New jou r“al Of PhYSics Deutsche Physikalische Gesellschaft @ DPG I0P Institute of PhySiCS

The open access journal at the forefront of physics

PAPER * OPEN ACCESS You may also like
. . - The controlle est for determining
Learning the quantum algorithm for state overlap Quanum enandencat

Steph Foulds, Viv Kendon and Tim Spiller

To cite this article: Lukasz Cincio et al 2018 New J. Phys. 20 113022 - The SWITCH test for discriminatin
guantum evolutions
P Chamorro-Posada and J C Garcia-
Escartin

- Quantum algorithm for minimum
View the article online for updates and enhancements. dominating set problem with circuit design
Haoying Zhang, , Shaoxuan Wang et al.

This content was downloaded from IP address 18.191.234.62 on 03/05/2024 at 06:49

https://doi.org/10.1088/1367-2630/aae94a
https://iopscience.iop.org/article/10.1088/2058-9565/abe458
https://iopscience.iop.org/article/10.1088/2058-9565/abe458
https://iopscience.iop.org/article/10.1088/1751-8121/acecc5
https://iopscience.iop.org/article/10.1088/1751-8121/acecc5
https://iopscience.iop.org/article/10.1088/1674-1056/ad02e5
https://iopscience.iop.org/article/10.1088/1674-1056/ad02e5

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
9June 2018

REVISED
10 October 2018

ACCEPTED FOR PUBLICATION
18 October 2018

PUBLISHED
14 November 2018

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 20 (2018) 113022 https://doi.org/10.1088/1367-2630/aae94a

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Learning the quantum algorithm for state overlap

Lukasz Cincio', Yigit Subasi', Andrew T Sornborger’ and Patrick J Coles'

' Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
> Information Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America

E-mail: Icincio@lanl.gov

Keywords: quantum computing, machine-learning, state overlap

Abstract

Short-depth algorithms are crucial for reducing computational error on near-term quantum computers,
for which decoherence and gate infidelity remain important issues. Here we present a machine-learning
approach for discovering such algorithms. We apply our method to a ubiquitous primitive: computing
the overlap Tr(po) between two quantum states p and o. The standard algorithm for this task, known as
the Swap Test, is used in many applications such as quantum support vector machines, and, when
specialized to p = o, quantifies the Renyi entanglement. Here, we find algorithms that have shorter
depths than the Swap Test, including one that has a constant depth (independent of problem size).
Furthermore, we apply our approach to the hardware-specific connectivity and gate sets used by Rigetti’s
and IBM’s quantum computers and demonstrate that the shorter algorithms that we derive significantly
reduce the error—compared to the Swap Test—on these computers.

1. Introduction

Quantum supremacy [1] may be coming soon [2]. While it is an exciting time for quantum computing, decoherence
and gate fidelity continue to be important issues [3]. Ultimately these issues limit the depth of algorithms that can be
implemented on near-term quantum computers (NTQCs) and increase the computational error for short-depth
algorithms. Furthermore, NTQCs do not currently have enough qubits and sufficient gate fidelities to fully leverage
the benefit of quantum error-correcting codes [4, 5]. This highlights the need for general methods to reduce the
depth of quantum algorithms in order to avoid the accumulation of errors.

Analytical efforts to find short-depth algorithms face several challenges. First, quantum algorithms are fairly
non-intuitive to classically trained minds. Second, actual NTQCs may not be fully connected. Third, different
NTQCs use different fundamental gate sets. It may not be obvious how to optimize algorithms for a given
connectivity and a given gate set. This motivates the idea of an automated approach for discovering and
optimizing quantum algorithms [6—19].

An analogous problem in classical computing, known as logic synthesis, has a relatively longer history and
has been extensively studied [20]. Machine-learning methods have been used in this context. For instance [21]
shows how logic optimization algorithms can be discovered automatically through the use of deep learning.

In this work, we take a machine-learning approach to developing quantum algorithms, see figure 1. Our
approach can be applied either to ideal hardware to derive fundamental algorithms or to a non-fully connected
hardware with a non-ideal gate set to derive hardware-specific algorithms. We conceptually divide a quantum
computation into the available resources, consisting of input qubits (data qubits and ancilla qubits) and output
measurements, and the algorithm, consisting of a quantum gate sequence and classical post-processing of the
measurement results (see figure 1). Fixing the resources as hyperparameters, we optimize the algorithm in a task-
oriented manner, i.e. by minimizing a cost function that quantifies the discrepancy between the algorithm’s
output and the desired output. The task is defined by a training data set that exemplifies the desired
computation. Our machine-learning approach is used to discover small algorithm instances that can be later
manually generalized to arbitrary problem size.

We emphasize that our work goes beyond quantum compiling, which has received recent attention [11-16].
Quantum compiling corresponds to finding a hardware-specific gate sequence that generates the same unitary as

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/aae94a
mailto:lcincio@lanl.gov
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aae94a&domain=pdf&date_stamp=2018-11-14
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aae94a&domain=pdf&date_stamp=2018-11-14
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

I0OP Publishing NewJ. Phys. 20 (2018) 113022 L Cincio et al

input measurement
resources resources

ancilla
qubits
7

|
//

a0
=
8 — 2
<
o IS Bl | =S, 0
@ CbSD = n o Yy
g g =
= o} S
1 5o Bl 2
% o
T \oGz(0) /7/\ 7 Z

Figure 1. Machine-learning approach to discovering and optimizing quantum algorithms. We optimize an algorithm for a given set of
resources, which includes input resources (ancilla and data qubits) and measurement resources (i.e. which qubits can be measured).
The algorithm is then determined by the quantum gate sequence and the classical post-processing of the measurement results. To find
the algorithm that computes the function x — f(x), we minimize a cost function that quantifies the discrepancy between the desired
output f(x'”) and the actual output y” for a set of training data inputs {x'” }. Ifthe training data are sufficiently general, the algorithm
that minimizes the cost should be a general algorithm that computes f (x) for any input x.

ahigh-level gate sequence defined for an idealized hardware. Various techniques have been employed in these
works such as temporal planning (e.g. [11]). Machine-learning techniques have also been used to decompose
small scale unitaries into one and two-body gates [17, 18]. Although our method can be used in this way to
optimally compile a known unitary or gate sequence, our main goal is to discover novel algorithms via task-
oriented programming.

Other automated algorithm-discovery approaches have been employed in the literature. Gepp and Stocks
[9] review much of the early work to evolve quantum algorithms using genetic programming such as [10] (for
more recent work see for example [19]). In these approaches the gate set is typically discrete. An alternative
approach is to define an ansatz or template for the quantum circuit composed of gates that depend on
continuous parameters. The circuit is then trained to perform a given task by tuning these parameters [6, 7]. Our
approach is distinct from previous works in that we do not start with an ansatz or template for the quantum
circuit; nor do we restrict to a discrete gate set as is usually done in algorithms based on genetic programming. In
this sense our approach combines desirable aspects of the two types of approaches in the literature.

We apply our approach to a ubiquitous task: computing the overlap between two quantum states. This
computation yields | (1)|¢) |? for two pure states |1)) and | ¢), and more generally gives Tr(pc) for two (possibly
mixed) states p and 0. Furthermore, when specialized to the case p = ¢, it computes the purity Tr(p?) of a given
state p.

There is a well-known algorithm for this task called the Swap Test [22, 23]. In quantum optics the Swap Test
has a simple physical implementation [24—26]. However, for gate-based quantum computers (e.g. IBM’s,
Google’s, and Rigetti’s superconducting quantum computers and IonQ’s trapped-ion quantum computer), the
optimal implementation of the Swap Test is not obvious, and for single-qubit states involves 14 and 34 gates for
IBM’s five-qubit and Rigetti’s 19-qubit quantum computer respectively, see figure 2. Larger gate count for
Rigetti’s computer is mainly due to its lower connectivity. For example, the Swap Test was experimentally
implemented on a five-qubit computer based on trapped ions [27] to quantify entanglement, with an algorithm
employing 7 two-qubit gates and 11 one-qubit gates. Figures 2(B) and (C) respectively show decompositions of
the Swap Test for IBM’s and Rigetti’s quantum computers [28, 29]. This highlights the non-trivial nature of
implementing the Swap Test algorithm.

Here, our machine-learning approach finds algorithms with a shorter depth than the Swap Test for
computing the overlap. We do this by initially specializing the training data to one- and two-qubit states and
then manually generalizing the resulting algorithms to input states of arbitrary size. We first consider the same
‘quantum resources’ as the Swap Test (access to a qubit ancilla and measurement on the ancilla), and our
approach reduces the gate count to 4 controlled-NOTs (CNOTs) and 4 one-qubit gates. We call this our Ancilla-
based algorithm (ABA). Then we allow for the additional resource of measuring all of the qubits, which gives an
even shorter depth algorithm that essentially corresponds to a Bell-basis measurement with classical post-
processing. We call this our Bell-basis algorithm (BBA). This algorithm has a constant depth of two gates, while
the classical post-processing scales linearly in the number of qubits of the input states. In that regard, our
machine-learning approach independently discovered the algorithm of Garcia-Escartin and Chamorro-Posada
for computing state overlap [24]. We also find short-depth algorithms for the specific hardware connectivity and

2

10P Publishing

NewJ. Phys. 20 (2018) 113022 L Cincio et al

Figure 2. Swap Test circuits. (A) The canonical Swap Test circuit. H indicates the Hadamard gate. (B) The Swap Test circuit adapted
for IBM’s five-qubit quantum computer, constructed by decomposing controlled-swap into the Toffoli gate, via [34, 35], and then
manually eliminating gates that had no effect on the output. T'is the /8 phase gate. (C) The structure of a Swap Test circuit, showing
the locations of the one-qubit gates and controlled-Z gates, constructed automatically by Rigetti’s compiler for their 19-qubit
quantum computer. Appendix A gives the full specification of that circuit.

gate sets used by IBM’s and Rigetti’s quantum computers, which is crucial for reducing the computational error.
Indeed, we found that our short-depth algorithms reduced the root mean square (rms) error (compared to the
Swap Test) by 66% on IBM’s five-qubit computer and by 70% on Rigetti’s 19-qubit computer.

Due to the fundamental nature of computing state overlap, the Swap Test appears in many applications. In
quantum supervised learning [30, 31], which subsumes quantum support vector machines [32], the Swap Test is
used to assign each data vector to a cluster. The Swap Test allows one to quantify entanglement for many-body
quantum states [27, 33] using the Renyi order-2 entanglement, given by H® = —logTr(p?). The Swap Test is
useful for benchmarking on a quantum computer, since it can quantify the purity Tr(p?) and hence the amount
of decoherence that has occurred. For all of the above applications, one of our shorter-depth algorithms can be
directly substituted in place of the Swap Test.

Note that if p and o represent states on #n qubits, the difficulty for computing Tr(po) scales exponentially
with # for a classical computer. In contrast, the Swap Test has a circuit depth that grows linearly in #, giving an
exponential speedup. Our ABA also has this property of scaling linearly with n, and it reduces the number of
gates in the circuit by a factor of ~2.3 (relative to the Swap Test circuit decomposed in terms of CNOTs, as shown
in figure 2(B)). On the other hand, our BBA has the nice feature that its circuit depth is constant, independent of
n (although the complexity of its classical post-processing grows linearly in). Due to its constant circuit depth,
the BBA seems to be the best algorithm for quantifying state overlap on NTQCs.

In what follows, we first present our machine-learning approach for discovering quantum algorithms. This
approach can be used to find other algorithms besides the one that computes the overlap and hence should be of
independent interest. We also give the full details of the approach and discuss its scaling with various resources.
Next, we present our main results: short-depth circuits for computing state overlap on idealized hardware.
Then, we present hardware-specific algorithms for computing overlap. Finally we discuss our implementation
of these algorithms on Rigetti’s and IBM’s quantum computers, leading to a reduction in the computational
error relative to the Swap Test.

2.Machine-learning approach

Our machine-learning approach is summarized in figure 1. The variables are divided up into the
hyperparameters (i.e. the ‘resources’) and the optimization parameters (i.e. the ‘algorithm’).

2.1.Resources
The hyperparameters are the quantum resources of the circuit. At the input, the resources are the number of
ancilla qubits and data qubits that store the input data for the computation. At the output, the resources are the
locations of the measurements (see figure 1). As an example, in the Swap Test for single-qubit states, we are
allowed access to one ancilla qubit and two data qubits at the input, and we can measure only the ancilla qubit at
the output.

The input data may be classical or quantum, depending on the computation of interest. In the case of state
overlap, the input data are quantum states and hence no encoding is necessary. However, for completeness, we
note that our approach also applies to classical inputs, in which case the encoding (i.e. storing the classical data in

3

10P Publishing

NewJ. Phys. 20 (2018) 113022 L Cincio et al

the quantum state of the data qubits) can be treated as a hyperparameter that one fixes while optimizing the
algorithm.

2.2. Algorithm

Our approach searches for an optimal algorithm, where we consider the algorithm to be a quantum gate
sequence with associated classical post-processing. We parameterize (and hence optimize over) both the gate
sequence and the post-processing.

Let us first consider the gate sequence. We define a gate set A = {A;(0)}. Here, each gate A;is either a one-
qubit or two-qubit gate and may also have an internal continuous parameter 6. Hence, A is a discrete set, but
each element of A may have a continuous parameter associated with it. The precise choice of .4 depends on
which hardware one is considering. For example, the connectivity differs between IBM and Rigetti hardware,
and the former employs CNOT gates while the latter employs controlled-Z gates. For IBM’s five-qubit
computer ‘ibmqgx4’ we can write out the gate set as

Aipmss = {CNOT!?, CNOT2, CNOT?!, CNOT?,
CNOT24, CNOT?, U°(9), U'(®), U%(9),
U0, U0}, (1)

where U’(6) is an arbitrary gate on qubit jand CNOT* is a CNOT from control qubit j to target qubit k. Angles 6
in equation (1) may be encoding multiple parameters. In this article, we treat all one-qubit gates equally in the
sense that all one-qubit gates are equally complex to implement, although our approach could easily be
generalized to account for different complexities for different one-qubit gates.

We consider a generic sequence of d gates

Gi(0) = Ag,(02) - A, (0) Ay (),)

where k = (ky, ..., kg) is the vector of indices describing which gates are employed in the gate sequence and
6= (01-..,0,) is the vector of continuous parameters associated with these gates.

The measurement results give rise to an outcome probability vector p = (p,,...,p}, -..). The desired output
might be one of these probabilities p, or it might be some simple function of these probabilities. Hence, we allow
for some simple classical post-processing of p in order to reveal the desired output. While there is enormous
freedom in applying a function to p, we consider a simple linear combination of probabilities:

gPB)=2c-p =3 ap (3)

I

where ¢ is a vector of coefficients whose elements are chosen according to ¢; € {—1, 0, 1}. This post-processing is
sufficient for the application in this paper (state overlap), although other applications may require a more general
form of post-processing. Note that in our approach it is enough to consider measurements in the computational
basis, as any change of the measurement basis can be incorporated into the gate sequence in equation (2). In
particular, this implies that equation (3) is general enough to cover the expectation values of all Pauli product
operators.

Insummary, t the free parameters that we optimize over (while fixing the hyperparameters) are the gate
sequence vector k, the continuous parameter vector 6, and the post-processing vector ¢. Fora glven set of
resources, these three vectors define the quantum algorithm, which we denote Q;, where m = (k , 0, ¢)isthe
concatenated vector.

2.3. Optimization
Optimizing these parameters involves defining and minimizing a cost function. The cost quantifies the
discrepancy between the desired output and the actual output for a given training data set.

Suppose we want to find the algorithm that computes the function x — f (x). We generate data of the form

T = {(xD, fDNI,. 4)

Half of this data is used for training the algorithm, i.e. optimizing the cost function. The other halfis used for
testing, i.e. evaluating the algorithm’s performance. The training data must be sufficiently general to cover the
space of possible inputs. An estimate of the amount of training data needed for state overlap is N ~ 22", where
npis the number of data qubits. This can be seen by noting that our algorithm (which includes both the gate
sequence and the post-processing) acts as a linear map from the data qubits’ density operator space, which has
dimension 22", to the output which is justa number and hence has dimension one. So our algorithm is basically
al x 22" matrix, and an estimate of the number of constraints (and hence the number of training data points)
needed to fix the algorithm’s parameters is 22",

For example, when training the algorithm that computes overlap, x” = (o,) consists of two quantum
states p” and 0¥, and f (x®) = Tr(p®o®) quantifies their overlap. One can show that any algorithm that

()

4

10P Publishing

NewJ. Phys. 20 (2018) 113022 L Cincio et al
0.4

5 [T T T T ‘0> 4

= 03

§ | P

= 02 o 2

: 01 (a) B

S A Y N B ° ok

1 2 3 45 6 7 89

< 0.08F 1 10) r

&) 3 0.8

% 0.06 p A i

8 L Ea 0.6

o0 o o4

£0.021- (¢) 1 o2

- ! .

0 1 2 3 0 3 4
gate count d gate count d

Figure 3. Final cost that we obtained after minimizing our cost function versus the circuit gate count d. (A) The resources allowed
(shown in the inset) are the same as those allowed in the Swap Test, i.e. one ancilla qubit, two data qubits, and one measurement on the
ancilla. This results in a minimum gate count of d,,;;, = 8. (B) The number of qubits in p and o is increased, resulting in d,,,;,, = 14 for
n = 2 qubits. This procedure leads to the discovery of a general algorithm presented in figure 5. (C) Allowing for additional resources
(shown in the inset) of measurements on all of the qubits results in a minimum gate count of d,,;, = 2. (D) Again we increase the
number of qubits in pand o, giving dpin, = 4 for n = 2 qubits, when measurements on all qubits are allowed. As a result, a general
algorithm is obtained, as shown in figure 6.

computes pure-state overlap also computes mixed-state overlap. Hence, we generate our training data by
randomly choosing pure states according to the Haar measure.
Next we define a cost function. For algorithm Q;, the cost is

N .
Civ = > (f(x®) — yD)2, (5)
i=1

The cost quantifies the difference between the ideal output f(x'?) and the actual output y,%i) for each training data
point. The actual output can be written as

)’,%) = y((lgé,z) =c- f)(12,9)’ (©)
where ¢ is the post-processing vector and 13'(%)9) is the outcome probability vector for input x' . For example, in
the Swap Test, the outcome probability vector corresponds to the ancilla qubit’s measurement in the Z basis.
Choosing ¢ = (1, —1) ensures that yrg) is the expectation value of the Pauli Z operator.

For a fixed circuit gate count d, we search over the algorithm space to minimize the cost, as discussed below.
We consider various 4, incrementing from small to large values. When an exact algorithm exists, we typically are
able to minimize the cost. That is, we can find a Q7 with Cz ~ 0, for d > d,;,, where d,;, is the minimum
number of gates needed to minimize the cost (see figure 3 for example plots of final cost versus d). Note that
some elements of the gate set in equation (1) commute with each other. As a consequence, there are typically
many Qj; that give zero costfor d > d;,. This freedom is used to simplify the algorithm at the end of the cost
optimization. So, in the main results section, we present our simplest representation of such algorithms.

2.4. Details of the optimization techniques

The costin equation (5) is a function of several parameters that can be divided into two groups: discrete and
continuous. Discrete parameters are those which describe the circuit topology and post-processing of the
algorithm. These are the gate sequence vector k and the post-processing vector ¢. The angles 6 are treated as
continuous parameters. They define all gates that depend on a parameter. For IBM and Rigetti architectures
considered here, angles] specify all one-qubit gates present in the algorithm. Only the total number of gates d is
fixed during optimization, which means that while the length of k does not change, the number of elements of 6
may vary as the optimization proceeds.

The optimization is performed in iterations until the cost reaches a (possibly local) minimum. Figure 4
shows a schematic description of a single iteration of the optimization algorithm. Each iteration begins with an
attempt to modify k and Z. While modifying k , we consider random updates that may involve an arbitrary
number of gates. However, updates affecting a smaller number of gates are more probable. In this process, we
may change the position or support of a given gate or change its type, e.g. from a one-qubit gate to a CNOT. The
update is constrained to result in an algorithm that cannot be easily shortened. For example, the gate sequence
that involves two one-qubit gates next to each other is not allowed, since those gates can be combined to a single

I0OP Publishing NewJ. Phys. 20 (2018) 113022 L Cincio et al

DISCRETE PARAMETERS CONTINUOUS PARAMETERS

propose new reoptimize

(A) kand ¢ (B) angles)

accept / reject

kand @
(C)

Figure 4. Schematic view of one iteration of the cost optimization procedure. (A) Iteration begins with a random update to the gate
sequence vector k that describes the algorithm’s structure and a random update to the post-processing vector ¢. (B) Continuous
parameters 6 of every one-qubit gate are reoptimized using the steepest descent method. (C) The optimization in the previous step

gives a cost that is compared with the current best one. Based on the outcome of that comparison, new vectors k and ¢ are either
accepted or rejected. See text for details.

one-qubit gate. This is a desired feature, as we optimize with a fixed total number of gates. Similarly, we
randomly modify ¢ giving more preference to changes affecting fewer measurements.

Every change in k or ¢ is followed by reoptimization of continuous parameters 6. Thisisan important step,
as changmg the gate sequence or post-processing function alone, without reoptimizing the gates’ internal
parameters 6, will most likely cause the cost to increase significantly, effectively suppressing any update of k or
¢. The continuous part of the optimization is done in a sweeping fashion in which all one-qubit gates are updated
sequentially. In this approach, at a given time, a single one-qubit gate is updated while all remaining gates are
fixed. After the best one-qubit gate (the one that minimizes the cost) is identified, the optimization algorithm
moves to the next one-qubit gate. We allow for randomly changing the order of updating one-qubit gates as a
means to avoid local minima. We use a steepest descent method to optimize single one-qubit gates. Note thatan
arbitrary one-qubit gate can be described (up to a global phase, that does not affect the algorithm) by three real
parameters. That is, the steepest descent method mentioned above operates in three-dimensional space. The
continuous part of the optimization is repeated, until convergence of the cost function is achieved.

Once the continuous optimization has converged, we compare the final cost Cin a given iteration with the
current best one G, If the cost Cis lower than the current best, the new discrete parameters k and ¢ are
accepted. If it is larger, the change is accepted with probability exponentially decreasing in the difference
C — GCyest following the simulated annealing method.

Every few iterations we check whether the current gate sequence Gy can be compressed. This goes well
beyond the simple checks following the update of vector k described above. Here, we are tryingto finda
subsequence of G that can be nontrivially rewritten using the same or a smaller number of gates. If such a
subsequence is found, we modify Gj accordingly, as this may lead to shortening the gate sequence without
increasing the cost. Since the total number of gates is fixed, such compression results in the ability to add gates to
the sequence. If that is the case, we insert one-qubit identity gates and reoptimize their continuous parameters as
described above. To check if a given subsequence can be rewritten we recursively use the same approach that we
use for the full algorithm, which is essentially described in figure 4 except in this case we do not consider the
post-processing vector c.

We remark that the cost function may be difficult to optimize primarily due to many low lying local minima.
Thus, it is important to develop techniques to increase the chances of avoiding them. We found it particularly
useful to compress the gate sequence periodically, as random updates to vectors k and ¢ tend to produce local
minima that usually include redundant subsequences. As described above, we have developed automated tools
to remove such subsequences, which usually allows us to escape local minima.

Let us now discuss the scaling of the approach described above. The optimization requires the cost to be
evaluated multiple times during every iteration. As part of computing the cost, one has to evaluate y’g)in
equation (5) for each training data point, which necessarily scales exponentially with the number of qubits on a
classical computer. However, it can be outsourced to a quantum computer. Such a hybrid algorithm will
efficiently compute the contribution to the cost from a single element of a training data set, although the
resulting cost will reflect the quantum hardware’s noise. In this work, we evaluate the cost on a classical
computer, as we are mainly interested in the discovery of theoretical algorithms without device-specific noise
considerations.

Another aspect of the algorithm scaling is training data. In general, its size will scale exponentially with the
number of data qubits. However, we would like to stress that this fact does not jeopardize our approach since we
numerically obtain solutions (algorithm instances) only for a small number of data qubits. Those optimization

6

10P Publishing

NewJ. Phys. 20 (2018) 113022 L Cincio et al

(A) U=T'H

0) {ul-e—{ut—+—{Ul4

p c=(1,-1)
[
(B)
0 oo
LT ¢=(1,-1)
P (—
{1
o =

Figure 5. Our ABA, obtained by minimizing the cost for the resources shown in figures 3(A) and (B). (A) When p and o are one-qubit
states, we obtain a circuit with 4 CNOT gates and 4 one-qubit gates for a total of 8 gates. Here, U = T'H. (B) Six of these gates are
combined to create a ‘building block’ (see inset) that is used to generalize the algorithm for input states p and o of arbitrary size. The
post-processing vector is ¢ = (1, —1), independent of problem size.

problems require training data that is still manageable. Algorithm instances are then used to manually recognize
the pattern and generalize to arbitrary system size.

Finally, the search space defined by k is exponentially large in the number of gates. This makes it impossible
to systematically check all possibilities in the search for an optimal algorithm. On the other hand, the heuristic
approach described above seems to be capable of finding the solution efficiently.

2.5. Generalization

For a fixed problem size, we minimize the cost. If the cost goes to zero (which we define as a cost less than 1076),
we say we have an algorithm instance. In particular, this corresponds to fixing the size of the data and hence fixing
np, the number of data qubits. To study the generalization of the algorithm, we grow the size of the problem by
increasing np. In some cases, one may also need to increase the number of ancilla qubits, 14, and/or the number
of measurements in order to minimize the cost.

This gives us a set of algorithm instances for various problem sizes. An important challenge is to abstract a
general algorithm from these instances. This challenge is particularly difficult because one can typically only find
algorithm instances for small problem sizes. This is due to the fact that the search space for vectors K grows
rapidly with problem size, namely as n2?, where ny- = np 4 n4is the total number of qubits and d is the circuit
gate count.

In this work, we were able to manually recognize the pattern by which the algorithm generalizes to arbitrary
problem size by inspecting the various algorithm instances. In future work, we will explore automated methods
for recognizing the general algorithm.

3. Main results

3.1. Overview

Our main results are short-depth algorithms for quantifying overlap on idealized quantum computing
hardware. For the latter, we consider full connectivity, and we allow for arbitrary one-qubit gates as well as
CNOT gates between all of the qubits.

We consider two sets of resources. The first set of resources are identical to those allowed for the Swap Test,
i.e. access to one ancilla qubit and two data qubits, as well as one measurement on the ancilla qubit. The cost
versus number of gates for these resources is shown in figure 3(A), and we obtained essentially zero cost for
d = 8.To understand how the algorithm generalizes, we increase the number of qubitsin pandoton = 2,
giving a minimum gate count of d = 14, as shown in figure 3(B). As discussed below this generalizes to an
algorithm (shown in figure 5) that we refer to as our ABA.

The second set of resources we consider allows for measurements on all of the qubits. For these additional
resources, figure 3(C) shows that zero cost is obtained for d = 2. To recognize how this algorithm generalizes,
we increase the number of qubits to n = 2, giving a minimum gate count of d = 4, as shown in figure 3(D). The
surprising result is that the ancilla qubit is not used at all in this algorithm, even though we train the algorithm in

7

I0OP Publishing NewJ. Phys. 20 (2018) 113022 L Cincio et al

(A)

P —4

s —4

(B)

[—

Figure 6. Our Bell-basis algorithm, obtained by minimizing the cost for the resources shown in figures 3(C) and (D). (A) When pand o
are one-qubit states, we obtain a circuit with one CNOT followed by a Hadamard and measurements on both qubits with a post-
processing vector ¢ = (1, 1, 1, —1).(B) The CNOT and Hadamard gates form a ‘building block’ that is used to generalize the
algorithm for input states p and o of arbitrary size. Since these gates can be parallelized, the quantum circuit depth is independent of
problem size. On the other hand, the complexity of classical post-processing grows linearly with 7, and the post-processing vector can
bewrittenas ¢ = (1, 1, 1, —1)®"ifone orders the qubits into pairs from pand o.

the presence of an ancilla. This allows us to display the resulting general algorithm, our BBA, in figure 6 without
the ancilla qubit.

In both cases discussed above, we managed to discover the general (valid for arbitrary problem size) form of
the algorithm from its two smallest instances. We expect that in other applications, the general form of the
algorithm may be harder to find and more sophisticated tools will have to be developed.

3.2. Ancilla-based algorithm

Figure 5(A) shows the ABA for one-qubit states p and . The unitary Uin this circuitis U = T'H. This
circuit employs 4 CNOT gates and 4 one-qubit gates for a total of 8 gates. It uses a simple post-processing
vector ¢ = (1, —1) thatamounts to measuring the Pauli Z operator on the ancilla qubit, which is the same
observable measured in the Swap Test. Not only does this circuit have a lower gate count than typical
implementations of the Swap Test (see e.g. the circuitin figure 1(B)), but actually it implements a
completely different unitary.

Let Sppa denote the Schmidt rank (across the cut between ancilla and the data qubits) of the unitary Gapa
associated with the ABA gate sequence. It can be verified that Sypa = 3. This means that G, is notlocally
equivalent to a controlled-SWAP, whose analogously defined Schmidt rank is 2. Thus, the ABA is fundamentally
different from the Swap Test: it cannot be obtained from the Swap Test by local operations.

The general form of the ABA is given in figure 5(B). There is a repeating unit, shown in the inset of the figure,
that is applied on each pair of qubits composing p and o as well as on the ancilla qubit. This unithas 4 CNOT
gates, so the overall algorithm employs 4n CNOT gates and 6n + 2 total gates. Hence, the gate count grows
linearly with the number of data qubits.

3.3. Bell-basis algorithm

Figure 6(A) shows the BBA for one-qubit states p and o. This circuit employs one CNOT gate followed by one
Hadamard gate, with both qubits being measured. It is straightforward to show that this corresponds to a Bell
basis measurement. The post-processing is a bit more complicated, with ¢ = (1, 1, 1, —1), which
corresponds to summing the probabilities for the 00, 01, and 10 outcomes and subtracting probability of the
11 outcome. The above post-processing is equivalent to measuring the expectation value of a controlled-Z
operator.

I0OP Publishing NewJ. Phys. 20 (2018) 113022 L Cincio et al

(A) B)
» ——o{A
p A ——= A
-~ ’
(©) . _
0 (R er{rt -e{The{r o1 #] A
P T |
. - SR T

Figure 7. Equivalence between our ABA and BBA. The two-qubit measurement and classical post-processing in the BBA can be
converted to a Toffoli gate with an ancilla as the target followed by a measurement on the ancilla. This takes us from circuit (A) to
circuit (B). Inserting into circuit (B) the optimal decomposition of the Toffoli gate from [35] gives circuit (C). Finally one does three
simplifications of this circuit to obtain the ABA, indicated by the dashed boxes in (C). Namely, the first boxed CNOT in (C) has
trivial action and hence can be removed. The second boxed CNOT in (C) can be flipped such that the ancilla is the control qubit,
which introduces some Hadamards. One of these Hadamards cancels with the first Hadamard in (C), and two others combine with
Tand T to make the UT and U shown in figure 5(A). Finally the five gates enclosed in the last dashed box in (C) have no effect on the
measurement and hence can be removed.

The generalization of this algorithm is given in figure 6(B). The repeating unit is simply a CNOT and Hadamard,
applied on each pair of qubits composing p and o. Furthermore, every qubit is measured at the output. The total
number of gates is simply 27, and hence grows linearly with the number of qubits. However, more importantly, the
CNOT and Hadamard on each qubit pair can be performed in parallel. This crucial fact means that this algorithm has
aconstant depth, independent of problem size. Namely, the depth is two quantum gates.

On the other hand, the classical post-processing is somewhat complicated, and its complexity scales linearly
with the problem size. Namely, the post-processing vector can be writtenas ¢ = (1, 1, 1, —1)®", provided
that one arranges the qubits in the order P,Q,P,Q; P,,Q,, where PP, ... P,,and Q,Q, ... Q, are the subsystems
composing p and o respectively. The linear scaling of post-processing follows from the fact that one does not
explicitly compute ¢ - p in equation (3). Rather one bins individual measurement outcomes into one of two bins
(either the 1 or —1 bin). Here, the bin is determined by first assigning each of the n qubit pairs a value of 1 or —1,
based on the associated eigenvalue of the controlled-Z operator, and then multiplying these 7 values. The
overlap Tr(po) is then given by the weighted average over all outcomes, where the weights correspond to the bin
label (either 1 or —1).

Nevertheless, for NTQCs, due to decoherence and gate infidelity, it is better for the classical post-processing
to grow linearly in 7 than for the quantum circuit depth to grow linearly in #. Hence, the BBA seems to be the
superior algorithm in that case.

3.4. Discussion

In 2013, Garcia-Escartin and Chamorro-Posada discovered the BBA for computing state overlap [24]. We were
unaware of this important result until after our machine-learning approach found our BBA. More generally, it
appears that the quantum computing community seems to be unaware of this article, perhaps because the article
was presented in the language of quantum optics rather than that of quantum computing. Indeed, the ancilla-
based version of the Swap Test, shown in figure 1, continues to be the algorithm employed in the quantum
computing literature (e.g. see [27, 33]).

Although our two algorithms look very different, one can actually show a simple equivalence between
our ABA and our BBA. One can see this by converting the classical post-processing in the BBA into a
quantum gate. In particular, this gate would be a Toffoli gate, controlled by the two data qubits with the
target being an ancilla qubit prepared in the |0) state. Appendix B shows proof of this statement. After
inserting the Toffoli gate (see figure 7(B)), one would do a measurement of the Pauli Z observable on the
ancilla to decode the state overlap. By replacing the Toffoli gate with its decomposition from [35] and
simplifying the resulting circuit, one can then obtain our ABA (see figure 7(C)). In this sense, our ABA is
essentially our BBA but with the classical post-processing transformed into Toffoli gatesand a
measurement on the ancilla. This equivalence is shown in figure 7 for one-qubit states. The generalization
to multi-qubit states is straightforward.

10P Publishing

NewJ. Phys. 20 (2018) 113022 L Cincio et al
(A)
0) —{T] (T 1t -e-{ut
p
o —+ TH
(B)

[0) Us

Figure 8. Ancilla-based algorithm adapted (via our machine-learning approach) to commercial hardware. (A) ABA adapted to IBM’s
five-qubit computer, U= T" H. (B) ABA adapted to Rigetti’s 19-qubit computer. One-qubit unitaries have the following form:
U =Us=HU=U=U]=U] =XH,Uy = Ry(— n/4)T,Us = THHT, Uy = Rx(1/4), Ujy = Rx(— 37/4), where
0
Ry(8) = e 19X,

=[5

1 1 T
| | | — exact]
e—e BBA
~ 08 o8} e ABA f
—~ o—o Swap Test
0.6 0.6 .
-~
o L L i
o
o 041 o4l f
+
g L i
=020 0.2
n
<) L i
OT(A)\ | | | 0\7 | | |
0 /2 ™ 3r/2 2m O /2 ™ 37/2 2m

(0% a

Figure 9. Experimentally observed overlaps on commercial hardware for the states |[¥) = (]0) + [1)) /~/2 and |®) = (|0) +

€|1)) /v/2.. (A) Results from IBM’s five-qubit computer called ‘{bmqx4’, with 49,152 quantum computer runs per data point. The
black curve is the analytical overlap | (®|W) |. The red, blue, and green curves are respectively the results for the BBA from figure 6(A),
the ABA from figure 8(A), and the Swap Test from figure 2(B). (B) Results from Rigetti’s 19-qubit computer, with 200,000 quantum
computer runs per data point. The curves are analogous to those from panel (A). Namely, the red, blue, and green curves are
respectively for the BBA from figure 6(A), the ABA from figure 8(B), and the Swap Test from figure 2(A) which Rigetti compiled to
figure 2(C). The experimentally estimated overlap takes negative values for some « because the algorithm estimates the expectation
value of controlled-Z operator, which has a negative eigenvalue. Another reason for this effect may be noise and other imperfections of
the device.

4. Hardware-specific algorithms

Our BBA can be directly implemented on IBM’s and Rigetti’s quantum computers without any concern about
connectivity issues (except for the minor issue that Rigetti uses controlled-Z instead of CNOT—their compiler
easily makes the translation).

However, our ABA needs to be modified to account for IBM’s and Rigetti’s connectivity. While it is possible
to manually modify the ABA to fit the connectivity, to illustrate our machine-learning approach, we numerically
optimized the algorithm with the same resources as that shown in figure 3(A). The only difference is that we
specified the gate set .4 to match the gate set (and hence the connectivity) of IBM’s and Rigetti’s computers.

The resulting algorithms that we obtained with our machine-learning approach are shown in figure 8. The ABA
adapted to IBM’s five-qubit computer only requires one additional gate, a Hadamard gate. The ABA adapted to
Rigetti’s 19-qubit computer requires an additional two-qubit gate and several additional one-qubit gates.

5. Testing our algorithms

We implemented our algorithms on IBM’s five-qubit and Rigetti’s 19-qubit computers. The resulting data are
shown in figure 9. A caveat is that the different qubit counts for the two hardwares make it difficult to directly
compare the results between these hardwares.

10

10P Publishing

NewJ. Phys. 20 (2018) 113022 L Cincio et al

Table 1. Rms errors for the data shown in figure 9.

IBM (5 qubits) Rigetti (19 qubits)

Swap test 0.311 0.537
ABA 0.106 0.432
BBA 0.116 0.160

We considered two pure states of the form

T) = (10) +11))/+2, @

|®) = (10) + e|1))/V2, (®)

and we compared our results to the exact overlap | (P|) |?
table 1.

On both computers, the Swap Test (green curve in figure 9) performed poorly. It is noteworthy that these are
only single-qubit states, and hence the results are expected to be even worse as one grows the size of these states.

Opverall, our ABA performed significantly better than the Swap Test, while using the same resources, as is
evident from the much smaller rms errors. The BBA, which allows for measurements on all qubits, dramatically
outperformed the other algorithms on Rigetti’s computer and performed roughly the same as ABA on IBM’s
computer. The relatively high accuracy of BBA is naturally expected due to its short depth, which mitigates the
effects of decoherence and gate infidelity.

We note that there are values of the parameter «v in equation (8) for which the Swap Test performs better
than ABA and BBA, e.g. around o &~ 7. However, we believe that the rms error given in table 1 is a better
indicator of algorithms’ performance than the error at a particular value of . To make this point, note thatona
fully decohered (but otherwise perfect) hardware, the Swap Test is expected to return zero overlap
independently of angle cv. The algorithm would output the correct value for the overlap at « = malbeit for the

(black curve in figure 9). The rms errors are shown in

Wrong reason.

Our results show that connectivity between qubits as well as native gate set play important roles in the
performance. Rigetti’s 19 qubit computer offers less connectivity than IBM’s five-qubit one. As a result,
algorithms discovered for Rigetti’s architecture are longer (compare circuits presented in figures 2 and 8)
and overall perform worse. Algorithms found for IBM and Rigetti’s computers suggest that for the
particular problem of finding Tr(po), the ability to apply CNOT (rather that controlled-Z) results in shorter
circuits. This can be seen from figure 8(B): several one-qubit gates can be eliminated by writing controlled-
Z gates in terms of CNOTs.

6. Conclusions

This work shows that even well-known algorithms can be improved upon using an automated approach. As
noted in the introduction, there are many applications that require state overlap computation, including the
emerging new field of quantum machine-learning. While the Swap Test appears as a subroutine in many of these
applications, we show that there are more efficient circuits to perform this subroutine.

We have found a constant depth algorithm (denoted BBA above) for computing state overlap, which is better
than the linear scaling of the Swap Test. Furthermore, this algorithm performs better—with significantly lower
error—even in the single-qubit case. It is therefore advisable that researchers use this algorithm henceforth for
computing state overlap on NTQCs. This algorithm essentially corresponds to a measurement in the Bell basis
for corresponding pairs of qubits. A key aspect of our approach that aided this algorithm’s discovery was to allow
for non-trivial classical post-processing, a strategy that has been used previously to shrink the depth of quantum
algorithms [36]. The complexity of the post-processing for the BBA scales only linearly in the problem size (i.e.
the number of qubits), ensuring that the quantum speedup that this algorithm provides is not due to the transfer
of exponential complexity to the classical post-processing, but rather comes from the use of gates that can be
executed in parallel.

Our main technical tool was a machine-learning method that allowed for task-oriented discovery of
quantum algorithms. By task-oriented, we mean that this method defines a cost function based upon training
data that are representative of the desired computation, i.e. the training data define the task. Minimizing the cost
function results in a general algorithm for this computation. We emphasize that this goes far beyond quantum
compiling since it allows for algorithm discovery when no algorithm is known.

Conceptually, our method separates quantum resources (ancillas, data qubits, and measurements) from
algorithm parameters (gate sequence and classical post-processing). The former are fixed as hyperparameters

11

10P Publishing

NewJ. Phys. 20 (2018) 113022 L Cincio et al

while we optimize the latter. The algorithm’s generalization is obtained by training for various problem sizes and
recognizing the pattern. In future work, we plan to automate the process of pattern recognition for algorithm
generalization.

As noted in [9], this field will be even more promising when quantum computers become available. This is
due to the exponential speedup they provide in evaluating algorithm cost, i.e. by avoiding the exponential
overhead of quantum simulation on classical computers. Indeed, some recent works propose to use quantum
computers in automated algorithm learning [6, 7, 12]. Likewise our method can be extended to learning on a
quantum computer by outsourcing cost evaluation to the quantum computer. This will be a topic of our
future work.

Acknowledgments

The authors acknowledge helpful discussions with Francesco Caravelli. We thank Rigetti and IBM for providing
access to their quantum computers. The views expressed in this paper are those of the authors and do not reflect
those of Rigetti or IBM. LC was supported by the US Department of Energy through the] Robert Oppenheimer
fellowship. YS acknowledges support of the LDRD program at Los Alamos National Laboratory (LANL). ATS
and PJC were supported by the LANL ASC Beyond Moore’s Law project.

Appendix A. Implementation details

This appendix gives details on the implementation of the Swap Test on Rigetti’s 19-qubit quantum computer.
The circuit, shown in figure A1, was generated by Rigetti’s compiler. It consists of 22 one-qubit gates
decomposed into rotations Ry (o) = e 2% and pulses S = e 14X as follows:

Uy = Uy = SRy (—31/4)S,

Us = SRz(—7/2),

Uy = SRz (w/4) SRz (7 /2),

Us = SRz (1) SRz (—7/2),

Us = SRz () SRz (37/4),

U; = SRz (—7/2),
Us=Ug=Up=Uj,=Ul=Uj, =6,
Uio = S'Rz(n/4) SRz (—7/2),

Ui = S'Rz(3)S,

Uis = SRz (),

Uis = SRz (m/4)S'Rz(7),

Ui = SRz (—37/4)SR; (7 /2),

Uiy = SRz(—7/4),

Uig = Uz = SRz (7),

Usy = Rz(—7/2)SRz(7/4), (A1)

where a; ™~ —0.65447, a; >~ 0.78577, a3 ~ 0.15447mand ay >~ 0.21437.

Figure A1. Swap Test circuit obtained from Rigetti’s compiler for their 19-qubit quantum computer. The specific form of all one-
qubit gates is given by equation (A1).

10P Publishing

NewJ. Phys. 20 (2018) 113022 L Cincio et al

Appendix B. Equivalence between ABA and BBA

Here we show that the post-processing in the BBA is equivalent to inserting a sequence of Toffoli gates followed
by a measurement of Pauli Z operator as shown in figure B1. The rest of the proof of equivalence between ABA
and BBA is presented in section 3.4 for one-qubit input states. Generalization to multi-qubit input states is
straightforward as Toffoli gates in figure B1 are controlled by different qubits.

Let CZ; ;. denote controlled-Z gate acting on qubits jand k. Note that CZ is symmetric—the roles of control
and target qubits can be exchanged. Post-processing employed in BBA is equivalent to measuring the
expectation value of a product of CZ gates. The outcome of BBA is thus given by

N
Tr[p I1 CZNH(,k], (B1)

k=1

where pis 2N -qubit density matrix describing the state of BBA just before the measurement, see figure B1(A).
We will show that this quantity is equal to the outcome of the algorithm that is obtained from BBA by replacing
measurement on all qubits and subsequent post-processing with a collection of Toffoli gates followed by
measurement on the ancilla qubit, as shown in figure B1(B). The outcome of that algorithm is given by

N N
TT[H Tn+kko(10) (0l ® p) [T TN+k,k,oZo], (B2)
k=1 k=1

where Tj ;. o denotes Toffoli gate acting on qubits j, k, 0 with j, k being control qubits and 0 is the target qubit.
Zydenotes Pauli Z operator acting on qubit 0. The expression in (B2) can be transformed as follows

N N
Tr[(|0> (0] ® p) H INt ko Zo H TN+k,k,0]

k=1 k=1

[N N

=Tr[(10) (0] ® p)CZin+1][Tnskko Zo [] TN+k,k,O] =..
| k=2 k=2
[N

=Tr (|0> <0| & p)Zo H CZN+k,k:|
| k=1
C N

=Trlp]] CZN+k,k]> (B3)
| k=1

where we used the fact that T ; o commutes with Tps ;7 o, as well as CZy ;. We also used the following gate
equivalence

Tijo ZoTijo = ZoCZy. (B4)

Thelast line in equation (B3) establishes the equivalence.

(A) (B)

10)° A
1
2

S p{ia
;\'+2 N*?

Figure B1. Post-processing that is used in BBA (panel (A)) is equivalent to the sequence of Toffoli gates followed by a measure-
ment of the Pauli Z operator on ancilla qubit shown in panel (B). Here the post-processing vectorsare ¢ = (1, —1)and ¢ =
(1, 1, 1, —1)®",assuming qubits are arrangedin order 1, N + 1,2,N + 2, ..., N,2N.

13

I0OP Publishing NewJ. Phys. 20 (2018) 113022 L Cincio et al

References

[1] PreskillJ 2012 Quantum computing and the entanglement frontier arXiv:1203.5813
[2] Neill Cetal2017 A blueprint for demonstrating quantum supremacy with superconducting qubits Science 360 195-9
[3] Ball P 2018 The era of quantum computing is here. Outlook: cloudy Quanta Mag. [available at: http://quantamagazine.org/the-era-
of-quantum-computing-is-here-outlook-cloudy-20180124/]
[4] Fowler A G, Mariantoni M, Martinis] M and Cleland A N 2012 Surface codes: towards practical large-scale quantum computation
Phys. Rev. A 86032324
[5] YouH et al 2013 Simulating the transverse Ising model on a quantum computer: error correction with the surface code Phys. Rev. A 87
032341
[6] Benedetti M, Garcia-Pintos D, Nam Y and Perdomo-Ortiz A 2018 A generative modeling approach for benchmarking and training
shallow quantum circuits arXiv:1801.07686
[7] Mitarai K, Negoro M, Kitagawa M and Fujii K 2018 Quantum circuit learning Phys. Rev. A 98 032309
[8] Khaneja N, Reiss T, Kehlet C, Schulte-Herbriiggen T and Glaser S] 2005 Optimal control of coupled spin dynamics: design of NMR
pulse sequences by gradient ascent algorithms J. Magn. Reson. 172 296-305
[9] Gepp A and Stocks P 2009 A review of procedures to evolve quantum algorithms Genetic Program. Evolvable Mach. 10 181-228
[10] Lukac M et al 2003 Evolutionary approach to quantum and reversible circuits synthesis Artif. Intell. Rev. 20 361-417
[11] Venturelli D, Do M, Rieffel E and Frank J 2018 Compiling quantum circuits to realistic hardware architectures using temporal planners
Quantum Sci. Technol. 3 025004
[12] KhatriS et al 2018 Quantum-assisted quantum compiling arXiv:1807.00800
[13] Héner T, Steiger D S, Svore K and Troyer M 2018 A software methodology for compiling quantum programs Quantum Sci. Technol. 3
020501
[14] Maslov D 2017 Basic circuit compilation techniques for an ion-trap quantum machine New J. Phys. 19 023035
[15] MartinezE A, Monz T, Nigg D, Schindler P and Blatt R 2016 Compiling quantum algorithms for architectures with multi-qubit gates
New J. Phys. 18 063029
[16] ChongF T, Franklin D and Martonosi M 2017 Programming languages and compiler design for realistic quantum hardware Nature
549180
[17] Swaddle M, Noakes L, Smallbone H, Salter L and WangJ 2017 Generating three-qubit quantum circuits with neural networks Phys.
Lett. A3813391-5
[18] Zahedinejad E, Ghosh J and Sanders B C 2016 Designing high-fidelity single-shot three-qubit gates: a machine-learning approach Phys.
Rev. Appl. 6054005
[19] LasHeras U, Alvarez-Rodriguez U, Solano E and Sanz M 2016 Genetic algorithms for digital quantum simulations Phys. Rev. Lett. 116
230504
[20] Hachtel G D and Somenzi F 1996 Logic Synthesis and Verification Algorithms (Boston, MA: Kluwer)
[21] Haaswijk W et al 2018 Deep learning for logic optimization algorithms 2018 IEEE Int. Symp. on Circuits and Systems (ISCAS)
(Piscataway, NJ: IEEE) pp 1-4
[22] Buhrman H, Cleve R, Watrous J and De WolfR 2001 Quantum fingerprinting Phys. Rev. Lett. 87 167902
[23] Gottesman D and ChuangI2001 Quantum digital signatures arXiv:quant-ph/0105032
[24] Garcia-Escartin] Cand Chamorro-Posada P 2013 Swap test and Hong-Ou-Mandel effect are equivalent Phys. Rev. A 87 052330
[25] Patel R B, HoJ, Ferreyrol F, Ralph T C and Pryde G] 2016 A quantum Fredkin gate Sci. adv. 2 €1501531
[26] Ferreyrol F, Ralph T Cand Pryde G] 2013 Implementation of a quantum Fredkin gate using an entanglement resource 2013 Conf. on
Lasers and Electro-Optics Europe and International Quantum Electronics Conf. (CLEO EUROPE/IQEC) p 1
[27] Linke N M et al 2017 Measuring the Renyi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer
arXiv:1712.08581
[28] Smith RS, Curtis M J and Zeng W] 2016 A practical quantum instruction set architecture arXiv:1608.03355
[29] Cross AW, Bishop LS, Smolin J A and Gambetta] M 2017 Open quantum assembly language arXiv:1707.03429
[30] Lloyd S, Mohseni M and Rebentrost P 2013 Quantum algorithms for supervised and unsupervised machine learning arXiv:1307.0411
[31] Wiebe N, Kapoor A and Svore K 2014 Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning
Quantum Inf. Comput. 15 0318-58
[32] Rebentrost P, Mohseni M and Lloyd S 2014 Quantum support vector machine for big data classification Phys. Rev. Lett. 113 130503
[33] Johris, Steiger D S and Troyer M 2017 Entanglement spectroscopy on a quantum computer Phys. Rev. B96 195136
[34] SmolinJ A and DiVincenzo D P 1996 Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate Phys. Rev. A
532855
[35] Shende V'V and MarkovIL 2009 On the CNOT-cost of Toffoli gates Quantum Inf. Comput. 9 0461-86
[36] Svore KM, Hastings M B and Freedman M 2014 Faster phase estimation Quantum Inf. Comput. 14 306-28

14

http://arxiv.org/abs/1203.5813
https://doi.org/10.1126/science.aao4309
http://quantamagazine.org/the-era-of-quantum-computing-is-here-outlook-cloudy-20180124/
http://quantamagazine.org/the-era-of-quantum-computing-is-here-outlook-cloudy-20180124/
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.87.032341
https://doi.org/10.1103/PhysRevA.87.032341
http://arxiv.org/abs/1801.07686
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1007/s10710-009-9080-7
https://doi.org/10.1007/s10710-009-9080-7
https://doi.org/10.1007/s10710-009-9080-7
https://doi.org/10.1023/B:AIRE.0000006605.86111.79
https://doi.org/10.1023/B:AIRE.0000006605.86111.79
https://doi.org/10.1023/B:AIRE.0000006605.86111.79
https://doi.org/10.1088/2058-9565/aaa331
http://arxiv.org/abs/1807.00800
https://doi.org/10.1088/1367-2630/aa5e47
https://doi.org/10.1088/1367-2630/18/6/063029
https://doi.org/10.1038/nature23459
https://doi.org/10.1016/j.physleta.2017.08.043
https://doi.org/10.1016/j.physleta.2017.08.043
https://doi.org/10.1016/j.physleta.2017.08.043
https://doi.org/10.1103/PhysRevApplied.6.054005
https://doi.org/10.1103/PhysRevLett.116.230504
https://doi.org/10.1103/PhysRevLett.116.230504
https://doi.org/10.1109/ISCAS.2018.8351885
https://doi.org/10.1109/ISCAS.2018.8351885
https://doi.org/10.1109/ISCAS.2018.8351885
https://doi.org/10.1103/PhysRevLett.87.167902
http://arxiv.org/abs/quant-ph/0105032
https://doi.org/10.1103/PhysRevA.87.052330
https://doi.org/10.1126/sciadv.1501531
https://doi.org/10.1109/CLEOE-IQEC.2013.6801703
https://doi.org/10.1109/CLEOE-IQEC.2013.6801703
http://arxiv.org/abs/1712.08581
http://arxiv.org/abs/1608.03355
http://arxiv.org/abs/1707.03429
http://arxiv.org/abs/1307.0411
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevB.96.195136
https://doi.org/10.1103/PhysRevA.53.2855

	1. Introduction
	2. Machine-learning approach
	2.1. Resources
	2.2. Algorithm
	2.3. Optimization
	2.4. Details of the optimization techniques
	2.5. Generalization

	3. Main results
	3.1. Overview
	3.2. Ancilla-based algorithm
	3.3. Bell-basis algorithm
	3.4. Discussion

	4. Hardware-specific algorithms
	5. Testing our algorithms
	6. Conclusions
	Acknowledgments
	Appendix A.
	Appendix B.
	References

