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Abstract
Magnetostaticmodes supported by a ferromagnetic sphere have been known as theWalkermodes,
each of which possesses an orbital angularmomentum aswell as a spin angularmomentum along a
staticmagnetic field. TheWalkermodes with non-zero orbital angularmomenta exhibit topologically
non-trivial spin textures, whichwe callmagnetic quasi-vortices. Photons in optical whispering gallery
modes supported by a dielectric sphere possess orbital and spin angularmomenta forming optical
vortices.Within a ferromagnetic, as well as dielectric, sphere, two forms of vortices interact in the
process of Brillouin light scattering.We argue that in the scattering there is a selection rule that dictates
the exchange of orbital angularmomenta between the vortices. The selection rule is shown to be
responsible for the experimentally observed nonreciprocal Brillouin light scattering.

1. Introduction

The coupling between electron spins in solids and light is in general veryweak. This is because the coupling is
inevitablymediated by the orbital degree of the electrons and is realized through spin–orbit interaction for orbits
and spins and electric-dipole interaction for orbits and light, respectively [1]. Although it is possible to
coherently (non-thermally)manipulate collective excitations of spins in spin-orderedmaterials bymeans of
ultrafast optics, where the electric field density of an optical pulse is high both temporally and spatially [2–5], an
attempt to realize coherent opticalmanipulation ofmagnons in the quantum regime is hindered by theweakness
of the spin-light coupling [6]. Given the encouraging development of circuit quantummagnonics, where
microwave photons andmagnons are strongly coupled, enabling a coherent energy exchange at the single-
quantum level [7–9], the similar energy exchange between optical photons andmagnons has been anticipated.

To overcome theweakness of the spin-light interaction, cavity optomagnonics has been investigated [10–17].
In cavity optomagnonics, the density of states of opticalmodes are engineeredwith an optical cavity to enhance
spin-light interaction. In particular, spheres of ferromagnetic insulators supporting whispering gallerymodes
(WGMs) for photons and a spatially uniformmagnetostaticmode, called theKittelmode, formagnons are used
as a platformof the cavity optomagnonics.With spheresmade of typical ferromagnetic insulator, yttrium iron
garnet (YIG), the pronounced sideband asymmetry [11–13], the nonreciprocity [11], and the resonant
enhancement [12, 13] ofmagnon-induced Brillouin scattering have been demonstrated.

In this context, it is interesting to examine the behavior ofmagnetostaticmodes beyond the simplest Kittel
mode. Themagnetostaticmodes residing in a ferromagnetic sphere under a uniform staticmagnetic field are
known as theWalkermodes [18, 19]. They exhibit, in general, topologically non-trivial spin textures about the
axis along the appliedmagnetic field andmight be calledmagnetic quasi-vortices. Themagnetic quasi-vortices
can be characterized by their orbital angularmomenta along the symmetry axis [20, 21]. Photons in optical
WGMspossess not only spin angularmomenta but also orbital angularmomenta, too, which echoes the concept
known as optical vortices [22].Within the ferromagnetic sphere, the optical vortices can interact with the
magnetic quasi-vortices in the course of the Brillouin light scattering. The total orbital angularmomentum is
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then expected to be conserved as long as the symmetry axis of theWGMs coincides with that of theWalker
modes, imposing a selection rule on the Brillouin scattering processes.

In this article, the Brillouin scattering hosted in a ferromagnetic sphere is theoretically investigated putting a
special emphasis on the orbital angularmomentum exchange between the optical vortices and themagnetic
quasi-vortices.We establish a selection rule imposed by the orbital angularmomentum conservation for the
Brillouin scattering hosted in a ferromagnetic sphere. The experimentally observed Brillouin scattering by
variousWalkermodes reported in [23], which reveals that the scattering is either nonreciprocal or reciprocal
depending on the orbital angularmomentumof themagnetic quasi-vortices, is then analyzedwith the theory
developed here and found to be explainedwell. The result would provide a new area for chiral quantumoptics
[24] and topological photonics [25, 26] based on optical vortices andmagnetic quasi-vortices.

2.Orbital angularmomenta

The schematics of the cavity optomagnonic systemwe investigate is shown in figure 1, where theWalkermode
and theWGMs share the symmetry axis (z-axis) along a staticmagnetic fieldH. TheWalkermodes and the
WGMs generally exhibit non-zero orbital angularmomenta. In this sectionwe analyze the orbital angular
momenta of thesemodes. It is noteworthy that the vectorial nature of both the light field and themagnetization
results in the situation that the spin and orbital angularmomenta are separately conserved in the optomagnonic
system. This can be explained by the fact that the spin angularmomentumoriginates in the local, temporal
rotation of the vector and the orbital angularmomentum in the global distribution of its phase.

2.1.Orbital angularmomenta ofWalkermodes
The components of the transversemagnetization,Mx andMy, with respect to the staticmagnetic fieldH
(z-axis) form the normalmodes = M M Mix y, which can be expressed in the polar coordinates as

= ^
Y ( )M M e , 1i

where = +M̂ M Mx y
2 2 andΨ is the phase.When themode possesses the axial symmetry the phaseΨ can be

expressed as


f
f fY =

¶Y
¶

= ( ), 2z

wheref is the azimuthal angle and  =
f

¶Y
¶z is the orbital angularmomentum taking a value of an integer. Note

that the orbital angularmomentum is defined here and throughout the paper as being divided by ÿ for notational
brevity.

For theWalkermode [18, 19] since the dipolar interaction breaks the axial symmetry the orbital angular
momentum z is in general not a good quantumnumber taking a value of an integer. For theWalkermodes
with lowermode indices, however, the contribution of the dipolar interaction to the total energy is small so that

Figure 1. Schematics of the cavity optomagnonic system considered in this article. A clockwise (CW) or a counterclockwise (CCW),
transverse electric (TE)whispering gallerymode (WGM) or transversemagnetic (TM)WGM (see right inset) is Brillouin-scattered by
theWalkermode depicted by thefield lines.Here the distribution of the transversemagnetization of the (4, 0, 1)Walkermode on the
equatorial plane is shown as an example. TheWalkermodes and theWGMs are assumed to share the symmetry axis (z-axis) along a
staticmagneticfieldH.
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the orbital angularmomentum z can be approximately defined. As for theWalkermodewith the index
( )n m r, ,mag [18, 19], the orbital angularmomentum z depends on the index mmag and is expressed as

 » - -( ) ( )( ) m 1 . 3z
m

mag
mag

While theKittelmode [(1, 1, 0)mode] has no orbital angularmomentum,  =( ) 0z
1 , (4, 0, 1) and ( ¯ )3, 1, 1

modes, for instance, have  »( ) 1z
0 and  »-( ) 2z

1 , respectively. Here, for theWalkermodeswith n=mmag and

= +n m 1mag , equation (3) is exact.We call theWalkermodes with non-zero ( )
z
mmag asmagnetic quasi-vortices.

The prefix ‘quasi-’ emphasizes the fact that the orbital angularmomentumwe defined in equation (3) is the
approximated one and the fact thatmagnons are quasi-particle withfinite lifetime.

Figure 2 shows the spatial distributions of the transversemagnetizations for the representativeWalker
modes (1, 1, 0), ( ¯ )3, 1, 1 , (3, 1, 1), and (4, 0, 1). Themodes having non-zero z (e.g., ( ¯ )3, 1, 1 and (4, 0, 1) in
figure 2) exhibit the topologically non-trivial spin textures. Note that the orbital angularmomentum z here
plays a similar role as thewinding number or the skyrmion number in other literature [27].

2.2.Orbital angularmomentumofWGMs
The electricfield of theWGM in an axially symmetric dielectricmaterial has been extensively studied [28]. Now,
for simplicity, we focus on the azimuthalmode indexmwhich characterizes the azimuthal profile of the electric

field of the fundamentalWGM. In the spherical basis = - + -+ - { }{ˆ ˆ ˆ } (ˆ ˆ ) ˆ (ˆ ˆ )e e e e e e e e, , i , , ix y z x y0
1

2

1

2
, the

electric field of theWGMs of the counterclockwise (CCW) orbit can bewritten as

*= f-( ) ˆ ( )( ) ( )EE e e 4m mTE i
0

* *= -f f f f-
+

- -
-( ) ˆ ( ) ˆ ( )( ) ( ) ( )E EE e e e e e e , 5i

m m
o

m mTM i i i i

where ( )E TE and ( )E TM correspond to the transverse electric (TE) and the transversemagnetic (TM)WGMs,
respectively, andf is the azimuthal angle. Note that the expression equation (5) is comprised of two terms, each
of which have an additional azimuthal phase factor fe i , resulting in different orbital angularmomenta for these
components, apart from the commonone f-e mi . The time-dependent electric field as awhole is written as

E *= +w w-( ) ( )t E Ee e . 6t ti i

For the clockwise (CW) orbit, the electric fields ¯ ( )E TE and ¯ ( )E TM can bewritten as

*= f¯ ( ) ˆ ( )( ) ( )EE e e , 7m mTE i
0

* *= -f f f f
+

-
-¯ ( ) ˆ ( ) ˆ ( )( ) ( ) ( )E EE e e e e e e . 8o

m m
i
m mTM i i i i

Ei (Eo) in (5) and (8) shall be called the inner (outer) component of the TMmode. To see this,figure 3(a)
shows the radial intensity distributions of two components ∣ ∣Ei

2 and ∣ ∣Eo
2 (magenta and green dotted lines)

alongwith the intensity profiles of the transverse component = +( )E E Er i o
1

2
(red solid) and the longitudinal

component = - -f ( )E E Ei o
1

2
(blue solid) for the TMelectric field of aWGM.We can see that ∣ ∣Ei

2 has its

maximum in the inner part of the resonator compared to ∣ ∣Eo
2. The shift of the ‘centers of gravity’ of the two

components, ∣ ∣Ei
2 and ∣ ∣Eo

2 is amanifestation of the spin-Hall effect of light [29, 30], which originates from the
spin–orbit coupling of light [31].

From the dependence of the electric field onf, the orbital angularmomentum z of theWGM, that is, the
optical vortex [22], can be straightforwardly deduced. First, let us consider theCCWorbit. As for the TEmode

Figure 2.Transversemagnetization distributions on the equatorial plane of (1, 1, 0), ( ¯ )3, 1, 1 , (3, 1, 1) and (4, 0, 1)Walkermodes,
whose orbital angularmomenta are  =( ) 0z

1 ,  =-( ) 2z
1 ,  =( ) 0z

1 , and  =( ) 1z
0 , corresponding to thewinding numbers of the

respective spin textures of theWalkermodes. Note that themagnetic field is applied parallel to z-axis.
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with the azimuthalmode index =m mTE, since there is no spin angularmomentum, the orbital angular
momentum is given by

 = ( )( ) m 9z
mCCW,TE,

TE
TE

that expresses the azimuthal dependence of the TEWGM in the formof  f- ( )
e i z

mCCW,TE, TE similarly to the result in
section 2.1which applies below aswell. As for the TMmodewith =m mTM, however, the spin–orbit coupling
of light has to be taken into account [31]. From thef-dependence of the coefficient of thefirst termof (5),

f f-( )( )E e ei
m mi iTM TM , the orbital angularmomentumof the inner (s+) component of the TMmode,

 +( )
z

mCCW,TM , TM , should read as

 = -+ ( )( ) m 1. 10z
mCCW,TM ,

TM
TM

From thef-dependence of the coefficient of the second termof (5),- f f- -( )( )E e eo
m mi iTM TM , the orbital angular

momentumof the outer (s-) component of the TMmode,  -( )
z

mCCW,TM , TM , on the other hand, should read as

 = +- ( )( ) m 1. 11z
mCCW,TM ,

TM
TM

Note that since the spin angularmomentum  =+( ) 1z ( = --( ) 1z ) is associatedwith the s+ (s-) component
[i.e., *+ê ( *-ê ) component] of the TMelectric field, the total angularmomentum ( )mCCW,TM, TM of the TMelectric
fieldwith azimuthalmode indexmTM is  + =+ +( ) ( ) mz

m
z

CCW,TM ,
TM

TM for the inner (s+) component and

Figure 3. (a) Intensity profiles of the radial and azimuthal components on the equatorial plane, ∣ ∣Er
2 and f∣ ∣E 2, of the electric field of

the fundamental TMWGMare shown in the red and blue solid lines, respectively. It is assumed that the sphere diameter is 1mmand
the refractive index is 2.19 as for YIG. The radial distributions of the inner and outer components, ∣ ∣Ei

2 and ∣ ∣Eo
2, are shown in the

green andmagenta dotted lines. The inner component Ei is associatedwithσ+ (σ−) component, while the outer component Eo is
associatedwithσ− (σ+) component for theCCW (CW) orbit. The vertical line indicates the resonator-air boundary. (b) Schematic
representation of the difference of orbital angularmomenta for the TE, inner TMand outer TMcomponent of aWGMwithm=10.
The trajectories of the head of the polarization vector for each electric field are shown. The hollow circles aroundwhich the electric
field directs upward are for the ease of counting the numbers of the rotations of the head.When themode index is 10, the orbital
angularmomentum reads 10, 9 and 11 for the TE, inner TM, and outer TMcomponents, respectively.
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 + =- -( ) ( ) mz
m

z
CCW,TM ,

TM
TM for the outer (s-) component. Thus, for any cases, =( ) mmCCW,TM,

TM
TM and is

well-defined.
For theCWorbit, the similar argument leads us to the following:

 = - ( )( ) m 12z
mCW,TE,

TE
TE

 = - ++ ( ) ( )( ) m 1 13z
mCW,TM ,

TM
TM

 = - -- ( ) ( )( ) m 1 , 14z
MCW,TM ,

TM

and the total angularmomentum = -( ) mmCW,TM,
TM

TM is againwell-defined.Note that for theCWorbit the
outer (inner) component of TMmode is associatedwith s+ (s-), that is opposite to that for theCCWorbit.

The orbital angularmomenta of theWGMs can be visualized by sketching the trajectory of the head of the
polarization vector of the electric fields (figure 3(b)).When themode index is 10, the orbital angularmomentum
reads 10, 9 and 11 for the TE, inner TM, and outer TMcomponents, respectively.

3. Brillouin light scattering

3.1.Magnetic quasi-vortices–optical vortices interaction
Let us now see that the total orbital angularmomentum is conserved in the Brillouin scattering process. The
thorough treatment of the Brillouin scattering bymagnons inWGMs can be found in [16]. In the following, we
emphasize the role of orbital angularmomenta in the Brillouin scattering process. The interactionHamiltonian
representing the Brillouin scattering is

* ò ò= = ( ) ˜ ( ) ( ) ( )E t V t t t t VE Ed d
1

2
d d , 152 1

where the integrand  is the energy flux density and the integral runs over infinity in time t and the volumeV of
theWGM, = w-( )tE E e t

1 1
i 1 and * *= w( )tE E e t

2 2
i 2 are the input and scattered electric fields ofWGMs,

respectively. The angular frequencies ofE1 andE2 are defined here byω1 andω2. Phenomenologically, magneto-
optical effects can be captured by ̃ ( )t , themacroscopic dielectric tensor [32]. For amagnetized cubic crystal, the
dielectric tensor ̃ ( )t in theCartesian basis can bewritten [16, 17, 33] as

   = + +˜ ( ) ˜ ˜ ( ) ˜ ( ) ( )t t t , 160 1 2

where

  =
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥˜ ( )

1 0 0
0 1 0
0 0 1

17r0 0

is responsible for the scalar light shift which is independent on themagnetization M , and

 =

-

-
-

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
˜ ( )

( )
( )

( ) ( )
( )t

fM fM t

fM fM t

fM t fM t

0 i i

i 0 i

i i 0

18

s y

s x

y x

1 0

is responsible for the vector light shift (Faraday effect) and is the first order in themagnetization M . Here theMs

stands for the saturationmagnetization. The third term,

 





=

S S
S S
S S

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

˜ ( )
( ) ( )

( ) ( )
( ) ( )

( )t

G t G t

G t G t

G t G t

, 19

xx xy zx

xy yy yz

zx yz zz

2 0

44 44

44 44

44 44

where





= S + S + S
= S + S + S
= S + S + S

( ) ( )
( ) ( )
( ) ( )

G t G t G

G t G t G

G t G t G ,

xx xx yy zz

yy xx yy zz

zz xx yy zz

11 12 12

12 11 12

12 12 11

is responsible for the tensor light shift (Cotton–Mouton effect) and is the second order in themagnetization M .
Here, the symmetric products of themagnetizations are defined as

S =( ) ( ) ( ) ( )t M t M t 20xx x x

S =( ) ( ) ( ) ( )t M t M t 21yy y y

S = ( )M M 22zz s s
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S = +( ) ( ( ) ( ) ( ) ( )) ( )t M t M t M t M t
1

2
23xy x y y x

S = +( ) ( ( ) ( )) ( )t M t M M M t
1

2
24yz y s s y

S = +( ) ( ( ) ( ) ) ( )t M M t M t M
1

2
25zx s x x s

and theremust be no anti-symmetric products involved in theCotton–Mouton effect from the viewpoint of
symmetry [34]. Here, ò0 is the vacuumpermittivity and òr the relative permittivity. The coefficient f is related to
theVerdet constant  as =f

k M

2 r

s0
with thewavevector k0 of the opticalfield in the vacuum [34] andG11,G12,

andG44 are the constant relevant to theCotton–Mouton effect [33]. Herewe assumed that the transverse
magnetizationsMx andMy are time-dependent.

The interaction between themagnetic quasi-vortices and optical vortices in the course of the Brillouin
scattering process can be understood best in the spherical basis. In this basis the permittivity tensor can be
written as

M M

Q Q

 = +

+ +

w w

w w

- + +
-

-

- + +
-

-

⎛
⎝⎜

⎞
⎠⎟

˜

( )

f
M

f
M

G M
M

G M
M

2
e

2
e

2
e

2
e , 26

t t

s t s t

0
i i

44 i 44 i

m m

m m

where = +w
+

- ( ) ( )M M t M te it
x y

i m and = -w
- ( ) ( )M M t M te it

x y
i m , and

M M

Q Q

= =

=
-

= -

+ -

+ -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

0 1 0
0 0 1
0 0 0

,
0 0 0
1 0 0
0 1 0

,

0 1 0
0 0 1
0 0 0

,
0 0 0
1 0 0

0 1 0
,

where thefirst two terms represent the Faraday effect and the last two terms represent theCotton–Mouton
effect. The irrelevant terms in (16)which give no contribution to the Brillouin scattering are neglected. Here
ωm/2π is the resonance frequency of the concernedWalkermodewith the azimuthalmode index ofmmag.

In the spherical basis the time-dependent transversemagnetization is given by

M M M= +w w
- + +

-
-( ) ( )t M Me e . 27t ti im m

Here note that the creation (annihilation) of amagnon decreases (increases) the spin angularmomentum. Aswe
shall show, the Brillouin scattering stems from the termswithM+ and Q+ (M- and Q-) representing the Stokes
scattering (anti-Stokes scattering) associatedwith the creation (annihilation) of amagnon. Since the TE-to-TM
orTM-to-TE transition process changes the spin angularmomentumofmagnon, these transitions give non-
zero contributions to the Brillouin scattering regarding the conservation of the spin angularmomentum.We
shall see thismore clearly in section 3.2.

3.2. Selection rules
Since the interaction depends on the direction of the input field and its polarization, let usfirst suppose that the
inputfield is the CW-TEmodewithmode index ofmTE, that is, *= f w- -( ) ˆ( )t EE e e em m t

1
i i

0
mTE TE TE . In this case the

Brillouin scattering results in producing photons in theCWTMmode as seen in the following.We can
straightforwardly extend the argument to other cases, e.g., the TMmode input or the input to theCCWorbit.
Herewe note that the azimuthal and time dependence of the transversemagnetization is dictated by

 f w= - +w
+

-
+¯ [ ( )]( )M M te exp i it

z
m

m
i m mag

whoseHermitian conjugate results in that ofM−. As for theCWWGM, the electric field is given by

 f w= - -

w-

¯ [ ]

( )

( ) ( )
E

E t

e

exp i i ,

m t

m
z

m
m

i

CW,TE TM ,

mTE TM TE TM

TE TM TE TM
TE TM

while theCCWWGMexhibits

 f w= -

w-

¯ [ ]

( )

( ) ( )
E

E t

e

exp i i .

m t

m
z

m
m

i

CCW,TE TM ,

mTE TM TE TM

TE TM TE TM
TE TM

These expressions are utilized for the derivation of selection rules described below.
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With theCW-TEmode as the input field, the energyflux density  in (15) reads

*

*





 



å=
-

-
+

f d

f d

-
D

+
D

+ +

- -

⎛
⎝⎜

⎞
⎠⎟

( ) ¯ ¯ ¯

( ) ¯ ¯ ¯ ( )

( ) ( )

( ) ( )

f G M
M E E

f G M
M E E

2 2
e e

2 2
e e , 28

m

s
o

m m t

s m m t

0 44 i i

0 44
i

i i

TM

TM TE

TM TE

where

   D = - 
 ( )( ) ( ) ( ), 29z

m
z

m
z
mCW,TM , CW,TE,TM TE mag

d w w w= -  ( ). 30m m mTM TE

Thefirst (second) term in the right-hand side of (28) represents the Stokes (anti-Stokes) scattering. The
possibility of the scattered light being theCCWWGMis denied given the fact that we are concerned onlywith
cases where   ( ) ( ) ( ),z

m
z z
TE TMmag .

The integrationwith respect to time t in (15)with (28) leads to the energy conservation

w w w- + = ( )0 31m m mTM TE

for the Stokes scattering and

w w w- - = ( )0 32m m mTM TE

for the anti-Stokes scattering. Since the optical densities of states aremodified in the presence of theWGMs, the
probabilities of the scattering processes are affected by them, too.

Furthermore, because of the axial symmetry of the system, the conservation of the total angularmomentum
is expected. The designatedWGMof the Brillouin scattering can then be specified by the selection rule obtained
by the conservation of the orbital angularmomentum. To see this, we integrate  in (15) over the azimuthal
anglef as a part of the volume integral. From thefirst Stokes term in (28)wehave a selection rule:

  - + =+ ( )( ) ( ) ( ) 0. 33z
m

z
m

z
mCW,TM , CW,TE,TM TE mag

With (3), (12), and (13), this selection rule amounts to

= - ( )m m m . 34TM TE mag

As for the second anti-Stokes term in (28), the selection rule is

  - - =- ( )( ) ( ) ( ) 0, 35z
m

z
m

z
mCW,TM , CW,TE,TM TE mag

andwith (3), (12), and (14), we have

= + ( )m m m . 36TM TE mag

Next, let us briefly describe the results when the laser light is injected into theCCW-TEmode. The Stokes
(anti-Stokes) scattering process gives the same conditions of the energy conservation, (31) [(32)]. However, for
theCCWcase the Stokes (anti-Stokes) scattering originates in the inner (outer) component in contrast to the
CWcase. For the anti-Stokes scattering, the conservation of the orbital angularmomentum is represented by

  - - =+ ( )( ) ( ) ( ) 0 37z
m

z
m

z
mCCW,TM , CCW,TE,TM TE mag

which results in

= - ( )m m m , 38TM TE mag

that is, the same selection rule as (34). As for the Stokes scattering,

  - + =- ( )( ) ( ) ( ) 0, 39z
m

z
m

z
mCCW,TM , CCW,TE,TM TE mag

represents the orbital angularmomentum conservation, yielding

= + ( )m m m , 40TM TE mag

that is, the same selection rule as (36).
These selection rules regarding the orbital angularmomentum are themain result of this paper.With the

geometric birefringence [35–37] and densities of states ofWGMs, these selection rules dictate the Brillouin light
scattering byWalkermodemagnons hosted in a ferromagnetic sphere as shown below. In the next sectionwe
employ the selection rules to explain the experiment reported in [23], which reveals that theWalkermode-
induced Brillouin light scattering is either nonreciprocal or reciprocal depending on the orbital angular
momentumof themagnon in the relevantWalkermode, that is, themagnetic quasi-vortex.
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4.Nonreciprocal Brillouin scattering

Here, we apply the selection rules to a concrete example.We suppose that the sample under consideration is a
spheremade of YIGwith its diameter of 1mm, and focus on the Brillouin scattering by theWalkermode
magnonswith  =( ) 0, 1, 2z

mmag , which include (1, 1, 0), (3, 1, 1), (4, 0, 1) and ( ¯ )3, 1, 1 Walkermodes
experimentally investigated in [23].

4.1.Walkermodeswith  =( ) 0z
mmag

Wefirst consider the simplest family of theWalkermodes, namely, those having  =( ) 0z
mmag , that is,mmag=1.

Equation (34) reduces to = -m m 1TM TE and (36) to = +m m 1TM TE , corresponding, respectively, to the
cases of the Stokes and the anti-Stokes scatteringwith theCW-TEmode input. On the other hand, (38) reduces
to = -m m 1TM TE and (40) to = +m m 1TM TE , corresponding, respectively, to the cases of the anti-Stokes
and the Stokes scatteringwith theCCW-TEmode input. The schematics of the relevant scattering processes are
depicted in the figure 4(a).

In thefigure, the densities of states of the TE (green) and the TM (purple)WGMs are schematically shown.
Note that the TE and the TMWGMresonances does not have the same frequency due to the geometric
birefringence [35–37]. The difference between these two frequencies is denoted byGB in the figure, which is
about 0.9 times the free spectral range (FSR) in a spherical resonatormade of YIG. Two sets of the TMmodes are

Figure 4. (a)–(c): Relevant TE (green) andTM (purple)WGMs in the Brillouin scattering (seemain text)with the orbital angular
momenta (OAM) of theWalkermodes being (a) 0, (b) 1 and (c) 2. Themode indices and the orbital angularmomentumof the
relevantWGMs are indicated by the labels next to the Lorentzian peaks. FSR andGB stand for the free spectral range and the frequency
shift due to the geometric birefringence, respectively. (d)–(f): Theoretically predicted reciprocal/nonreciprocal behavior of the
Brillouin scattering signals corresponding to the cases (a)–(c), respectively. Blue (red) curves represent the summed signals of the
contributions fromStokes and anti-Stokes scatterings when the input light is in theCW (CCW)WGM.The frequencyω( i) represents
that of theWalkermodewith orbital angularmomentumof i.
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depicted (top andmiddle), one for the inner and the other for the outer components. Hereafter, for clarity of the
analysis, the light is supposed to be injected into the TEWGMwith themode indexmTE (green highlighted).

The relevant TMWGMs specified by the selection rules are highlighted (otherwise dotted) in each of the
inner or the outer case infigure 4(a). The frequencies that the scattered light would acquire are indicated by blue
and red upright arrows for theCWand theCCWcases, respectively. Here wemade an assumption that the
difference of the input and scattered light determined by theWalkermode frequency is tuned to coincide with
the value FSR−GBby the appliedmagnetic field, which is experimentally feasible as it is approximately realized
in the experiment in [23] aswell as the others [12, 13]. For the case of the scattering into the inner component of
TMmode (top panel), the scattered light for both theCWand theCCWcases are far detuned from the selection
rule-allowedWGM (highlighted). On the other hand, for the case of the scattering into the outer component of
TMmode (middle panel) the scattered light is almost resonant to the selection rule-allowedWGM (highlighted)
for theCWcase but off-resonant for theCCWcase.Hencewe can conclude that forWalkermodes with
 =( ) 0z

mmag (mmag=1) the Brillouin scattering of theCWWGM is expected to bemore intense than that of the
CCWcase. The expected nonreciprocal behavior of the Brillouin scattering is schematically shown in figure 4(d),
which is in agreementwith the experimentally observed Brillouin scattering signals by the (1, 1, 0) and the (3, 1,
1)Walkermodes [23].

4.2.Walkermodeswith  =( ) 1z
mmag

Nextwe consider theWalkermodewith  =( ) 1z
mmag (mmag=0). In this case all the selection rules, (34), (36),

(38), and (40), amount to the same conditionmTM=mTE. In otherwords, the selection rules are the same for
both theCCWandCWorbits, resulting in the absence of the nonreciprocity (figure 4(e)). In [23], the (4, 0, 1)
mode corresponding to this case actually exhibits the reciprocal behavior.

4.3.Walkermodeswith  =( ) 2z
mmag

As thefinal example, let us examine theWalkermodewith  =( ) 2z
mmag (mmag=−1). The selection rules are

obtained by insertingmmag=−1 into (34), (36), (38), and (40). Equation (34) yields = +m m 1TM TE for the
Stokes scattering of theCWWGM, and (36) yields = -m m 1TM TE for the anti-Stokes scattering of theCW
WGM,while equation (38) yields = +m m 1TM TE for the anti-Stokes scattering of theCCWWGM, and (40)
yields = -m m 1TM TE for the Stokes scattering of theCCWWGM.Here, the situations shown infigure 4(c) are
opposite to that shown infigure 4(a) for  =( ) 0z

mmag . Consequently, the Brillouin scattering of theCCWWGM
would show larger signal than that of the CWWGMas indicated infigure 4(f), again agreeingwell with the
experimental result [23].

5. Conclusion

Weanalyzed the spin and orbital angularmomenta ofmagnons in theWalkermodes and photons in theWGMs,
both of which being supported by a ferromagnetic sphere.We then predicted that in the Brillouin light scattering
within the ferromagnetic sphere the orbital angularmomenta are exchanged between the photons and the
magnons in such away that the total orbital angularmomentum is conserved, with spin and orbital angular
momenta being separately conserved aswell. The non-trivial nonreciprocal/reciprocal behaviors in the
Brillouin scattering by theWalkermodemagnons observed in the experiment reported in [23]were then
explained as the consequence of the selection rule imposed by the conservation of the total orbital angular
momentum.Our findings will stimulate further investigation on the role of the orbital angularmomenta in
cavity optomagnonics, e.g., in view of chiral quantumoptics [24] and topological photonics [25, 26].
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