
            

FAST TRACK COMMUNICATION • OPEN ACCESS

Bayesian optimization for the inverse scattering
problem in quantum reaction dynamics
To cite this article: R A Vargas-Hernández et al 2019 New J. Phys. 21 022001

 

View the article online for updates and enhancements.

You may also like
Significant non-adiabatic effects of the
K(4s2S) + H2 reaction
Wentao Li, Li Wen, Xianghong Niu et al.

-

Leveraging trust for joint multi-objective
and multi-fidelity optimization
Faran Irshad, Stefan Karsch and Andreas
Döpp

-

A review of dynamical resonances in A +
BC chemical reactions
Zefeng Ren, Zhigang Sun, Donghui Zhang
et al.

-

This content was downloaded from IP address 18.227.0.192 on 02/05/2024 at 16:06

https://doi.org/10.1088/1367-2630/ab0099
https://iopscience.iop.org/article/10.1088/1361-6455/ad065b
https://iopscience.iop.org/article/10.1088/1361-6455/ad065b
https://iopscience.iop.org/article/10.1088/1361-6455/ad065b
https://iopscience.iop.org/article/10.1088/1361-6455/ad065b
https://iopscience.iop.org/article/10.1088/1361-6455/ad065b
https://iopscience.iop.org/article/10.1088/2632-2153/ad35a4
https://iopscience.iop.org/article/10.1088/2632-2153/ad35a4
https://iopscience.iop.org/article/10.1088/1361-6633/80/2/026401
https://iopscience.iop.org/article/10.1088/1361-6633/80/2/026401


New J. Phys. 21 (2019) 022001 https://doi.org/10.1088/1367-2630/ab0099

FAST TRACK COMMUNICATION

Bayesian optimization for the inverse scattering problem in quantum
reaction dynamics

RAVargas-Hernández1, YGuan2,3, DHZhang2,3 andRVKrems1

1 Department of Chemistry, University of British Columbia, Vancouver, BCV6T1Z1, Canada
2 State Key Laboratory ofMolecular ReactionDynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023,

Peopleʼs Republic of China
3 University of Chinese Academy of Sciences, Beijing 100049, Peopleʼs Republic of China

E-mail: rkrems@chem.ubc.ca

Keywords: bayesian optimization, gaussian processes, inverse scattering problem

Abstract
Wepropose amachine-learning approach based onBayesian optimization to build global potential
energy surfaces (PES) for reactivemolecular systems using feedback fromquantum scattering
calculations. Themethod is designed to correct for the uncertainties of quantum chemistry
calculations and yield potentials that reproduce accurately the reaction probabilities in awide range of
energies. These surfaces are obtained automatically and do not requiremanualfitting of the ab initio
energies with analytical functions. The PES are built from a small number of ab initio points by an
iterative process that incrementally samples themost relevant parts of the configuration space. Using
the dynamical results of previous authors as targets, we show that such feedback loops produce
accurate global PESwith 30 ab initio energies for the three-dimensional H+H2H2+Hreaction
and 290 ab inito energies for the six-dimensional OH+H2H2O+Hreaction. These surfaces are
obtained from360 scattering calculations forH3 and 600 scattering calculations forOH3.We also
introduce amethod that quickly converges to an accurate PESwithout the a priori knowledge of the
dynamical results. By construction, ourmethod illustrates the lowest number of potential energy
points (i.e. theminimum information) required for the non-parametric construction of global PES
for quantum reactive scattering calculations.

1. Introduction

The accurate description of physical processes involvingmicroscopic scattering ofmolecules is hampered by the
lack of knowledge of accurate potential energy surfaces (PES) underlying the scattering events.While
sophisticated experiments probing the outcome ofmolecule—surface scattering ormolecule—molecule
collisions can be designed, the theoretical description of such experiments is limited by the difficulty of the
electronic structure calculations necessary to compute themicroscopic scatteringmatrices. Instead of
computing the PES formolecular scattering from first principles, one can obtain ‘empirical’PES constructed
based on the information about the experimental data and designed to yield an accurate description of the
experimentalmeasurements. In the present work, we refer to the construction of such empirical PES as the
inverse scattering problem. In general, the inverse scattering problem is a complex task due to themany degrees
of freedom relevant formolecular interactions and the complexity of the scattering event.Here, we propose a
machine-learning (ML)method based onBayesian optimization (BO) for the inverse scattering problem.While
the approach is general and can—in principle—be applied to any problemwith a PES« observable correlation,
we discuss the application of themethod to building global PES for chemically reactivemolecular systems based
on feedback fromquantum scattering calculations.

Any quantumdynamics calculation ofmolecular collision observables involves three steps: (i) computing
the potential energy for awide range of relative atomic coordinates by an ab initio quantum chemistrymethod;
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(ii)fitting these energy points to construct a PES; (iii) integrating the Schrödinger equation for themotion of the
atomic nuclei on this PES.Unfortunately, it is impossible to compute the potential energy in step (i)without
errors and any theoretical predictions of observables are subject to uncertainties stemming from the errors of
quantum chemistry calculations. These uncertainties have a particularly large effect on reactions at low
temperatures andmake quantitative predictions of reaction probabilities at ultracold temperatures impossible
[1]. Therefore, it is necessary to develop approaches that correct the errors of the ab initio calculations and
produce PES yielding the exactmatch between quantum reaction dynamics calculations and experimental
measurements.

For chemically non-reactive two- or three-atom systems, it was previously shown that empirical PES can be
derived from the experimental data [2–6]. These approaches generally involve an iterative feedback loop that can
be schematically illustrated as follows:

ð1Þ

The PES is computed in step (i), an analyticalfit of the PES is generated in step (ii) and thefit is thenmorphed
through a feedback loop involving a series of quantumdynamics calculations.

Such an approach is impossible to apply to chemically reactive systems, especially ones involvingmore than
three atoms, for three reasons. First, the active configuration space describing reactive systems ismore complex,
involvingmultiple reaction channels, and it is not a priori knownwhich part of the configuration space ismost
important for the outcome of a reactive process. Second, each reaction dynamics calculation is time consuming.
Third,fitting PES for reactive systems is a complex task that almost always requiresmanual work [7–11].

Here, we design amethod thatmakes possible the following optimization loop for three-atom (3D) and
four-atom (6D) chemically reactive systems:

ð2Þ

This approach allows one to compute and add ab initio points to the PES incrementally at each iteration. This
has fourmajor advantages over conventional approaches to constructing PES:

• First, the ab initio points are only placed in the parts of the configuration spacemost relevant for the dynamics.
Thefinal PES thus offers unique information on the parts of the PES that determine the specific reaction
features under study.

• Second, this approach eliminates the need for a large number of the ab initio points, reducing the
computational effort associatedwith quantum chemistry calculations.

• Third, as explained below, this approach eliminates the laborious task offitting the PES. The PES is produced
automatically as amean of amulti-variate distribution.

• Finally, the PES thus constructed is guaranteed to yield quantum reaction dynamics observables that agree
with the experimental data.

There are two key steps introduced here thatmake the above optimization loop possible. The reaction
observables are approximated by aMLmodel, which is a function of anotherMLmodel describing the PES. In
the present approach, both of theseMLmodels are provided byGaussian process (GP) regression [21]. GP
regression is a statistical learning technique, which provides a prediction and an uncertainty of the prediction. As
described below, the two-tieredMLmodel is used here to eliminate the need for fitting the PESmanually and the
uncertainty of theGP prediction is used here tomake the optimization loops extremely efficient bymeans of BO.

The remainder of the article is organized as follows.We begin by reviewing the application ofGP regression
to the construction of PES. The following section describes themain ideas behind BObased onGP regression
and howBOcan be applied to construct the PES based on the information about the scattering observables. The
subsequent sections present the results demonstrating the efficiency of the BO approach.

2
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2.GP regression for PES

In our approach, the global reactive PES as a function of themulti-dimensional vector r is given as

r rV w E , 3
i

n

i i
1

å=
=

( ) ( ) ( )

where Ei are the ab initio energy points and theweights (wi) are determined by the two-tieredGPmodel to yield
the best outcome of the quantum scattering calculation. GPs have been previously used for interpolating PES for
molecular dynamics applications [12–16], spectroscopic line calculations [17, 18] andmolecular scattering
calculations [19, 20].We emphasize that equation (3) is not afit of the PES but a non-parametric regression. The
coefficientswi are chosen such that equation (3) passes through the potential energy points. Between the points,
equation (3) represents amean of a distribution that changes in response to the addition of an energy point to the
ensemble {Ei} of ab initio points.More specifically, theweights in equation (3) are the elements of the following
vector [21]:

r rw A A , 4i i0 0 0
1= -( ) [ ( ) ] ( )

whereA is an n×nmatrix of the covariances between all pairs ofEi andA0 is a vector of covariances between the
value of energy at r0 and all knownEi. The procedure to obtainA andA0 is described elsewhere [17, 22] and is
briefly summarized in the remainder of this section.

GP regression is a non-parametric supervisedML algorithm [21], which belongs to a class of kernel
regression algorithms. The prediction of aGP is aGaussian distribution. Essentially, we seek to answer the
following question: given the distribution of n ab initio energy points Ei located at ri and collectively represented
by vector y, what is the value of the potential energy at any point r of the configuration space? GP regression
produces a probability distribution for this value. This conditional distribution is aGaussianwith the
conditionalmeanμ and conditional varianceσ derived [21] to have the following form:

r A A y , 50
1

0
m b b= + --( ) ( ) ( )

r A A A1 , 6u 0
1

00
s s= - -( ) ( ) ( )

whereβ andσu are the unconditionalmeans of theGP. In the present work, we setβ to zero, assuming that we
have no prior knowledge of the PES. This is the simplest and least efficient implementation.Here, we use the
mean of the conditional distribution (5) as the value for the interpolation.

By construction

r E 7i im =( ) ( )

and

r 0, 8is =( ) ( )

i.e. theGaussian distributions collapse to a single value at the training points in y so the function rm ( ) passes
through the points Ei. It is thus an interpolation technique.

In equations (5) and (6),A is a squarematrix of the covariances between all pairs of energy points Ei in the
vector y:
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andA0 is a vector of covariances between the value of the potential energy at r0 and all the valuesEi in the vector
y:
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In order to predict the distribution of possible values of energy at r0, themethod thus relies on the entire vector
of known values of energy in the entire configuration space. Clearly, the effect of the energy points farther away
from r0 is smaller than the effect of the energy points nearby. This is accounted for by themathematical formof
the correlation functions r rR ,i j( ), whichmust decay as the distance between ri and rj increases.

TheGPmodel is trained by determining the best covariancematrixA for a given set of values in y. To do this,
the functions r rR ,i j( ) are approximated by a simple analytical function. For this workwe used theMatérn
function
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where d is the number of dimensions and the diagonalmatrix M contains the kernel parameters θi. Tofind the
best estimates of the kernel parameters wemaximize the logmarginal likelihoodwith respect to the parameters.
The logmarginal likelihood is

rp
n

y y A y Alog ,
1

2

1

2
log

2
log 2 , 121q p= - - --( ∣ ) ∣ ∣ ( ) ( )

where A∣ ∣ is the determinant of thematrixA and n is the number of training points.
Note that this procedure does not produce analytical fits of the values in y. Neither should the best

covariance functionR found bymaximizing the log-likelihood function be considered an analyticalfit of the
covariances. Rather,R is an estimator of the covariances. The functionR found by training theGPmodel
provides a function, which parametrizes theGPpredictive distributions. Although the efficiency and the
properties (such as the differentiability) of the resultingGPmodel depend on the choice of themathematical
function forR, this choice is not unique and should lead to the same results for large n. A simpleGaussian
function or an exponentially decaying function could have been chosen in place of theMatérn function, leading
to the same result, althoughwith a larger n (for the present applications).

3. BOof scattering observables

In the previous section, we described howGP regression can be used for step (ii) in equation (2). UsingGP
models for step (ii) provides a way to automatically construct the PES that can be used for quantumdynamics
calculations in step (iii). BecauseGP regression produces the PES in the formof equation (3), this automates the
optimization cycle (2), i.e. a different global PES is produced byGP regression for each loop of equation (2)
withoutmanual work.However, each feedback loop in equation (2) involves a scattering calculation, which is
often time-consuming. A typical scattering calculation of the reaction observables takesminutes to hours of
CPU time, depending on the complexity of the reaction system. Therefore, in general, the feedback loop (2) is
considered unfeasible. In this workwe show that such feedback loops can bemade very efficient (converging to
an accurate surface very quickly) and hence feasible bymeans of BO.

In order to apply BO,we need to construct amachine learningmodel of the quantumdynamics results.We do
this also byGP regression. TheGPmodel of quantumdynamics results is trained exactly as described in the
previous section, with the training points being the results of quantumdynamics calculations instead of the
ab initio energy points. This produces aGPmodel  [ ]of the scattering calculation results, which is a function
of anotherGPmodel  giving the PES.Once  [ ] is trained, one can apply BO tofind the optimal surface  .

The goal of BO is tofind the globalminimizer (ormaximizer) of an unknownobjective function f

x x xf farg max arg min . 13* = = -[ ( )] [ ( )] ( )

BO is a sequentialmodel-based approach originally designed for unknownobjective functions forwhich: (i) the
gradient of xf ( ) is not available or difficult to evaluate and (ii) the cost of evaluating f at x is high [32, 33]. It is
ideally suited for the present application as, in ourwork, the function f represents the results of quantum
scattering calculations, which are generally difficult to compute.

Two ingredients are needed in order to build a BO algorithm. First, we need an emulator function xg ( ) that
mimics the unknown objective function xf ( ). In ourwork, this emulator functionwill be provided byGP
model described in the previous section, but now applied to emulate the quantumdynamics results. Second, it is
necessary to define an acquisition function xa( ) that determines the policy evaluation of xf ( ). In otherwords,
this functionwill direct the algorithm to the part of the parameter space where the original functionmust be
evaluated.

The general recipe for the BO algorithm starts withfinding theminimum/maximumof the acquisition
function (x xarg max* a= ( )). The function f is then evaluated at this position xf *( ) producing an update to
the emulator g. This procedure is repeated iteratively until theminimizer/maximizer of xg ( ) is
converged [32, 33].

4
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In the present work, we use the following acquisition function

x x x , 14a m ks= +( ) ( ) ( ) ( )

where xm ( ) and xs ( ) are themean and the standard deviation of theGP  . The hyperparameterκ balances the
trade-off between exploration and exploitation.When 1k  , the acquisition function stimulates exploration
of the globalmulti-dimensional space because x xa s»( ) ( ) so the function directs the evaluation of the original
function at parts of the spacewhere theGP is the least certain. On the other hand, when 1k  and/orwhen the
uncertainty of theGPσ becomes very small, the acquisition function followsmore closely themean of theGP
model, which results in amore accurate determination of the extremum.

In this work, wewant the algorithm to converge quickly to a substantial (not necessarily global)maximum.
Therefore, the value ofκmust be chosen to be 1 . The actual value ofκ determines the efficiency of the
algorithm.We choose the value ofκ by examining thefirst optimization loop, to ensure that the BO algorithm
converges fast and the improved results can be obtainedwith less than 15 ´ calculations for each iteration,
where  is the dimensionality of the configuration space. The effect of the value ofκ on the convergence speed
of BO is discussed in a following section.

4. Application to quantum reaction dynamics

Weconsider two chemical reactions:

H H H H, 152 2+  + ( )

OH H H O H. 162 2+  + ( )

Wecompute the total reaction probabilities for the reactantmolecules in the ground ro-vibrational state and the
total angularmomentum J=0 using the time-dependent wave packet dynamics approach described in [23–26],
explicitly accounting for all degrees of freedom. The basis sets of the reaction dynamics calculations are chosen
to ensure full convergence.

Both of these chemical reactions have been studied before [27, 28]. For reaction (5), Su et al [27] computed
the reaction probabilities with the 3DPES from [29], constructed using an analytical fit to 8701 ab initio energy
points. For reaction (6), Chen et al [28] computed the reaction probabilities with the 6DPES constructed using
NeuralNetwork fits to∼17 000 ab initio calculations.

In conventional approaches, the global PES is constructed before the dynamical calculations. The present
approach is conceptually different.We begin by randomly selecting a small number of points (n= 20 for the 3D
surface and n= 280 for the 6D surface) from the original PESs [28, 29] and construct an approximate PES byGP
regression, giving equation (3) as described in [17].We denote this GPmodel of the surface by n( ). Thismodel
is likely to be highly inaccurate.

Given n( ), we ask: if one ab initio point is added to the original sample of few points, where in the
configuration space should it be added to result in themaximum improvement of the quantum dynamics results?
This formulation corresponds to a class of reinforcement learning strategies inML [30, 31]. In principle, this
question could be answeredwithoutMLby a series of quantumdynamics calculations based on n 1 +( )with
the added pointmoved on a grid in the configuration space. However, in practice, such an approachwould be
completely unfeasible as it would require about10 dynamical calculations for each added ab initio point,
where  is the dimensionality of the configuration space.

To overcome this problem,we introduce anotherGP, hereafter denoted by  , representing the reaction
probabilities as functions of the location of the added ab initio point. This GPmodel is trained by 15 ´
quantumdynamics calculations.We thus obtain the explicit function of the reaction probabilities

rn 1,  +[ ( )], where r is the  -dimensional vector denoting the position of the added ab initio point in the
configuration space. By training  , we also obtain rn 1, D +[ ( )], representing the uncertainty of  at r , as
the conditional standard deviation of theGP [17]. TheGP  and the uncertainty rn 1, D +[ ( )]allow us to
implement BO as described in the previous section.

Wenext propose two approaches:
(1) Fitting known quantumdynamics results. If the reaction probabilities are known, either from a calculation

with the full surface or from an experiment, one canminimize the difference between rn 1,  +[ ( )]and the
known results, to obtain the optimal value of r . This is the position in the configuration space, where the new ab
inito pointmust be added. Thisminimization can then be iterated by setting n n1+  , until n becomes large
enough to produce an accurate surface  .

(2)Obtaining the best surface without known dynamical results. If accurate quantumdynamical results are not
available, we propose tomaximize the difference of the reaction probabilities computed in two successive
iterations:

5
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rn n1, , 172   + -{ [ ( )] [ ( )]} ( )

while restricting r to bewithin a physically reasonable range. This is justified by the observation that n  ¥( )
must produce the best surface so themaximum improvement of the surface at each iteration is achievedwhen r
corresponds to themaximumof equation (17).

In the subsequent sections, we illustrate these two approaches.

5. BO efficiency

Webegin by illustrating the efficiency of BO for constructing the PES from feedback loops in equation (2).
Because every cycle in equation (2) involves a quantum scattering calculation, the particular parameter of
interest is the number of feedback loops necessary to produce a PES yielding accurate quantumdynamical
results.

In this section, our goal is to obtain known reactive scattering probability for reactions (15) and (16), starting
froma randomguess of a PES and using as few cycles of equation (2) as possible. To do this, we train

rn 1,  +[ ( )] to represent the root mean square (RMS) deviation of the reaction probabilities from the known
results. Here, BO amounts tominimizing the following function:

. 18 k+ D ( )

The value ofκ determines the efficiency of the optimization convergence.We setκ=0.005. As described above,
this value ofκ is chosen by examining the first iteration of cycle (2) to ensure that the algorithmproduces
improved results with less than 15 ´ dynamical calculations. After a localminimumof  is reached, the

Figure 1.Upper panel: the reaction probability for theH2+HH+H2 reaction as a function of the collision energy. The black
solid curve—calculations from [27] based on the surface with 8701 ab initio points from [29]. The dashed curves—calculations based
on theGPPES obtainedwith 22 ab initio points (blue); 23 points (orange), 30 points (green) and 37 points (inset). The points 23–37
are drawn by the BO algorithm from the PES in [29]. TheRMSE andmaximumerror of the results with 37 points are 0.009 and 0.028,
respectively. Lower panel: theGPmodel of the PES for theH3 reaction system constructedwith 30 ab initio points.R1 andR2 are the
distances between atoms 1 and 2 and atoms 2 and 3, respectively.

6
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second term in equation (18) directs theminimization algorithm towards the parts of the configuration space
where  is least accurate, thus sampling the entire space in search of the globalminimum [32, 33].With this
procedure, theminimization of  for each value of n requires 15 45´ = quantumdynamics calculations
forH3 and 15 90´ = calculations forOH3.

Figure 1(a) illustrates the performance of this algorithm in search of the best PES for reaction (5). As can be
seen, the startingmodel  of the PES based on 22 randomly generated ab initio points produces highly
inaccurate results, but the BO scheme converges to the correct PES after only 8 iterations (8×15×3=360
scattering calculations), yielding accurate results for the reaction probabilities (green dashed line)with theGP
model  of the PES trained by 30 ab initio points. Figure 1(b) shows themodel  of the PES obtainedwith
n=30 ab initio points, illustrating that equations (3) and (4) produce a physical surface.

Figure 2 illustrates the performance of this algorithm for the 6D reaction (6). As the dimensionality of the
configuration space increases, so does n in equation (3) required to represent accurately the PES.Nevertheless,
accurate results for the reaction probabilities (green dashed line) are obtainedwith n=290 ab initio points,
much smaller than the set of∼17 000 points used in previous work [28] to construct the PESwith aNNfit. This
result is obtained after 10 iterations (600 scattering calculations). The rms error of the reaction probabilities thus
obtained is 0.0076. Note that, as any supervised learning technique, this algorithm is guaranteed to becomemore
accurate when trained bymore ab initio points.

The efficiency of BO is perhaps best illustrated by the dependence of the RMSEs of the reaction probabilities
as functions of the number of BO iterations, presented infigure 3. Both panels offigure 3 show that BOquickly
decreases the RMSEof the reaction probabilities. In the upper panel showing the results for reaction (5), the
initial surface is constructed using 22 ab initio points chosen at randomandBO starts with n=23. In the lower
panel showing the results for reaction (6), the initial surface is constructed using 280 ab initio points chosen at
random in the 6D space andBO (results represented by circles) starts with n=281. To illustrate quantitatively
the accuracy gain enabled by BO,we also show in the lower panel of figure 3 theRMSEof the reaction
probabilities computedwith the PES obtained based on the corresponding number of points chosen at random
and distributed in the configuration space using the Latin hypercube sampling scheme to avoid clustering. The
difference in the computation difficulty between the results shown by squares and circles in the lower panel of
figure 3 is 14 scattering calculations, i.e. the results shown by squares require one scattering calculations, whereas
the results shownby circles require 15 scattering calculations. The key result illustrated by figure 3 is that the
convergence of BO is fast andmonotonous, reducing the error of the scattering calculations dramatically after
only two to three iterations for both reactive systems. This underscores the critical importance of BO for the
approach proposed here and also underlines the huge potential of BO for other applications involving the
inverse scattering problem.

Figure 2.The reaction probability for theOH+H2 H+H2O reaction as a function of the collision energy. The black solid curve
—accurate calculations from [28] based on the surface constructedwith∼17 000 ab initio points. The dashed curves—calculations
based on theGPPES obtainedwith 280 ab initio points (blue); 281 points (orange) and 290 points (green). The points 281–290 are
drawn by the BOalgorithm from the PES in [28]. The RMSE andmaximumerror of the 290-point result are 0.0076 and 0.0195,
respectively.
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6.Obtaining PESwithout knowndynamical results

If the quantumdynamics results are not known, the presentmethod can be applied to construct accurate PES
with a small number of ab initio energy points. SinceGP regression is a supervised learning algorithm,GP
models of PES becomenecessarilymore accurate when trained bymore ab initio points (i.e. any interpolation
method becomes infinitely accurate in the limit of infinite number of points to be interpolated). Themethod
proposed here aims to reach this limit with as few steps as possible. To achieve this, it is necessary to restrict the
configuration space of themolecule to a reasonable volume andmaximize the difference between of the results
of subsequent iterations in equation (2).

To illustrate the validity of this assumption, we show infigure 4 a series of computations as functions of n,
showing the convergence of the iterative calculations to the accurate results (black solid curve). Figure 4 shows
that the optimization loop converges to the accurate PES after 48 iterations.We emphasize that the accurate
results (black curve)were not used in anyway in this calculation.

7. Reproducing arbitrary scattering observables

Here, we extend the previous sections to construct a PES that, when used in quantum scattering calculations,
reproduces an arbitrary set of observables.Wefirstmodify the exact scattering results offigure 1 by shifting
along the energy axis and randomlymodulating the black curve. This produces an arbitrary energy dependence

Figure 3.Convergence of the RMSE of the reaction probabilities. Upper panel: theH2+HH+H2 reaction. Bayesian
optimization starts at 22 points. The results shown by circles (κ=0.01), squares (κ=0.005) and triangles (κ=0.001) illustrate
the effect of the value ofκ on convergence of Bayesian optimization. Lower panel: theOH+H2 H+H2O reaction. Bayesian
optimization of the results shown by circles starts at 280 points. The squares show the results of the scattering calculations with the PES
obtained based on the corresponding number of points chosen at random and distributed in the configuration space using the Latin
hypercube sampling scheme to avoid clustering.
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Figure 4.The reaction probabilities for theH2+HH+H2 reaction as functions of the collision energy. The black solid curve—
accurate calculations from [29]. The dashed curves—the results of iterative calculationsmaximizing the difference between the
reaction probabilities in successive iterations. The black curve is not used for these calculations. The inset shows the agreement
between the reaction probabilities (red symbols) based on theGP approach after 48 iterations (total of 70 ab initio points) and the exact
results.

Figure 5.Upper panel: the reaction probabilities for themodifiedH2+HH+H2 reaction as functions of the collision energy.
The black dotted–dashed curve is obtained by amodification of the previous results (black solid curve) involving a translation along
the energy axis. TheMLmodels are trained to obtain the PES that would describe the new reaction probabilities. The green dashed
curve is a results of such training after 30 iterations, resulting in a surface constructedwith 52 ab initio points. Lower panel:
comparison of the original PES (blue)with the newPES (red) found by the BOalgorithm. The newPES yields the reaction probabilities
described by the green dashed curve in the upper panel. The RMSE andmaximumerror of the results shown by the green dashed curve
are 0.016 and 0.0674, respecively.R1 andR2 are defined as infigure 1.
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of the reaction probabilities shownby the dotted–dashed curve infigure 5. The goal is to construct a PES that
reproduces these arbitrarily chosen reaction probabilities. Note that the dotted–dashed curve extends the
interval of energies, where the reaction probability is zero, whichmeans that the PES for this reactionmust have
a higher reaction barrier and cannot be reproducedwith the original PES forH3. Since this approach builds the
PES based on the observables and is designed to yield the PES reproducing the observables, it is equivalent to
solving the inverse scattering problem.

We assume that a small ensemble ofEi is known from some (not necessarily accurate) quantum chemistry
calculation. As before, this ensemble serves as a starting point for themodel  of the PES.However, in order to
allow for the improvement of the PES, we now allow the energy of each point of the PES to be a variable re( ).
This variable is a function of r and allows themodel  to sample from an interval of energies centered about the
points of the initial rough PES. The results of the scattering calculations are nowused to train themodel

r rn 1, ,  e+[ ( ( ) )], effectively increasing dimensionality of the variable space to 1 + . Figure 5 shows that
this algorithm converges to the arbitrarilymodified reaction probabilities after 32 iterations, producing a PES
depicted in the lower panel.

8. Conclusion

Thiswork shows that it is possible to implement the feedback loop

to build the global PES for 3D and 6D reaction systems. The unique feature of thismethod is that the PES is built
from a small number of ab initio points. At each iteration, an ab initio point is added to themost relevant part of
the configuration space and the global PES is automaticallymorphed to becomemore accurate. By construction,
this approach produces PES yielding an accurate description of known reaction observables and the PES offers
unique information onwhich parts of the interaction aremost important for the outcome of the reaction
process.

By construction, thismethod illustrates the lowest number of potential energy points (i.e. theminimum
information) required for the non-parametric cosntruction of global PES for quantum reactive scattering
calculations.We showed that accurate quantum reactive scattering results can be obtainedwith 30 ab initio
points for the 3DH+H2H2+Hreaction and 290 points for the 6DOH+H2H+H2O. For practical
applications, the locations of these few points can be determined as described abovewith a low-level ab initio
method and an approximate dynamical approach. Once the positions of the points are known, this small
number of ab initio points can be calculatedwith extremely high precision.

We emphasize that themethod can also be used to construct accurate PES even if observables are not known.
We showed that an algorithmbased onmaximizing the difference of computed observables in successive
iterations quickly converges to an accurate PESwithout the a priori knowledge of the full surface or dynamical
results. The convergence to the correct limit is guaranteed by the observation that theMLmodel adopted here
produces the correct surface in the limit of a large number of ab initio points.

The efficiency of the approach proposed here is limited by the difficulty of the dynamical calculations.
However, one can use approximate dynamicalmethods for step (iii) in equation (2). This will result in PES,
which yields an accurate description of the observables if usedwith this specific dynamicalmethod. The error of
this PESwill be designed to compensate for the error of the dynamical calculations.While it remains to be seen if
such an approach has predictive power outside the range of the observables used to construct the PES, we
believe, ourwork opens the possibility of applying approximate dynamicalmethods such as the coupled states
approach [34–38] for quantitative predictions ofmolecular scattering observables.

Finally, we note that the approach presented here is general and can be used to construct themicroscopic
interaction potentials for any process with a

Microscopic Interaction Potential Observable

dependence.Within the framework of themethod proposed here, one should represent the interaction potential
by aGPmodel  and the observable by anotherGPmodel  [ ]. TheGP  [ ] can then be used as the emulator
function for BO tofind the optimalmodel  , leading to themost accurate description of the observable.We
believe this strategy can be applied to awide range of problems inmolecular physics.
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