

PAPER • OPEN ACCESS

Learning the quantum algorithm for state overlap
To cite this article: Lukasz Cincio et al 2018 New J. Phys. 20 113022

View the article online for updates and enhancements.

You may also like
The controlled SWAP test for determining
quantum entanglement
Steph Foulds, Viv Kendon and Tim Spiller

-

The SWITCH test for discriminating
quantum evolutions
P Chamorro-Posada and J C Garcia-
Escartin

-

Quantum algorithm for minimum
dominating set problem with circuit design
Haoying Zhang, , Shaoxuan Wang et al.

-

This content was downloaded from IP address 18.191.234.62 on 03/05/2024 at 06:49

https://doi.org/10.1088/1367-2630/aae94a
https://iopscience.iop.org/article/10.1088/2058-9565/abe458
https://iopscience.iop.org/article/10.1088/2058-9565/abe458
https://iopscience.iop.org/article/10.1088/1751-8121/acecc5
https://iopscience.iop.org/article/10.1088/1751-8121/acecc5
https://iopscience.iop.org/article/10.1088/1674-1056/ad02e5
https://iopscience.iop.org/article/10.1088/1674-1056/ad02e5

New J. Phys. 20 (2018) 113022 https://doi.org/10.1088/1367-2630/aae94a

PAPER

Learning the quantum algorithm for state overlap

LukaszCincio1, Yiğit Subaşı1, AndrewTSornborger2 andPatrick JColes1

1 Theoretical Division, Los AlamosNational Laboratory, Los Alamos,NM87545,United States of America
2 Information Sciences, Los AlamosNational Laboratory, Los Alamos,NM87545,United States of America

E-mail: lcincio@lanl.gov

Keywords: quantum computing,machine-learning, state overlap

Abstract
Short-depth algorithms are crucial for reducing computational error onnear-termquantumcomputers,
forwhichdecoherence and gate infidelity remain important issues.Herewepresent amachine-learning
approach for discovering such algorithms.We apply ourmethod to aubiquitous primitive: computing
the overlap rs()Tr between twoquantumstatesρ andσ. The standard algorithm for this task, knownas
the SwapTest, is used inmany applications such as quantumsupport vectormachines, and,when
specialized toρ=σ, quantifies theRenyi entanglement.Here,wefind algorithms that have shorter
depths than the SwapTest, includingone that has a constant depth (independent of problem size).
Furthermore,we apply our approach to the hardware-specific connectivity and gate sets usedbyRigetti’s
and IBM’s quantumcomputers anddemonstrate that the shorter algorithms thatwederive significantly
reduce the error—compared to the SwapTest—on these computers.

1. Introduction

Quantumsupremacy [1]maybe coming soon [2].While it is an exciting time for quantumcomputing, decoherence
and gatefidelity continue to be important issues [3]. Ultimately these issues limit the depth of algorithms that canbe
implementedonnear-termquantumcomputers (NTQCs) and increase the computational error for short-depth
algorithms. Furthermore,NTQCsdonot currently have enoughqubits and sufficient gatefidelities to fully leverage
the benefit of quantumerror-correcting codes [4, 5]. This highlights the need for generalmethods to reduce the
depthof quantumalgorithms inorder to avoid the accumulationof errors.

Analytical efforts tofind short-depth algorithms face several challenges. First, quantumalgorithms are fairly
non-intuitive to classically trainedminds. Second, actualNTQCsmay not be fully connected. Third, different
NTQCs use different fundamental gate sets. Itmay not be obvious how to optimize algorithms for a given
connectivity and a given gate set. Thismotivates the idea of an automated approach for discovering and
optimizing quantum algorithms [6–19].

An analogous problem in classical computing, known as logic synthesis, has a relatively longer history and
has been extensively studied [20].Machine-learningmethods have been used in this context. For instance [21]
shows how logic optimization algorithms can be discovered automatically through the use of deep learning.

In this work, we take amachine-learning approach to developing quantumalgorithms, see figure 1. Our
approach can be applied either to ideal hardware to derive fundamental algorithms or to a non-fully connected
hardwarewith a non-ideal gate set to derive hardware-specific algorithms.We conceptually divide a quantum
computation into the available resources, consisting of input qubits (data qubits and ancilla qubits) and output
measurements, and the algorithm, consisting of a quantumgate sequence and classical post-processing of the
measurement results (see figure 1). Fixing the resources as hyperparameters, we optimize the algorithm in a task-
orientedmanner, i.e. byminimizing a cost function that quantifies the discrepancy between the algorithm’s
output and the desired output. The task is defined by a training data set that exemplifies the desired
computation.Ourmachine-learning approach is used to discover small algorithm instances that can be later
manually generalized to arbitrary problem size.

We emphasize that ourwork goes beyond quantum compiling, which has received recent attention [11–16].
Quantumcompiling corresponds tofinding a hardware-specific gate sequence that generates the same unitary as

OPEN ACCESS

RECEIVED

9 June 2018

REVISED

10October 2018

ACCEPTED FOR PUBLICATION

18October 2018

PUBLISHED

14November 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018TheAuthor(s). Published by IOPPublishing Ltd on behalf ofDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aae94a
mailto:lcincio@lanl.gov
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aae94a&domain=pdf&date_stamp=2018-11-14
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aae94a&domain=pdf&date_stamp=2018-11-14
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

a high-level gate sequence defined for an idealized hardware. Various techniques have been employed in these
works such as temporal planning (e.g. [11]).Machine-learning techniques have also been used to decompose
small scale unitaries into one and two-body gates [17, 18]. Although ourmethod can be used in this way to
optimally compile a knownunitary or gate sequence, ourmain goal is to discover novel algorithms via task-
oriented programming.

Other automated algorithm-discovery approaches have been employed in the literature. Gepp and Stocks
[9] reviewmuch of the early work to evolve quantumalgorithms using genetic programming such as [10] (for
more recent work see for example [19]). In these approaches the gate set is typically discrete. An alternative
approach is to define an ansatz or template for the quantum circuit composed of gates that depend on
continuous parameters. The circuit is then trained to perform a given task by tuning these parameters [6, 7]. Our
approach is distinct fromprevious works in that we do not start with an ansatz or template for the quantum
circuit; nor dowe restrict to a discrete gate set as is usually done in algorithms based on genetic programming. In
this sense our approach combines desirable aspects of the two types of approaches in the literature.

We apply our approach to a ubiquitous task: computing the overlap between two quantum states. This
computation yields y fá ñ∣ ∣ ∣2 for two pure states yñ∣ and fñ∣ , andmore generally gives rs()Tr for two (possibly
mixed) states ρ andσ. Furthermore, when specialized to the case ρ=σ, it computes the purity r()Tr 2 of a given
state ρ.

There is awell-known algorithm for this task called the Swap Test [22, 23]. In quantumoptics the SwapTest
has a simple physical implementation [24–26]. However, for gate-based quantum computers (e.g. IBM’s,
Google’s, andRigetti’s superconducting quantum computers and IonQ’s trapped-ion quantum computer), the
optimal implementation of the SwapTest is not obvious, and for single-qubit states involves 14 and 34 gates for
IBM’sfive-qubit andRigetti’s 19-qubit quantum computer respectively, seefigure 2. Larger gate count for
Rigetti’s computer ismainly due to its lower connectivity. For example, the SwapTest was experimentally
implemented on afive-qubit computer based on trapped ions [27] to quantify entanglement, with an algorithm
employing 7 two-qubit gates and 11 one-qubit gates. Figures 2(B) and (C) respectively showdecompositions of
the SwapTest for IBM’s andRigetti’s quantum computers [28, 29]. This highlights the non-trivial nature of
implementing the SwapTest algorithm.

Here, ourmachine-learning approachfinds algorithmswith a shorter depth than the SwapTest for
computing the overlap.We do this by initially specializing the training data to one- and two-qubit states and
thenmanually generalizing the resulting algorithms to input states of arbitrary size.Wefirst consider the same
‘quantum resources’ as the SwapTest (access to a qubit ancilla andmeasurement on the ancilla), and our
approach reduces the gate count to 4 controlled-NOTs (CNOTs) and 4 one-qubit gates.We call this our Ancilla-
based algorithm (ABA). Thenwe allow for the additional resource ofmeasuring all of the qubits, which gives an
even shorter depth algorithm that essentially corresponds to a Bell-basismeasurement with classical post-
processing.We call this our Bell-basis algorithm (BBA). This algorithmhas a constant depth of two gates, while
the classical post-processing scales linearly in the number of qubits of the input states. In that regard, our
machine-learning approach independently discovered the algorithmofGarcia-Escartin andChamorro-Posada
for computing state overlap [24].We alsofind short-depth algorithms for the specific hardware connectivity and

Figure 1.Machine-learning approach to discovering and optimizing quantum algorithms.We optimize an algorithm for a given set of
resources, which includes input resources (ancilla and data qubits) andmeasurement resources (i.e. which qubits can bemeasured).
The algorithm is then determined by the quantumgate sequence and the classical post-processing of themeasurement results. To find
the algorithm that computes the function x→f (x), weminimize a cost function that quantifies the discrepancy between the desired
output f (x(i)) and the actual output y(i) for a set of training data inputs {x(i) }. If the training data are sufficiently general, the algorithm
thatminimizes the cost should be a general algorithm that computes f (x) for any input x.

2

New J. Phys. 20 (2018) 113022 LCincio et al

gate sets used by IBM’s andRigetti’s quantum computers, which is crucial for reducing the computational error.
Indeed, we found that our short-depth algorithms reduced the rootmean square (rms) error (compared to the
SwapTest) by 66%on IBM’sfive-qubit computer and by 70%onRigetti’s 19-qubit computer.

Due to the fundamental nature of computing state overlap, the SwapTest appears inmany applications. In
quantum supervised learning [30, 31], which subsumes quantum support vectormachines [32], the SwapTest is
used to assign each data vector to a cluster. The SwapTest allows one to quantify entanglement formany-body
quantum states [27, 33] using the Renyi order-2 entanglement, given by r= - ()()H logTr2 2 . The SwapTest is
useful for benchmarking on a quantum computer, since it can quantify the purity r()Tr 2 and hence the amount
of decoherence that has occurred. For all of the above applications, one of our shorter-depth algorithms can be
directly substituted in place of the SwapTest.

Note that if ρ andσ represent states on n qubits, the difficulty for computing rs()Tr scales exponentially
with n for a classical computer. In contrast, the SwapTest has a circuit depth that grows linearly in n, giving an
exponential speedup.OurABA also has this property of scaling linearly with n, and it reduces the number of
gates in the circuit by a factor of∼2.3 (relative to the SwapTest circuit decomposed in terms of CNOTs, as shown
infigure 2(B)). On the other hand, our BBAhas the nice feature that its circuit depth is constant, independent of
n (although the complexity of its classical post-processing grows linearly in n). Due to its constant circuit depth,
the BBA seems to be the best algorithm for quantifying state overlap onNTQCs.

Inwhat follows, wefirst present ourmachine-learning approach for discovering quantum algorithms. This
approach can be used tofind other algorithms besides the one that computes the overlap and hence should be of
independent interest.We also give the full details of the approach and discuss its scalingwith various resources.
Next, we present ourmain results: short-depth circuits for computing state overlap on idealized hardware.
Then, we present hardware-specific algorithms for computing overlap. Finally we discuss our implementation
of these algorithms onRigetti’s and IBM’s quantum computers, leading to a reduction in the computational
error relative to the SwapTest.

2.Machine-learning approach

Ourmachine-learning approach is summarized infigure 1. The variables are divided up into the
hyperparameters (i.e. the ‘resources’) and the optimization parameters (i.e. the ‘algorithm’).

2.1. Resources
The hyperparameters are the quantum resources of the circuit. At the input, the resources are the number of
ancilla qubits and data qubits that store the input data for the computation. At the output, the resources are the
locations of themeasurements (seefigure 1). As an example, in the Swap Test for single-qubit states, we are
allowed access to one ancilla qubit and two data qubits at the input, andwe canmeasure only the ancilla qubit at
the output.

The input datamay be classical or quantum, depending on the computation of interest. In the case of state
overlap, the input data are quantum states and hence no encoding is necessary.However, for completeness, we
note that our approach also applies to classical inputs, inwhich case the encoding (i.e. storing the classical data in

Figure 2. SwapTest circuits. (A)The canonical SwapTest circuit.H indicates theHadamard gate. (B)The SwapTest circuit adapted
for IBM’sfive-qubit quantum computer, constructed by decomposing controlled-swap into the Toffoli gate, via [34, 35], and then
manually eliminating gates that had no effect on the output.T is theπ/8 phase gate. (C)The structure of a SwapTest circuit, showing
the locations of the one-qubit gates and controlled-Z gates, constructed automatically by Rigetti’s compiler for their 19-qubit
quantum computer. Appendix A gives the full specification of that circuit.

3

New J. Phys. 20 (2018) 113022 LCincio et al

the quantum state of the data qubits) can be treated as a hyperparameter that one fixes while optimizing the
algorithm.

2.2. Algorithm
Our approach searches for an optimal algorithm,wherewe consider the algorithm to be a quantumgate
sequencewith associated classical post-processing.We parameterize (and hence optimize over) both the gate
sequence and the post-processing.

Let usfirst consider the gate sequence.We define a gate set q= { ()}Aj . Here, each gateAj is either a one-
qubit or two-qubit gate andmay also have an internal continuous parameter θ. Hence, is a discrete set, but
each element ofmayhave a continuous parameter associatedwith it. The precise choice of depends on
which hardware one is considering. For example, the connectivity differs between IBMandRigetti hardware,
and the former employs CNOT gates while the latter employs controlled-Z gates. For IBM’sfive-qubit
computer ‘ibmqx4’we canwrite out the gate set as



q q q
q q

= {
() () ()

() ()} ()
U U U

U U

CNOT , CNOT , CNOT , CNOT ,

CNOT , CNOT , , , ,

, , 1

ibmqx4
10 20 21 32

24 34 0 1 2

3 4

whereUj(θ) is an arbitrary gate on qubit j andCNOTjk is a CNOT from control qubit j to target qubit k. Angles θ
in equation (1)may be encodingmultiple parameters. In this article, we treat all one-qubit gates equally in the
sense that all one-qubit gates are equally complex to implement, although our approach could easily be
generalized to account for different complexities for different one-qubit gates.

We consider a generic sequence of d gates

q q q q=


 () () () () ()G A A A , 2k k d k k2 1d 2 1

where = ¼


()k k k, , d1 is the vector of indices describingwhich gates are employed in the gate sequence and
q q q= ¼


(), , d1 is the vector of continuous parameters associatedwith these gates.
Themeasurement results give rise to an outcome probability vector = ¼ ¼


()p p p, , ,l1 . The desired output

might be one of these probabilities pl, or itmight be some simple function of these probabilities. Hence, we allow
for some simple classical post-processing of


p in order to reveal the desired output.While there is enormous

freedom in applying a function to

p , we consider a simple linear combination of probabilities:

å= =
  

() · ()g p c p c p , 3
l

l l

where

c is a vector of coefficients whose elements are chosen according to clä {−1, 0, 1}. This post-processing is

sufficient for the application in this paper (state overlap), although other applicationsmay require amore general
formof post-processing. Note that in our approach it is enough to considermeasurements in the computational
basis, as any change of themeasurement basis can be incorporated into the gate sequence in equation (2). In
particular, this implies that equation (3) is general enough to cover the expectation values of all Pauli product
operators.

In summary, the free parameters that we optimize over (whilefixing the hyperparameters) are the gate
sequence vector


k , the continuous parameter vector q


, and the post-processing vector


c . For a given set of

resources, these three vectors define the quantum algorithm,whichwe denote Qm, where q=
   ()m k c, , is the

concatenated vector.

2.3.Optimization
Optimizing these parameters involves defining andminimizing a cost function. The cost quantifies the
discrepancy between the desired output and the actual output for a given training data set.

Supposewewant tofind the algorithm that computes the function  ()x f x .We generate data of the form

= ={(())} ()() ()T x f x, . 4i i
i

N
1

2

Half of this data is used for training the algorithm, i.e. optimizing the cost function. The other half is used for
testing, i.e. evaluating the algorithm’s performance. The training datamust be sufficiently general to cover the
space of possible inputs. An estimate of the amount of training data needed for state overlap is »N 2 n2 D, where
nD is the number of data qubits. This can be seen by noting that our algorithm (which includes both the gate
sequence and the post-processing) acts as a linearmap from the data qubits’ density operator space, which has
dimension 2 n2 D, to the outputwhich is just a number and hence has dimension one. So our algorithm is basically
a ´1 2 n2 D matrix, and an estimate of the number of constraints (and hence the number of training data points)
needed tofix the algorithm’s parameters is 2 n2 D.

For example, when training the algorithm that computes overlap, x(i)=(ρ(i),σ(i)) consists of two quantum
states ρ(i) andσ(i), and r s=() ()() () ()f x Tri i i quantifies their overlap.One can show that any algorithm that

4

New J. Phys. 20 (2018) 113022 LCincio et al

computes pure-state overlap also computesmixed-state overlap.Hence, we generate our training data by
randomly choosing pure states according to theHaarmeasure.

Next we define a cost function. For algorithm Qm, the cost is

å= -
=

 (()) ()() ()C f x y . 5m
i

N
i

m
i

1

2

The cost quantifies the difference between the ideal output f (x(i)) and the actual output ()y
m

i for each training data
point. The actual output can bewritten as

= =
q q

 
     · ()()

()
()

()
()y y c p , 6

m
i

k c
i

k
i

, , ,

where

c is the post-processing vector and

q


 

()
()p
k
i
,

is the outcome probability vector for input x(i). For example, in

the SwapTest, the outcome probability vector corresponds to the ancilla qubit’smeasurement in theZ basis.
Choosing = -

 ()c 1, 1 ensures that ()y
m

i is the expectation value of the PauliZ operator.
For afixed circuit gate count d, we search over the algorithm space tominimize the cost, as discussed below.

We consider various d, incrementing from small to large values.When an exact algorithm exists, we typically are
able tominimize the cost. That is, we canfind a Qm with »C 0m , for d dmin, where dmin is theminimum
number of gates needed tominimize the cost (seefigure 3 for example plots offinal cost versus d). Note that
some elements of the gate set in equation (1) commutewith each other. As a consequence, there are typically
many Qm that give zero cost for d dmin. This freedom is used to simplify the algorithm at the end of the cost
optimization. So, in themain results section, we present our simplest representation of such algorithms.

2.4.Details of the optimization techniques
The cost in equation (5) is a function of several parameters that can be divided into two groups: discrete and
continuous. Discrete parameters are thosewhich describe the circuit topology and post-processing of the

algorithm. These are the gate sequence vector

k and the post-processing vector


c . The angles q


are treated as

continuous parameters. They define all gates that depend on a parameter. For IBMandRigetti architectures

considered here, angles q

specify all one-qubit gates present in the algorithm.Only the total number of gates d is

fixed during optimization, whichmeans that while the length of

k does not change, the number of elements of q



may vary as the optimization proceeds.
The optimization is performed in iterations until the cost reaches a (possibly local)minimum. Figure 4

shows a schematic description of a single iteration of the optimization algorithm. Each iteration begins with an

attempt tomodify

k and


c .Whilemodifying


k , we consider randomupdates thatmay involve an arbitrary

number of gates. However, updates affecting a smaller number of gates aremore probable. In this process, we
may change the position or support of a given gate or change its type, e.g. from a one-qubit gate to aCNOT. The
update is constrained to result in an algorithm that cannot be easily shortened. For example, the gate sequence
that involves two one-qubit gates next to each other is not allowed, since those gates can be combined to a single

Figure 3. Final cost that we obtained afterminimizing our cost function versus the circuit gate count d. (A)The resources allowed
(shown in the inset) are the same as those allowed in the SwapTest, i.e. one ancilla qubit, two data qubits, and onemeasurement on the
ancilla. This results in aminimumgate count of =d 8min . (B)The number of qubits in ρ andσ is increased, resulting in =d 14min for
n=2 qubits. This procedure leads to the discovery of a general algorithmpresented in figure 5. (C)Allowing for additional resources
(shown in the inset) ofmeasurements on all of the qubits results in aminimumgate count of =d 2min . (D)Againwe increase the
number of qubits in ρ andσ, giving =d 4min for n=2 qubits, whenmeasurements on all qubits are allowed. As a result, a general
algorithm is obtained, as shown infigure 6.

5

New J. Phys. 20 (2018) 113022 LCincio et al

one-qubit gate. This is a desired feature, as we optimizewith afixed total number of gates. Similarly, we
randomlymodify


c givingmore preference to changes affecting fewermeasurements.

Every change in

k or


c is followed by reoptimization of continuous parameters q


. This is an important step,

as changing the gate sequence or post-processing function alone, without reoptimizing the gates’ internal

parameters q

, willmost likely cause the cost to increase significantly, effectively suppressing any update of


k or

c . The continuous part of the optimization is done in a sweeping fashion inwhich all one-qubit gates are updated
sequentially. In this approach, at a given time, a single one-qubit gate is updatedwhile all remaining gates are
fixed. After the best one-qubit gate (the one thatminimizes the cost) is identified, the optimization algorithm
moves to the next one-qubit gate.We allow for randomly changing the order of updating one-qubit gates as a
means to avoid localminima.We use a steepest descentmethod to optimize single one-qubit gates. Note that an
arbitrary one-qubit gate can be described (up to a global phase, that does not affect the algorithm) by three real
parameters. That is, the steepest descentmethodmentioned above operates in three-dimensional space. The
continuous part of the optimization is repeated, until convergence of the cost function is achieved.

Once the continuous optimization has converged, we compare the final costC in a given iterationwith the

current best oneCbest. If the costC is lower than the current best, the new discrete parameters

k and


c are

accepted. If it is larger, the change is acceptedwith probability exponentially decreasing in the difference
C−Cbest following the simulated annealingmethod.

Every few iterationswe checkwhether the current gate sequence Gk can be compressed. This goes well

beyond the simple checks following the update of vector

k described above. Here, we are trying tofind a

subsequence of Gk that can be nontrivially rewritten using the same or a smaller number of gates. If such a
subsequence is found, wemodify Gk accordingly, as thismay lead to shortening the gate sequencewithout
increasing the cost. Since the total number of gates isfixed, such compression results in the ability to add gates to
the sequence. If that is the case, we insert one-qubit identity gates and reoptimize their continuous parameters as
described above. To check if a given subsequence can be rewrittenwe recursively use the same approach that we
use for the full algorithm, which is essentially described infigure 4 except in this case we do not consider the
post-processing vector


c .

We remark that the cost functionmay be difficult to optimize primarily due tomany low lying localminima.
Thus, it is important to develop techniques to increase the chances of avoiding them.We found it particularly

useful to compress the gate sequence periodically, as randomupdates to vectors

k and


c tend to produce local

minima that usually include redundant subsequences. As described above, we have developed automated tools
to remove such subsequences, which usually allows us to escape localminima.

Let us nowdiscuss the scaling of the approach described above. The optimization requires the cost to be
evaluatedmultiple times during every iteration. As part of computing the cost, one has to evaluate ()y

m
i in

equation (5) for each training data point, which necessarily scales exponentially with the number of qubits on a
classical computer.However, it can be outsourced to a quantum computer. Such a hybrid algorithmwill
efficiently compute the contribution to the cost from a single element of a training data set, although the
resulting cost will reflect the quantumhardware’s noise. In this work, we evaluate the cost on a classical
computer, as we aremainly interested in the discovery of theoretical algorithmswithout device-specific noise
considerations.

Another aspect of the algorithm scaling is training data. In general, its size will scale exponentially with the
number of data qubits. However, wewould like to stress that this fact does not jeopardize our approach sincewe
numerically obtain solutions (algorithm instances) only for a small number of data qubits. Those optimization

Figure 4. Schematic view of one iteration of the cost optimization procedure. (A)Iteration begins with a randomupdate to the gate

sequence vector

k that describes the algorithm’s structure and a randomupdate to the post-processing vector


c . (B)Continuous

parameters q

of every one-qubit gate are reoptimized using the steepest descentmethod. (C)The optimization in the previous step

gives a cost that is comparedwith the current best one. Based on the outcome of that comparison, new vectors

k and


c are either

accepted or rejected. See text for details.

6

New J. Phys. 20 (2018) 113022 LCincio et al

problems require training data that is stillmanageable. Algorithm instances are then used tomanually recognize
the pattern and generalize to arbitrary system size.

Finally, the search space defined by

k is exponentially large in the number of gates. Thismakes it impossible

to systematically check all possibilities in the search for an optimal algorithm.On the other hand, the heuristic
approach described above seems to be capable offinding the solution efficiently.

2.5. Generalization
For afixed problem size, weminimize the cost. If the cost goes to zero (whichwe define as a cost less than 10−6),
we saywe have an algorithm instance. In particular, this corresponds tofixing the size of the data and hence fixing
nD, the number of data qubits. To study the generalization of the algorithm, we grow the size of the problemby
increasing nD. In some cases, onemay also need to increase the number of ancilla qubits, nA, and/or the number
ofmeasurements in order tominimize the cost.

This gives us a set of algorithm instances for various problem sizes. An important challenge is to abstract a
general algorithm from these instances. This challenge is particularly difficult because one can typically onlyfind

algorithm instances for small problem sizes. This is due to the fact that the search space for vectors

k grows

rapidly with problem size, namely as nT
d2 , where nT=nD+nA is the total number of qubits and d is the circuit

gate count.
In this work, wewere able tomanually recognize the pattern bywhich the algorithm generalizes to arbitrary

problem size by inspecting the various algorithm instances. In future work, wewill explore automatedmethods
for recognizing the general algorithm.

3.Main results

3.1.Overview
Ourmain results are short-depth algorithms for quantifying overlap on idealized quantum computing
hardware. For the latter, we consider full connectivity, andwe allow for arbitrary one-qubit gates aswell as
CNOT gates between all of the qubits.

We consider two sets of resources. Thefirst set of resources are identical to those allowed for the SwapTest,
i.e. access to one ancilla qubit and two data qubits, as well as onemeasurement on the ancilla qubit. The cost
versus number of gates for these resources is shown infigure 3(A), andwe obtained essentially zero cost for
d=8. To understand how the algorithm generalizes, we increase the number of qubits in ρ andσ to n=2,
giving aminimumgate count of d=14, as shown infigure 3(B). As discussed below this generalizes to an
algorithm (shown in figure 5) that we refer to as our ABA.

The second set of resources we consider allows formeasurements on all of the qubits. For these additional
resources,figure 3(C) shows that zero cost is obtained for d=2. To recognize how this algorithm generalizes,
we increase the number of qubits to n=2, giving aminimumgate count of d=4, as shown infigure 3(D). The
surprising result is that the ancilla qubit is not used at all in this algorithm, even thoughwe train the algorithm in

Figure 5.OurABA, obtained byminimizing the cost for the resources shown infigures 3(A) and (B). (A)When ρ andσ are one-qubit
states, we obtain a circuit with 4CNOTgates and 4 one-qubit gates for a total of 8 gates. Here, = †U T H . (B) Six of these gates are
combined to create a ‘building block’ (see inset) that is used to generalize the algorithm for input states ρ andσ of arbitrary size. The
post-processing vector is = -

 ()c 1, 1 , independent of problem size.

7

New J. Phys. 20 (2018) 113022 LCincio et al

the presence of an ancilla. This allows us to display the resulting general algorithm, our BBA, infigure 6without
the ancilla qubit.

In both cases discussed above, wemanaged to discover the general (valid for arbitrary problem size) formof
the algorithm from its two smallest instances.We expect that in other applications, the general formof the
algorithmmay be harder tofind andmore sophisticated tools will have to be developed.

3.2. Ancilla-based algorithm
Figure 5(A) shows the ABA for one-qubit states ρ and σ. The unitaryU in this circuit is = †U T H . This
circuit employs 4 CNOT gates and 4 one-qubit gates for a total of 8 gates. It uses a simple post-processing
vector = -

 ()c 1, 1 that amounts tomeasuring the PauliZ operator on the ancilla qubit, which is the same
observablemeasured in the Swap Test. Not only does this circuit have a lower gate count than typical
implementations of the Swap Test (see e.g. the circuit in figure 1(B)), but actually it implements a
completely different unitary.

Let SABA denote the Schmidt rank (across the cut between ancilla and the data qubits) of the unitaryGABA

associatedwith the ABA gate sequence. It can be verified that SABA=3. Thismeans thatGABA is not locally
equivalent to a controlled-SWAP, whose analogously defined Schmidt rank is 2. Thus, theABA is fundamentally
different from the SwapTest: it cannot be obtained from the SwapTest by local operations.

The general formof theABA is given infigure 5(B). There is a repeating unit, shown in the inset of the figure,
that is applied on each pair of qubits composing ρ andσ as well as on the ancilla qubit. This unit has 4CNOT
gates, so the overall algorithm employs n4 CNOTgates and +n6 2 total gates. Hence, the gate count grows
linearly with the number of data qubits.

3.3. Bell-basis algorithm
Figure 6(A) shows the BBA for one-qubit states ρ andσ. This circuit employs one CNOT gate followed by one
Hadamard gate, with both qubits beingmeasured. It is straightforward to show that this corresponds to a Bell
basismeasurement. The post-processing is a bitmore complicated, with = -

 ()c 1, 1, 1, 1 , which
corresponds to summing the probabilities for the 00, 01, and 10 outcomes and subtracting probability of the
11 outcome. The above post-processing is equivalent tomeasuring the expectation value of a controlled-Z
operator.

Figure 6.Our Bell-basis algorithm, obtained byminimizing the cost for the resources shown infigures 3(C) and (D). (A)When ρ andσ
are one-qubit states, we obtain a circuit with oneCNOT followed by aHadamard andmeasurements on both qubits with a post-
processing vector = -

 ()c 1, 1, 1, 1 . (B)TheCNOTandHadamard gates form a ‘building block’ that is used to generalize the
algorithm for input states ρ andσ of arbitrary size. Since these gates can be parallelized, the quantum circuit depth is independent of
problem size. On the other hand, the complexity of classical post-processing grows linearly with n, and the post-processing vector can
bewritten as = - Ä ()c 1, 1, 1, 1 n if one orders the qubits into pairs from ρ andσ.

8

New J. Phys. 20 (2018) 113022 LCincio et al

The generalizationof this algorithm is given infigure 6(B). The repeatingunit is simply aCNOTandHadamard,
appliedon eachpair of qubits composingρ andσ. Furthermore, everyqubit ismeasured at the output. The total
number of gates is simply n2 , andhence grows linearlywith thenumberof qubits.However,more importantly, the
CNOTandHadamardon eachqubit pair canbeperformed inparallel. This crucial factmeans that this algorithmhas
a constant depth, independent of problem size.Namely, thedepth is twoquantumgates.

On the other hand, the classical post-processing is somewhat complicated, and its complexity scales linearly
with the problem size. Namely, the post-processing vector can bewritten as = - Ä ()c 1, 1, 1, 1 n, provided
that one arranges the qubits in the order P1Q1P2Q2 PnQn, where P1P2 ...Pn andQ1Q2 ...Qn are the subsystems
composing ρ andσ respectively. The linear scaling of post-processing follows from the fact that one does not
explicitly compute

 
·c p in equation (3). Rather one bins individualmeasurement outcomes into one of two bins

(either the 1 or−1 bin). Here, the bin is determined by first assigning each of the n qubit pairs a value of 1 or−1,
based on the associated eigenvalue of the controlled-Z operator, and thenmultiplying these n values. The
overlap rs()Tr is then given by theweighted average over all outcomes, where theweights correspond to the bin
label (either 1 or−1).

Nevertheless, forNTQCs, due to decoherence and gate infidelity, it is better for the classical post-processing
to grow linearly in n than for the quantum circuit depth to grow linearly in n. Hence, the BBA seems to be the
superior algorithm in that case.

3.4.Discussion
In 2013, Garcia-Escartin andChamorro-Posada discovered the BBA for computing state overlap [24].Wewere
unaware of this important result until after ourmachine-learning approach found our BBA.More generally, it
appears that the quantum computing community seems to be unaware of this article, perhaps because the article
was presented in the language of quantumoptics rather than that of quantum computing. Indeed, the ancilla-
based version of the SwapTest, shown infigure 1, continues to be the algorithm employed in the quantum
computing literature (e.g. see [27, 33]).

Although our two algorithms look very different, one can actually show a simple equivalence between
our ABA and our BBA. One can see this by converting the classical post-processing in the BBA into a
quantum gate. In particular, this gate would be a Toffoli gate, controlled by the two data qubits with the
target being an ancilla qubit prepared in the ñ∣0 state. Appendix B shows proof of this statement. After
inserting the Toffoli gate (see figure 7(B)), one would do ameasurement of the Pauli Z observable on the
ancilla to decode the state overlap. By replacing the Toffoli gate with its decomposition from [35] and
simplifying the resulting circuit, one can then obtain our ABA (see figure 7(C)). In this sense, our ABA is
essentially our BBA but with the classical post-processing transformed into Toffoli gates and a
measurement on the ancilla. This equivalence is shown in figure 7 for one-qubit states. The generalization
tomulti-qubit states is straightforward.

Figure 7.Equivalence between our ABA andBBA. The two-qubitmeasurement and classical post-processing in the BBA can be
converted to a Toffoli gate with an ancilla as the target followed by ameasurement on the ancilla. This takes us from circuit (A) to
circuit (B). Inserting into circuit (B) the optimal decomposition of the Toffoli gate from [35] gives circuit (C). Finally one does three
simplifications of this circuit to obtain theABA, indicated by the dashed boxes in (C). Namely, thefirst boxedCNOT in (C)has
trivial action and hence can be removed. The second boxedCNOT in (C) can be flipped such that the ancilla is the control qubit,
which introduces someHadamards. One of theseHadamards cancels with the firstHadamard in (C), and two others combinewith
T and †T tomake the †U andU shown infigure 5(A). Finally thefive gates enclosed in the last dashed box in (C) have no effect on the
measurement and hence can be removed.

9

New J. Phys. 20 (2018) 113022 LCincio et al

4.Hardware-specific algorithms

OurBBA can be directly implemented on IBM’s andRigetti’s quantum computers without any concern about
connectivity issues (except for theminor issue that Rigetti uses controlled-Z instead of CNOT—their compiler
easilymakes the translation).

However, our ABAneeds to bemodified to account for IBM’s andRigetti’s connectivity.While it is possible
tomanuallymodify theABA tofit the connectivity, to illustrate ourmachine-learning approach, we numerically
optimized the algorithmwith the same resources as that shown infigure 3(A). The only difference is that we
specified the gate set tomatch the gate set (and hence the connectivity) of IBM’s andRigetti’s computers.

The resulting algorithms thatweobtainedwithourmachine-learning approach are shown infigure 8. TheABA
adapted to IBM’sfive-qubit computer only requires one additional gate, aHadamard gate.TheABAadapted to
Rigetti’s 19-qubit computer requires an additional two-qubit gate and several additional one-qubit gates.

5. Testing our algorithms

We implemented our algorithms on IBM’s five-qubit andRigetti’s 19-qubit computers. The resulting data are
shown infigure 9. A caveat is that the different qubit counts for the two hardwaresmake it difficult to directly
compare the results between these hardwares.

Figure 8.Ancilla-based algorithm adapted (via ourmachine-learning approach) to commercial hardware. (A)ABA adapted to IBM’s
five-qubit computer,U=T†H. (B)ABA adapted to Rigetti’s 19-qubit computer. One-qubit unitaries have the following form:
U1=U8=H, = = = =† †U U U U XH2 3 6 7 ,U4=RX(−π/4)T, = †U T HT5 ,U9=RX(π/4),U10=RX(−3π/4), where

q = - q()R eX
Xi

2 .

Figure 9.Experimentally observed overlaps on commercial hardware for the states Yñ = ñ + ñ∣ (∣ ∣)0 1 2 and Fñ = ñ +∣ (∣0
ña∣)e 1 2i . (A)Results from IBM’sfive-qubit computer called ‘ibmqx4’, with 49,152 quantum computer runs per data point. The

black curve is the analytical overlap áF Yñ∣ ∣ ∣2. The red, blue, and green curves are respectively the results for the BBA fromfigure 6(A),
the ABA fromfigure 8(A), and the SwapTest fromfigure 2(B). (B)Results fromRigetti’s 19-qubit computer, with 200,000 quantum
computer runs per data point. The curves are analogous to those frompanel (A). Namely, the red, blue, and green curves are
respectively for the BBA fromfigure 6(A), the ABA fromfigure 8(B), and the SwapTest fromfigure 2(A)whichRigetti compiled to
figure 2(C). The experimentally estimated overlap takes negative values for someα because the algorithm estimates the expectation
value of controlled-Z operator, which has a negative eigenvalue. Another reason for this effectmay be noise and other imperfections of
the device.

10

New J. Phys. 20 (2018) 113022 LCincio et al

Weconsidered two pure states of the form

Yñ = ñ + ñ∣ (∣ ∣) ()0 1 2 , 7

Fñ = ñ + ña∣ (∣ ∣) ()0 e 1 2 , 8i

andwe compared our results to the exact overlap áF Yñ∣ ∣ ∣2 (black curve infigure 9). The rms errors are shown in
table 1.

On both computers, the SwapTest (green curve infigure 9) performed poorly. It is noteworthy that these are
only single-qubit states, and hence the results are expected to be evenworse as one grows the size of these states.

Overall, our ABAperformed significantly better than the SwapTest, while using the same resources, as is
evident from themuch smaller rms errors. The BBA,which allows formeasurements on all qubits, dramatically
outperformed the other algorithms onRigetti’s computer and performed roughly the same as ABAon IBM’s
computer. The relatively high accuracy of BBA is naturally expected due to its short depth, whichmitigates the
effects of decoherence and gate infidelity.

We note that there are values of the parameterα in equation (8) for which the SwapTest performs better
thanABA andBBA, e.g. aroundα≈π. However, we believe that the rms error given in table 1 is a better
indicator of algorithms’ performance than the error at a particular value ofα. Tomake this point, note that on a
fully decohered (but otherwise perfect) hardware, the SwapTest is expected to return zero overlap
independently of angleα. The algorithmwould output the correct value for the overlap atα=π albeit for the
wrong reason.

Our results show that connectivity between qubits as well as native gate set play important roles in the
performance. Rigetti’s 19 qubit computer offers less connectivity than IBM’s five-qubit one. As a result,
algorithms discovered for Rigetti’s architecture are longer (compare circuits presented in figures 2 and 8)
and overall performworse. Algorithms found for IBM and Rigetti’s computers suggest that for the
particular problem of finding rs()Tr , the ability to apply CNOT (rather that controlled-Z) results in shorter
circuits. This can be seen from figure 8(B): several one-qubit gates can be eliminated by writing controlled-
Z gates in terms of CNOTs.

6. Conclusions

Thiswork shows that evenwell-known algorithms can be improved upon using an automated approach. As
noted in the introduction, there aremany applications that require state overlap computation, including the
emerging new field of quantummachine-learning.While the SwapTest appears as a subroutine inmany of these
applications, we show that there aremore efficient circuits to perform this subroutine.

We have found a constant depth algorithm (denoted BBA above) for computing state overlap, which is better
than the linear scaling of the SwapTest. Furthermore, this algorithmperforms better—with significantly lower
error—even in the single-qubit case. It is therefore advisable that researchers use this algorithmhenceforth for
computing state overlap onNTQCs. This algorithm essentially corresponds to ameasurement in the Bell basis
for corresponding pairs of qubits. A key aspect of our approach that aided this algorithm’s discoverywas to allow
for non-trivial classical post-processing, a strategy that has been used previously to shrink the depth of quantum
algorithms [36]. The complexity of the post-processing for the BBA scales only linearly in the problem size (i.e.
the number of qubits), ensuring that the quantum speedup that this algorithmprovides is not due to the transfer
of exponential complexity to the classical post-processing, but rather comes from the use of gates that can be
executed in parallel.

Ourmain technical tool was amachine-learningmethod that allowed for task-oriented discovery of
quantumalgorithms. By task-oriented, wemean that thismethod defines a cost function based upon training
data that are representative of the desired computation, i.e. the training data define the task.Minimizing the cost
function results in a general algorithm for this computation.We emphasize that this goes far beyond quantum
compiling since it allows for algorithmdiscovery when no algorithm is known.

Conceptually, ourmethod separates quantum resources (ancillas, data qubits, andmeasurements) from
algorithmparameters (gate sequence and classical post-processing). The former arefixed as hyperparameters

Table 1.Rms errors for the data shown infigure 9.

IBM (5 qubits) Rigetti (19 qubits)

Swap test 0.311 0.537

ABA 0.106 0.432

BBA 0.116 0.160

11

New J. Phys. 20 (2018) 113022 LCincio et al

while we optimize the latter. The algorithm’s generalization is obtained by training for various problem sizes and
recognizing the pattern. In futurework, we plan to automate the process of pattern recognition for algorithm
generalization.

As noted in [9], this fieldwill be evenmore promisingwhen quantum computers become available. This is
due to the exponential speedup they provide in evaluating algorithm cost, i.e. by avoiding the exponential
overhead of quantum simulation on classical computers. Indeed, some recent works propose to use quantum
computers in automated algorithm learning [6, 7, 12]. Likewise ourmethod can be extended to learning on a
quantum computer by outsourcing cost evaluation to the quantum computer. This will be a topic of our
futurework.

Acknowledgments

The authors acknowledge helpful discussions with FrancescoCaravelli.We thankRigetti and IBM for providing
access to their quantum computers. The views expressed in this paper are those of the authors and do not reflect
those of Rigetti or IBM. LCwas supported by theUSDepartment of Energy through the J RobertOppenheimer
fellowship. YS acknowledges support of the LDRDprogram at LosAlamosNational Laboratory (LANL). ATS
and PJCwere supported by the LANLASCBeyondMoore’s Law project.

AppendixA. Implementation details

This appendix gives details on the implementation of the SwapTest onRigetti’s 19-qubit quantum computer.
The circuit, shown infigure A1, was generated by Rigetti’s compiler. It consists of 22 one-qubit gates
decomposed into rotations a = - a()R eZ

Zi 2 and pulses = - p
S e Xi 4 as follows:

p
p
p p
a p
a p
p

p p
a
a
p p

p p
p

p
p p

= = -
= -
=
= -
=
= -

= = = = = =
= -
=
=
=
= -
= -
= =
= -

()
()
() ()

() ()
() ()
()

() ()
()
()

() ()
() ()
()

()
() () ()

†

†

†

† † †

†

†

†

†

U U SR S

U SR

U S R SR

U SR SR

U S R SR

U S R

U U U U U U S

U S R SR

U S R S

U S R

U SR S R

U SR SR

U SR
U U SR

U R SR

3 4 ,

2 ,

4 2 ,

2 ,

3 4 ,

2 ,

,

4 2 ,

,

,

4 ,

3 4 2 ,

4 ,
,

2 4 , A1

Z

Z

Z Z

Z Z

Z Z

Z

Z Z

Z

Z

Z Z

Z Z

Z

Z

Z Z

1 2

3

4

5 1

6 2

7

8 9 12 14 18 21

10

11 3

13 4

15

16

17

19 20

22

whereα1;−0.6544π,α2;0.7857π,α3;0.1544π andα4;0.2143π.

Figure A1. SwapTest circuit obtained fromRigetti’s compiler for their 19-qubit quantumcomputer. The specific formof all one-
qubit gates is given by equation (A1).

12

New J. Phys. 20 (2018) 113022 LCincio et al

Appendix B. Equivalence betweenABA andBBA

Herewe show that the post-processing in the BBA is equivalent to inserting a sequence of Toffoli gates followed
by ameasurement of PauliZ operator as shown infigure B1. The rest of the proof of equivalence betweenABA
andBBA is presented in section 3.4 for one-qubit input states. Generalization tomulti-qubit input states is
straightforward as Toffoli gates infigure B1 are controlled by different qubits.

Let CZj,k denote controlled-Z gate acting on qubits j and k. Note that CZ is symmetric—the roles of control
and target qubits can be exchanged. Post-processing employed in BBA is equivalent tomeasuring the
expectation value of a product of CZ gates. The outcome of BBA is thus given by

r
=

+

⎡
⎣⎢

⎤
⎦⎥ ()Tr CZ , B1

k

N

N k k
1

,

where ρ is N2 -qubit densitymatrix describing the state of BBA just before themeasurement, see figure B1(A).
Wewill show that this quantity is equal to the outcome of the algorithm that is obtained fromBBAby replacing
measurement on all qubits and subsequent post-processing with a collection of Toffoli gates followed by
measurement on the ancilla qubit, as shown infigure B1(B). The outcome of that algorithm is given by

 rñá Ä
=

+
=

+

⎡
⎣⎢

⎤
⎦⎥(∣ ∣) ()T T ZTr 0 0 , B2

k

N

N k k
k

N

N k k
1

, ,0
1

, ,0 0

whereTj,k,0 denotes Toffoli gate acting on qubits j, k, 0 with j, k being control qubits and 0 is the target qubit.
Z0 denotes PauliZ operator acting on qubit 0. The expression in (B2) can be transformed as follows

 

 





r

r

r

r

ñá Ä

= ñá Ä = ¼

= ñá Ä

=

=
+

=
+

+
=

+
=

+

=
+

=
+

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

(∣ ∣)

(∣ ∣)

(∣ ∣)

()

T Z T

T Z T

Z

Tr 0 0

Tr 0 0 CZ

Tr 0 0 CZ

Tr CZ , B3

k

N

N k k
k

N

N k k

N
k

N

N k k
k

N

N k k

k

N

N k k

k

N

N k k

1
, ,0 0

1
, ,0

1, 1
2

, ,0 0
2

, ,0

0
1

,

1
,

wherewe used the fact thatTk,j,0 commutes with ¢ ¢Tk j, ,0, as well as ¢ ¢CZk j, .We also used the following gate
equivalence

= ()T Z T Z CZ . B4k j k j k j, ,0 0 , ,0 0 ,

The last line in equation (B3) establishes the equivalence.

Figure B1. Post-processing that is used in BBA (panel (A)) is equivalent to the sequence of Toffoli gates followed by ameasure-
ment of the PauliZ operator on ancilla qubit shown in panel (B). Here the post-processing vectors are = -

 ()c 1, 12 and =

c1

- Ä()1, 1, 1, 1 n, assuming qubits are arranged in order 1,N+1, 2,N+2, K, N, 2N.

13

New J. Phys. 20 (2018) 113022 LCincio et al

References

[1] Preskill J 2012Quantum computing and the entanglement frontier arXiv:1203.5813
[2] Neill C et al 2017Ablueprint for demonstrating quantum supremacywith superconducting qubits Science 360 195–9
[3] Ball P 2018The era of quantum computing is here. Outlook: cloudyQuantaMag. [available at: http://quantamagazine.org/the-era-

of-quantum-computing-is-here-outlook-cloudy-20180124/]
[4] Fowler AG,MariantoniM,Martinis JM andClelandAN2012 Surface codes: towards practical large-scale quantum computation

Phys. Rev.A 86 032324
[5] YouH et al 2013 Simulating the transverse Isingmodel on a quantum computer: error correctionwith the surface code Phys. Rev.A 87

032341
[6] BenedettiM,Garcia-PintosD,NamY and Perdomo-Ortiz A 2018A generativemodeling approach for benchmarking and training

shallow quantum circuits arXiv:1801.07686
[7] Mitarai K,NegoroM,KitagawaMand Fujii K 2018Quantum circuit learningPhys. Rev.A 98 032309
[8] KhanejaN, Reiss T, Kehlet C, Schulte-HerbrüggenT andGlaser S J 2005Optimal control of coupled spin dynamics: design ofNMR

pulse sequences by gradient ascent algorithms J.Magn. Reson. 172 296–305
[9] GeppA and Stocks P 2009A review of procedures to evolve quantum algorithmsGenetic Program. EvolvableMach. 10 181–228
[10] LukacM et al 2003 Evolutionary approach to quantum and reversible circuits synthesisArtif. Intell. Rev. 20 361–417
[11] Venturelli D,DoM, Rieffel E and Frank J 2018Compiling quantum circuits to realistic hardware architectures using temporal planners

QuantumSci. Technol. 3 025004
[12] Khatri S et al 2018Quantum-assisted quantum compiling arXiv:1807.00800
[13] Häner T, SteigerD S, Svore K andTroyerM2018A softwaremethodology for compiling quantumprogramsQuantumSci. Technol. 3

020501
[14] MaslovD 2017 Basic circuit compilation techniques for an ion-trap quantummachineNew J. Phys. 19 023035
[15] Martinez EA,MonzT,NiggD, Schindler P andBlatt R 2016Compiling quantum algorithms for architectures withmulti-qubit gates

New J. Phys. 18 063029
[16] Chong FT, FranklinD andMartonosiM2017 Programming languages and compiler design for realistic quantumhardwareNature

549 180
[17] SwaddleM,Noakes L, SmallboneH, Salter L andWang J 2017Generating three-qubit quantum circuits with neural networks Phys.

Lett.A 381 3391–5
[18] Zahedinejad E, Ghosh J and Sanders BC 2016Designing high-fidelity single-shot three-qubit gates: amachine-learning approach Phys.

Rev. Appl. 6 054005
[19] LasHerasU, Alvarez-RodriguezU, Solano E and SanzM2016Genetic algorithms for digital quantum simulations Phys. Rev. Lett. 116

230504
[20] Hachtel GD and Somenzi F 1996 Logic Synthesis andVerification Algorithms (Boston,MA:Kluwer)
[21] HaaswijkW et al 2018Deep learning for logic optimization algorithms 2018 IEEE Int. Symp. onCircuits and Systems (ISCAS)

(Piscataway,NJ: IEEE) pp 1–4
[22] BuhrmanH,Cleve R,Watrous J andDeWolf R 2001Quantumfingerprinting Phys. Rev. Lett. 87 167902
[23] GottesmanD andChuang I 2001Quantumdigital signatures arXiv:quant-ph/0105032
[24] Garcia-Escartin J C andChamorro-Posada P 2013 Swap test andHong-Ou-Mandel effect are equivalentPhys. Rev.A 87 052330
[25] Patel R B,Ho J, Ferreyrol F, RalphTC andPrydeG J 2016AquantumFredkin gate Sci. adv. 2 e1501531
[26] Ferreyrol F, RalphTC and PrydeG J 2013 Implementation of a quantumFredkin gate using an entanglement resource 2013Conf. on

Lasers and Electro-Optics Europe and International QuantumElectronics Conf. (CLEOEUROPE/IQEC) p 1
[27] LinkeNM et al 2017Measuring the Renyi entropy of a two-site Fermi-Hubbardmodel on a trapped ion quantum computer

arXiv:1712.08581
[28] Smith R S, CurtisM J andZengW J 2016Apractical quantum instruction set architecture arXiv:1608.03355
[29] Cross AW, Bishop L S, Smolin J A andGambetta JM2017Open quantum assembly language arXiv:1707.03429
[30] Lloyd S,MohseniM andRebentrost P 2013Quantum algorithms for supervised and unsupervisedmachine learning arXiv:1307.0411
[31] WiebeN,KapoorA and Svore K 2014Quantum algorithms for nearest-neighbormethods for supervised and unsupervised learning

Quantum Inf. Comput. 15 0318–58
[32] Rebentrost P,MohseniM and Lloyd S 2014Quantum support vectormachine for big data classificationPhys. Rev. Lett. 113 130503
[33] Johri S, SteigerD S andTroyerM2017 Entanglement spectroscopy on a quantum computerPhys. Rev.B 96 195136
[34] Smolin J A andDiVincenzoDP 1996 Five two-bit quantumgates are sufficient to implement the quantumFredkin gate Phys. Rev.A

53 2855
[35] ShendeVV andMarkov I L 2009On theCNOT-cost of Toffoli gatesQuantum Inf. Comput. 9 0461–86
[36] Svore KM,HastingsMB and FreedmanM2014 Faster phase estimationQuantum Inf. Comput. 14 306–28

14

New J. Phys. 20 (2018) 113022 LCincio et al

http://arxiv.org/abs/1203.5813
https://doi.org/10.1126/science.aao4309
http://quantamagazine.org/the-era-of-quantum-computing-is-here-outlook-cloudy-20180124/
http://quantamagazine.org/the-era-of-quantum-computing-is-here-outlook-cloudy-20180124/
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.87.032341
https://doi.org/10.1103/PhysRevA.87.032341
http://arxiv.org/abs/1801.07686
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1007/s10710-009-9080-7
https://doi.org/10.1007/s10710-009-9080-7
https://doi.org/10.1007/s10710-009-9080-7
https://doi.org/10.1023/B:AIRE.0000006605.86111.79
https://doi.org/10.1023/B:AIRE.0000006605.86111.79
https://doi.org/10.1023/B:AIRE.0000006605.86111.79
https://doi.org/10.1088/2058-9565/aaa331
http://arxiv.org/abs/1807.00800
https://doi.org/10.1088/1367-2630/aa5e47
https://doi.org/10.1088/1367-2630/18/6/063029
https://doi.org/10.1038/nature23459
https://doi.org/10.1016/j.physleta.2017.08.043
https://doi.org/10.1016/j.physleta.2017.08.043
https://doi.org/10.1016/j.physleta.2017.08.043
https://doi.org/10.1103/PhysRevApplied.6.054005
https://doi.org/10.1103/PhysRevLett.116.230504
https://doi.org/10.1103/PhysRevLett.116.230504
https://doi.org/10.1109/ISCAS.2018.8351885
https://doi.org/10.1109/ISCAS.2018.8351885
https://doi.org/10.1109/ISCAS.2018.8351885
https://doi.org/10.1103/PhysRevLett.87.167902
http://arxiv.org/abs/quant-ph/0105032
https://doi.org/10.1103/PhysRevA.87.052330
https://doi.org/10.1126/sciadv.1501531
https://doi.org/10.1109/CLEOE-IQEC.2013.6801703
https://doi.org/10.1109/CLEOE-IQEC.2013.6801703
http://arxiv.org/abs/1712.08581
http://arxiv.org/abs/1608.03355
http://arxiv.org/abs/1707.03429
http://arxiv.org/abs/1307.0411
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevB.96.195136
https://doi.org/10.1103/PhysRevA.53.2855

	1. Introduction
	2. Machine-learning approach
	2.1. Resources
	2.2. Algorithm
	2.3. Optimization
	2.4. Details of the optimization techniques
	2.5. Generalization

	3. Main results
	3.1. Overview
	3.2. Ancilla-based algorithm
	3.3. Bell-basis algorithm
	3.4. Discussion

	4. Hardware-specific algorithms
	5. Testing our algorithms
	6. Conclusions
	Acknowledgments
	Appendix A.
	Appendix B.
	References

