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Abstract
Shortcuts to adiabaticity (STA) provide an alternative to adiabatic protocols to guide the dynamics of
the systemof interest without the requirement of slow driving.We report the controlled speedup via
STAof the nonadiabatic dynamics of a Fermi gas, both in the noninteracting and strongly coupled,
unitary regimes. Friction-free superadiabatic expansion strokes, with no residual excitations in the
final state, are demonstrated in the unitary regime by engineering themodulation of the frequencies
and aspect ratio of the harmonic trap. STA are also analyzed and implemented in the high-
temperature regime, where the shear viscosity plays a pivotal role and the Fermi gas is described by
viscous hydrodynamics.

1. Introduction

Developing the ability to tailor the dynamics of complex quantum systems has been a long-time goal across a
variety offields. In addition, this goal is widely recognized as a necessity for the advancement of quantum
technologies. However, the presence of strong correlations between constituent particles hinders the
understanding and control of the time evolution ofmany-body systems. In view of this complexity barrier,
emergent symmetries can play a pivotal role to simplify the dynamics far away from equilibrium and its control.

A paradigmatic test-bed of nonequilibriummany-body physics in the laboratory is provided by ultracold
Fermi gases. Interatomic interactions in these systems can be considered of zero range. Using the Feshbach
resonance technique [1], the strength of the interactions can be varied from zero value, creating an ideal Fermi
gas, to a divergent interaction, leading to the unitary regimewhere the scattering length is infinite. Incidentally,
these two extreme regimes are characterized by scale invariance as an emergent symmetry, which is broken for
anyfinite value of the interaction strength. The appearance of scale invariance is crucial to describe the strongly-
coupled unitary Fermi gas and leads to universality in the thermodynamics and hydrodynamics of the system
[2–6].Moreover, as a dynamical symmetry, scale invariance relates the time evolution of the unitary Fermi gas to
equilibriumproperties of the system. For instance, the evolution of local correlation functions such as the
density profile of the systembecomes self-similar. As a result, it can be simply described by a scaling of the
coordinates with a time-dependent scaling factor. The connection between properties in- and out-of-
equilibrium greatly reduces the complexity of the time evolution and has spurred developments in
understanding intricate few-body andmany-body dynamics. Beyond the study of Fermi gases, scale invariance
has proved extremely useful in the exploration of ultracold atomic gases in time-dependent harmonic traps and
provides themeans to analyze time-of-flight (TOF)measurements [7, 8].We can thus expect that it can be
harnessed to provide fast control of quantum systems far-away from equilibrium.

Shortcuts to adiabaticity (STA) aim at speeding up the evolution of a system in a controlledwaywithout the
requirement of slow driving [9, 10]. As a general control tool, STAhave found broad applications across a variety
offields, such as population transfer [9, 11–19], quantum thermodynamics [20–24], the control of critical
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systems [25–30], and fast and robust quantum transport [31–33]. Several techniques have been developed for
the design of STA. Counterdiabatic driving [11–14] constitutes a universal approach provided that the spectral
properties of the system are known.When this is not the case, alternativemethods are desirable. Prominent
examples, with complementary advantages and varying range of applicability, include the fast-forward
technique [31, 34, 35], the use of invariant ofmotions and scaling laws [9, 36–42], classical flowfields [43], the
existence of Lax pairs in integrable systems [44], and counterdiabatic Born–Oppenheimer dynamics [45].

Progress to control trapped ultracold gases andmany-body quantumfluids has been facilitated by the use of
dynamical symmetries and the associated scaling laws [9, 36, 39, 41, 46–49]. In this context, STAwere first
demonstrated in the laboratory with a thermal atomic cloud [50], and soon after using a Bose–Einstein
condensate, well described bymeanfield theory [51, 52]. Theoretical work indicated that STA could be applied
to arbitrary quantum fluidswith scale invariant symmetry [39, 41, 47, 49] and STAwere later implemented to
control an effectively one-dimensional atomic cloudwith phase fluctuations [53]. Recently, we have
demonstrated that STA can aswell be applied in the strongly-coupled regime, using a three-dimensional (3D)
anisotropic Fermi gas at unitarity as a test-bed [54]. The superadiabatic quantum friction suppression infinite-
time thermodynamics has further been demonstrated in this system [24].

In this article, we present a detailed study of STA for the driving of Fermi gases both in the noninteracting
regime and at unitarity. In particular, we show that it is possible to implement STA by engineering exclusively
the time-dependent anisotropic trap, this is, without additional auxiliary controls. Further, we explore the
superadiabatic control of a unitary Fermi gas in the high-temperature regime. Atfinite temperature, the shear
viscosity cannot be neglected [6, 55], as it substantially affects the nonadiabatic dynamics of the system. The
evolution can then be described by viscous hydrodynamics, and thewell known ‘elliptic’ flow at unitarity [56]
will be changed.While the effect of viscosity can limit the performance of STA in anisotropic expansions and
compressions, it vanisheswhenever the dynamics is isotropic. Ourwork shows that STA can be broadly applied
in ultracold atomic gases across different interaction regimes and in the presence of viscosity.

The paper is organized as follows. In section 2we characterize scale invariance as dynamical symmetry
governing the dynamics of a Fermi gas at low temperature both in the noninteracting and unitary regimes. In
section 3we present the experimental demonstration of STA for the expansion and compression of a Fermi gas
in the strongly interacting regime. The dynamics at high temperature, taking shear viscosity into consideration,
is studied in section 4.We concludewith a summary and outlook in section 5.

2.Design of STA in ultracold Fermi gases

The noninteracting and unitary Fermi gases are both scale invariant, butwith different scaling equations
governing their dynamics. In the noninteracting case, the equations governing the evolution along different axes
are decoupled due to the lack of collisions. By contrast, the dynamics along different axes are strongly coupled at
unitarity.

2.1. Noninteracting Fermi gas
Consider a 3Dnoninteracting Fermi gas confined in a time-dependent anisotropic harmonic trap, described by
theHamiltonian
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We focus on the evolution of the system following a time-modulation of the trap frequenciesωj ( j=x, y, z) to
induce an expansion or compression of the gas. The system exhibits scale invariance and the dynamics in this
regime can be described by time-dependent scaling factors bj(t) ( j=x, y, z) given by
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Thus, the scaling factors are defined in terms of the variance of the collective coordinates
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measured in the state of the cloud, and describe the evolution of the density profile of the trapped atomic cloud
that is formed by the ideal Fermi gas. Their dynamics is dictated by the uncoupled equations, for eachCartesian
coordinate,
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with boundary conditionsbj(0)=1 and b 0 0j =˙ ( ) . As a result, the evolution of the cloud size is completely
determined by the time-dependent trapping frequencies.

A simplified scenario concerns the expansion from an isotropic trap, where a single scaling factor b(t) suffices
to completely describe the evolution of the system. For the cloud to follow a given desirable trajectory described
by b(t), the trap frequencies are to bemodulated as [39, 47]
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The existence of scaling laws thusmakes it possible to control the dynamics of the system via STA, speeding up
the adiabatic transfer between twomany-body stationary states by controlling the aspect ratio of the frequencies
[39, 47, 54].

An important application of STA is the engineering of thermodynamic processes to extract themaximum
available work in theminimumpossible time [20–23]. In a unitary process, themeanwork equals the change in
energy between the final and initial state [57]. To optimize a process using STA, it suffices to characterize the
nonadiabaticmean-energy. For a noninteracting 3DFermi gas, the different degrees of freedomdecouple. The
total energy is thus the sumof the individual energy along each degree of freedom. For the initial state
H m0 3 0

2
0
2w sá ñ =( ) , whereσ0 is themean square cloud size, the adiabatic limit of equation (5) is reachedwhen

t t 12w w ˙ ( ) ( ) [58]. Then, for a state initially at thermal equilibrium in an isotropic trapwith frequencyω0,
the adiabatic scaling factor is given by b t tad 0w w=( ) ( ) . The nonadiabatic evolution of themean energy
H tá ñ( ) andmeanwork W tá ñ( ) read
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whereQ t*( ) is the nonadiabatic factor given by [22, 59]
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Note that in the adiabatic limit, b̈ 0» , the scaling factor b(t) approaches its adiabatic value
b t tad 0w w=( ) ( ) and the nonadiabatic factor Q t*( ) equals unity. In this case, themean energy is set by the
adiabatic value corresponding to the instantaneous trap frequency, H t H t0 0w wá ñ = á ñ( ) ( ) ( ) , and no quantum
friction exists. Values of Q t 1* >( ) indicate deviations from adiabatic dynamics and can be associatedwith
quantum friction [60], which vanishes whenever Q t 1* =( ) .

2.2. Unitary Fermi gas
The unitary Fermi gas is reached in the strongly-interacting regime, where the divergent scattering length at
resonance leads to different dynamics from the noninteracting Fermi gas. A 3Dunitary Fermi gas in a time-
dependent anisotropic harmonic trap is described by theHamiltonian
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whereU r ri j-( ) describes zero-range pairwise interactionswith a divergent scattering length. In particular,
U r ri j-( ) is a homogeneous functionwith the same scaling dimension as the kinetic energy operator. In
contrast to the noninteracting Fermi gas, the dynamics along different axes for the strongly interacting Fermi gas
at resonance is strongly coupled. The evolution of the cloud size at unitarity is governed by
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where bj(t) (with j=x, y, z) are the scaling factors corresponding to this regime andΓ(t)=bx(t)by(t)bz(t) is the
scaling volume factor.

Our approach to realize the superadiabatic control of the Fermi gas is based on the counterdiabatic driving
technique [22, 39], which relies onfirst designing a desirable reference adiabatic evolution and subsequently
identifying the consistent conditions for it to describe the exact nonadiabatic quantumdynamics, in a
predetermined time τ.
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Todesign the reference evolution of the cloud, let j x y z, ,j,0w ={ ∣ }denote the frequencies of the
anisotropic harmonic trap at t=0. Similarly, let b j x y z, ,j, =t{ ∣ }denote the target scaling factors upon
completion of an expansion or compression stroke of duration τ. The required boundary conditions are as
follows
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Satisfying these boundary conditions, we choose the time-dependent trap frequencies via the polynomial ansatz
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Using the adiabatic equations ofmotion, we determine the reference expansion factor as
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where t t t tx y z
1 3n w w w=( ) [ ( ) ( ) ( )] is the geometricmean frequency.

The above equations describe the evolution in the adiabatic limit under slow driving. Nonetheless, they can
describe aswell the exact nonadiabatic dynamics under amodified driving protocol, associatedwith a different
time-dependence of the trapping frequencies, i.e., replacing t tj jw  W( ) ( )where the explicit formofΩj(t) is to
be determined. This approach has been studied for the single-particle time-dependent harmonic oscillator and
many-body quantum systems. It is generally referred to as local counterdiabatic driving (LCD) [22, 39, 42]. The
required driving frequencies are given by
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2W ( ) as [24]
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which includes the counterdiabatic corrections arising from the time-dependence ofωj, the geometricmean ν
and their coupling.

According to [24], the nonadiabatic factor andmeanwork read
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The last equation follows from the fact that, for isolated quantum systems evolving under unitary dynamics, the
(mean)work reduces to the difference in energy between the final and the initial state [57]. For the special case in
which the time evolution is isotropic, the scaling factors are set by b t t b tj j j,0

1 2w w= =( ) ( ( )) ( ), the volume
scaling factor simplifies to t b t tj j
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The nonadiabatic factor Q t*( ) andmeanwork W tá ñ( ) are then given by
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3. Experimental implementation of STA in ultracold Fermi gases

Our experiment is implemented in a 3D anisotropically-trapped unitary quantum gas,made of a balanced
mixture of 6Li fermions in the lowest two hyperfine states F M1 2, 1 2Fñ º = = - ñ∣ ∣ and

F M1 2, 1 2Fñ º = = ñ∣ ∣ .We probe the nonadiabatic expansion dynamics by varying in time the harmonic
trap frequencies. The experimental setup is shown infigure 1, and is similar to that in [24]. The atoms arefirst
loaded into an optical dipole trap formed by a single beam.A forced evaporation is performed to cool atoms to
quantumdegeneracy in an externalmagnetic field at 832G. Then, the atoms are transferred to another dipole
trap, which consists of an elliptic beam generated by a cylindrical lens along the z-axis and a nearly-ideal
Gaussian beam along the x-axis. The resulting potential has a cylindrical symmetry around x. This trap facilitates
the accurate tuning of the trap frequencies to control the anisotropy and geometry of the atomic cloud. A
Feshbach resonance is used to tune the interaction of the atoms either to the noninteracting regimewith the
magnetic fieldB=528Gor to the unitary limit withB=832G. The system is initially prepared in a stationary
state of a normalfluid, with 0 2 825 Hzxw p= ´( ) and 0 0 2 230 Hzy zw w p= = ´( ) ( ) . The initial energy of
the Fermi gas at unitarity isE=0.75 (0.1)EF, corresponding to a temperatureT=0.23(0.02)TF, where EF and
TF are the Fermi energy and temperature of an ideal Fermi gas, respectively. Herewe focus on the hydrodynamic
expansion of a unitary Fermi gas, at the Feshbach resonance withmagnetic fieldB=832G. To engineer an
isotropic expansion in an anisotropic trap, the frequency aspect ratio needs to be controlled in the experiment
(set up here at 3.59 at the beginning of a STAprocess). The target final value of the scaling factor b(τ) is chosen to
be 1.5 in a transferring time τ=1250 μs. Snapshots of the density profile of the atomic cloud and its aspect ratio
during the expansion are shown infigure 2.We engineer an isotropic expansion via LCD and define two time-
dependent dimensionless cloud sizes, t 0z z zs s s=¯ ( ) ( ) and t 0x x xs s s=¯ ( ) ( ), to characterize the time
evolution. It is clear that if the expansion is isotropic, z xs s¯ ¯ should be equal to unity at all times. Themeasured
data of the aspect ratio of the atomic cloud, presented infigure 2(b), confirms that the expansion is isotropic in
spite of the anisotropy of the trap.

The evolution of themean energy andmeanwork are alsomeasured in this isotropic expansion and are
shown infigure 3. For LCD, the nonadiabatic factorQ* exhibits large deviations fromunity—the adiabatic value
—evidencing the nonadiabatic character of the evolution during the STA.Nonetheless, the final value at the
transferring time τ equals unity, Q 1* t =( ) , revealing a friction-free transferring process at the end of the stroke.
By contrast, for the chosen reference trajectory,Q* gradually increases during the evolution and Q 1* t >( )
upon completion of the protocol. Values of Q 1* t >( ) for the reference driving indicate the presence of
nonadiabatic excitations in the final state that can be associatedwith friction, as they are responsible for reducing
thework output with respect to the LCD, seefigure 3(b).

Figure 1.Experimental setup. (A) Schematic representation of the experimental setup and (B) time-dependence of the beampower
during the experimental protocol. In (B) the red line indicates the beampower during the evaporative cooling, while the blue and
black lines represent the power intensity of the two separated beams along a STA expansion stroke. A specially designed optical
crossed-dipole trap is formed by two orthogonal far-off resonance laser beams, providing a highly controllable trap frequency.M1–
M4,Mirrors; L1–L2, cylindrical lenses; HC1–HC2, Feshbach coils; L3–L4, achromatic lenses; AOM, acousto-opticmodulator; tof,
time-of-flight.
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4. STA for a strongly interacting Fermi gas at high temperature

Our implementation of STA at low temperatures relies on the existence of scale-invariance, asmanifested by
equation (10) characterizing a superfluid Fermi gas.However, the hydrodynamics can exhibit quite a different
behavior in the high-temperature regime, onwhichwe focus next. The viscosity in this regimemodifies
substantially the dynamics and thus cannot be neglected. The cloud expansion and collectivemodes have been
used tomeasure shear viscosity in the unitary Fermi gas [6, 55]. To describe the dynamics in the high-
temperature regime, viscous hydrodynamics has been used in the scaling approximation [6, 55, 61]. The
modified equations ofmotion for the scaling factors take the form [55]
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where the coefficientCQ(t) is the fractional increase in the volume-integrated pressure arising fromviscous
heating and Saá ñ is the cloud-averaged shear viscosity coefficient, ...á ñdenoting the average over the cloud
density. The coefficientsCQ(t) and diagonal elements of the viscous stress tensorσjj are specifically given by
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Figure 2. STA for an isotropic expansion. (A) Sequence of density profile images and (B) aspect ratio of the atomic cloud during a STA.
Blue dots are themeasured results for LCDwhile the red line denotes a constant value of unity. Error bars represent the standard
deviation extracted from themeasurement statistics.Measurement data shows that zs̄ and xs̄ arematched during the evolution,
showing that the expansion is isotropic.

Figure 3.Characterization of a STA for an isotropic expansion. (A)Nonadiabatic factor Q* and (B)meanwork . Blue and browndots
representmeasured data for LCD and reference driving, respectively, while the red and greens line are the corresponding theoretical
predictions.

6

New J. Phys. 20 (2018) 105004 PDiao et al



v

x

b

b
v2

1

3
2

2

3
, 22jj

j

j

j

j

s =
¶

¶
-  = -

G
G

⎛
⎝⎜

⎞
⎠⎟·

˙ ˙
( )

since v x b bj j j j= ˙ and v = G G· ˙ . Equation (20) approximates accurately thefinite-temperature dynamics
of a unitary Fermi gaswhen the viscosity is small andmoments such as Saá ñarewell defined [55]. Note that both
the viscosity heating rate coefficientCQ(t) andσjj are zero for an isotropic expansionwith bx=by=bz. In this
case, the equations ofmotion for the scaling factors given in equation (20) reduce to those of the superfluid
unitary Fermi gas in equation (10). Therefore, the dynamical evolution of the cloud size is energy-independent.
STA for isotropic expansions and compressions can thus be efficiently implemented via LCD in this regime, with
the same protocols demonstrated in the previous section. Nonetheless, the TOFdynamics used to probe the
cloud upon completion of the STA ismodified. This is the case as the time evolution after switching off the trap is
anisotropic. The presence of shear viscosity leads then tomomentum transfer from the quickly expanding
direction into the slowly expanding direction. This results in a slow decrease of the aspect ratio compared to the
expansion in the superfluid regime.

Here we implement the LCDSTA to study the nonadiabatic dynamics in the high-temperature regime at
unitarity. This is tantamount to the implementation of a hot superadiabatic expansion stroke (e.g., in a quantum
Otto cycle), of the kind proposed for friction-free quantum thermalmachines [21, 22]. For simplicity, we
consider an isotropic expansion strokewith the reference frequencies chosen as
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where the expansion factor bj t( ) is set as 1.5 and the transferring time τ=1.5 ms.
In this experiment, the trap depth is increased and the aspect ratio of the trap frequencies is about 22.

Specifically, the system is initially prepared in a stationary state with harmonic trap frequencies
ωx=ωy=2π×5 581.5 Hz andωz=2π×252.7 Hz. The harmonic trap potentialU0 is up to 229 μKwhile
the Fermi energyEF is only about 6.5 μK.With this setup, the anharmonic features of the trap are greatly
suppressed. The initial energy of the Fermi gas at unitarity isE=0.78 (0.1)EF, corresponding to a temperature
T=0.24(0.02)TF.

Subsequently, the trap frequency is lowered by decreasing the laser intensity according to equations (17) and
(23), and the trap anisotropy is precisely controlled by the power ratio of the two trap beams [24]. Finally, after a
time of evolution in the time-dependent trap, the trap beams are completely turned off and the cloud is probed
via standard resonant absorption imaging techniques after a TOF for expansion of tTOF=500 μs. Each data
point is an average over 5 shots takenwith identical parameters. To prepare a higher temperature Fermi gas for
comparison, the Fermi gas is parametrically heated up toE=2.47 EF (corresponding to a temperature
T=0.85 TF)with the same trap potential. Specifically, this is achieved bymodulating the trap frequencywith
the resonant frequency. The TOFdensity profile along each direction isfitted by aGaussian function as
A A xexp j j0 1

2 2s+ -( ). From this fit, we obtain the observed cloud size z,obss and r,obss that we use to determine
the in-trap cloud size 0r,in traps ( )‐ and 0z,in traps ( )‐ with the hydrodynamics theory.

In order to investigate the effect of shear viscosity on the dynamics at high temperature, we perform two
types of experiments.Wefirst observe the evolution of themean square cloud size at different temperatures by
suddenly switching off the trap after an isotropic STA expansion, i.e., implementing a TOF expansion, which
corresponds to settingωj(t) for (t>τ) to zero in equation (20). In this case, both the viscosity heating rate
coefficientCQ(t) andσjj are zerowith bx(t)=by(t)=bz(t) for t>τ. Isotropic STAprotocol for a high-
temperature Fermi gas, in principle, should be the same as in the superfluid regime.However, the presence of
shear viscosity will lead tomomentum transfer from the radial direction into axial direction and result in a TOF
dynamics quite different for different temperatures. The TOF expansion at the energy E=2.47 EF and
E=0.78 EF are shown infigure 4. After releasing the atomic cloud from the cigar-shaped trap, the shear
viscosity slows theflow in the initially-narrow, rapidly-expanding, x direction and transfers energy to the z
direction alongwhich the expansion is slower. For afixed time after release, the cloud aspect ratio then decreases
with increasing shear viscosity. Due to the large anisotropic frequency ratio, the expansion along the axial
direction is very small and, as a result, does not exhibit significant variations for different energies, see figure 4(a).
However, the gas experiences fast expansion along the radial direction, reaching a size about 20 times bigger than
the initial one. This illustrates clearly the effect of increasing the shear viscosity, see figure 4(b). The small
residual excitation following the STA is because the engineered frequency in the experiment differs slightly from
the designed ideal trajectory.

In a second kind of experiment in the high-temperature regime, we investigate the influence of the shear
viscosity on the anisotropic expansion. For a cylindrical symmetric dipole trap, the frequencies xw andωy should
always be the same,meaning that the scaling factors fulfill bx(t)=by(t). Referring to equation (20) to implement
a STA in a high-temperature unitary Fermi gas, the frequencies should satisfy
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Here the trap-averaged shear viscosity and the viscous heating coefficientCQ(t)need to be determined to design
the trap frequencies and aspect ratio. Although they have been preciselymeasured in equilibrium, the dynamics
of the trap-averaged shear viscosity is very complex. As a result, we implement a STAby LCD that is guaranteed
towork for a unitary Fermi gaswith no viscosity, using equations (10) and (13), and study the deviations that
arise due to the viscous hydrodynamics. To this end, we compare the dynamics in both isotropic and anisotropic
STAprotocols, for which the trap frequencies are chosen as follows

Isotropic STA 0 2 252.7 Hz 2 112.3 Hz,

0 2 5 581.5 Hz 2 2 480.7 Hz,
Anisotropic STA 0 2 252.7 Hz 2 208.8 Hz,

0 2 5 581.5 Hz 2 2 480.7 Hz.

z z
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The aspect ratio of the target stationary state for an anisotropic expansion is 11.9. For comparison, the STA
trajectories are implementedwith the energies ofE=2.47 EF andE=0.78 EF, respectively; see figure 5. For the
isotropic expansion, the dynamics along different directions shares the same behavior, shown infigure 5 A1 and
A2. The viscosity rarely affects the dynamic evolution even at a quite high temperature with energy values up to
2.47 EF. By contrast, the anisotropic expansion dynamics, where b b bx y z= ¹ , shows different behavior with
increasing viscosity for different energy values. The STA for the anisotropic expansionworkswell at low
temperatures. In the strongly coupled regime, the cloud size in the axial direction behaves as in a compression
stroke, since the frequency in the radial direction decreases faster and the energywould ‘flow’ into the radial
direction. The experimental results are consistent with the theoretical calculation using equation (10). However,
the dynamical behavior of the axial direction exhibits an excitation at high temperature, while the radial
behavior is still consistent with the theoretical prediction. The large deviation between bx and bzwould result in a

constant increase of the viscous heating coefficientCQ(t).When the viscosity coefficient Saá ñ is large and
m x b

S jj

j j
2

0
2

 a sá ñ

á ñ

becomes comparable to the square of the frequency, the STA trajectory should be corrected according to
equation (24). Neglecting the contribution of viscosity, the expansion stroke does not satisfy the boundary
conditions and thus exhibits some excitation after the transferring time. Since the frequency aspect ratio is very
large, the contribution of the viscosity in the radial direction is smaller than the square of the frequency.We
could hardly see the deviation of the expansion behavior away from its theoretical calculation in the radial
direction ,which is shown infigure 5 B2.

To further compare the dynamic of the atomic cloud for the isotropic and anisotropic expansion, the
dimensionless cloud size t 0j j js s s=¯ ( ) ( ) is shown in figure 6. The ratio of r zs s¯ ¯ is very close to one and the
system remains at thermal equilibriumwhen the STAdriving is completed. For different energies at different
times, the ratio r zs s¯ ¯ keeps a constant value closed to unity as shown infigure 6(A). The slight deviation in the
experimental data (black dots) during the nonadiabatic transfer is due to the large viscosity. The anisotropic
expansion shown infigure 6(B) is largely dependent on the energy.When the energy is low and the viscosity can
be neglected, the ratio r zs s¯ ¯ remains constant, keeping aspect ratio bx(τ)/bx(0)=1.86.However, r zs s¯ ¯
oscillates for high energy due to the presence of the viscosity. Further, contrary to the superfluid case, residual
excitations of the breathingmode are damped as a function of time due to the viscous hydrodynamics.

Figure 4.Time-of-flight evolution of the cloud size following an isotropic STA. Figure A (B) shows the dynamic behavior of the
dimensionless cloud size z rs s ( ) in the axial (radial) direction, where 0 , 0z z z r r r,obs ,in trap ,obs ,in traps s s s s s= = ( ) ( )‐ ‐ . The STAprocess
starts from time t=0 and ends at time t=1500 μs. Orange and green dots representmeasured datawith energy E=2.47 EF and
E=0.78 EF, respectively, while the red dashed line and blue dashed line are the corresponding theoretical predictions.
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5. Conclusions

In conclusion, we have studied the control of the nonadiabatic expansion dynamics of an interacting Fermi gas
in both the noninteracting and unitary regimes. To this end, we have engineered STA by counterdiabatic driving
exploiting scale-invariance as an emergent dynamical symmetry in these two limits. By doing so, the cloud size
follows a prescribed adiabatic trajectorywithout the requirement of slow driving that can be used to implement a
superadiabatic transition between two different stationary quantum states. Superadiabatic expansions can be
applied in a variety of scenarios to control andmanipulate ultracold gases. They can be used as a dynamical
microscope to probe the state of the atomic cloud [47, 62] aswell as to implement friction-free superadiabatic
strokes in quantum thermodynamics [20–23].

For the 3D anisotropic ideal Fermi gas, we have implemented STA via an isotropic nonadiabatic expansion.
These shortcuts rely on engineering a unique scaling factor describing the expansion of the atomic cloud along
all different axes, as a function of time. Their implementation is possible even in the resonant regime, thanks to
the individual control of the trap frequencies as well as their aspect ratio, using the technique proposed in [24].

We have also investigated STA at high temperature for a unitary Fermi gas in a time-dependent anisotropic
trap. The TOFdynamics is changed as the increasing shear viscosity transfers themomentum from the quickly
expanding direction into the slowly expanding direction. By comparing the dynamical evolution along a

Figure 5.Dynamical evolution of a unitary Fermi gas at different temperatures. Figure A1 (A2) shows the evolution of the cloud size
along the axial (radial) direction for an isotropic expansionwhile figure B1 (B2) indicates the dynamic behavior of the cloud size along
the axial (radial)direction for an anisotropic expansion. Black (blue) dots aremeasured at high (low) temperature corresponding to an
initial energy E E2.47 0.78 F= ( ) and the solid lines are corresponding theoretical predictionswithout considering the viscosity.

Figure 6.Evolution of the dimensionless ratio r zs s¯ ¯ at different temperatures. (A) Isotropic and (B) anisotropic shortcut to an
adiabatic expansion. Here, t 0r r rs s s=¯ ( ) ( ) and t 0z z zs s s=¯ ( ) ( ). Blue dots aremeasured at low temperaturewith initial energy
E=0.78 EF while black dots correspond to the high-temperature viscous regimewith initial energyE=2.47 EF. Dashed lines denote
the corresponding theoretical predictions without considering the viscosity.
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shortcut to adiabaticity for isotropic and anisotropic expansions, we have demonstrated the impact of the shear
viscosity on the nonadiabatic dynamics and its effect on the residual excitation of the breathingmodes of the
cloud.
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