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Abstract

We propose a machine-learning approach based on Bayesian optimization to build global potential
energy surfaces (PES) for reactive molecular systems using feedback from quantum scattering
calculations. The method is designed to correct for the uncertainties of quantum chemistry
calculations and yield potentials that reproduce accurately the reaction probabilities in a wide range of
energies. These surfaces are obtained automatically and do not require manual fitting of the ab initio
energies with analytical functions. The PES are built from a small number of ab initio points by an
iterative process that incrementally samples the most relevant parts of the configuration space. Using
the dynamical results of previous authors as targets, we show that such feedback loops produce
accurate global PES with 30 ab initio energies for the three-dimensional H + H, — H, + H reaction
and 290 ab inito energies for the six-dimensional OH + H, — H,O + H reaction. These surfaces are
obtained from 360 scattering calculations for H; and 600 scattering calculations for OH;. We also
introduce a method that quickly converges to an accurate PES without the a priori knowledge of the
dynamical results. By construction, our method illustrates the lowest number of potential energy
points (i.e. the minimum information) required for the non-parametric construction of global PES
for quantum reactive scattering calculations.

1. Introduction

The accurate description of physical processes involving microscopic scattering of molecules is hampered by the
lack of knowledge of accurate potential energy surfaces (PES) underlying the scattering events. While
sophisticated experiments probing the outcome of molecule—surface scattering or molecule—molecule
collisions can be designed, the theoretical description of such experiments is limited by the difficulty of the
electronic structure calculations necessary to compute the microscopic scattering matrices. Instead of
computing the PES for molecular scattering from first principles, one can obtain ‘empirical’ PES constructed
based on the information about the experimental data and designed to yield an accurate description of the
experimental measurements. In the present work, we refer to the construction of such empirical PES as the
inverse scattering problem. In general, the inverse scattering problem is a complex task due to the many degrees
of freedom relevant for molecular interactions and the complexity of the scattering event. Here, we propose a
machine-learning (ML) method based on Bayesian optimization (BO) for the inverse scattering problem. While
the approach is general and can—in principle—be applied to any problem with a PES <> observable correlation,
we discuss the application of the method to building global PES for chemically reactive molecular systems based
on feedback from quantum scattering calculations.

Any quantum dynamics calculation of molecular collision observables involves three steps: (i) computing
the potential energy for a wide range of relative atomic coordinates by an ab initio quantum chemistry method;
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(ii) fitting these energy points to construct a PES; (iii) integrating the Schrodinger equation for the motion of the
atomic nuclei on this PES. Unfortunately, it is impossible to compute the potential energy in step (i) without
errors and any theoretical predictions of observables are subject to uncertainties stemming from the errors of
quantum chemistry calculations. These uncertainties have a particularly large effect on reactions at low
temperatures and make quantitative predictions of reaction probabilities at ultracold temperatures impossible
[1]. Therefore, it is necessary to develop approaches that correct the errors of the ab initio calculations and
produce PES yielding the exact match between quantum reaction dynamics calculations and experimental
measurements.

For chemically non-reactive two- or three-atom systems, it was previously shown that empirical PES can be
derived from the experimental data [2—6]. These approaches generally involve an iterative feedback loop that can
be schematically illustrated as follows:

0
/\\ 1)

The PES is computed in step (i), an analytical fit of the PES is generated in step (ii) and the fit is then morphed
through a feedback loop involving a series of quantum dynamics calculations.

Such an approach is impossible to apply to chemically reactive systems, especially ones involving more than
three atoms, for three reasons. First, the active configuration space describing reactive systems is more complex,
involving multiple reaction channels, and it is not a priori known which part of the configuration space is most
important for the outcome of a reactive process. Second, each reaction dynamics calculation is time consuming.
Third, fitting PES for reactive systems is a complex task that almost always requires manual work [7-11].

Here, we design a method that makes possible the following optimization loop for three-atom (3D) and

four-atom (6D) chemically reactive systems:

(i)
(i) (i)

R

This approach allows one to compute and add ab initio points to the PES incrementally at each iteration. This
has four major advantages over conventional approaches to constructing PES:

+ First, the ab initio points are only placed in the parts of the configuration space most relevant for the dynamics.
The final PES thus offers unique information on the parts of the PES that determine the specific reaction
features under study.

+ Second, this approach eliminates the need for alarge number of the ab initio points, reducing the
computational effort associated with quantum chemistry calculations.

+ Third, as explained below, this approach eliminates the laborious task of fitting the PES. The PES is produced
automatically as a mean of a multi-variate distribution.

+ Finally, the PES thus constructed is guaranteed to yield quantum reaction dynamics observables that agree
with the experimental data.

There are two key steps introduced here that make the above optimization loop possible. The reaction
observables are approximated by a ML model, which is a function of another ML model describing the PES. In
the present approach, both of these ML models are provided by Gaussian process (GP) regression [21]. GP
regression is a statistical learning technique, which provides a prediction and an uncertainty of the prediction. As
described below, the two-tiered ML model is used here to eliminate the need for fitting the PES manually and the
uncertainty of the GP prediction is used here to make the optimization loops extremely efficient by means of BO.

The remainder of the article is organized as follows. We begin by reviewing the application of GP regression
to the construction of PES. The following section describes the main ideas behind BO based on GP regression
and how BO can be applied to construct the PES based on the information about the scattering observables. The
subsequent sections present the results demonstrating the efficiency of the BO approach.




10P Publishing

New]. Ph)’S. 21 (2019) 022001 P Fast Track Communications

2. GP regression for PES

In our approach, the global reactive PES as a function of the multi-dimensional vector r is given as

n
V(r) = wi(rE, 3)
=1
where E; are the ab initio energy points and the weights (w,) are determined by the two-tiered GP model to yield
the best outcome of the quantum scattering calculation. GPs have been previously used for interpolating PES for
molecular dynamics applications [12—16], spectroscopic line calculations [17, 18] and molecular scattering
calculations [19, 20]. We emphasize that equation (3) is not a fit of the PES but a non-parametric regression. The
coefficients w; are chosen such that equation (3) passes through the potential energy points. Between the points,
equation (3) represents a mean of a distribution that changes in response to the addition of an energy point to the
ensemble { E;} of ab initio points. More specifically, the weights in equation (3) are the elements of the following
vector [21]:

wi(ro) = [Aq (ro)A'T;, )

where Aisann X nmatrix of the covariances between all pairs of E; and A, is a vector of covariances between the
value of energy at r,and all known E;. The procedure to obtain A and A, is described elsewhere [17, 22] and is
briefly summarized in the remainder of this section.

GP regression is a non-parametric supervised ML algorithm [21], which belongs to a class of kernel
regression algorithms. The prediction of a GP is a Gaussian distribution. Essentially, we seek to answer the
following question: given the distribution of n ab initio energy points E;located at r; and collectively represented
by vector y, what is the value of the potential energy at any point r of the configuration space? GP regression
produces a probability distribution for this value. This conditional distribution is a Gaussian with the
conditional mean y and conditional variance o derived [21] to have the following form:

p(r) = B+ AgA Ny = B), ©)

(1) = ou(1 — AgA'Ay), ©)
where $and o, are the unconditional means of the GP. In the present work, we set (3 to zero, assuming that we
have no prior knowledge of the PES. This is the simplest and least efficient implementation. Here, we use the

mean of the conditional distribution (5) as the value for the interpolation.
By construction

wu(r) = E; @)
and
o(r) =0, (8)

i.e. the Gaussian distributions collapse to a single value at the training points in y so the function p(r) passes
through the points E;. Itis thus an interpolation technique.

In equations (5) and (6), A is a square matrix of the covariances between all pairs of energy points E; in the
vectory:

1 R(r, ry) -+ R(r, 1)

A = const X R(rZ., ) 1

_ ©)
R(r, 1) - 1
and A is a vector of covariances between the value of the potential energy at r,and all the values E; in the vector
y:
R(rla r())
Ag = R('fz.,. ro) |, (10)
R(r;, 19)
In order to predict the distribution of possible values of energy at r,, the method thus relies on the entire vector
of known values of energy in the entire configuration space. Clearly, the effect of the energy points farther away
from ryissmaller than the effect of the energy points nearby. This is accounted for by the mathematical form of
the correlation functions R (r;, r;), which must decay as the distance between r; and r; increases.
The GP model is trained by determining the best covariance matrix A for a given set of values in'y. To do this,

the functions R (r;, r;) are approximated by a simple analytical function. For this work we used the Matérn
function
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R(rj, 1)) = (1 + 51, 1) + %rz(ri, rj))
x exp (—+/5r2(r;, 1)) (1D
with

r(ri, 1) = (r; — 1) M(r; — 17)
:(,1.1,,]1_, rﬁ—r;’) S

where d is the number of dimensions and the diagonal matrix M contains the kernel parameters 6,. To find the
best estimates of the kernel parameters we maximize the log marginal likelihood with respect to the parameters.
The log marginal likelihood is

logp(ylr, 0) = —%YTA*Iy — %10g|A|—§10g(27r), (12)

where |A|is the determinant of the matrix A and # is the number of training points.

Note that this procedure does not produce analytical fits of the values in y. Neither should the best
covariance function R found by maximizing the log-likelihood function be considered an analytical fit of the
covariances. Rather, R is an estimator of the covariances. The function R found by training the GP model
provides a function, which parametrizes the GP predictive distributions. Although the efficiency and the
properties (such as the differentiability) of the resulting GP model depend on the choice of the mathematical
function for R, this choice is not unique and should lead to the same results for large . A simple Gaussian
function or an exponentially decaying function could have been chosen in place of the Matérn function, leading
to the same result, although with a larger n (for the present applications).

3. BO of scattering observables

In the previous section, we described how GP regression can be used for step (ii) in equation (2). Using GP
models for step (ii) provides a way to automatically construct the PES that can be used for quantum dynamics
calculations in step (iii). Because GP regression produces the PES in the form of equation (3), this automates the
optimization cycle (2), i.e. a different global PES is produced by GP regression for each loop of equation (2)
without manual work. However, each feedback loop in equation (2) involves a scattering calculation, which is
often time-consuming. A typical scattering calculation of the reaction observables takes minutes to hours of
CPU time, depending on the complexity of the reaction system. Therefore, in general, the feedback loop (2) is
considered unfeasible. In this work we show that such feedback loops can be made very efficient (converging to
an accurate surface very quickly) and hence feasible by means of BO.

In order to apply BO, we need to construct a machine learning model of the quantum dynamics results. We do
this also by GP regression. The GP model of quantum dynamics results is trained exactly as described in the
previous section, with the training points being the results of quantum dynamics calculations instead of the
ab initio energy points. This produces a GP model F[G] of the scattering calculation results, which is a function
of another GP model G giving the PES. Once F[G] is trained, one can apply BO to find the optimal surface G.

The goal of BO is to find the global minimizer (or maximizer) of an unknown objective function f

xy = arg max [ f (x)] = arg min[—f (x)]. (13)

BO is a sequential model-based approach originally designed for unknown objective functions for which: (i) the
gradient of f (x) is not available or difficult to evaluate and (ii) the cost of evaluating fat x is high [32, 33]. Itis
ideally suited for the present application as, in our work, the function frepresents the results of quantum
scattering calculations, which are generally difficult to compute.

Two ingredients are needed in order to build a BO algorithm. First, we need an emulator function g (x) that
mimics the unknown objective function f (x). In our work, this emulator function will be provided by GP
model described in the previous section, but now applied to emulate the quantum dynamics results. Second, it is
necessary to define an acquisition function a(x) that determines the policy evaluation of f (x). In other words,
this function will direct the algorithm to the part of the parameter space where the original function must be
evaluated.

The general recipe for the BO algorithm starts with finding the minimum/maximum of the acquisition
function (x4 = arg max a/(x)). The function fis then evaluated at this position f (xs) producing an update to
the emulator g. This procedure is repeated iteratively until the minimizer/maximizer of g (x) is
converged [32, 33].
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In the present work, we use the following acquisition function
ax) = p(x) + Ko (x), (14)

where p(x) and o (x) are the mean and the standard deviation of the GP F. The hyperparameter  balances the
trade-off between exploration and exploitation. When « >> 1, the acquisition function stimulates exploration
of the global multi-dimensional space because a(x) = o (x) so the function directs the evaluation of the original
function at parts of the space where the GP is the least certain. On the other hand, when k < 1and/or when the
uncertainty of the GP o becomes very small, the acquisition function follows more closely the mean of the GP
model, which results in a more accurate determination of the extremum.

In this work, we want the algorithm to converge quickly to a substantial (not necessarily global) maximum.
Therefore, the value of K must be chosen to be < 1. The actual value of x determines the efficiency of the
algorithm. We choose the value of x by examining the first optimization loop, to ensure that the BO algorithm
converges fast and the improved results can be obtained with less than 15 x A/ calculations for each iteration,
where N is the dimensionality of the configuration space. The effect of the value of x on the convergence speed
of BO is discussed in a following section.

4. Application to quantum reaction dynamics

We consider two chemical reactions:

H+H2—>H2+H, (15)

We compute the total reaction probabilities for the reactant molecules in the ground ro-vibrational state and the
total angular momentum J = 0 using the time-dependent wave packet dynamics approach described in [23-26],
explicitly accounting for all degrees of freedom. The basis sets of the reaction dynamics calculations are chosen
to ensure full convergence.

Both of these chemical reactions have been studied before [27, 28]. For reaction (5), Su et al [27] computed
the reaction probabilities with the 3D PES from [29], constructed using an analytical fit to 8701 ab initio energy
points. For reaction (6), Chen et al[28] computed the reaction probabilities with the 6D PES constructed using
Neural Network fits to ~17 000 ab initio calculations.

In conventional approaches, the global PES is constructed before the dynamical calculations. The present
approach is conceptually different. We begin by randomly selecting a small number of points (n = 20 for the 3D
surface and n = 280 for the 6D surface) from the original PESs [28, 29] and construct an approximate PES by GP
regression, giving equation (3) as described in [17]. We denote this GP model of the surface by G(n). This model
is likely to be highly inaccurate.

Given G(n), we ask: if one ab initio point is added to the original sample of few points, where in the
configuration space should it be added to result in the maximum improvement of the quantum dynamics results?
This formulation corresponds to a class of reinforcement learning strategies in ML [30, 31]. In principle, this
question could be answered without ML by a series of quantum dynamics calculations based on G(n + 1) with
the added point moved on a grid in the configuration space. However, in practice, such an approach would be
completely unfeasible as it would require about 10V dynamical calculations for each added ab initio point,
where A is the dimensionality of the configuration space.

To overcome this problem, we introduce another GP, hereafter denoted by F, representing the reaction
probabilities as functions of the location of the added ab initio point. This GP model is trained by 15 x N
quantum dynamics calculations. We thus obtain the explicit function of the reaction probabilities
F[G(n + 1, r)], where r is the N -dimensional vector denoting the position of the added ab initio point in the
configuration space. By training F, we also obtain AF[G(n + 1, r)], representing the uncertainty of F at r, as
the conditional standard deviation of the GP [17]. The GP F and the uncertainty AF[G(n + 1, r)]allow us to
implement BO as described in the previous section.

We next propose two approaches:

(1) Fitting known quantum dynamics results. If the reaction probabilities are known, either from a calculation
with the full surface or from an experiment, one can minimize the difference between F[G(n + 1, r)] and the
known results, to obtain the optimal value of r. This is the position in the configuration space, where the new ab
inito point must be added. This minimization can then be iterated by setting n + 1 = #, until n becomes large
enough to produce an accurate surface G.

(2) Obtaining the best surface without known dynamical results. If accurate quantum dynamical results are not
available, we propose to maximize the difference of the reaction probabilities computed in two successive
iterations:
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Figure 1. Upper panel: the reaction probability for the H, + H — H + H, reaction as a function of the collision energy. The black
solid curve—calculations from [27] based on the surface with 8701 ab initio points from [29]. The dashed curves—calculations based
on the GP PES obtained with 22 ab initio points (blue); 23 points (orange), 30 points (green) and 37 points (inset). The points 23-37
are drawn by the BO algorithm from the PES in [29]. The RMSE and maximum error of the results with 37 points are 0.009 and 0.028,
respectively. Lower panel: the GP model of the PES for the Hj reaction system constructed with 30 ab initio points. Ry and R, are the
distances between atoms 1 and 2 and atoms 2 and 3, respectively.

JIFIG(n + 1, 1] — FIGm)1}?, (17)

while restricting r to be within a physically reasonable range. This is justified by the observation that G(n — o0)
must produce the best surface so the maximum improvement of the surface at each iteration is achieved when r
corresponds to the maximum of equation (17).

In the subsequent sections, we illustrate these two approaches.

5. BO efficiency

We begin by illustrating the efficiency of BO for constructing the PES from feedback loops in equation (2).
Because every cycle in equation (2) involves a quantum scattering calculation, the particular parameter of
interest is the number of feedback loops necessary to produce a PES yielding accurate quantum dynamical
results.

In this section, our goal is to obtain known reactive scattering probability for reactions (15) and (16), starting
from arandom guess of a PES and using as few cycles of equation (2) as possible. To do this, we train
F1G(n + 1, r)]torepresent the root mean square (RMS) deviation of the reaction probabilities from the known
results. Here, BO amounts to minimizing the following function:

F + kAF. (18)

The value of k determines the efficiency of the optimization convergence. We set x = 0.005. As described above,
this value of  is chosen by examining the first iteration of cycle (2) to ensure that the algorithm produces
improved results with less than 15 x A/ dynamical calculations. After alocal minimum of F is reached, the

6
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Figure 2. The reaction probability for the OH + H, — H + H,O reaction as a function of the collision energy. The black solid curve
—accurate calculations from [28] based on the surface constructed with ~17 000 ab initio points. The dashed curves—calculations
based on the GP PES obtained with 280 ab initio points (blue); 281 points (orange) and 290 points (green). The points 281-290 are
drawn by the BO algorithm from the PES in [28]. The RMSE and maximum error of the 290-point result are 0.0076 and 0.0195,
respectively.

second term in equation (18) directs the minimization algorithm towards the parts of the configuration space
where F isleast accurate, thus sampling the entire space in search of the global minimum [32, 33]. With this
procedure, the minimization of F for each value of n requires 15 x N = 45 quantum dynamics calculations
forHsand 15 x N = 90 calculations for OHj.

Figure 1(a) illustrates the performance of this algorithm in search of the best PES for reaction (5). As can be
seen, the starting model G of the PES based on 22 randomly generated ab initio points produces highly
inaccurate results, but the BO scheme converges to the correct PES after only 8 iterations (8 x 15 x 3 = 360
scattering calculations), yielding accurate results for the reaction probabilities (green dashed line) with the GP
model G of the PES trained by 30 ab initio points. Figure 1(b) shows the model G of the PES obtained with
n = 30 ab initio points, illustrating that equations (3) and (4) produce a physical surface.

Figure 2 illustrates the performance of this algorithm for the 6D reaction (6). As the dimensionality of the
configuration space increases, so does # in equation (3) required to represent accurately the PES. Nevertheless,
accurate results for the reaction probabilities (green dashed line) are obtained with nn = 290 ab initio points,
much smaller than the set of ~17 000 points used in previous work [28] to construct the PES with a NN fit. This
result is obtained after 10 iterations (600 scattering calculations). The rms error of the reaction probabilities thus
obtained is 0.0076. Note that, as any supervised learning technique, this algorithm is guaranteed to become more
accurate when trained by more ab initio points.

The efficiency of BO is perhaps best illustrated by the dependence of the RMSEs of the reaction probabilities
as functions of the number of BO iterations, presented in figure 3. Both panels of figure 3 show that BO quickly
decreases the RMSE of the reaction probabilities. In the upper panel showing the results for reaction (5), the
initial surface is constructed using 22 ab initio points chosen at random and BO starts with n = 23. In the lower
panel showing the results for reaction (6), the initial surface is constructed using 280 ab initio points chosen at
random in the 6D space and BO (results represented by circles) starts with n = 281. To illustrate quantitatively
the accuracy gain enabled by BO, we also show in the lower panel of figure 3 the RMSE of the reaction
probabilities computed with the PES obtained based on the corresponding number of points chosen at random
and distributed in the configuration space using the Latin hypercube sampling scheme to avoid clustering. The
difference in the computation difficulty between the results shown by squares and circles in the lower panel of
figure 3 is 14 scattering calculations, i.e. the results shown by squares require one scattering calculations, whereas
the results shown by circles require 15 scattering calculations. The key result illustrated by figure 3 is that the
convergence of BO is fast and monotonous, reducing the error of the scattering calculations dramatically after
only two to three iterations for both reactive systems. This underscores the critical importance of BO for the
approach proposed here and also underlines the huge potential of BO for other applications involving the
inverse scattering problem.
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Figure 3. Convergence of the RMSE of the reaction probabilities. Upper panel: the H, + H — H + H, reaction. Bayesian
optimization starts at 22 points. The results shown by circles (x = 0.01), squares (x = 0.005) and triangles (x = 0.001) illustrate
the effect of the value of  on convergence of Bayesian optimization. Lower panel: the OH + H, — H + H,O reaction. Bayesian
optimization of the results shown by circles starts at 280 points. The squares show the results of the scattering calculations with the PES
obtained based on the corresponding number of points chosen at random and distributed in the configuration space using the Latin

hypercube sampling scheme to avoid clustering.

6. Obtaining PES without known dynamical results

If the quantum dynamics results are not known, the present method can be applied to construct accurate PES
with a small number of ab initio energy points. Since GP regression is a supervised learning algorithm, GP
models of PES become necessarily more accurate when trained by more ab initio points (i.e. any interpolation
method becomes infinitely accurate in the limit of infinite number of points to be interpolated). The method
proposed here aims to reach this limit with as few steps as possible. To achieve this, it is necessary to restrict the
configuration space of the molecule to a reasonable volume and maximize the difference between of the results
of subsequent iterations in equation (2).
To illustrate the validity of this assumption, we show in figure 4 a series of computations as functions of #,
showing the convergence of the iterative calculations to the accurate results (black solid curve). Figure 4 shows
that the optimization loop converges to the accurate PES after 48 iterations. We emphasize that the accurate

results (black curve) were not used in any way in this calculation.

7. Reproducing arbitrary scattering observables

Here, we extend the previous sections to construct a PES that, when used in quantum scattering calculations,
reproduces an arbitrary set of observables. We first modify the exact scattering results of figure 1 by shifting
along the energy axis and randomly modulating the black curve. This produces an arbitrary energy dependence

8
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curve is a results of such training after 30 iterations, resulting in a surface constructed with 52 ab initio points. Lower panel:
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described by the green dashed curve in the upper panel. The RMSE and maximum error of the results shown by the green dashed curve
are 0.016 and 0.0674, respecively. R, and R, are defined as in figure 1.
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of the reaction probabilities shown by the dotted—dashed curve in figure 5. The goal is to construct a PES that
reproduces these arbitrarily chosen reaction probabilities. Note that the dotted—dashed curve extends the
interval of energies, where the reaction probability is zero, which means that the PES for this reaction must have
ahigher reaction barrier and cannot be reproduced with the original PES for Hj. Since this approach builds the
PES based on the observables and is designed to yield the PES reproducing the observables, it is equivalent to
solving the inverse scattering problem.

We assume that a small ensemble of E; is known from some (not necessarily accurate) quantum chemistry
calculation. As before, this ensemble serves as a starting point for the model G of the PES. However, in order to
allow for the improvement of the PES, we now allow the energy of each point of the PES to be a variable & (r).
This variable is a function of r and allows the model G to sample from an interval of energies centered about the
points of the initial rough PES. The results of the scattering calculations are now used to train the model
FIG(n + 1, £(r), r)], effectively increasing dimensionality of the variable space to A/ + 1. Figure 5 shows that
this algorithm converges to the arbitrarily modified reaction probabilities after 32 iterations, producing a PES
depicted in the lower panel.

8. Conclusion

This work shows that it is possible to implement the feedback loop

N

Quantum Reaction Probabilities PES
7

to build the global PES for 3D and 6D reaction systems. The unique feature of this method is that the PES is built
from a small number of ab initio points. At each iteration, an ab initio point is added to the most relevant part of
the configuration space and the global PES is automatically morphed to become more accurate. By construction,
this approach produces PES yielding an accurate description of known reaction observables and the PES offers
unique information on which parts of the interaction are most important for the outcome of the reaction
process.

By construction, this method illustrates the lowest number of potential energy points (i.e. the minimum
information) required for the non-parametric cosntruction of global PES for quantum reactive scattering
calculations. We showed that accurate quantum reactive scattering results can be obtained with 30 ab initio
points for the 3D H + H, — H, + H reaction and 290 points for the 6D OH + H, — H + H,O0. For practical
applications, the locations of these few points can be determined as described above with a low-level ab initio
method and an approximate dynamical approach. Once the positions of the points are known, this small
number of ab initio points can be calculated with extremely high precision.

We emphasize that the method can also be used to construct accurate PES even if observables are not known.
We showed that an algorithm based on maximizing the difference of computed observables in successive
iterations quickly converges to an accurate PES without the a priori knowledge of the full surface or dynamical
results. The convergence to the correct limit is guaranteed by the observation that the ML model adopted here
produces the correct surface in the limit of a large number of ab initio points.

The efficiency of the approach proposed here is limited by the difficulty of the dynamical calculations.
However, one can use approximate dynamical methods for step (iii) in equation (2). This will result in PES,
which yields an accurate description of the observables if used with this specific dynamical method. The error of
this PES will be designed to compensate for the error of the dynamical calculations. While it remains to be seen if
such an approach has predictive power outside the range of the observables used to construct the PES, we
believe, our work opens the possibility of applying approximate dynamical methods such as the coupled states
approach [34-38] for quantitative predictions of molecular scattering observables.

Finally, we note that the approach presented here is general and can be used to construct the microscopic
interaction potentials for any process with a

Microscopic Interaction Potential = Observable

dependence. Within the framework of the method proposed here, one should represent the interaction potential
by a GP model G and the observable by another GP model F[G]. The GP F[G] can then be used as the emulator
function for BO to find the optimal model G, leading to the most accurate description of the observable. We
believe this strategy can be applied to a wide range of problems in molecular physics.

10



IoP PUb'lShlng NEW] Ph}/S 21 (2019) 022001 P Fast Track Communications

Acknowledgments

This work is supported by NSERC of Canada. RVK also acknowledges support from the Chinese Academy of
Sciences in the form of a visiting fellowship. DHZ acknowledges support from the National Natural Science
Foundation of China (grants 21433009, 21590804, 21688102), and the Strategic Priority Research Program of
the Chinese Academy of Sciences (Grant No. XDB17000000).

References

[1] KremsR V2008 Phys. Chem. Chem. Phys. 104079
[2] Ernesti A and Hutson J M 1997 J. Chem. Phys. 106 6288-301
[3] Meuwly M and Hutson J M 1999 J. Chem. Phys. 110 8338—47
[4] Howson ] M M and Hutson ] M 2001 J. Chem. Phys. 115 5059-65
[5] ChoY-SandLeRoyR]J2016]J. Chem. Phys. 144024311
[6] LiZ,Singh S, Tscherbul TV and Madison KW 2008 Phys. Rev. A78 022710
[7]1 Murrell N, Carter S, Farantos S C, Huxley P and Varandas A ] C 1984 Molecular Potential Energy Functions (Chichester: Wiley)
[8] Hollebeek T, Ho T-S and Rabitz H 1999 Annu. Rev. Phys. Chem. 50 537
[9] Braams B Jand Bowman J M 2009 Int. Rev. Phys. Chem. 28 577
[10] Collins M A 2002 Theory Chem. Acc. 108 313
[11] Handley C M and Popelier PL A 2010 J. Phys. Chem. A114 3371
[12] Handley CM, Hawe G, Kellab D B and Popelier P L A 2009 Phys. Chem. Chem. Phys. 11 6365
[13] Barték A P, Payne M C, Kondor R and Csényi G 2010 Phys. Rev. Lett. 104 136403
[14] Bartok A P and Csanyi G 2015 Int. J. Quant. Chem. 115 1051
[15] Caccin M, LiZ, Kermode J R and De Vita A 2015 Int. J. Quant. Chem. 115 1129
[16] Popelier PL A 2015 Int. J. Quant. Chem. 115 1005
[17] CuiJ and Krems RV 2016 J. Phys. B: At. Mol. Opt. Phys. 49 224007
[18] Kamath A, Vargas-Hernédndez R A, Krems RV, Carrington T Jr and Manzhos S 2018 J. Chem. Phys. 148 241702
[19] Kolb B, Marshall P, Zhao B, Jiang B and Guo H 2017 J. Phys. Chem. A 121 2552
[20] QuC,YuQ, Van Hoozen B L, Bowman ] M and Vargas-Hernndez R A 2018 J. Chem. Theory Comput. 14 3381
[21] Rasmussen C E and Williams C K12006 Gaussian Processes for Machine Learning (Cambridge, MA: MIT Press)
[22] CuiJand Krems RV 2015 Phys. Rev. Lett. 115 073202
[23] Qiu M H etal 2006 Science 311 1440
[24] CheL etal 2007 Science317 1061
[25] Dong W, Xiao C, Wang T, Dai D, Yang X and Zhang D H 2010 Science 327 1501
[26] WangT, Chen], Yang T, Xiao C, Sun Z, Huang L, Dai D, Yang X and Zhang D H 2013 Science 342 1499
[27] SuN Q, ChenJ, Sun Z, Zhang D H and Xu X 2015 J. Chem. Phys. 142 084107
[28] Chen], XuX, XuXand Zhang D H 2013 J. Chem. Phys. 138 154301
[29] Boothroyd A I, Keogh W J, Martin P G and Peterson M R 1996 J. Chem. Phys. 1047139
[30] Sutton R Sand Barto A G 2016 Reinforcement Learning, An Introduction (Cambridge, MA: MIT Press)
[31] Settles B 2010 Active learning literature survey Comput. Sci. Technol. Rep. 1648
[32] Snoek], Larochelle H and Adams R P 2012 Adv. Neural Inf. Process. Syst. 25 2951
[33] Shahriari B, Swersky K, Wang Z, Adams R P and de Freitas N 2016 Proc. IEEE 104 148
[34] PackRT 1974 J. Chem. Phys. 60 633
[35] McLenithan K and SecrestD 1984 J. Chem. Phys. 80 2480
[36] KhareV,KouriD Jand Pack RT 1978 J. Chem. Phys. 69 4419
[37] McGuire P and Kouri D ] 1974 J. Chem. Phys. 60 2488
[38] McGuire P 1975 J. Chem. Phys. 62 525

11


https://doi.org/10.1039/b802322k
https://doi.org/10.1063/1.473645
https://doi.org/10.1063/1.473645
https://doi.org/10.1063/1.473645
https://doi.org/10.1063/1.478744
https://doi.org/10.1063/1.478744
https://doi.org/10.1063/1.478744
https://doi.org/10.1063/1.1394940
https://doi.org/10.1063/1.1394940
https://doi.org/10.1063/1.1394940
https://doi.org/10.1063/1.4939274
https://doi.org/10.1103/PhysRevA.78.022710
https://doi.org/10.1146/annurev.physchem.50.1.537
https://doi.org/10.1080/01442350903234923
https://doi.org/10.1007/s00214-002-0383-5
https://doi.org/10.1021/jp9105585
https://doi.org/10.1039/b905748j
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1002/qua.24927
https://doi.org/10.1002/qua.24952
https://doi.org/10.1002/qua.24900
https://doi.org/10.1088/0953-4075/49/22/224001
https://doi.org/10.1063/1.5003074
https://doi.org/10.1021/acs.jpca.7b01182
https://doi.org/10.1021/acs.jctc.8b00298
https://doi.org/10.1103/PhysRevLett.115.073202
https://doi.org/10.1126/science.1123452
https://doi.org/10.1126/science.1144984
https://doi.org/10.1126/science.1185694
https://doi.org/10.1126/science.1246546
https://doi.org/10.1063/1.4913196
https://doi.org/10.1063/1.4801658
https://doi.org/10.1063/1.471430
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1063/1.1681085
https://doi.org/10.1063/1.446998
https://doi.org/10.1063/1.436432
https://doi.org/10.1063/1.1681388
https://doi.org/10.1063/1.430453

	1. Introduction
	2. GP regression for PES
	3. BO of scattering observables
	4. Application to quantum reaction dynamics
	5. BO efficiency
	6. Obtaining PES without known dynamical results
	7. Reproducing arbitrary scattering observables
	8. Conclusion
	Acknowledgments
	References



