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Abstract
This paper studies the influence of orienting external fields on pattern formation, particularly
mesoscale turbulence, inmicroswimmer suspensions. To this end, we apply a hydrodynamic theory
that can be derived from amicroscopicmicroswimmermodel (Reinken et al 2018Phys. Rev.E 97,
022613). The theory combines a dynamic equation for the polar order parameter with amodified
Stokes equation for the solvent flow.Here, we extend themodel by including an external field that
exerts an aligning torque on the swimmers (mimicking the situation in chemo-, photo-,magneto- or
gravitaxis). Compared to thefield-free case, the external field breaks the rotational symmetry of the
vortex dynamics and leads instead to strongly asymmetric, traveling stripe patterns, as demonstrated
by numerical solution and linear stability analysis.We further analyze the emerging structures using a
reducedmodel which involves only an (effective)microswimmer velocityfield. Thismodel is
significantly easier to handle analytically, but still preserves themain features of the anisotropic pattern
formation.We observe an underlying transition between a square vortex lattice and a traveling stripe
pattern. These structures can bewell described in the framework of weakly nonlinear analysis,
provided the strength of nonlinear advection is sufficiently weak.

1. Introduction

Activematter exhibits a variety of large-scale self-organized structures that arise due to the interactions between
themoving constituents. As shown in experiments, these structures are ranging fromdynamical clustering [1, 2]
and giant numberfluctuations [3] to vortices and swirling [4–6]. To describe and understand the fascinating
collective behavior from a theoretical point of view,models on different levels of detail have been applied, from
studies simulating large numbers of individual particles [7, 8] to phenomenological approaches [9–14] standing
on the opposite side of the spectrum. To bridge the gap,many efforts have beenmade to derive coarse-grained
hydrodynamic theories frommicroscopicmodels [15–19]. For a selection of recent reviews on the full scope of
activematter see [20–28].

Whilemany of the self-organized structures in systems of active constituents arewell understood, the impact
of externalfields on the spatiotemporal pattern formation ismostly unexplored. For example, themotion of
biologicalmicroswimmers such as bacteria or algae cells, is strongly determined by the response to external
stimuli. These stimuli are of various origins: for example, swimmers react to concentration gradients
(chemotaxis) [29, 30], a light source (phototaxis) [31, 32] ormagnetic and gravitational fields (magnetotaxis
[33–36] and gravitaxis [37, 38]). The interplay between externally appliedfields and internally generatedmotion
is not only interesting from a fundamental perspective, but also essential for a variety of potential applications.
For example, external fields offer the possibility to control the suspension in order to exploit the coherent
motion of the swimmers. This includes tasks like cargo-delivery [39–41] (e.g. drug transport formedical
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purposes [42, 43]), poweringmicrofluidic devices [44, 45] or swimmer-inducedmixing on the small scales,
where highReynolds numbers are not accessible [46].

In the present paper, we explore the impact of an external field on a prominent example of active pattern
formation, labeled and known asmesoscale turbulence [47]. This state can be observed in a variety of systems,
including bacterial suspensions [48–51] and Janus particles [52].Mesoscale turbulence is characterized by
chaotic vortex structures similar to inertial turbulence occurring in passive fluids at high Reynolds numbers
[53], but it has two very unique features: first, it arises in the lowReynolds number regime of bacterial swimming
(Stokes flow). Second, in contrast to inertial turbulence, it does not exhibit a spectrumof length scales but
displays one characteristic vortex size controlled by themicroswimmer details [47, 50, 54].

From the theoretical side, themain features ofmesoscale turbulence have been successfully reproduced by a
phenomenological continuum theory for the effectivemicroswimmer velocity [47, 55–61].More recently,
mesoscale turbulence and vortex lattices were also reported in amodel of self-propelled particles with
competing alignment interactions [62, 63]. Going beyond the purely phenomenological approach, we have
recently presented a derivation of a hydrodynamic theory starting fromLangevin equations for a generic
microswimmermodel [18, 19]. This theory consists of a dynamic equation for the polar order parameter field
coupled to the solventflow, the latter determined by amodified Stokes equation. In the limit of weak coupling
between orientational order and solventflow, our hydrodynamic theory reduces to the phenomenological
model. Here, we extend the theory [19] towards the effect of an orienting externalfield, the aimbeing to describe
situationswhere swimmers are subject to an externally applied torque (stemming, e.g. from amagnetic or
gravitational field). To this end, we incorporate thefield in the Langevinmodel and derive the additional terms
in the dynamic equation for the polar order parameter. This is outlined in section 2 (and appendix A) of the
paper.

The remainder of the paper separates into twomain parts. In thefirst part, we investigate the impact of an
orienting externalfield in the fullmodel consisting of the polar order parameter dynamics and an explicit
equation for the solventflow (i.e. amodified Stokes equation). Corresponding numerical results are presented in
section 3.We show that, at intermediate field strengths, the emerging patterns become strongly anisotropic as a
consequence of the externally broken symmetry. Performing a linear stability analysis (section 4), wefind that
this is due to the suppression ofmodes that are perpendicular to the field. For even higher externalfields, the
mesoscale-turbulent state is completely suppressed andwe observe a homogeneous stationary polar state. The
analytical results are then used to construct a state diagramof the system. Previously, there has been relatedwork
on pattern formation in anisotropic systemswith broken rotational symmetry, such as convection in liquid
crystals [64] and chemical waves in catalytic surface reactions [65]. Experimental and theoretical studies of such
anisotropic systems showed novel phenomena such as ordered arrays of topological defects [66, 67], anisotropic
phase turbulence [68] and stratified spatiotemporal chaos exhibiting very anisotropic correlations [69, 70].

In the second part of the paper (section 5), we switch to a reducedmodel equivalent to the phenomenological
theory, where the only dynamical variable is the effectivemicroswimmer velocityfield. The reducedmodel is
significantly easier to handle analytically, but still exhibits the emergence of anisotropic patterns. Using the
framework of weakly nonlinear analysis, we investigate the underlying transition froma square vortex lattice to a
traveling stripe pattern that occurs upon an increase of the external field. Finally, we present conclusions and an
outlook in section 6. The paper is supplemented by seven appendices providing technical details of the
calculation.

2.Hydrodynamic theory

Recently, a phenomenologicalmodel [47, 55–61] has been proposed that reproduces themain features of
mesoscale turbulence including the emergence of a characteristic length scale, i.e. vortex size [49]. It is a fourth-
orderfield theory for the divergence-free collectivemicroswimmer velocity and combines the Toner–Tu
equation [71]with Swift–Hohenberg-like pattern formation. Themain feature of the Toner–Tu equation is the
transition from a disordered to a polar state corresponding to collectivemovement of the swimmers. Higher
order gradient terms, as introduced in the Swift–Hohenberg equation, lead to afinite-wavelength instability that
is responsible for the collective length scale.

In earlier publications [18, 19]wehave shown that an equivalent hydrodynamic theory for the
microswimmer velocity can be derived via a Fokker–Planck equation approach starting from a generic Langevin
model (similar to [15, 16]) for a systemofmicroswimmers of lengthℓ, diameter d and self-swimming speed v0
with constant density ρ (see appendix A for a summary of the derivation). The Langevinmodel includes two
types of interactions: first, there are short-range contributions stemming froman activity-driven polar
interaction characterized by strength γ0 and range r [72]. Second, far-field hydrodynamic effects are included via
a coupling to the solventflowfieldu. The latter is determined via an averaged Stokes equation supplemented by
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an appropriate ansatz for the active stress tensor containing gradient terms of up to fourth order. The resulting
coarse-grained dynamics is then given by an equation for the polar order parameter fieldP (characterizing the
swimmer’smean local orientation) coupled to the solventflowfieldu. The effective velocity of the
microswimmers is calculated as the sum v0P+u. In the limit of weak coupling between the solventflow and the
polar order, the dependence onu can be neglected and the dynamics is adequately described by onefield [19]. In
contrast to the phenomenological approach, the coefficients of the field equation are directly linked to the
parameters of themicroscopic Langevinmodel [19] (see also appendix A).

For thefirst part of this article, however, wewill consider the fullmodel consisting of both the dynamics of
the polar order parameterP and the solventflowu. As shown in [19], the dynamical equation forP(x, t) can be
conveniently written in potential form

u P P P
P

P, 0. 1t 0l
d
d

+  = -  =( ) · · ( )D
F

The relaxation term is given as functional derivative of

q P P P P P
1

2

1

4

1

2

1

2
, 22 4

2
2

4
2a b=  + + + G  + G ( · ) ∣ ∣ ∣ ∣ ( ) ( ) ( )F

such that,

q
P

P P P P P. 32
2

2
4

4d
d

a b=  + + - G  + G ∣ ∣ ( )F

Note that, for reasons of brevity, equations (1)–(3) are alreadywritten in nondimensionalized form (see below
for the definitions of the coefficients and appendix A and [19] for further details).We also note that the potential
given in equation (2) should not be regarded as an ansatz for a free energy. Rather, all terms can be derived from
themicroscopicmodel as discussed in [19]. The derived equations (1) and (2) exhibit the same features as the
phenomenologicalmodel: the isotropic–polar transition occurs whenα changes sign frompositive to negative.
The coefficientβ of the cubic termdetermines the saturated value of the polar solution a b- . For sufficiently
strong activityΓ2 becomes negative, which leads to afinite-wavelength instability of the homogeneous state,
yielding a typical length scale of 2 2 4 2pL = - G G . Turbulent dynamics is introduced to themodel via the
nonlinear advection termon the left-hand side of equation (1), withλ0 giving the strength of the advection term.
Finally, q(x) is a local Lagrangemultiplier enforcing the incompressibility condition P 0 =· . The assumption
of incompressibility is well suited for dense suspensions where density fluctuations become small [47].

In contrast to the phenomenologicalmodel, the solventflowfieldu enters explicitly through thefirst term in
equation (1). Its coupling to the polar order parameter fieldP is contained in the generalized derivative

u P P u P P P, 4t t kW S= ¶ +  - -( ) · · · ( )D

where the vorticity tensor and the deformation rate are given by u u1

2
TW =  - [( ) ( )] and

u u1

2
TS =  + [( ) ( )], respectively. Themodified Stokes equation (see [19]) that determines the solventflow

fieldu reads

pu , 52
pass acts s =  + + · ( ) ( )

where p is an effective pressure and passs and acts refer to the two parts of the stress tensor,σ, specifically, passs is
an anisotropic passive contribution due to the elongated shape of the particles, and acts is the active stress. The
anisotropic passive contribution is treated in detail in the theory of liquid crystals [73]. For the purpose of this
study, however, we assume that the passive contribution passs is not significant compared to the active stress, see
[19] for amore detailed discussion. Performing an expansion of the active stress up tofifth order in gradients of
the orientation [19] yields

c c P P P P6
1

28
. 6act F I
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⎝

⎞
⎠· ( )

Equations (1)–(6) are rescaled using themicroswimmer lengthℓ as length scale, the self-swimming speed v0 as
characteristic velocity andℓ/v0 as time scale [19]. The coefficients can then bewritten as
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where Pr, cI, r/ℓ, cF and a0 are dimensionless parameters. The activity is quantified by the persistence number
P vr 0t= ℓ, giving the swimming speed compared to the reorientation time τ. The strength and range of the
polar interaction are given by cI and r/ℓ, respectively. For c 1I < the system favors a disordered, isotropic state,
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while for c 1I > it favors an ordered, polar state. The coupling to the solventflow is characterized by the
coefficient cF. For the dependence of cI and cF onmicroscopic parameters of themicroswimmermodel, see
appendix A. Finally, flow aligning effects are characterized by the shape parameter a0 which depends on the
swimmer aspect ratio (see equation (A.3) in appendix A).

In the present work, we extend equation (1) by terms incorporating an externalfield that affects the
swimmer’s orientations. On themicroscopic level, we assume that the external field generates a potential for
every swimmerwhich depends on the angle between thefield’s directionh and swimmer orientationn
according to a standard ferromagnetic coupling, i.e. n hextF µ - · . This term also occurs in some passive
liquids in an orientingfield (e.g. ferrofluids [74, 75], which are suspensions of ferromagnetic colloids in a passive
solvent) andwas recently considered in the context of activefluids. Indeed, the same ansatz has been used to
describe chemotactic [30] andmagnetotactic [76] bacteria. It is in principle applicable to anymicroswimmer
suspension subjected to an aligning torque exerted by an external field, as it occurs, e.g. inmagnetotaxis [33–36],
phototaxis [31, 32] or gravitaxis [37, 38]. Introducing the external potential in the Langevin equations and
performing the same steps as in the field-free case, one arrives at the order parameter equation (for details see
appendix A)

u P P P
P

g P, 0. 8t 0l
d
d

+  = - +  =( ) · · ( )D
F

The additional termon the right-hand side of the evolution equation is given as

B c a Pg h I PP
I P P2

3

3

5 3

2

15
, 90 I 0 rS= - - -⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥· ( · ) ( )

whereB0 denotes the dimensionless externalfield strength. Thefirst termon the right-hand side of equation (9)
increases the polar order in the direction of the externalfield, similar towhat happens in passive fluids. The
second term arises due to the conservation of the unit vectorn, i.e. themicroswimmer’s orientation. It leads to a
saturation ofPwith increasingB0, as wewill later see (compare figure 2). Finally, the third term in equation (9)
arises as a consequence of the closure scheme applied for the nematic order parameter tensorQ (see
appendix A). Clearly, this term incorporates a coupling to the solventflowfield. Physically, it adds a reduction of
polar order due to theflows generated by the swimmers. In principle, changes on the flowfield due to the
externalfieldwill couple back to the stress tensor.However, this is a higher order (feedback) effect, whichwewill
neglect for the purpose of this study. Also note that the termdescribing the impact of the external field g cannot
be straightforwardly integrated into F due to the closure relations used in the derivation, see appendix A and
[19]. This indicates again that F cannot be simply interpreted as a free energy.

3.Numerical observations

The aimof the present study is to explore the impact of a spatially homogeneous stationaryfield on the
mesoscale-turbulent state observed in the absence of a field. As a starting point, wewill discuss the dynamical
behavior that can be observed based on numerical solution of equation (8) for the polar order parameter fieldP,
coupled to the Stokes equation (6) for theflowfieldu. The solution is performed in two-dimensional space (for
the numericalmethods, see appendix B), where the two dimensions are defined by the directions parallel and
perpendicular to the field, i.e. x and x̂ . Themost instructive quantity to visualize the dynamics is the vorticity
field, which is defined as a three-dimensional axial vector. In the following, wewill refer to the z-component of
the vorticity P z ´( ) (where z is both perpendicular to x and x̂ ) as scalar vorticity or just vorticity.

We start with the field-free case,B0= 0.Here, we focus on parameters where the system is in amesoscale
turbulent state. Infigure 1(a) a snapshot of the (scalar) vorticity of the polar order parameter field is shown. For a
more descriptive visualization of the dynamics in the absence of afield see the supplementarymovie 1 available
online at stacks.iop.org/NJP/21/013037/mmedia. For better visibility, a section of the field is presented in a
larger version infigure 1(d). Here, we also visualize the (vectorial) order parameter field by arrows, with the
arrow length indicating themagnitude of the polar order. The observed dynamical state is characterized by the
formation,motion and decay of clockwise (blue) and counter-clockwise (red) rotating vortices. The emerging
patterns are dominated by one characteristic length or vortex size depending on themicroscopic parameters of
the swimmers [18, 19, 47, 50, 54], hence the namemesoscale turbulence. This stands in contrast to inertial
turbulence observed in theNavier–Stokes equationwhere onefinds a broad spectrumof vortex sizes [53]. For a
more detailed discussion on the turbulent state without the influence of externalfields, see [47, 58, 59, 61] for the
phenomenologicalmodel and [18, 19] for the presentmodel. Note that, compared tomost of the listed
publications, the coefficientλ0 is rather large and, therefore, the shape of the vortices is highly irregular.

Turning on the externalfield,B0>0, introduces several new features. First, the external field induces a net
polar order in the system, that is A tP xP xd , 01 òá ñ = ¹- ( ) (whereA is the area). The swimmers’ self-
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propulsion speed leads to a local transport in the direction of the polar order given by v P0 . Thus, as a
consequence of the generated net polar order, we observe a net transport in the direction of the field. Second, the
overall rotational symmetry is broken, which leads to the emergence of asymmetric patterns. Infigures 1(b) and

Figure 1. Snapshot of the (scalar) vorticity of the polar order parameter field as heatmap plot for (a)B0=0, (b)B0=0.6 and (c)
B0=0.8. Bluemeans clockwise, red counter-clockwise rotation. The enlarged versions (d)–(f) visualize additionally the polar order
parameter field by arrows, with the length corresponding to themagnitude of thefield. The remaining parameters arePr=8,
cI=0.5, cF=0.1, r/ℓ=1 andℓ/d=6. The box size is set to 16 times the characteristic wavelengthΛ.
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(c) this is illustrated by snapshots of the vorticity at finite (nonzero)field strengths. In contrast to the caseB0=0,
we here observe the formation of elongated structures in the vorticity field, or,more precisely, a highly irregular
stripe patternwith numerous defects. Infigure 1(c), where thefield strength is larger compared to (b), the
number of defects is smaller and the stripe patternmore regular. Interestingly, the defects are elongated in the
direction parallel to the field. The enlarged sections infigures 1(e) and (f) additionally show the polar order in the
field’s direction. For a visualization of the transport of the patterns, see the supplementarymovies 2 and 3. They
show the dynamics for the same values of thefield strength as represented infigures 1(b) and (c), i.e.B0=0.6
andB0=0.8, respectively. In the remainder of this workwewill elucidate the observed dynamical features using
analyticalmethods, particularly linear stability analysis andweakly nonlinear analysis.

4. Analytical construction of the state diagram

4.1.Homogeneous stationary solution
If the activity is sufficiently weak or the externalfield sufficiently strong, we numerically observe a homogeneous
stationary state. This state is the starting point of our linear stability analysis.

Clearly, the externalfield breaks the rotational symmetry of the system. Thus, it is useful to distinguish
between components of the polarization parallel and perpendicular to the field, i.e. P PP ,= ^( ). To calculate
the homogeneous stationary solution, we assume a quiescent state, where the solvent velocity field vanishes, i.e.
u=0. Further, the pressure p=p0 and Lagrange-multiplier q=q0 are set constant in space and time. Then,
equation (8) reduces to

P P B B c P0
2

3

2

5
. 100 0

3
0 0 I 0

2a b= - - + - ( )

The real positive solution of equation (10)defines the homogeneous stationary state PP , 00= ( ). This solution
P0 is plotted versus the externalfield strengthB0 in figure 2. As expected, the polar order grows upon increasing
thefield strength. Dividing byB0 and evaluating the limit B0  ¥, equation (10) simplifies to

c P0
2

3

2

5
. 11I 0

2= - ( )

The solution of equation (11) defines the saturation value P c5 30
sat

I= ( ) that is approached for B0  ¥.

4.2. Linear stability analysis
In order to determine the linear stability of the homogeneous stationary solution PP , 00= ( ), q=q0,
u 0, 0= ( ), p=p0, we consider small perturbations, i.e.

P P P P P q q q

u u u u p p p

, , ,

, , . 12
0 0

0

d d d
d d d

= + = = +
= = = +

^ ^

^ ^

 

  ( )

Figure 2.Homogeneous stationary solution P0 as function of the externalfield strengthB0 for different values of the persistence
number Pr. The saturation value P0

sat appearing for very large external field strength is independent ofPr. The remaining parameter is
cI=0.5.
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For all perturbations, wemake the ansatz

P P q u u p P P q u u p, , , , , , , , , , e , 13t k xid d d d d d d d d d d d= s
^ ^ ^ ^

+
   ( ) ( ˆ ˆ ˆ ˆ ˆ ˆ ) ( )·

withwavevector k kk ,= ^( ).We now insert equations (12) and (13) into equations (2), (4), (6), (8) and (9) and
linearizewith respect to the perturbations. As shown in appendix C, the perturbations of the velocityfield δu, the
pressure δp and the Lagrangemultiplier δq can be related to the perturbations of the polar order parameter δP.
As a result (see appendix C) one obtains a linearized system involving only δP, that is

P k M k P, 14sd dP=ˆ ( ) · ( ) · ˆ ( )

where the projector k I kk k 2P = -( ) ∣ ∣ arises as a consequence of the incompressibility of the order parameter
field, and the 2×2-matrix M k( ) is the Jacobian. The components of M k( ) are given in equation (C.5) in
appendix C.We obtain the complex growth rate iRe Ims s s= + as a function of thewavevector k by calculating
the eigenvalues of thematrix k M kP( ) · ( ). The real part kRes ( ), which determines the actual growth of amode
k , is given by
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The imaginary part kIms ( ), which determines the linear traveling speed c0
, is given by
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It is seen that kRes ( ) depends not only on themagnitude kk =∣ ∣ of thewavevector but also on its direction. For
B0=0 and cF=0, one reproduces the growth rate obtained in [55]. Note that, when the system transitions into
a polar state in the absence of the externalfield, i.e. cF>1 (α<0), the direction ofP is not uniquely defined (i.e.
there is continuous degeneracy), but instead chosen spontaneously by the system itself. In this case, we have to
set xparallel to the direction of spontaneous order and x̂ perpendicular to that direction.

4.3. State diagram
Due to the explicit dependence of the growth rate kRes ( ) on thewavevector’s direction, itmakes sense to
distinguish between two limiting cases illustrated infigure 3: perturbations with awavevector that is purely
parallel to the externalfield, i.e. k k= , k 0=^ , or purely perpendicular to thefield, i.e. k 0= , k k=^ . The
incompressibility condition of the order parameter field, i.e. k P k P 0d d+ =^ ^  , then dictates the formof the
respective perturbations. For a parallel wavevector, the component Pd must vanish. Therefore, the linearly
unstable pattern is a perturbation in the perpendicular directionwith periodicity in the parallel direction (see
figure 3(a)). The correspondingwavelength is given by k2pL = . This type of patternmanifests itself as stripes
in the vorticity of the field. Analogously, for a perpendicular wavevector, the component Pd ^must vanish and

Figure 3. Formof the perturbed polar order parameterfield in the two limiting cases of awavevector (a) parallel and (b) perpendicular
to the external field. The corresponding dominatingwavelength Lor L̂ , respectively, is indicated in red.
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the pattern is a perturbation along the fieldwith periodicity in the perpendicular direction ( k2pL =^ ) (see
figure 3(b)). The occurrence of both,modes in the parallel and in the perpendicular direction, results in a square
vortex lattice.

The results obtained from linear stability analysis and the distinction between the two limiting cases for the
perturbation enable the construction of a state diagram in the plane spanned byPr andB0, seefigure 4(a). The
diagram is supplemented by plots of the growth rate as function of thewavevector, see figures 4(b)–(e). Regions
where the homogeneous stationary state described in section 4.1 is stable are indicated by awhite background
color. Consideringfirst the caseB0=0, we observe an instability at a critical value (P 5r » )wheremesoscale
turbulence sets in. This is reflected by a band of unstablemodes (see figure 4(c)), one of which grows the fastest
and yields a typical vortex size 2 2 4 2pL = - G G . Note that, without an external field, the full rotational
symmetry is still intact and the two curves for parallel and perpendicular wavevector perturbations coincide. For
a (numerical) snapshot of the order parameter field P and its vorticity P ´ in themesoscale turbulent state at
B0=0, see figure 1(a).

Keeping the persistence number at a constant valuewithin the zero-field turbulent state, e.g. P 8r = , and
increasing the externalfield from zero results in a shift of the growth rate curveσR depending on the
wavevector’s direction (seefigure 4(d)). It is seen that perturbations with perpendicular wavevector become
suppressed above a field strength of B P0 r

^( ), see dashed line infigure 4(a). In contrast, perturbations with parallel
wavevector still growuntil a largerfield strength of B P0 r

 ( ) is reached, see solid line infigure 4(a). Between the
two ‘critical’field strengths B0

and B0
^, the growth of parallelmodes leads to anisotropic patterns which are

elongated in the perpendicular direction. This is consistent with our numerical observations shown in
figures 1(b) and (c). Interestingly, the characteristic length given by the criticalmode kc, i.e. themaximumof

kRes ( ), is not influenced by the externalfield (comparefigures 4(c)–(e)).
Moreover, we observe a very intriguing feature in the case of a perturbationwith k h . Here, the growth rate

curve is first shifted upwards for intermediate field strengths before being shifted down for stronger fields. This is
due to the explicit coupling of the solventflow to the generated polar order in the system. As discussed in a
variety of publications [9, 21, 23], active suspensions with uniformorientational order such as active nematics
[77] are intrinsically unstable. The interplay between actively generated flow and the resultingflow alignment of
the elongated particles destabilizes the uniaxial order. In active nematics, this results in a bend instability for
particles that generate an extensile active stress and a splay instability for particles that generate a contractile
active stress [21]. In ourmodel of polarmicroswimmers, a similarmechanism leads to the upwards shift of the
growth rate curve of parallelmodes for intermediate field strengths. The externalfield generates orientational
order, which in turn induces a solventflow that destabilizes the homogeneous state due to the flow alignment of

Figure 4. (a) State diagram in thePr-B0-plane obtained by linear stability analysis. (b)–(e)Real part of the growth rate as function of the
wavenumber for k h and k h^ . The solid line in (a) denotes thefield strengthwhere parallelmodes start to grow, the dashed line
where perpendicularmodes start to grow. The remaining parameters are c 0.5I = , r 1=ℓ , c 0.1F = and d 6=ℓ . Note that the
diagram is independent of themagnitude of the nonlinear advection term 0l .
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the swimmers. For higher field strengths, however, this interplay between polar order and solventflow is
outweighed by the other terms in the growth rate (equation (15)) that suppress the instability. This behavior is
reflected in the state diagram infigure 4(b) by the pronounced ‘bulge’ for persistence numbers below P 5r » .

Finally, note that the growth rate Res (see equation (15)) does not depend on the nonlinear advection term in
equation (1). The imaginary part Ims , however, is strongly dependent on to the parameterλ0 characterizing the
magnitude of the advection term (see equation (16)). Thus, in the framework of linear stability analysis, the
influence of the nonlinear advection term is restricted to transporting the emerging patternswith a traveling

speed of c0
, given by equation (16), in the direction of the externalfield. Comparing the state diagram infigure 4

to the full numerical solution of equations (8) and (6), wefind that the analytical calculations are consistent with
the numerical results. They accurately predict the onset of themesoscale-turbulent state, the complete
suppression of the instability for high field strength and the region of anisotropic patterns for intermediate field
strength (comparefigure 1).

5. Reducedmodel

In order to characterize the emergence of patterns inmore detail, it seems appropriate to perform aweakly
nonlinear analysis. However, it turns out that this is an extremely difficult taskwhen starting from themodel
equations discussed so far. For the remainder of this workwe thus consider a reducedmodel, which still gives the
essential physics, i.e. the transition from rotationally symmetric to asymmetric patterns and the complete
suppression of the turbulent state for increasing field strength.

Aswe discussed in our previous publication [19], the response of the flowfield to the forces exerted by every
swimmer on the surrounding fluid scales with the coefficient cF. The latter is proportional to the ratio of active to
viscous forces. In the limit c 1F  , the collective dynamics of the suspension depends solely on the dynamics of
the polar order parameter. Introducing an effectivemicroswimmer velocity proportional toP then reproduces
the phenomenologicalmodel briefly introduced in section 2, with the notable difference thatwe can calculate all
the coefficients as functions of parameters of themicroswimmermodel. This phenomenological model,
consisting of the dynamics of only one vector field, is indeed frequently used to describemesoscale turbulence
[47, 55–59, 61]. Note that the coefficientΓ2 has to be negative in order to obtain amesoscale-turbulent state.
Thus, additionally to the limit c 1F  , the product P cr F still has to be sufficiently large compared to cI (see
equation (7)). In this work, we rescale space and time by the length and time scale of the pattern formation, i.e.
the inverse of the criticalmode k 2c 2 4= -G G( ) , and the inverse of the correspondingmaximumof the
growth rate B0, 0 4Re 0 2

2
4s a = = = G G( ) ( ). Further, we rescale by the saturation value for the polar order

parameter at B0  ¥ and obtain the scaled collectivemicroswimmer velocity via Pv P 0
sat= , where

P c5 30
sat

I= ( ) . The rescaled equation for v is then given by

q a b

B

v v v v v v v

h I vv I v v

1

1

2
3 . 17

t
2 2 2

0

l¶ +  =- + - - + 

+ - -
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⎤
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· ∣ ∣ ( )

˜ · ( ( · )) ( )

The advantage of this scaling is that the number of independent coefficients is now reduced to four: First, the
coefficientλ determines the strength of the nonlinear advection term. Second, the coefficient a characterizes the
distance to the onset of the instability at B 00 =˜ . For a<0, the system favors the isotropic homogeneous state,
while for a>0 the systemdevelopsmesoscale turbulence. Note that for a>1, the homogeneous stationary
solution becomes polar. In this work, wewill focus on the case a<1. Third, the coefficient b of the cubic term in
v is responsible for the saturation of the emerging patterns. Fourth, the external field strength is given by B0˜ . The
scaling of the Lagrangemultiplier q enforcing the incompressibility v 0 =· is irrelevant, thus, we keep the
same notation as before. For the explicit dependencies of the four remaining coefficientsλ, a, b and B0˜ on the
coefficients of the fullmodel for the dynamics ofP given in equations (8) and (9), see appendixD.

The reduced and rescaledmodel is significantly easier to handle than the full version but still exhibits the
emergence of anisotropic patterns due to the external field. The homogeneous stationary solution

v v Vv , , 00= =^( ) ( ) of the reducedmodel is calculated via

a V bV B B V0 1 . 180 0
3

0 0 0
2= - - + -( ) ˜ ˜ ( )

Analogous to the fullmodel, performing a linear stability analysis yields the complex growth ratewith real part

a bV
k k

B V
k k

k k k
k k

1 2
3 1

2

3 4
. 19Re

2 4
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2 0 0

2 2

2
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˜
∣ ∣

( )

Similar to the corresponding function ks of the fullmodel (compare equation (15)), equation (19) yields a finite-
wavelength instability. Due to the present scaling, the criticalmode is now given by kc=1. Further, we obtain
the linear traveling speed as
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Note that, for the sake of brevity, we use the same notation for the growth rate and related concepts as for the full
model.

The state diagramobtained from the stability analysis of equation (17) is shown infigure 5. As in the full
model wefind a regionwhere perturbations with a parallel wavevector growbut perpendicular wavevector
perturbations decay.However, compared tofigure 4, the bulge on the left-hand side is absent. This is because the
reducedmodel is solely given by equation (17) and, thus, the coupling of the externally generated polar order to
the Stokes equation (6) is neglected. As discussed in section 4.3, this coupling is essential for themechanism
producing the bulge.

5.1.Weakly nonlinear analysis
To analyze inmore detail the emerging patterns in the reducedmodel, we nowperform aweakly nonlinear
analysis [78, 79] for two different values ofB0: in section 5.1.1we start with B 00 =˜ (and a>0), where the
unstablemodes have no preferred direction. The emerging pattern in this case is a square vortex lattice. In

section 5.1.2, we then consider the case B B B0 0 0< <^ ˜ ˜ ˜ (and a>0), where the system’s rotational symmetry is
broken andmodeswith awavevector parallel to the field dominate the dynamical behavior. Here, we observe the
emergence of stripes stacked in the field’s direction. The effectivemicroswimmer velocity field for these two
regular patterns is visualized infigures 6(a) and (b), respectively. Various technical details related to theweakly
nonlinear analysis are provided in appendix E. Although equation (17) is similar to the Swift–Hohenberg
equation, the dominant pattern in the field-free case is a square vortex lattice and not (as in the Swift–Hohenberg
equation) hexagons or stripes. This is due to the fact that the order parameter considered in this work is a
divergence-free vector field and not a scalar. For example, neighboring vortices always favor opposing directions
of rotation, i.e. clockwise and counter-clockwise, and this antiferromagnetic configuration can never be realized
in a hexagonal pattern. In principle, a potential for the vorticity can be constructed that favors a certain direction
of rotation, which then allows for a hexagonal pattern consisting only of clockwise or counter-clockwise rotating
vortices. However, for the parameter regime considered in this work, our theory does not break this symmetry
and therefore we only exhibit a square lattice (see [61] for further discussion).

Figure 5. State diagram for the reducedmodel in the a-B0˜ -plane obtained by linear stability analysis. The solid line in the state diagram
denotes the field strengthwhere parallelmodes start to grow, the dashed linewhere perpendicularmodes start to grow. Compared to
the state diagramof the fullmodel (figure 4) the bulge for P 5r < which corresponds to a<0 is absent. The coefficient of the cubic
term is set to b=0.1. Note that the diagram is independent of themagnitude of the nonlinear advection termλ.

10

New J. Phys. 21 (2019) 013037 HReinken et al



5.1.1. Case of zero external field
In the absence of an externalfield, the onset of the instability occurs at a=0 (see figure 5). Due to the rotational
symmetry, theweakly nonlinear analysis for this case is essentially standard (see [78, 79]).We introduce a small
parameter ε characterizing the distance to the bifurcation via the growth rate of criticalmodes

B k a0, 12
Re 0e s= = = =( ) (compare equations (18) and (19)). This allows the definition of a slow time scale

T t2e= and corresponding spatial variable X xe= (motivated by the fact that the growth rate scales in lowest
order quadratic in k). These long time and space variables characterize the scales onwhich the amplitude of the
emerging patterns evolves. The next step is to expand the effectivemicroswimmer velocityfield v in orders of ε.
In the present case, unstablemodes have no preferred direction and the emerging pattern is a square vortex
lattice (see figure 6(a))which is formed by critical wavenumbermodes perpendicular to each other. Although
their directions are arbitrary atB0=0, for convenience, we choose onemode parallel and onemode
perpendicular to the direction of the externalfieldwhichwill be set tofinite values in the next section.We thus
also consider the (scalar) components v and v̂ of the effective velocity field. Taking into account that the
incompressibility condition, i.e. v 0 =· , has to be satisfied, the expansion reduces in lowest order to

v t T A T

v t T A T

x X X

x X X

, , , , e c.c .,
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where Aand Â are the amplitudes of the twomodes and c.c. denotes the complex conjugate. In the exponential
functions, we have used kc=1.Now,we insert the expansion equations (21) into (17) and use the definitions for
the slow time scaleT and corresponding spatial variableX.Matching termswith the same order of ε yields the
amplitude equations for the parallel and perpendicularmode in 3 e( ),

A aA b A A A A
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wherewe already scaled back to the fast time and length scales, t and x, respectively. It is seen that the two
amplitude equations (22) correspond to two coupledGinzburg–Landau equations [80]. This result was already
obtained in [61], where the pattern formation in the reducedmodel equation (17) in the absence of an external
field is investigated. Physically, equations (22) describe a relaxation towards a uniform, stationary state
characterized by the homogeneous stationary solution A A a b5sat sat= =^ ( ) , corresponding to a regular
square vortex lattice.

5.1.2. Finite external field
Being interested in the symmetry-broken state, we nowmove on to perform aweakly nonlinear analysis in the
region of the state diagram (figure 5)where perturbations with a parallel wavevector grow but perpendicular

wavevector perturbations decay. Starting from the homogeneous stationary state at largefields B B0 0> ˜ ˜ , the

onset of the instability (at a>0) occurs at B a0
˜ ( ), i.e. the solid line infigure 5. In analogy to the analysis for

B 00 =˜ , we introduce a small parameter ε quantifying the distance to the bifurcation. In the present case, we
define ε via

Figure 6.Effectivemicroswimmer velocity field and corresponding vorticity obtained by numerical solution of equation (6) for (a) a
regular vortex lattice at B 00 =˜ and (b) a stripe pattern at B 0.50 =˜ . The length and direction of the arrows denote the strength and
direction of the field, respectively. The vorticity of thefield is given as background color, where bluemeans clockwise, red counter-
clockwise rotation. The remaining parameters are a=0.8, b=0.1,λ=0.1 and the box size is set to 4π.
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wherewe have used equation (19). The slow time scale is again defined byT t2e= . The scaling of the
corresponding spatial variable is given by tX x vge= -( ), wherewe introduced the group velocity vg for the
following reason: in contrast to the case B 00 =˜ , the system at B 00 >˜ displays a net polarization, and the
emerging stripe pattern (see figure 6(b)) is traveling in the field’s directionwith the traveling speed c.We also
expectmodulations of the pattern to travel through the system. The corresponding velocity of themodulations
is denoted as group velocity vg and is, at this point, still to be determined. The next step is to expand the effective
microswimmer velocityfield vwith respect to the distance to the bifurcation ε. Here, we use an ansatz which
incorporates only parallelmodes characterized bymultiples of the critical wavenumber (kc=1). In contrast to
equation (21), perpendicularmodes are not considered, since they decay in the considered region in the state
diagram. The full expansion is given as
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whereV0 denotes the homogeneous stationary solution v v Vv , , 00= =^[ ( ) ( )] and c.c. the complex conjugate.

Similarly, we also expand the local Lagrangemultiplier q and traveling speed c (see equations (E.2) and (E.3) in
appendix E). Inserting all expansions (equations (24), (E.3) and (E.2)) into the dynamic equation (17) and using
the incompressibility constraint v 0 =· , one obtains solvability conditions in differentmodes e m x c ti - ( ) and
different orders of ε that all have to be satisfied. In 3 e( )we obtain a dynamic equation for the leading order
amplitude v1,1

^ , whichwewill denote asA inwhat follows for the sake of brevity. All other contributions in the
expansion either vanish, contribute in orders higher than 3 e( ) or can be expressed as functions ofA, i.e. are
slaved to the dominatingmode. For further technical details of theweakly nonlinear analysis, see appendix E.
Thefinal amplitude equation for the dominatingmode is

A v A A g A A D A D A, 25t x x xg Re
2 2 2s¶ + ¶ = - + ¶ + ¶^ ^

 
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∣ ∣ ( )

wherewe already scaled back to the fast scales.

Wefind that the coefficient g>0 (see equation (E.12)), thus, the bifurcation at B B0 0= ˜ ˜ is supercritical. As
for the vortex lattice at B 00 =˜ , the obtained amplitude equation (25) corresponds to a real-valuedGinzburg–
Landau equation [80] and describes a relaxation process to a uniform amplitude, given by the homogeneous

stationary solution A gsat
Res=  . However, there are several features not present in equations (22): First, the

stripe pattern andmodulations of it are transported along the direction of the external field. This transport is

characterized by the speed cand the group velocity v Vg 0l= , which is equal to the linear traveling speed c0
. In

addition to the result from linear stability analysis, the traveling speed c contains contributions of higher order
in ε (see equation (E.9) in appendix E). Up to second order, we have

c V D A . 260 0
2l= + ( ∣ ∣ ) ( )

Thus, the amplitude of the emerging patternsmodifies the speedwithwhich they travel through the system. A
second unique feature of the symmetry-broken case is the anisotropic diffusion of patternmodulations, as
reflected by the difference of the diffusions constants D and D̂ , respectively,

D D bV B V4, 2
1

2
. 270

2
0 0= = +^ ˜ ( )

At the parameters considered, the coefficient for parallel transport is approximately one order ofmagnitude
higher than for perpendicular transport. This leads to an interesting additional effect, whichwe discuss in detail
in section 6.

5.2. Transition between square vortex lattice and stripe pattern
Having obtained the amplitude equations (22) and (25) for the square vortex lattice and the traveling stripe
pattern, respectively, there remains the question about their predictive power. Indeed, onewould expect that
only situationswithweak nonlinearities, i.e. situations near the onset of the respective instabilities, are
adequately described in the framework of weakly nonlinear analysis [50]. Theseweak nonlinearities include the
quadratic and the cubic term in equation (17), which are responsible for the saturation of the amplitudes, as well
as the linear part of the self-advection term that is responsible for the transport of the patterns in the direction of
thefield. This linear part is proportional to the net velocity vá ñand can bewritten as v vlá ñ · (compare
equation (17)). However, theweakly nonlinear analysis does not capture the full nonlinearity of the advection
term, as it is hard to handle analytically. From classical turbulence theory it is known that this term transfers
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energy that is inserted into the systembetween different length scales [53]. This contradicts the basis of weakly
nonlinear analysis, i.e. the assumption that the dominantmode is given by the critical wavenumber. For
example, for two-dimensional flows, the energy cascade decreases the dominant wavenumber in the system, (see
alsofigure F1 in appendix F and [61] for amore detailed discussion).

However, if the strength of the advection termdetermined by the parameterλ in equation (17) is small, the
full nonlinear nature of this term is expected to be less relevant. In this case, we expect the formation of a regular

square vortex lattice for B 00 =˜ and traveling stripes for B B B0 0 0< <^ ˜ ˜ ˜ (see figures 6(a) and (b), respectively)
Interestingly, when solving the dynamical equation (17)numerically for small values ofλ, we observe a regular
square vortex lattice also in the presence of afinite external orienting field, i.e. B 00 >˜ , provided that the field’s
magnitude is sufficiently small. Note that the formation of an asymmetric lattice, that is a lattice where the two
directions exhibit different characteristic lengths, is not observed in simulations. This is due to the fact that the
externalfield does not change the criticalmode but only shifts the entire growth rate curve (see also section 4.3).
Starting from the vortex lattice and increasing the field strength, a transition to regular stripes traveling in the
field’s direction occurs at a critical strength B0

*˜ . This transition can be observed infigure 7where themaximum
vorticity (in the rescaledmodel simply given by the sumof amplitudes of parallel and perpendicularmodes,

A Av 2 2z
max ´ = + ^( ) ) is plotted over the externalfield strength. Numerical results, obtained by solving the

full dynamical equation for v (equation (17)), are denoted by red dots. The lines denote the stationary solutions
of the amplitude equations (22) and (25), respectively. In detail, the blue line indicates the amplitude of the
vortex lattice, valid at B 00 =˜ , and the green line denotes the amplitude of the stripe pattern. Note that the
stationary solutions of the amplitude equations are not solutions of the dynamical equation for v (equation (17))
in a strictmathematical sense, but rather approximate solutions that are obtained by expansions around the

bifurcations at a=0 and B B0 0= ˜ ˜ , respectively. In this sense, the dashed green line does not indicate an
unstable solution of the dynamical equation (17), but rather denotes the solution of the amplitude equation (25)
for the stripe pattern, however, in a region (B B0 0

*<˜ ˜ )where this equation is no longer valid (because
perpendicularmodes start to grow).

Interestingly, the transition field strength B0
*˜ is not given by B0

^˜ , that is, the field strengthwhere, according
to linear stability analysis of the homogeneous stationary solution, perpendicularmodes start to grow (see
section 4.2). The reason for this discrepancy is that perpendicularmodes become suppressed by parallelmodes

already atfield strengths smaller than B0
^˜ . The transition field strength B0

*˜ is obtained by taking the coupling
between themodes into account and performing a linear stability analysis of the stripe patternwith respect to
perpendicularmodes (see appendix G). In order to check for dependencies on the initial values in the
numerically obtained data points infigure 7, we performed the numerical solution twice, starting from a regular
vortex lattice and a stripe pattern.We found no impact of the chosen initial values indicating the absence of
hysteretic behavior. As visible infigure 7, once the vortex lattice is fully developed, the saturated value is given by
equations (22), whichmeans the externalfield has no influence on the amplitude. Instead, preliminary
numerical results show that the external field only distorts the lattice. This intriguing effect will be discussed
elsewhere.

Figure 7.Maximumof the vorticity as a function of the external field strength for 0.1l = , a=0.8 and b=0.1. The red dots are
obtained by numerically solving the full dynamical equation (17). The blue line denotes the saturated amplitude of the square vortex
lattice and the green line denotes the saturated amplitude of the stripe pattern (obtained by solving equations (22) and (25),
respectively). In the region B B0 0

*<˜ ˜ the amplitude equation (25) for the stripe pattern has lost its validity and the respective amplitude
is denoted by a dashed line.
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6. Conclusions

This article studies the impact of a homogeneous, stationary externalfield on pattern formation in suspensions
ofmicroswimmers that exhibitmesoscale turbulence in the field-free case. Based on a numerical solution of the
fullmodel presented in section 2 and a linear stability analysis, we observe that, in the presence of an orienting
field, the patterns become anisotropic. From amathematical point of view, the growth rate ofmodes becomes
dependent on thewavevector’s direction due to the broken rotational symmetry. In particular,modes
perpendicular to the applied externalfield are suppressed for intermediate field strengths leading to the
dominance ofmodes parallel to thefield. The resulting structures can be described as stripes that travel along the
field’s direction. For even higherfield strengths, the instability is completely suppressed andwe observe a
homogeneous stationary polar state.

In the second part of the paper, we have presented aweakly nonlinear analysis of a reducedmodel for the
effectivemicroswimmer velocity. Themodel is significantly easier to handle analytically, yet still exhibits
anisotropic pattern formation, whichwe have analyzed by deriving the amplitude equations (22) and (25). Upon
an increase of the externalfield, there is a transition form a square vortex lattice to a traveling stripe pattern. The
regularity of these patterns is strongly dependent on the coefficientλ, that determines the strength of the
nonlinear advection term.Whenλ is increased, defects are generated and the patterns become less regular. In
this case, the amplitude equations,(22) and (25), lose their validity. This boils down to the problem already
discussed in section 5.2: the nonlinear energy transfer between scales leads to a shift of the dominatingmode
contradicting the ansatz leading to the amplitude equations (see also appendix F).

However, we can still observe one unique feature of the amplitude equation (25) for the stripe pattern, even
for large values ofλ: the equation is strongly anisotropic as is reflected by the difference of the diffusion
coefficients, D and D̂ . Indeed, the transport ofmodulations of the pattern in the direction parallel to the
externalfield is approximately one order ofmagnitude faster than perpendicular to the field (see also
equation (27)). As a consequence, defects in the patterns, generated by the nonlinear advection term,will be
elongated by a factor of D D̂ in thefield’s direction. This is consistent with numerical observations shown in
figure 1(c) for the fullmodel.

As explained above, the amplitude equation (25) does not incorporate the full nonlinear advection term.
This is apparent from the fact that it corresponds to the real-valuedGinzburg–Landau equation, which does not
generate defects. The complex two-dimensional Ginzburg–Landau equation, however, exhibits a variety of
chaotic states including one denoted as defect turbulence [80]. A preliminary comparison of this state with the
dynamics of the amplitudemodulations of the stripe patterns observed in the present system shows quite similar
spatial structures. The derivation of an amplitude equation valid even for higher values ofλ presents an
interesting future challenge.

As discussed, the externalfield induces polar order in the system, which leads to net transport in thefield’s
direction. This net transport can bemodified by emerging patterns, as was demonstrated in a recentmodel for
magneticmicroswimmers, where band-like structures reflected in the inhomogeneous density of swimmers
decrease the net polarization [76].We alsofind an influence of emerging patterns on transport properties in our
model that assumes a constant density ofmicroswimmers on the coarse-grained level: the emerging stripe
pattern in the polar order parameter field influences the traveling speed (see equation (26)).Moreover,
preliminary numerical results show that themean transport in the system is impacted in a quite complex
manner. Further exploring this feedbackwill be especially relevant for applications, where transport properties
are essential.

Anisotropic patterns emerging inmicroswimmer suspensions subjected to external fields have indeed
already been observed inmagnetotactic bacteria [81, 82]. However, in these experiments, band-like structures in
the swimmer density were found, whereas in our case, we are dealingwith a purely orientational effect. The
stripes, visible in the vorticity, correspond towave-like patterns in the polar order parameter field.
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AppendixA. Relation to themicroscopicmodel

Adetailed derivation of the continuum equations in the absence of an external field, equations (1)–(6), is given in
[19]. Extending the derivation towards an externalfield is quite straightforward.Here, wewill give a short
summary of the key points.
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The overdampedmotion of a swimmerσ in an ensemble ofσ=1, ..., S identical swimmers is given by the
Langevin equations for the position Xs and the orientation Ns , respectively,

v DX N u X 2 , A.10 x= + +s s s s˙ ( ) ( )

aN X N X N 1 , A.2N0 htW P S= + -  F +s s s s s ss˙ ( ) · · [ ( ) · ] ( )

where the functions xs and hs denoteGaussianwhite noise generating diffusion in the translational and
rotationalmotion. Note, that the overdamped Langevin equations are already divided by the translational and
rotational friction coefficients, respectively. Self-propulsion is introduced via the first termon the right-hand
side of equation (A.1), involving the self-swimming speed v0. Additionally, the swimmer is transported by
advectionwith the averaged surrounding flowfield tu x,( ). The orientationalmotion given by equation (A.2) is
determined, first, by rotation and alignment with theflowfield. This is reflected by the terms involving the
vorticity u u1

2
TW =  - [( ) ( )]and deformation rate u u1

2
TS =  + [( ) ( )], respectively. In analogy to

Jeffrey’s theory for oscillatory tumblingmotion of elongated particles inflow [83–85], the shape parameter a0 is
given as a function of the aspect ratio, defined by lengthℓand diameter d of the swimmers,

a
d

d

1

1
. A.30

2

2
=

-
+

ℓ
ℓ

( )
( )

( )

Further, the projector I N NP = - s s (where I is the unitmatrix) is introduced to conserve the length of the
unit vector Ns. The second deterministic contribution to the orientationalmotion is the conservative potential
Φ involving all swimmers. In the present studywe consider both, pair interactions and an external contribution,
that is,

rN N N, , . A.4
,

int , extå åF = F + F
m n

m n
m n

m

m( ) ( ) ( )

The pair potential rN N, ,int ,F m n
m n( ) describes an activity-driven polar alignment of two swimmers with

distance r rX X, = -m n m n∣ ∣ ,

r
v

r rN N N N, ,
2

, A.5int ,
0 0

,
g

F = - Q -m n
m n

m n
m n( ) · ( ) ( )

where 0g is the strength of the interaction, and x 1Q =( ) for x 0 and zero otherwise. Note that this is a
simplified ansatz that describes the polar alignment of neighboring swimmers due to near-field hydrodynamics
interactions [72], an effect that has been observed experimentally [3]. Finally, the external potential for swimmer
μ is given by

B
v

N h N , A.6ext 0
0F = -m m

ℓ
( ) · ( )

where the unit vectorh denotes thefield’s direction.Here, we already introduced the potential in such away that
thefield’smagnitude relative to the active time scaleℓ/v0 defines the dimensionless external field strengthB0.
The dimension of the full prefactor B v0 0 ℓ appearing in equation (A.6) then is an inverse time due to the scaling
of the Langevin equations (A.1) and (A.2).

Coming back to equations (A.1) and (A.2), far-field hydrodynamic interactions are taken into account by the
coupling terms involving the average surrounding flowfieldu. At lowReynolds numbers, thisfield is
determined by the Stokes equation, augmented by an active contribution to the stress tensor, which, in turn
depends on the order parameter. This coupling eventually leads to equation (6). Due to the lengthy derivation of
the active stress we refer to our previous publication [19] for details.

The next step is to obtain the Fokker–Planck equation for the one-particle probability density function
tx n, ,( ), which gives the probability tofind a swimmer at position xwith orientationn at time t. To this end,

we assume a constant swimmer density tx,r r=( ) and employ amean-field approximation to treat the two-
particle correlations stemming from conservative interactions.We then project on to orientationalmoments n ,
nn, ... of tx n, ,( ), which are directly connected to the polar order parameter P and the nematic order
parameter Q via

P n Q nn I, 3. A.7= = - ( )

Following our previous studies [18, 19]we apply a closure relation for the nematic order parameter,

qQ PP P P I 3 , A.8Kl S= - +( ( · ) ) ( )

where the coefficients q andλK can be calculated analytically [19]. This is an extension of theDoi closure for
passive particles, which incorporates the fact that active particles always generate flowgradients affecting the
local nematic order. Formoments higher than the secondwe apply the so-calledHand-closure [86]. The details
of the procedure are discussed in [19].

Finally, we arrive at a closed dynamic equation for the polar order parameterP, given by equation (8) that
includes a coupling to the Stokes equation (6). The two coefficients cI and cF, not already specified in themain
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text, are given by

c v r c
f

v

8

9
,

10
, A.9I 0 0

3
F

0
2

0

trg
r
m

= =
ℓ

( )

where f0 denotes the strength of the force dipole exerted by every swimmer on the surrounding fluid, andμ is the
effective viscosity of the suspension [19].

Appendix B.Numericalmethods

Our numerical results are obtained by solving the dynamical equations (8) or (17) using the Runge–Kutta–
Fehlbergmethod (RKF45) [87].We use afinite-difference discretization of the spatial derivatives on a periodic
grid consisting of 256×256 points. For the purpose of visualization, we have increased the resolution infigure 1
by cubic interpolation. The incompressibility condition is enforced by a pressure-correctionmethod [88]. In the
case of the fullmodel, the Stokes equation (6) is solved applying a stream-function approach [88]. If not
otherwise stated, we apply the homogeneous stationary solution introduced in section 4.1 as initial conditions
and add small randomvariations.

AppendixC.Details of the linear stability analysis

In the following, we present the calculation of the complex growth rateσ (see equations (15) and (16))
determining the stability of the homogeneous stationary solution. To this end, wewillfirst eliminate the
dependence of the linearized systemon the perturbations ud ˆ , pd ˆ and qd ˆ, thus reducing the set of variables to just
the perturbation of the polar order parameter, Pd ˆ .

As a first stepwe insert the perturbed solution (see equation (12) and (13) in themain text) into the Stokes
equation (6) and linearize, yielding

c c k P pk u P k P k P ki6
1

28
i . C.12

F I 0
2 4d d d d d- = - + +⎜ ⎟⎛

⎝
⎞
⎠∣ ∣ ˆ ˆ ∣ ∣ ˆ ∣ ∣ ˆ ˆ ( )

Wemultiply equation (C.1) by thewavevector k and employ the incompressibility conditions which, for the
perturbed system, yield k u 0d =· ˆ and k P 0d =· ˆ . From this, wefind that the pressure perturbation amplitude
must satisfy p 0d =ˆ . Equation (C.1) then yields the perturbation ud ˆ as a function of the perturbation of the
polar order parameter,

c
c k P

u
k

k Pi
6

1
1

28
. C.2F

I 0

2
2d d= - + -⎛

⎝⎜
⎞
⎠⎟ˆ

∣ ∣
∣ ∣ ˆ ( )

Wenow consider the equation ofmotion for the polar order parameterP, equation (8). Performing the
linearization yields

P k P P P P P P P

c B P P a P B k u k q k u P

P k P P P P P P P
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2

2
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4
4
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I 0 0 0 r 0

0 0
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Wecan eliminate the dependence of equation (C.3) on the velocity perturbation ud ˆ by inserting equation (C.2).
The reduced system can then bewritten as

qP k M k Pi , C.4sd d d= - +ˆ ˆ ( ) · ˆ ( )

where the components of the JacobianmatrixM(k) are given by

M P k P B c P

P c c a B
k

P a B c P k

c c
k

P c k P

k k k

k
k

k
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3 i
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4
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2
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2

I F

2
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2
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a b l
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M k 0, C.6=^ ( ) ( )

M k 0, C.7=^( ) ( )
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Equation (C.4) still involves the perturbation qd ˆ of the Lagrangemultiplier. Utilizing again the incompressibility
condition for the polar order parameter fieldP, yielding k P 0d =· ˆ , and equation (C.4), we find that the
perturbation qd ˆ must satisfy

q
k

k
M Pi . C.9

2
d d= -ˆ

∣ ∣
· · ˆ ( )

Inserting equation (C.9) into (C.4)we can identify the projector k I kk k 2P = -( ) ∣ ∣ .With this, we obtain
equation (14) in themain text, giving a linearized system involving only perturbations ofP. The complex growth
rate can nowbe readily calculated as solution of the eigenvalue problem (equation (14)) via

k
M

k
M

k k
M Mk

k k k
. C.10

2

2

2

2 2
s = + - +^

^^
^

^ ^
 
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( ) ( )

For the explicit formofσ(k), see equations (15) and (16) in themain text.

AppendixD. Coefficients in the reduced and rescaledmodel

Four dimensionless coefficients remain in the reduced and rescaledmodel equation (17). These are related to the
coefficients of the fullmodel given by equations (1), (2), (4) and (9) via

c

5

3

2 1
, D.1

I

4

2 2
0l l=

- G
G G

( )

a 1
4

, D.24

2
2
a= -

G
G

( )

b
c

4 5

3
, D.34

2
2

I

b=
G
G

( )

B
c

B
2

3

4 3

5
. D.40

4

2
2

I
0=

G
G

˜ ( )

Appendix E.Details of theweakly nonlinear analysis

Herewe present technical details for theweakly nonlinear analysis for the case B 00 >˜ . The analysis for the case
B 00 =˜ is analogous, but less complex due to the overall rotational symmetry. In fact, the only non-standard
feature in the field-free case is the coupling between the two leading-order amplitudes, see equation (22).

As introduced in section 5.1.2, the parameter ε denotes the distance to the bifurcation occurring at B B0 0= ˜ ˜

(when starting from largefields, where the system is homogeneous). At B B0 0= ˜ ˜ , the instability sets in, that is,
perturbations with a parallel wavevector start to grow andwe observe a transition to a stripe pattern. Using the
definitions of the long time and space scales,T t2e= and tX x vge= -( ), the derivatives in the dynamic
equation (17) for the effective velocity v are replaced by
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Note that for the case B 00 =˜ the group velocity vanishes, v v 0g g= =^ . This is due to the rotational symmetry
and, thus, the absence of net transport in the system. In the present case, however, the rotational symmetry is

broken and, near the onset of the instability at B0
˜ , only perturbations with a parallel wavevector grow. Therefore,

we expand the effective velocity field v vv ,= ^( ) in orders of ε incorporating only parallelmodes characterized
bymultiples of the critical wavenumber. The full expansion is given in equation (24) in themain text. Similarly,
we expand the Lagrangemultiplier q that enforces the incompressibility constraint using only parallelmodes,

q t T q q Tx X X, , , , e c.c. E.2
n m

n
n

n m
m x c t

0
1 0

,
iåå e= + +

=

¥

=

- ( ) ( ) ( )( )

Finally, the traveling speed c is also expanded in orders of ε,

c c c , E.3
n

n
n0

1
å e= +
=

¥
   ( )

where the zeroth component is proportional to the homogeneous stationary solutionV0, i.e. c V0 0l= (see
equation (20)). Now,we insert all expansions (equations (24), (E.2) and (E.3)) into equation (17) and replace all
derivatives via equation (E.1). Sorting the resulting terms according to powers of ε (n) andmodes (m)we obtain
solvability conditions. In the following, we successively go through the resulting equations:

• In zeroth order, 0 e( ), we recover equation (18)which determines the homogeneous stationary solutionV0.

• Infirst order, 1 e( ), wefind that the contributions v1,0
 , v1,1

 , v1,0
^ , q1,0, q1,1 and c1

must vanish to satisfy

simultaneously the dynamical equation (17) and the incompressibility condition v 0 =· . For v1,1
^ we

obtain

a bV B V v v0
3

2
, E.40

2
0 0 1,1

2
1,1e= - - =^ ^( ˜ ) ( )

wherewe used the definition of ε according to equation (23). Thus, we find that v1,1
^ actually contributes in

3 e( ) to the amplitude equation obtained below.

• In second order, 2 e( ), using the incompressibility constraint, wefind the relation

v vi . E.5X2,1 1,1= ¶ ^
^

 ( )

As a solvability condition for equation (17)we obtain for the zerothmode (m= 0)

v D v , E.62,0 0 1,1
2= ^ ∣ ∣ ( )

where

D
bV B

bV B V

2

1 2
. E.70

0 0

0
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2 0 0

=
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+ +

˜
˜

( )

Matching all terms containing thefirstmode (m= 1) yields

q D v D vi , E.8X2,1 2,1 1,1= = - ¶^ ^
^

^
 ( )

wherewe inserted equation (E.5). The coefficient D̂ is given in equation (27) in themain text.
Equations (E.5)–(E.8) show that the second order amplitudes v2,0

 , v2,1
 and q2,1 are ‘slaved’ to thefirst order

amplitude v1,1
^ . Further, we obtain the second order contribution to the traveling speed

c D v . E.92 0 1,1
2l= ^ ∣ ∣ ( )

All other higher ordermodes (n 1> ), i.e. v2,2
 , v2,0

^ , v2,1
^ , v2,2

^ , q2,0, q2,2, ...either violate the incompressibility
constraint or the solvability conditions obtained from equation (17), or they contribute in orders higher
than 3 e( ).
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• In third order, 3 e( ), wefinally obtain a dynamic equation for the amplitude v1,1
^ bymatching terms

containing the firstmode (m= 1),

v v b v v bV v v B v v

v q

3 2
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^
^
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

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( )

Inserting equations (E.6) and (E.8) into (E.10) and replacing v A1,1 
^ yields

A A g A A D A D A. E.11T X X
2 2 2¶ = - + ¶ + ¶^ ^ 

∣ ∣ ( )

The diffusion coefficients D and D̂ are given in equation (27) in themain text. Further, the coefficient of the
cubic term follows as

g b bV D B D3 2
3

2
. E.120 0 0 0= + + ˜ ( )

Finally, scaling back to the fast time and length scales, t and x , yields the amplitude equation (25) in the
main text.

Appendix F. Shift of the dominatingmode

As discussed in sections 5.2, the nonlinear advection term leads to energy transfer between different scales once
its strength,λ, is large enough. As a consequence, the dominatingmode in the system shifts. This shift is towards
larger scales, i.e. smaller wavenumbers, for a two-dimensional system [53, 61]. To illustrate this point, we plot
the dominatingmode as function of the strength of the advection termλ infigure F1. The data points are
obtained numerically on the basis of the reduced and rescaledmodel equation (17).

AppendixG. Stability of stripe pattern

The emerging pattern near the bifurcation at B0
˜ manifests itself as stripes in the vorticity.With decreasing

externalfield strength, the stripe pattern becomes unstable against the formation of a square vortex lattice. The
corresponding criticalfield strength can be obtained by performing a suitable linear stability analysis. In contrast
to section 4.2, we here add a perturbation to the stripe pattern characterized by the stationary solution

A gRes=  of the amplitude equation (25) (and not to the homogeneous stationary solutionV0). The full
stripe pattern solution on the level of the collectivemicroswimmer velocity v is given as

Figure F1.Dominatingmode kdom in the reduced system (equation (17)) as function of the strengthλ of the advection term for the
field-free case, B 00 =˜ . The remaining parameters are a=0.8 and b=0.1. The data points are obtained by numerically solving
(equation (17)) and determining the firstmaximum maxL of the spatial correlation function v x v x xá + D ñ( ) · ( ) (where ...á ñdenotes
the spatial and temporal average). The dominantmode then follows as k 2dom maxp= L . To reduce the number of transient defects
remaining from the initial conditions, we start from a regular vortex latticewith small randomvariations. For smallλ, the
characteristic length scale of the patterns is given by the criticalmode k 1c = . For largerλ, turbulentmotion sets in and energy is
transfered to larger scales, i.e. smaller wavenumbers.
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whereA* denotes the complex conjugate ofA. The formof the perturbationwe consider is a perpendicularmode
with critical wavenumber k 1c = , i.e.
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Utilizing the incompressibility condition v 0 =· , wefind v 0d =^̂ .We insert equation (G.2) into the
dynamic equation for v (equation (17)) and obtain, after linearization, the growth rate of perpendicularmodes
with critical wavenumber kc=1,

a b V D A P D A A
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The criticalfield strength B0
*˜ defining the transition from the stripe pattern to the vortex lattice is then obtained

by setting 0s =^˜ . Note that s̃̂ depends on the amplitude of the parallelmodes,A. This coupling is the reason
why the field strength at the transition, B0

*˜ , is smaller than B0
^˜ .
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