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Abstract

Magnetostatic modes supported by a ferromagnetic sphere have been known as the Walker modes,
each of which possesses an orbital angular momentum as well as a spin angular momentum along a
static magnetic field. The Walker modes with non-zero orbital angular momenta exhibit topologically
non-trivial spin textures, which we call magnetic quasi-vortices. Photons in optical whispering gallery
modes supported by a dielectric sphere possess orbital and spin angular momenta forming optical
vortices. Within a ferromagnetic, as well as dielectric, sphere, two forms of vortices interact in the
process of Brillouin light scattering. We argue that in the scattering there is a selection rule that dictates
the exchange of orbital angular momenta between the vortices. The selection rule is shown to be
responsible for the experimentally observed nonreciprocal Brillouin light scattering.

1. Introduction

The coupling between electron spins in solids and light is in general very weak. This is because the coupling is
inevitably mediated by the orbital degree of the electrons and is realized through spin—orbit interaction for orbits
and spins and electric-dipole interaction for orbits and light, respectively [1]. Although it is possible to
coherently (non-thermally) manipulate collective excitations of spins in spin-ordered materials by means of
ultrafast optics, where the electric field density of an optical pulse is high both temporally and spatially [2-5], an
attempt to realize coherent optical manipulation of magnons in the quantum regime is hindered by the weakness
of the spin-light coupling [6]. Given the encouraging development of circuit quantum magnonics, where
microwave photons and magnons are strongly coupled, enabling a coherent energy exchange at the single-
quantum level [7-9], the similar energy exchange between optical photons and magnons has been anticipated.

To overcome the weakness of the spin-light interaction, cavity optomagnonics has been investigated [10-17].
In cavity optomagnonics, the density of states of optical modes are engineered with an optical cavity to enhance
spin-light interaction. In particular, spheres of ferromagnetic insulators supporting whispering gallery modes
(WGMs) for photons and a spatially uniform magnetostatic mode, called the Kittel mode, for magnons are used
as a platform of the cavity optomagnonics. With spheres made of typical ferromagnetic insulator, yttrium iron
garnet (YIG), the pronounced sideband asymmetry [11-13], the nonreciprocity [11], and the resonant
enhancement [12, 13] of magnon-induced Brillouin scattering have been demonstrated.

In this context, it is interesting to examine the behavior of magnetostatic modes beyond the simplest Kittel
mode. The magnetostatic modes residing in a ferromagnetic sphere under a uniform static magnetic field are
known as the Walker modes [18, 19]. They exhibit, in general, topologically non-trivial spin textures about the
axis along the applied magnetic field and might be called magnetic quasi-vortices. The magnetic quasi-vortices
can be characterized by their orbital angular momenta along the symmetry axis [20, 21]. Photons in optical
WGMs possess not only spin angular momenta but also orbital angular momenta, too, which echoes the concept
known as optical vortices [22]. Within the ferromagnetic sphere, the optical vortices can interact with the
magnetic quasi-vortices in the course of the Brillouin light scattering. The total orbital angular momentum is
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Figure 1. Schematics of the cavity optomagnonic system considered in this article. A clockwise (CW) or a counterclockwise (CCW),
transverse electric (TE) whispering gallery mode (WGM) or transverse magnetic (TM) WGM (see right inset) is Brillouin-scattered by
the Walker mode depicted by the field lines. Here the distribution of the transverse magnetization of the (4, 0, 1) Walker mode on the
equatorial plane is shown as an example. The Walker modes and the WGM:s are assumed to share the symmetry axis (z-axis) along a
static magnetic field H.

then expected to be conserved as long as the symmetry axis of the WGM:s coincides with that of the Walker
modes, imposing a selection rule on the Brillouin scattering processes.

In this article, the Brillouin scattering hosted in a ferromagnetic sphere is theoretically investigated putting a
special emphasis on the orbital angular momentum exchange between the optical vortices and the magnetic
quasi-vortices. We establish a selection rule imposed by the orbital angular momentum conservation for the
Brillouin scattering hosted in a ferromagnetic sphere. The experimentally observed Brillouin scattering by
various Walker modes reported in [23], which reveals that the scattering is either nonreciprocal or reciprocal
depending on the orbital angular momentum of the magnetic quasi-vortices, is then analyzed with the theory
developed here and found to be explained well. The result would provide a new area for chiral quantum optics
[24] and topological photonics [25, 26] based on optical vortices and magnetic quasi-vortices.

2. Orbital angular momenta

The schematics of the cavity optomagnonic system we investigate is shown in figure 1, where the Walker mode
and the WGMs share the symmetry axis (z-axis) along a static magnetic field H. The Walker modes and the
WGMs generally exhibit non-zero orbital angular momenta. In this section we analyze the orbital angular
momenta of these modes. It is noteworthy that the vectorial nature of both the light field and the magnetization
results in the situation that the spin and orbital angular momenta are separately conserved in the optomagnonic
system. This can be explained by the fact that the spin angular momentum originates in the local, temporal
rotation of the vector and the orbital angular momentum in the global distribution of its phase.

2.1. Orbital angular momenta of Walker modes
The components of the transverse magnetization, M, and M,, with respect to the static magnetic field H
(|z-axis) form the normal modes My = M, & iM,, which can be expressed in the polar coordinates as

M. = M e, @

where M, = /M2 + Mf and VU is the phase. When the mode possesses the axial symmetry the phase ¥ can be
expressed as

ov
‘11—8¢¢—Ez¢, @

where ¢ is the azimuthal angleand £, = g—i is the orbital angular momentum taking a value of an integer. Note
that the orbital angular momentum is defined here and throughout the paper as being divided by % for notational
brevity.

For the Walker mode [18, 19] since the dipolar interaction breaks the axial symmetry the orbital angular
momentum £, is in general not a good quantum number taking a value of an integer. For the Walker modes
with lower mode indices, however, the contribution of the dipolar interaction to the total energy is small so that
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Figure 2. Transverse magnetization distributions on the equatorial plane of (1, 1,0), (3, 1, 1),(3,1, 1) and (4, 0, 1) Walker modes,
whose orbital angular momentaare £ = 0, £V = 2, £V = 0,and £ = 1, corresponding to the winding numbers of the
respective spin textures of the Walker modes. Note that the magnetic field is applied parallel to z-axis.

the orbital angular momentum £, can be approximately defined. As for the Walker mode with the index
(1, Mpmag, 1) [18, 19], the orbital angular momentum £, depends on the index .4 and is expressed as

LI %~ (Mo — 1). 3)

While the Kittel mode [(1, 1, 0) mode] has no orbital angular momentum, L’(zl) =0,(4,0,1)and (3, I, 1)
modes, for instance, have Ego) ~ land E(z’l) ~ 2, respectively. Here, for the Walker modes with n = 1), and
1 = M, + 1,equation (3)is exact. We call the Walker modes with non-zero L) as magnetic quasi-vortices.
The prefix ‘quasi-” emphasizes the fact that the orbital angular momentum we defined in equation (3) is the
approximated one and the fact that magnons are quasi-particle with finite lifetime.

Figure 2 shows the spatial distributions of the transverse magnetizations for the representative Walker
modes (1, 1,0), (3, 1, 1),(3,1,1),and (4,0, 1). The modes having non-zero £, (e.g., (3, 1, 1)and (4,0, 1) in
figure 2) exhibit the topologically non-trivial spin textures. Note that the orbital angular momentum £, here
plays a similar role as the winding number or the skyrmion number in other literature [27].

2.2. Orbital angular momentum of WGMs
The electric field of the WGM in an axially symmetric dielectric material has been extensively studied [28]. Now,
for simplicity, we focus on the azimuthal mode index m which characterizes the azimuthal profile of the electric

field of the fundamental WGM. In the spherical basis {€,, &j, € } = { — %(éx + ié)), &, %(éx — ie,) }, the
electric field of the WGM s of the counterclockwise (CCW) orbit can be written as
E(TE) — (E0 ¢~imo) gk (4)
E™ — (Ei(M) efimd)) ei¢é:k_ _ (Ea(m) efimqﬁ)efiqﬁéf’ (5)
where E™® and E™) correspond to the transverse electric (TE) and the transverse magnetic (TM) WGMs,
respectively, and ¢ is the azimuthal angle. Note that the expression equation (5) is comprised of two terms, each

of which have an additional azimuthal phase factor e*'¢, resulting in different orbital angular momenta for these
components, apart from the common one e, The time-dependent electric field as a whole is written as

E(f) = Be—' + E¥ele, (6)

For the clockwise (CW) orbit, the electric fields E™ and E(™) can be written as
E(TB — (E(m)eimdi)ég, 7)
EM™ — (E(Meimdyeivgh — (E™eimd)e—ivgt, 8)

E;(E,)in (5) and (8) shall be called the inner (outer) component of the TM mode. To see this, figure 3(a)
shows the radial intensity distributions of two components | E;|? and | E, | (magenta and green dotted lines)
along with the intensity profiles of the transverse component E, = %(E,- + E,) (red solid) and the longitudinal

component E; = — %(E,» — E,) (blue solid) for the TM electric field of a WGM. We can see that | E; |* has its

maximum in the inner part of the resonator compared to | E, |>. The shift of the ‘centers of gravity’ of the two
components, | E;|> and | E, |? is a manifestation of the spin-Hall effect of light [29, 30], which originates from the
spin—orbit coupling of light [31].

From the dependence of the electric field on ¢, the orbital angular momentum £, of the WGM, that is, the
optical vortex [22], can be straightforwardly deduced. First, let us consider the CCW orbit. As for the TE mode
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Figure 3. (a) Intensity profiles of the radial and azimuthal components on the equatorial plane, |E, |* and | E, |?, of the electric field of
the fundamental TM WGM are shown in the red and blue solid lines, respectively. It is assumed that the sphere diameter is 1 mm and
the refractive index s 2.19 as for YIG. The radial distributions of the inner and outer components, |E;|* and | E, |?, are shown in the
green and magenta dotted lines. The inner component E; is associated with o, (o) component, while the outer component E, is
associated with o_ (o) component for the CCW (CW) orbit. The vertical line indicates the resonator-air boundary. (b) Schematic
representation of the difference of orbital angular momenta for the TE, inner TM and outer TM component of a WGM with m = 10.
The trajectories of the head of the polarization vector for each electric field are shown. The hollow circles around which the electric
field directs upward are for the ease of counting the numbers of the rotations of the head. When the mode index is 10, the orbital
angular momentum reads 10,9 and 11 for the TE, inner TM, and outer TM components, respectively.

with the azimuthal mode index m = mg, since there is no spin angular momentum, the orbital angular
momentum is given by

[,(ZCCW’TE’ mE) _ Mg (9)

that expresses the azimuthal dependence of the TE WGM in the form of e ILENTETEG similarly to the resultin
section 2.1 which applies below as well. As for the TM mode with m = my, however, the spin—orbit coupling
of light has to be taken into account [31]. From the ¢-dependence of the coefficient of the first term of (5),

(E{mm) e~immid)eld the orbital angular momentum of the inner () component of the TM mode,

LW TMEmn0 ohould read as

LOCWTMAmn) (10)

From the ¢-dependence of the coefficient of the second term of (5), — (E(f’”TM) e~imm%)e~i% the orbital angular
momentum of the outer (0_) component of the TM mode, EEZCCW’TM_’mTM), on the other hand, should read as

LEONTM ) (D

Note that since the spin angular momentum S = 1 (S{”) = —1)isassociated with the o, (0-) component
[i.e., &% (&*) component] of the TM electric field, the total angular momentum 7 (CCW-TM:71m) of the TM electric
field with azimuthal mode index mpy is LW MM 1 SCH — 40 for the inner (o, ) component and
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LEWTM=mnn 1§ — 1 for the outer (0-) component. Thus, for any cases, J (CCW-TM ) = 10 and is
well-defined.
For the CW orbit, the similar argument leads us to the following:

Pt D J— 12)
LOWIMR ) (1) (13)
LENTMEM = — (mpy — 1), (14)

and the total angular momentum 7 (W-T™-mm) = — 11 is again well-defined. Note that for the CW orbit the

outer (inner) component of TM mode is associated with o (o), thatis opposite to that for the CCW orbit.

The orbital angular momenta of the WGM s can be visualized by sketching the trajectory of the head of the
polarization vector of the electric fields (figure 3(b)). When the mode index is 10, the orbital angular momentum
reads 10, 9 and 11 for the TE, inner TM, and outer TM components, respectively.

3. Brillouin light scattering

3.1. Magnetic quasi-vortices—optical vortices interaction

Let us now see that the total orbital angular momentum is conserved in the Brillouin scattering process. The
thorough treatment of the Brillouin scattering by magnons in WGMs can be found in [16]. In the following, we
emphasize the role of orbital angular momenta in the Brillouin scattering process. The interaction Hamiltonian
representing the Brillouin scattering is

E= [edav = % [Er0ewE @y, (15)

where the integrand £ is the energy flux density and the integral runs over infinity in time t and the volume V of
the WGM, E,(t) = Eje ™ and E5(¢t) = Elel“»* are the input and scattered electric fields of WGMs,
respectively. The angular frequencies of E; and E, are defined here by w; and w,. Phenomenologically, magneto-
optical effects can be captured by &(t), the macroscopic dielectric tensor [32]. For a magnetized cubic crystal, the
dielectric tensor & (¢) in the Cartesian basis can be written [16, 17, 33] as

E(t) = & + &) + &(1), (16)
where
100
E(): €0 €Er 010 (17)
001

is responsible for the scalar light shift which is independent on the magnetization M, and
0 - ist iﬂwy(t)
a() = e| ifM; 0 —ifM.(¥) (18)
—ifM,(t) fM.(1) O

is responsible for the vector light shift (Faraday effect) and is the first order in the magnetization M. Here the M,
stands for the saturation magnetization. The third term,

gxx G442xy(t) G44sz(t)
EZ(t) = €o G44Exy(t) gyy G442yz(t) > (19)
G44sz(t) G44Zyz(t) gzz
where
Gox = G Zu(t) + G122y (1) + G122z,
Gyy = Grlu(t) + Gudy(t) + Gl
G, = GYu(t) + GIZEyy(t) + G112z,

is responsible for the tensor light shift (Cotton—Mouton effect) and is the second order in the magnetization M.
Here, the symmetric products of the magnetizations are defined as

Ve (1) = M (1) My (1) (20)
5, (t) = M, ()M, () 1)
Ezz = M;M; (22)




I0OP Publishing NewJ. Phys. 20 (2018) 103018 A Osadaetal

S (1) = %(Mx(t)My(t) 1+ M, ()M (1) (23)
.00 = %(Mya)Ms + MM, (1) (24)
() = %(MsMx(t) + Mo (M) (25)

and there must be no anti-symmetric products involved in the Cotton—Mouton effect from the viewpoint of
symmetry [34]. Here, € is the vacuum permittivity and ¢, the relative permittivity. The coefficient fis related to
the Verdet constant V as f = Z‘E V with the wavevector k, of the optical field in the vacuum [34] and G, 1, G5,
and G, are the constant relevant to the Cotton—Mouton effect [33]. Here we assumed that the transverse
magnetizations M, and M, are time-dependent.

The interaction between the magnetic quasi-vortices and optical vortices in the course of the Brillouin
scattering process can be understood best in the spherical basis. In this basis the permittivity tensor can be
written as

¢ = go(ij\/[eiu.hﬂt'\ﬂ+ + LM+€_iw"’tM7

V2 V2
GuM, . . GuM, . .
+ Mﬁ M_eln'Q, + 345 M, e wQ), (26)

where M e “n! = M, (t) + iM, (¢) and M_elnt = M (1) — iM, (t),and

010 000
M,=|0 0 1|M_=[1 0 o}
000 010

0 -10 0 00
Q.=|0 0 1},Q-=]|-10 0}
0 0 O 0 10

where the first two terms represent the Faraday effect and the last two terms represent the Cotton—-Mouton

effect. The irrelevant terms in (16) which give no contribution to the Brillouin scattering are neglected. Here

W,/ 27 is the resonance frequency of the concerned Walker mode with the azimuthal mode index of 77,
In the spherical basis the time-dependent transverse magnetization is given by

M(t) — ]\4ieiwmt|\/|+ + M+€_i“']'”tM,. (27)

Here note that the creation (annihilation) of a magnon decreases (increases) the spin angular momentum. As we
shall show, the Brillouin scattering stems from the terms with M, and Q. (M_ and Q_) representing the Stokes
scattering (anti-Stokes scattering) associated with the creation (annihilation) of a magnon. Since the TE-to-TM
or TM-to-TE transition process changes the spin angular momentum of magnon, these transitions give non-
zero contributions to the Brillouin scattering regarding the conservation of the spin angular momentum. We
shall see this more clearly in section 3.2.

3.2. Selection rules

Since the interaction depends on the direction of the input field and its polarization, let us first suppose that the
input field is the CW-TE mode with mode index of 1y, that is, E;(t) = E("m) e~ mmde—iwme!e¥, In this case the
Brillouin scattering results in producing photons in the CW TM mode as seen in the following. We can
straightforwardly extend the argument to other cases, e.g., the TM mode input or the input to the CCW orbit.
Here we note that the azimuthal and time dependence of the transverse magnetization is dictated by

Me “nt = M, exp [—(LI"™ ) + iw,,1)]
whose Hermitian conjugate results in that of M_. As for the CW WGM, the electric field is given by
e 1) = i, oy
= E(mTE/TM)eXP [— ic(ZCW’TE/TMi)mTE, ™) ¢ — inTE/TM t1,
while the CCW WGM exhibits
E(mTe/m™) 0~ iWmrg iy ¢

S(me . r(CCW,TE/TM, :
— E(mlk/]M)eXp [I‘C(Z / mTE/TM)¢ — W mug t].

These expressions are utilized for the derivation of selection rules described below.
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With the CW-TE mode as the input field, the energy flux density £ in (15) reads

E= Z (M M_E(mmw * Fme) gl AL deidit

- 272
_alf ;/(5;441\/15) ML Em0 % Fonre) eiAEoei(St), (28)
where
ALy = LOWTMEMD _ pOWTEmME) | g, (29)
Or = Wigy — Wingg T Wi (30)

The first (second) term in the right-hand side of (28) represents the Stokes (anti-Stokes) scattering. The
possibility of the scattered light being the CCW WGM is denied given the fact that we are concerned only with
cases where L") < LB £TM),

The integration with respect to time ¢in (15) with (28) leads to the energy conservation
Wiy — Wi + Wi = 0 3D
for the Stokes scattering and
Wiy — Wiy — Wi = 0 (32)

for the anti-Stokes scattering. Since the optical densities of states are modified in the presence of the WGMs, the
probabilities of the scattering processes are affected by them, too.

Furthermore, because of the axial symmetry of the system, the conservation of the total angular momentum
is expected. The designated WGM of the Brillouin scattering can then be specified by the selection rule obtained
by the conservation of the orbital angular momentum. To see this, we integrate £ in (15) over the azimuthal
angle ¢ as a part of the volume integral. From the first Stokes term in (28) we have a selection rule:

ﬁ(ZCW,TM+,mTNI) _ ﬁ(zCW,TE,mTE) + ﬁ(zmmg) —0. (33)
With (3), (12), and (13), this selection rule amounts to
MM = MTE — Mimag. (34)
As for the second anti-Stokes term in (28), the selection rule is

E(ZCW>TM_>mTM) _ E(ZCW,TEJHTE) _ E(meag) =0, (35)

and with (3), (12), and (14), we have
mM = Mg + Mmag- (36)
Next, let us briefly describe the results when the laser light is injected into the CCW-TE mode. The Stokes
(anti-Stokes) scattering process gives the same conditions of the energy conservation, (31) [(32)]. However, for

the CCW case the Stokes (anti-Stokes) scattering originates in the inner (outer) component in contrast to the
CW case. For the anti-Stokes scattering, the conservation of the orbital angular momentum is represented by

E(ZCCW,TMJr,mTM) _ E(ZCCW,TE,mTE) _ [’(meag) =0 (37)

which results in
MM = MTE — Mmag, (38)
that is, the same selection rule as (34). As for the Stokes scattering,

E(ZCCW,TM—)WITM) _ E(ZCCW)TEJ”TE) + E(meag) =0, (39)

represents the orbital angular momentum conservation, yielding
mmv = MTE + Mmag> (40)

that is, the same selection rule as (36).

These selection rules regarding the orbital angular momentum are the main result of this paper. With the
geometric birefringence [35—-37] and densities of states of WGMs, these selection rules dictate the Brillouin light
scattering by Walker mode magnons hosted in a ferromagnetic sphere as shown below. In the next section we
employ the selection rules to explain the experiment reported in [23], which reveals that the Walker mode-
induced Brillouin light scattering is either nonreciprocal or reciprocal depending on the orbital angular
momentum of the magnon in the relevant Walker mode, that is, the magnetic quasi-vortex.

7
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Figure 4. (a)—(c): Relevant TE (green) and TM (purple) WGMs in the Brillouin scattering (see main text) with the orbital angular
momenta (OAM) of the Walker modes being (a) 0, (b) 1 and (c) 2. The mode indices and the orbital angular momentum of the
relevant WGM s are indicated by the labels next to the Lorentzian peaks. FSR and GB stand for the free spectral range and the frequency
shift due to the geometric birefringence, respectively. (d)-(f): Theoretically predicted reciprocal /nonreciprocal behavior of the
Brillouin scattering signals corresponding to the cases (a)—(c), respectively. Blue (red) curves represent the summed signals of the

contributions from Stokes and anti-Stokes scatterings when the input light is in the CW (CCW) WGM. The frequency w'” represents
that of the Walker mode with orbital angular momentum of’i.

4. Nonreciprocal Brillouin scattering

Here, we apply the selection rules to a concrete example. We suppose that the sample under consideration is a
sphere made of YIG with its diameter of 1 mm, and focus on the Brillouin scattering by the Walker mode
magnons with Eg”‘"“g) = 0, 1, 2, whichinclude (1,1,0),(3,1,1),(4,0, 1)and (3, 1, 1) Walker modes
experimentally investigated in [23].

4.1. Walker modes with £{"m) = 0

We first consider the simplest family of the Walker modes, namely, those having £ = 0, that is, Mimag = 1.
Equation (34) reduces to mry = mrg — 1and (36) to my = mrg + 1, corresponding, respectively, to the
cases of the Stokes and the anti-Stokes scattering with the CW-TE mode input. On the other hand, (38) reduces
to mry = mpg — land (40)to mry = mrg + 1, corresponding, respectively, to the cases of the anti-Stokes
and the Stokes scattering with the CCW-TE mode input. The schematics of the relevant scattering processes are
depicted in the figure 4(a).

In the figure, the densities of states of the TE (green) and the TM (purple) WGMs are schematically shown.
Note that the TE and the TM WGM resonances does not have the same frequency due to the geometric
birefringence [35-37]. The difference between these two frequencies is denoted by GB in the figure, which is
about 0.9 times the free spectral range (FSR) in a spherical resonator made of YIG. Two sets of the TM modes are
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depicted (top and middle), one for the inner and the other for the outer components. Hereafter, for clarity of the
analysis, the light is supposed to be injected into the TE WGM with the mode index mg (green highlighted).
The relevant TM WGMs specified by the selection rules are highlighted (otherwise dotted) in each of the
inner or the outer case in figure 4(a). The frequencies that the scattered light would acquire are indicated by blue
and red upright arrows for the CW and the CCW cases, respectively. Here we made an assumption that the
difference of the input and scattered light determined by the Walker mode frequency is tuned to coincide with
the value FSR—GB by the applied magnetic field, which is experimentally feasible as it is approximately realized
in the experiment in [23] as well as the others [12, 13]. For the case of the scattering into the inner component of
TM mode (top panel), the scattered light for both the CW and the CCW cases are far detuned from the selection
rule-allowed WGM (highlighted). On the other hand, for the case of the scattering into the outer component of
TM mode (middle panel) the scattered light is almost resonant to the selection rule-allowed WGM (highlighted)
for the CW case but off-resonant for the CCW case. Hence we can conclude that for Walker modes with
E(Z’”m*‘g) = 0 (Mmqg = 1) the Brillouin scattering of the CW WGM is expected to be more intense than that of the
CCW case. The expected nonreciprocal behavior of the Brillouin scattering is schematically shown in figure 4(d),
which is in agreement with the experimentally observed Brillouin scattering signals by the (1, 1, 0) and the (3, 1,
1) Walker modes [23].

4.2. Walker modes with £ = |

Next we consider the Walker mode with £{"m) = 1 (Mmag = 0). Inthis case all the selection rules, (34), (36),
(38), and (40), amount to the same condition my; = mrg. In other words, the selection rules are the same for
both the CCW and CW orbits, resulting in the absence of the nonreciprocity (figure 4(e)). In [23], the (4, 0, 1)
mode corresponding to this case actually exhibits the reciprocal behavior.

4.3. Walker modes with £ = 2

As the final example, let us examine the Walker mode with E(Zm"“g) = 2 (Mg = —1). The selection rules are
obtained by inserting mm,,,, = —1into (34), (36), (38), and (40). Equation (34) yields m1y = mg + 1forthe
Stokes scattering of the CW WGM, and (36) yields m1y = mrp — 1 for the anti-Stokes scattering of the CW
WGM, while equation (38) yields mry = mrg + 1 for the anti-Stokes scattering of the CCW WGM, and (40)
yields my = mpg — 1 for the Stokes scattering of the CCW WGM. Here, the situations shown in figure 4(c) are
opposite to that shown in figure 4(a) for L") = 0. Consequently, the Brillouin scattering of the CCW WGM
would show larger signal than that of the CW WGM as indicated in figure 4(f), again agreeing well with the
experimental result [23].

5. Conclusion

We analyzed the spin and orbital angular momenta of magnons in the Walker modes and photons in the WGMs,
both of which being supported by a ferromagnetic sphere. We then predicted that in the Brillouin light scattering
within the ferromagnetic sphere the orbital angular momenta are exchanged between the photons and the
magnons in such a way that the total orbital angular momentum is conserved, with spin and orbital angular
momenta being separately conserved as well. The non-trivial nonreciprocal/reciprocal behaviors in the
Brillouin scattering by the Walker mode magnons observed in the experiment reported in [23] were then
explained as the consequence of the selection rule imposed by the conservation of the total orbital angular
momentum. Our findings will stimulate further investigation on the role of the orbital angular momenta in
cavity optomagnonics, e.g., in view of chiral quantum optics [24] and topological photonics [25, 26].
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