake of simplicity we show results forM=3, all RRGswith á ñ =k 4, but the following
findings can be easily extended to the case of networks with a generic number of layers. Infigure 4(c)we show ζ

as a function of [ ]Dx
1,3 and [ ]Dx

2,3 (in log–log scale), for a systemwith wá ñ = W = 0, = = =[ ] [ ] [ ]D D D 11 2 3 , and
wherewe set =[ ]D 1x

1,2 . Once again diffusion ismaximally speeded upwhen the coefficients assume their
highest values. As for the case of intra-layer diffusion, by plotting the same figure in linear scale it appears that
symmetric configurations are slightly preferred under the constraint that the sum +[ ] [ ]D Dx x

1,3 2,3 is constant
(plot not shown).

Infigure 4(d)multiplex diffusion is investigated for a systemwhere thefirst two layers are identical and
completely different from the third one, i.e.ω[1,2]=1,ω[1,3]=ω[2,3]=0. By changing the values ofDx

[1,3] and
[ ]Dx
2,3 (againwe set =[ ]D 1x

1,2 ), in both cases we are tuning inter-layer diffusion between non-overlapping layers,
hence as expected the phase diagram is symmetrical, describing inter-layer diffusion between identical layers, is
again set to 1. Remarkably, the region of non-superdiffusivity in the phase diagram for figures 4(c) and (d) is the
same, even though the twomultiplex networks have very different overlap. This can be considered as a
generalization of the findings offigures 1(a), (b) to the case of networkswith arbitrary number of homogenous
layers, for which the onset of super-diffusion is independent from wá ñ. In contrast, the overlap affects the
intensity of super-diffusion, which ismaximizedwhen the structure of the layers ismaximally different (the
colorbars offigures 4(c) and (d) have different scales). Last, in figure 4(e)we show ζ for the samemultiplex
network, this time as function of [ ]Dx

1,2 (inter-layer diffusion across identical layers) and [ ]Dx
1,3 (inter-layer

diffusion across different layers.We set the other coefficient =[ ]D 1x
2,3 ). As the phase diagram shows, [ ]Dx

1,3 is
responsible for amuch greater variability of ζ than the other coefficient. Thismeans thatmultiplex diffusion is
promotedmore by enhancing diffusion across different layers, rather than similar ones.

Conclusions

Diffusionwas one of the first dynamics to be investigated on networks withmultiple layers of interactions. In
particularmultiplex super-diffusion is a paradigmatic example of novel emergent behaviorwhich can not be
understood by considering each layer in isolation or bymerging together the different networks of interactions.
In [15] selected network topologies were shown to sustain super-diffusion, even though no general theory for its
emergence was derived. In this workwe have clarified the structural and dynamical determinants of super-
diffusive behavior inmultiplex networks.We have shown that, for large diffusionwithin layers, the absence of
overlap is crucial tomaximize the beneficial effect of themultiplex structure to the process. However, low
overlap is not favorable to the system for low and intermediate values of inter-layer diffusion. In fact,
surprisingly, the onset of super-diffusion is independent from the presence of structural correlations, both for
regular random and SF layers.We have also shown that, when building costly channels within each layer, an
equal allocation of resources is preferable, as balanced intra-layer diffusion best sustainsmultiplex diffusion.
More importantly, an unequal allocation across layersmight cause the system to jumpout of the super-diffusion
regime, thus eliminating the potential beneficial effect ofmultiplexity. Last, for systems composed by a large
number of layers, our analysis suggests that pairwise network distance is not enough to fully capture the
complexity of the process. For such reason, we urge thatmore efforts be focused to link the emergence of
multiplex dynamics to the underlying structuremeasured at a global scale, as bymultiplex reducibility [39].

In conclusion, ourwork sheds new light on the diffusive behavior ofmultiplex networks, and hopefully will
trigger further investigations in this directions. In particular, combining real-worldmultiplex properties with
realistic directed diffusionwithin layers, recently associated to the emergence of a new super-diffusive regime
[40], seems to us a particularly promising direction to explore, that we leave for the future.
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