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Abstract
We introduce a phenomenological theory formany-body control of critical phenomena by
engineering causally-induced gaps for quantumHamiltonian systems. The coremechanisms are
controlling information flowwithin and/or between clusters that are created near a quantumcritical
point. To this end, we construct inhomogeneous quantumphase transitions via designing
spatiotemporal quantum fluctuations.We showhownon-equilibrium evolution of disordered
quantum systems can create new effective correlation length scales and effective dynamical critical
exponents. In particular, we construct a class of causally-induced non-adiabatic quantum annealing
transitions for strongly disordered quantum Ising chains leading to exponential suppression of
topological defects beyond standardKibble–Zurek predictions. Using exact numerical techniques for
1DquantumHamiltonian systems, we demonstrate that our approach exponentially outperforms
adiabatic quantum computing. Using strong-disorder renormalization group (SDRG), we demon-
strate the universality of inhomogeneous quantum critical dynamics and exhibit the reconstructions
of causal zones during SDRGflow.Wederive a scaling relation forminimal causal gaps showing they
narrowmore slowly than any polynomial with increasing size of system, in contrast to stretched
exponential scaling in standard adiabatic evolution. Furthermore, we demonstrate similar scaling
behavior for random cluster-IsingHamiltonians with higher order interactions.

Controlling non-equilibriumdynamics of quantummany-body systems is one of themain challenges in
condensedmatter physics and quantum control. Such complex quantum systems have very rich parameter
space and unusual dynamical properties thatmakes them very hard to simulate and control as they are driven
through critical regions [1]. Themain difficulties arise from the fact that these systems generally contain high
degree of disorders and effectively low dimensions such that they are not prone to exact analytical treatment or
mean-field approximations. In principle their dynamics can bemapped to the dynamics of spin-glass systems
that are driven/quenched by external control fields and could experience various first and second-order
quantumphase transitions andGriffiths singularities [2, 3]. Quantumdynamics of such complex systems,
except trivial cases, would be out-of-equilibriumwhen they are quenched in any finite time.However, such rich
dynamical properties could lead to novel computational resources [4–7] provided that we obtain sufficient
degree of control over their dynamics.

Adiabatic quantum computation (AQC) has been developed as a particular paradigm that utilize the
continuous-time dynamics of drivenmany-body quantum systems for solving optimization tasks [4, 5]. In this
model, the solution of a hard combinatorial optimization problem is encoded in the ground state of an
interactingmany-body systemwhich can be prepared adiabatically from an initially trivial ground state,
provided that time evolution ismuch longer that the inverse ofminimumgap square [5]. One of themajor
challenges to AQC, that has been largely ignored in the quantum computing literature, is that formany realistic
problems the analog quantum annealer will inevitably contain a significant amount of quenched disorder
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smearing the corresponding quantumphase transitions for pure systems. Thus, the required time-scale for
satisfying adiabatic limit could grow as a stretch exponential due toGriffiths singularity [3], even in the absence
of anyfirst order phase transitions. TheGriffiths effects have pronounced consequences forfinite-dimensional
quantum systems,much stronger than in the classical counterparts. In fact, near-term quantumprocessors are
best examples of low-dimensional quantum systems due to the inherent locality of physical interactions and
geometrical constraints on the degree of connectivity [8]. After the embedding of a computational problem into
quantumannealers, or their digital simulations [9], theywill inevitably react to quantum fluctuations
inhomogeneously at the physical level. Consequently, near-term quantumprocessors will typically experience
locally inhomogeneous and smeared first and second order phase transitions, even if we drive themwith an
externalfieldwhich is homogeneous in space. In particular, annealing schedules exhibitmultiple vanishing gaps
between ground state andfirst excited state, see figure 1(a), leading to exponentially long annealing time-scales.
In practice, we always have afinite annealing time-scale thatwould inherently violate the adiabaticity condition,
even forfinite-size systems, leading to emergence of domainwalls or topological defects that emerge at a
relatively wide effective quantum critical region. This is in sharp contrast to a single, well-defined quantum
critical point for pure system,where their density of defects can be estimated via Kibble–Zurekmechanism
(KZM) in the thermodynamics limit [10–14]. As of today, there is no knownway to guarantee the quality of
solutions, given finite space–time physical resources, and there is no constructive or algorithmicway to improve
performance for such analog quantum information processors within a given accuracy. These issues have lead us
to the following fundamental questions: Is it possible to engineer quantumphase transition in disordered
systems by inhomogeneous control fields to enforce spatially-induced gaps between low energy sector and
higher energy states (seefigure 1(b)).

Here, we present a general approach for controlling quantum critical dynamics.We introduce different
classes of spatial and/or temporal inhomogeneous protocols to drive strongly disordered quantum spin chains
across a quantumphase transition andminimize the residual energy of thefinal state. This is achieved by
creating governingHamiltonianwithmultiple critical fronts that can synchronize the local phase transitions in
space and time. In each local region, the number of spins that simultaneously experience the critical dynamics is
controlled by the length scale and shape of the inhomogeneity inwhich themagnetic field ismodulated.
Causality is introduced as themain control strategy to spatially coordinate symmetry breaking events among
neighboring regions byfinding the appropriate degree of inhomogeneities and the speed of critical fronts to
reduce the number of topological defects.We explore the conditions for an optimal suppression of domainwalls
and show that we can beat the standard homogeneous KZMprediction for the density of the topological defects
for strongly disordered transverse Ising problem in 1D.Moreover, we show that these phenomena can similarly

Figure 1.Exact numerical simulations of instantaneous eigenenergies of a randomquantum Isingmodel as a function of evolution
time for two distinct algorithms: (a) homogeneous or standard adiabatic quantum evolution, (b) inhomogeneous non-adiabatic
quantum annealing. In (a) the instantaneous ground state energy is represented by red lines and it is set at 0. Yellowmarks the
instantaneous excited energy states that can be reached if evolution time-scale becomes comparable to the inverse of instantaneous
gap. In contrast blue lines showunaccessible excited eigenenergies due to vanishing instantaneousHamiltonian state-to-state
transitionmoments (see section 3). In panel (b) it can be observed that the complexity of problem can be substantially changed via
inducing certain causally-induced local gaps separating low-energy sector (red lines) from instantaneously accessible excited states
(yellow lines).
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be observed for systemswith k-local physical interactions.We demonstrate that inhomogeneous driving can be
exponentially faster for such systems than conventional (homogenous) schemes such as adiabatic quantum
annealing. Furthermore, we show that the universality of quantum critical phenomena holds for
inhomogeneous quantum critical dynamics even in the presence of strong disorder.

The outline of this paper is as follows: in section 1, we review causal origins of topological defects in the
context of KZM for pure and disorder systems. In section 2, we describe two general classes of inhomogeneous
quantumannealing (IQA), type I and type II, for re-constructing phase transitions and present numerical results
for strong-disorder 1D transverse Isingmodel. In this context, we show that AQC can be understood as a trivial
formof either type I or type II IQA. In section 3, wefirst provide a phenomenological theory of the emerging
local gaps and its connection to threshold velocities for critical fronts.We then derive an expression for
distribution of local gaps as a function of inhomogeneity slopewith a logarithmic correction on the system size.
We demonstrate universality of critical fronts shapes via strong-disorder renormalization group (SDRG)
techniques.We also discuss how the shape of inhomogeneity is related to its penetration depth into disordered
phase. A generalization of ourwork for k-localHamiltonian system is presented in section 4. A detailed
treatment of ourwork as a generalization of KZMand discussions on lower- and upper-bounds for the shape of
critical fronts is provided in a separatemanuscript [15]. The generalization to spin-glass systemswill be
presented in another subsequentwork [16, 17].

1. Causal origin of topological defects

We start by reviewing theKZM for pure systems (in absence of any disorders)which has been developed as the
phenomenological theory to describe the breakdown of adiabaticity in critical systems [10–14]. The theory
provides a rough estimate for the density of topological defects that arise when a quantumor classicalmany-
body system is driven through a continuous critical point at a finite rate. The key observation is that in the
vicinity of a quantum critical point a system at the thermodynamical limit effectively stops following the
adiabatic evolution for anyfinite quench rate—nomatter how slow it is driven. This results in emergence of
universal KZ length scale which depends on the quench rate andmanifests itself, among others, in the density of
topological excitations.

The time dependent evolution of system can be expressed by aHamiltonian as: H g gH Hc p= +( ) whereHc

is controllableHamiltonian, g(t) is a control parameter with value gc at the critical point, andHp is the
Hamiltonian of interest or the ‘problemHamiltonian’. Near a critical point the characteristic energy scale of the
systembehaves as 1 z e~ n∣ ∣ at the thermodynamical limit. The system experiences a divergence of the
equilibrium relaxation time, z

0t t e= n∣ ∣ , as well as a divergence of the equilibrium correlation length,

0x x e= n∣ ∣ , where g g gc ce = -( ) is the dimensionless distance to the critical point. The ν and zν are the
critical exponents that characterize the universality class of the phase transition. The derivation below assumes
that the exponents arewell defined, i.e. they do no dependent on ε and describe pure power-law dependence,
and that there are no other relevant long-distance scales in the problem.

The speed of information, or the speed of second sound, is on the order of the ratio of critical length-scale to
the critical time-scale

v . 1s
z

0 0
1x t x t e~ = n -( )∣ ∣ ( )( )

A causal separation near a critical point for any pair of spins could emerge if their relative distance ismuch larger
than length scale that the information can propagate with the corresponding second sound velocity, vs, for given
finite quenching time interval. Consequently, choices of broken symmetry for spins belong to two different
causal zones are not necessarily related. This is the origin of topological defects formation. The Lieb–Robinson
bound [18], which characterizes themaximum speed of information in quantummany-body systemswith local
interactions, provides an upper-bound for vs.We note that vs can achieve its Lieb–Robinson upper-boundwhen
z=1, such as the prototypical 1D transverse Isingmodel.

Within the vicinity of gc the quenched externalfield can be linearized in the form g t g t1c Qt= -( ) ( ), such
that t t Qe t=( ) , where τQ is the quench rate and the critical point is crossed at t=0. The parameter regime
close to the critical point inwhich the system is not able to adiabatically adjust to the slowly changing external
field, and effectively, to zeroth order approximation not responding, is called frozen or impulse regime. The
freezing occurs at a particular time scale t̂ inwhich the relaxation time τ(t) becomes approximately equal to
quench rate e ė. Thus, by setting t t tt e e=(ˆ) ∣ (ˆ) ˙ (ˆ)∣we arrive at

t . 2Q
z

0 z
1

1t t= n
n+ˆ ( ) ( )

This equation gives theKZ time-scale relevant to describe the universal behavior of the system slowly quenched
though the critical point. The corresponding length-scale is a power-law of the quench rate aswell
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t . 3Q0 0 z1x x e x t t= = n
n+ˆ [ (ˆ)] ( ) ( )

This length scale can be used to estimate the size of the domains in the broken symmetry phase.
Consequently, the density of defects is expected to vanish as d t Dx~ -(ˆ) , whereD is the dimensionality of
system andwe assume that the defects are sufficiently robust and do not relax quickly during the subsequent
evolution. This is the key predication of KZM. For example, in thewell-studied case of 1D Isingmodel in
absence of any disorder we have ν=z=1. TheKZMprediction for the density of excitations reads
d t Q

1 1 2x t~ ~- -(ˆ) in that case [19–21], which can indeed be verified analytically [20]. The above argument
was later developed into full dynamical scaling hypothesis, which allows to obtain similar power-laws for other
observables of interest [22–26].

Understanding causal effects in disordered systems near a critical point and any attempt for estimation of
density of defects requires careful analysis and notmuch is known outside of specific cases. Experimentally,
quenches from the superfluid to the Bose glass were reported [27], with the resulting residual energies vanishing
very slowlywith the increasing quench rate. Full theoretical understanding is stillmissing in this case.
Theoretical investigations aremostly limited to the class of systemswith the critical point in the universality class
of so-called infinite-disorder fixed point.Here, we are interested in systems belonging to this class.Wefirst
consider the prototypical example of a random transverse IsingHamiltonian for a chain ofN spins,
H g n Jn

N
n
x

n
N

n n n
z

n
z

1 1
1

, 1 1s s s= -å - å= =
-

+ +
ˆ ( ) , with quenched (fixed) disorder in the nearest-neighbors couplings

Jn n, 1+ . In this article we assume that they are drawn from the flat distribution over interval 1, 1-[ ]. The unit of
time is set by ÿ=1. Using SDRG techniques, the equilibriumproperties of thismodel were first evaluated by
Daniel Fisher [28]. For a homogenous or uniform transverse field in themodel, the distribution of disorders
induces a critical point that can be evaluated by relation g Jexp logc n n, 1= +( (∣ ∣)). For uniformdistribution of
J 1, 1n n, 1 Î -+ [ ] this yields a critical value of g e 0.367 879c

1= -  . It should be pointed out that the critical
point for similar systems in two-dimensions [29] and in presence of dissipation [30] are also known to belong to
this universality class.We use numerical SDRG to demonstrate universality of our non-equilibriumprotocols in
the section 3.We also generalize our results to Isingmodel with certain k-local interactions in the section 4.

The presence of disorder, changes the universality class of the critical point of the Isingmodel from
ν=z=1 to ν=2 and z  ¥, and thus quantitatively and qualitativelymodifies the dependence of
correlation length and density of defects on the quench time-scale.Most importantly, using SDRG techniques, it
was evaluated that as the system approaches the critical point the gap of random Isingmodel scales as

1 e e e[ ] ∣ ∣ ∣ ∣ [28], and consequently the critical exponent z O1 1n e= +∣ ∣ ( ) diverges as ε→ 0. For that
reason theKZMderivation described earlier has to bemodified to take this into account [31, 32]. The
characteristic time-scale t̂ follows from the condition t t t t1 Q

t1e e t e k e= » e∣˙ (ˆ) (ˆ)∣ ( ∣ (ˆ)∣) ∣ (ˆ)∣ ∣ (ˆ) ∣, whereκ is a
constant factor on the order of one. The above relation can be solved in the limit of infinitely long annealing
time, ln 1Qt ( ) , yielding [31]

ln

ln ln
. 4Q

Q

2

2
x

t k
t k

~ˆ ( )
[ ( )]

( )

The density of defects is then suppressed logarithmically with quench time d 1 ln Q
2 t~ , which is

quadratically faster than simulated annealing, where defects scale as d 1 ln Qt~ [33, 34]. The existence of these
logarithmic scaling laws implies that one has to run exponentially long annealing times to reduce the residual
energy of thefinal state. However, as wewill show in the next section one can recover a polynomial scaling by
driving the systemwith a spatially inhomogeneous transverse field.

2. Causal control of topological defects withmultiple critical fronts

From carefully studying defect formation under homogeneous drivefields, one can see how a newway of
suppressing or controlling topological defects can emerge by being aware of causal separation of subsystems due
to the extremely small values of velocity for information propagation near a critical point according to
equation (1). In otherwords, one can try causal synchronization of the local phase transitions by
inhomogeneous driving fields, as far as the critical front do notmove faster than a threshold velocity
corresponding to the speed of information, see [35–38] for a quantum case and [39–44] for classical counterpart.
Note that this is fundamentally different than the standard annealing paradigmwhich is guided by the inverse of
a global gap of a quantumHamiltonian systemwhich provides an upper-bound for relaxation time scales
according to the adiabatic theorem. In otherwords, adiabaticity provides a sufficient condition for annealing
time and it is not necessary to get low-energy states or even the ground state of disordered Ising systems.

Here we provide a phenomenological description of causally-induced non-equilibriumquantumphase
transitions. Specifically, we develop an algorithmic quantumannealing approach to create a causal sequence of
locally gappedHamiltonians.We note that for strongly disordered systems in low dimensions there is a
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quantumGriffiths region that is spread in the disordered and ordered phases, i.e. on both sides of a critical point
[28].Within theGriffiths region the systemundergoes effective local phase transitions that are space–time
separated in nature even if the control fields are homogeneous. The key observation is that one can create
situations inwhich the choices of symmetry-breaking events in a local neighborhood that have already
experienced phase transitions earlier could influence the symmetry breaking events elsewhere, provided that the
control fields have certain inhomogeneous spatiotemporal structures. These symmetry breaking events are
perceived by the rest of the system, which is still in a disordered phase, as effective boundary conditions
influencing their localfields.

In order to develop an algorithmic quantum annealer, here we construct a general class of IQA schedules.
They are a function of afixed total quench time or annealing timeT Qt~ , proportional to the annealing rate of
the homogeneous quench τQ introduced in the previous section. The performance of the algorithms are
evaluated by computing the precision òQ of approximating the ground state. Herewemostly focus on the
random instances of strongly-disorder spin chains, nevertheless our construction is general and can be applied
to higher-dimensional systems [17]. There are twomain reasons for such a choice. First, for 1D casewe can
simulate their dynamics exactly using amapping to free-fermionic system, as e.g. in [31, 32, 37]. Also the critical
behavior of such systemswhen driven via homogeneous externalfields have been studied extensively, thus the
newnon-equilibriumphysics of such systemswhen driven inhomogeneously can be better benchmarked and
appreciated. The overall Hamiltonian for a systemofN spins under a inhomogeneous driverfield can bewritten
as:

H t g n t J, , 5
n

N

n
x

n m

N

nm n
z

m
z

1 ,
å ås s s= - -
= á ñ

( ) ( ) ( )

and the quality of an output state is characterized by a normalized residual energy as: òQ=Q/N, with
Q H HQ p Q gs p gsy t y t y y= á ñ - á ñ( )∣ ∣ ( ) ∣ ∣ , where Qy t ñ∣ ( ) is the quantum state of the system at thefinal annealing
time. gsy ñ∣ is the ground state of the classical time-independentHamiltonian, or the problemHamiltonian,

H J ,p n m
N

nm n
z

m
z

, s s= -åá ñ with eigenvalue E Hgs gs p gsy y= á ñ∣ ∣ .We note that for pure systems, where Jnm=J, the

normalized residual energy can be related toKibble–Zurek correlation length x̂ by JQ
D

 x~ -∣ ∣ ˆ where
Dx-ˆ is

the density of topological defects andD is the dimension of system.
Here we assume that the inhomogeneous drive field is a transverse field that can be locallymodulated for

every individual spin. ThisHamiltonian can be realizedwith the near-term quantumannealing technologies
currently being developed at theD-WaveQuantumComputing Systems andGoogleQuantumAI Lab.

Aswe describe in the next section, for any given instance of disorders Jnm{ }as we drive the system toward the
quantum critical point, the system responds to quantumfluctuations withinM distinct ‘clusters’, which are
related to the emergence of rare local regionswithin theGriffiths phase. Aswewill show, the number and
locations of clusters can be estimated via a simple preprocessing step that grows linearly with the size of the chain
for 1D system. The generalization to higher dimensional system is presented in [17].

In each cluster we drive themany-body systemby a transverse IsingHamiltonianwith some local structure.
Thus, we drive theseM clusters simultaneously into some space–time separated inhomogeneous transitions

g n t h n t g n n v n t t, , , 6
l

l l
k

M

k k k k
0 1

å ål w= + - -
= =

( ) ( ) ( ) (∣∣ ∣∣ ( ) ) ( )

where each hl is the time-independent globalmagnetic fieldwhich has a spatial structure and eachλl(t) is
spatially uniformbut it can generates nonlinear dependence to time. The terms

g n n v n t t,k
M

k k k k1 wå - -= (∣∣ ∣∣ ( ) ) characterize various spatiotemporal dependencies of traveling quantum
critical fronts, where n nk-∣∣ ∣∣denotes a distancemeasure of node n from some center node nk per cluster where
we trigger the quantumfluctuations. The center of these spatiotemporal inhomogeneities can be shifted linearly
in time by v n t t,k ( ) with a spatiotemporal dependence for each k cluster. However, for simplicity, for rest of this
workwe concentrate on a constant critical frontmotion for each cluster; that is v n t v,k k=( ) .

In the following section, we define the shape and two different kind of velocities for critical fronts and
provide two simple examples of type I and II annealing, namely periodic inhomogeneous annealing, and
mutliple-critical-fronts inhomogeneity.

2.1. Shape and velocity of critical fronts
The inhomogeneity slope and its horizontal and vertical velocities of inhomogeneity can be characterized by a set
of hyper-parameters v v, ,h va{ }corresponding, respectively, to local slope of the instantaneousfield in space
and it’s spatial (horizontal) and temporal (vertical) velocities, that are defined by derivatives of g(n, t) and
n g t,fix( ) as:

v n t g n t t, , , 7v = -¶ ¶( ) ( ) ( )
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v n t n g t t, , , 8k
h

fix= ¶ ¶( ) ( ) ( )

n t g n t n, , . 9a = ¶ ¶( ) ( ) ( )

Thus, we can derive closed form expressions over these hyperparameters for different annealing schedules. To
appreciate the generality of the shape of g(n, t), we consider two concrete and qualitatively distinct classes for
IQAwith respect to possible temporal and/or spatial inhomogeneities.

2.2. Type I IQA: space and time separated inhomogeneity
In this class, we consider a general formof independent or separated space and time quantumfluctuations to
drive the annealing dynamics

g n t h n t, . 10
l

l l
0

å l=
=

( ) ( ) ( ) ( )

An example of this class will be a periodic spatial inhomogeneity (standingwave) combinedwith spatially-
independent time-local inhomogeneity as:

g n t h t t a, e ,
k

k
kn

0 0 1
iål l= + p

=-¥

¥

( ) ( ) ( )

where each term in the spatial contribution in the second term corresponds to an estimated cluster size.We
provide a simple illustration of these periodic spatial inhomogeneities in the next section.We note that KZM—

in the context of pure systems—was also extended to quenches that are homogeneous in space, but nonlinear
(inhomogeneous) in time [25, 45]. Such inhomogeneity adjusts the quench rate to the distance from the critical.
Consequently it allows to reduce the number of generated defects.

2.3. Type II IQA: spatiotemporal inhomogeneities
In this class, we build a sufficiently general example by creating amutliple-critical-fronts annealing schedule in
M clusters where critical fronts in each cluster aremovingwith the speed v nk ( ) and each are governed by a
separate activation function n n v n ttanh :k k kq - -[ (∣∣ ∣∣ ( ) )]

g n t g n n v n t, 1 tanh , 11c
k

M

k k k k
1

åw q= + - -
=

⎧⎨⎩
⎫⎬⎭( ) [ (∣∣ ∣∣ ( ) )] ( )

where gc is the critical value of transverse field.We note that there is no particular significance for our choice of
activation function here. As an important special class of the above driver field, we linearize the activation
function in each cluster near quantum critical point, that is n v n ttanh k kq - [ ( ( ) )] n v n tk kq -( ( ) ), then for
each cluster we get:

g n t g n v n t, 1 . 12k c k kq= + -( ) { ( ( ) )]} ( )

In thefirst example of this type, we consider an inhomogeneity with constant vk for each cluster of the form
g n t g n v t, 1 tanhk c k kq= + -( ) { [ ( )]}which yields n g g v ttanh 1 .k c k k

1
fix q= - +-

-( )

v n t g n v t v n t v

v n t v

n t g n v t

, 1 tanh , ,

, ,

, 1 tanh .

v
c k k k k k k

k
h

k

k c k k k

2

2

q q a

a q q

= - - =

=
= - -

( ) [ [ ( )]] ( )

( )
( ) [ [ ( )]]

In the next example of this type, we consider linear approximation of activation function near critical point
which yields g n t g n v t, 1k c k kq= + -( ) { ( )]}and n g g v t1 .k c k kfix q= - +-( ) Thuswe have:

v g v vv
c k k k kq a= = , v vk

h
k= , and gk c ka q= .

2.4. StandardAQC: absence of any inhomogeneity
Wenote that the standard or homogeneous quantum annealing schedule which has been extensively studied
and numerically benchmarked for almost two decades can be considered as the extreme limit of either type-I or
type-II of IQA. In the former case we have one spatially uniform transverse field, g n const.0 =( ) , and linear
velocity t t1 Q0l t= -( ) ( ), where τQ is the overall annealing time-scale. Thuswe have the familiar formof
homogeneous transverse field, which is linear in time, as: g n t g t, 1 Q0 t= -( ) ( ). In order to see AQC as a
extreme limit of type-II IQA,wemust note that the homogeneous transferfield can be considered as a single
critical frontwith a trivialflat shapewith infinite velocity; that is 0q  and v n  ¥( ) , while v nq ( ), which is
basically the vertical velocity, will be equivalent to the inverse of annealing time and thuswill befinite. The
hyperparameters for homogenous annealing, respectively, become v n t, 1v

Qt=( ) , v n t,k
h = ¥( ) , andα

(n, t)=0.
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2.5. Exponential suppression of defects
To illustrate the power ofmulti-front critical control, we numerically investigate two concrete forms of type I
and II inhomogeneous annealing as described above and compare their performance against standardQA. All
the simulations in this section are done using the Jordan–Wigner transformation thatmaps theHamiltonian in
equation (5) onto the systemof free fermionswhere it can be solved numerically in a standardway. For details of
these techniques, we refer the readers to the appendix B of [37]. For our numerical analysis here the cluster
formation that we invoke is simple and has linear scaling with the system size for Ising chains. In the next section
we use SDRG to examine construction and scaling of causal gaps.

Examples of the type I and II annealing schedules for one random instance of Ising chain are given infigure 2,
inwhich different snap-shots of time-dependent transverse fields are plotted along the chain. Infigure 2(a), we
illustrate the trivial/homogeneous schedule. Infigure 2(b)we explore the effects of periodic critical fronts by
constructing the schedule

g n t g t T a kn t T, 1 cos sin , 13i p= - +( ) ( ) ( ) ( ) ( )

whereT is the total evolution time. Finally, infigure 2(c)we illustrate an example ofmultiple-critical-fronts
strategy.

In the latter, in order to decide the position of the cluster, we employ a simple preprocessing. It is based on
observation, that for strictly 1D geometry, the instantaneous local gapmay be set by a single, veryweak link.We
discuss it inmore detailed in section 3. Suchweak link sets the local time-scale needed for adiabatic transition
dividing the chain into twoweakly interacting parts.Wewant to place the borders between the clusters at such
links, as (i) theywould require the longest time to align according to theweak coupling and (ii) the energy
penalty for placing the defects there is the smallest. To that end, we look for the largest cluster—starting at the
end of the chain or at the end of the previous cluster—where J vmin n n kcluster , 1k

k >+( ) · . Here, vkwould be the
velocity of the front for this (kth) cluster, andκ is a parameter fixing the exact value of the threshold (in practice
κ≈2). This conditionwould allow for adiabatic transition as if the energy gapwere set by single links only. If
the condition is not satisfy the considered candidate for cluster is cut at its weakest link, creating a new smaller
cluster wherewe check the condition again. The procedure is repeated until full chain is divided into clusters. As
a result, for a totalfixed annealing time, all velocity vk are cluster dependent; allowing optimization of the
computational parameters over the available time. For a cluster of size Lk sites the (vertical) velocity is given by
v g g L T2k

v
f i ka= - +(∣ ∣ ) for a givenfixed total annealing timeT. Each cluster is driven separately, and the

Figure 2. Illustration of three different annealing protocols. Different lines indicate different snapshots of the time-dependent
magnetic field as it has been driven from the initial to thefinal value across a quantum critical point. Top panel shows the standard or
homogeneous transverse fieldwhich can be also considered as a trivial case of both type I and II annealing.Middle panel illustrates the
periodic driving of type I inhomogeneous annealing as in equation (13)with 4 clusters and amplitude a=1. Lower panel shows a
prototypical example of type II inhomogeneous quantum annealingwith 4 clusters. The borders between clusters is tuned to coincide
with theweakest values of Jn n, 1+ for a given realization of disorder as a result of a simple preprocessing procedure.Herewe have
chosen a constant inhomogeneity slope ofα=1/8 for each cluster. The dashed lines in each figure show the critical value of the
transverse field.

7

New J. Phys. 20 (2018) 105002 MMohseni et al



inhomogeneous front is brushing from themiddle of each cluster to both ends simultaneously. For each cluster
spanning spins n=1, 2K L (counting from the beginning of the cluster) themagnetic field is constructed as:
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The probability distribution of topological defects for these protocols are presented infigure 3. The defect
density is evaluated for a strongly disordered instance of a spin chain consist of up to about 1000 qubits with
Jn n, 1+ sampled randomly from [−1, 1]. Here, the inhomogeneous annealing can be regarded as amany-body
quantum control strategy which can significantly reduce the number of topological defects by synchronizing the
symmetry breaking events and can brush the reminder of defects into theweakest Jijwhere they act as defect
sinks. In other words, not only do these non-adiabatic paths suppress the emergence of domainwalls, but also
minimize the energy cost per defect by several order ofmagnitudes.

The scaling of annealing or quenching time as a function of inverse residual energy is plotted infigure 4 for
1000 random instances of 1D Ising chains ranging from256 spins to 1024 spins. It can be observed that the
annealing time is improved exponentially over standardAQC scheme for typical, 50%quantile, as well as harder
instances, 99%quantile (each corresponds to the residual energy inwhich x%instances have smaller values). In
the homogeneous protocol we have TlogQ ~ g-( ) .We obtain γ≈3.8±0.4. It can be comparedwith
γ≈3.4which has been obtained by fromCaneva et al [32] from smaller values of quench timesT and for

Figure 3.Comparing distribution of topological defects for different protocols applied to a single instance of disorder Isingmodel at
T=2×104. This instance is chosen to be typical in a sense that residual energies are close to the respectivemedian values for either
strategies. (a)Homogeneous strategywhere density of defects is expected to diminish as Tlog 2- . (b) defects distribution for type I
inhomogeneous protocol from equation (13)with 7 clusters of the same size. (c)Defects distribution for a type II annealing schedule
where the clusters are formed is such away that theweakest links resides at the borders. Inhomogeneous strategy essentially brushes
the defects and place them at the borders between clusters where the energy penalties areminimized.We useα=1/8. (d). For
referencewe show the values of randomcouplings for the corresponding realization—notice logarithmic scalewhich is emphasizing
the position of theweakest links.
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slightly different protocol, where themagnetic fieldwas also disordered.What is important here is that γ is larger
than 2, i.e. the value of exponent governing the scaling of defect density. This results fromdefects beingmore
likely to appear on the linkswith smallest Jn n, 1+∣ ∣. For uniformdistribution in 1, 1-[ ], γ=4would correspond
to defects appearing only at theweakest links.

On the other hand, in type II protocol we observe TQ
1.03 ~ - (fit forN= 1024,T>100%and 50%

quantile).Multi-front protocol have been constructed by fixedα=1/8, where optimality of such choice is
shown in panel (c) forT=1000. Similar plots for other time-scales (not shown) suggest that in this system this
value is optimal independently ifT?1. Panel (d) shows themean number of clusters in type II annealing for
different time-scales. For large times it should scale as N T 0.5~ which results from the preprocessing
procedure. This follows from the expected size of clusters which can be solved in givenT for Jn n, 1+ drawn from a
uniformdistribution in [−1, 1].

3. Scaling relations for causal gaps

Here, we introduce the notation of causally gappedHamiltonians that are created by time-dependentmultiple
critical fronts introduced in the previous section. In particular, we derive a scaling relation for the distributions
ofminimumcausal gaps as the function of system size and inhomogeneity slope. In this work, we define the
causal gaps as the inhomogeneously-induced instantaneous energy gapwhich becomes relevant when the critical
front is driven below a threshold velocity allowing for information of symmetry-breaking events to propagates.
The core idea is that there is an effective threshold velocity vt

k that determines the suppression of topological
defects formationwithin each cluster in disordered systems. If the velocity of the front in each cluster ismuch
larger than this threshold speed, v vk t

k for all k, then the effect of the spatial variations of the control field
become irrelevant in the sense that wewill recover the standard critical dynamics created by homogeneous
driving, which can be understood by the standardKZM.However, whenwe drive each critical front such that
v vk t

k , the length scale and shape of the critical front becomes highly relevant allowing to suppress creation of
the topological defects in each cluster. The shape of the critical front determines the number of spins that
simultaneously experience criticality creating an effective (finite-size) energy gap. Otherwise, the homogeneous
systemwould be gapless at the critical point in the thermodynamical limit.

Figure 4. Scaling of the total annealing time as a function of the inverse residual energy for homogeneous control (dashed lines) versus
multiple critical fronts of phase transitions (solid lines). Various colors/symbols indicate different system sizes: blue asterisks for
N=256, red pluses forN=512, and yellow crosses denotingN=1024. Panel (a) shows themedian (50%quantile) and panel (b)
shows 99%quantile. Statistics is build from1000 instances of disorders. An exponential improvement in annealing time to obtain a
fixed residual energy is observed from TlogQ

3.8 ~ -( ) for adiabatic quantum annealing to TQ
1.03 ~ - for inhomogeneous non-

adiabatic annealing. The slope of allmulti-front schedules are chosen to be at optimal value ofα=1/8, see panel (c). Panel (d) shows
themean number of clusters for type II annealing for different time-scales resulting from the preprocessing procedure.
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3.1. Causal gap for pure systems
In the absence of disorder andwith sufficiently smooth critical front, that isα= 1, one can invoke a variant of
KZM to estimatewhen the inhomogeneity of the driving front is relevant. This question can be regarded from
two perspectives [35, 36].

Firstly, starting from the limit of homogeneous driving, we note that the relevant speed of information at the
critical front can be expressed as v tx~ˆ ˆ ˆ. Here, x̂ and t̂ are the effective length scale and time scale that the
system experience according toKZMgiven by the relations (2) and (3), respectively. This yields
v Q

z z1 1t= n n- +ˆ ( ) ( ). Next we consider the control parameter ε(n, t) to be position dependent.We linearize the
relation at the critical front forfixed position nfixed as

n t n vt vt, const. 15fixede a a= - = - +( ) ( ) ( )

This gives the local annealing rate n v1Qt a=( ) ( ). Causality implies that if v v ˆ, then the choice of symmetry
breakingwhich happened earlier along the chain cannot influencewhat is happening later andwe recover the
independent defect formation assumed in the standardKZM.The self-consistency condition allows to express
such threshold velocity as a function of ourmain control parameterα. This is obtained by inserting the above
annealing rate into the expression for v̂ , which leads to

v . 16t
z 1 1a~ n n- +ˆ ( )( ) ( )

Alternatively, we could look at the instantaneousHamiltonian resulting from inhomogeneous front in
equation (15).We focus here on the instantaneous ground state of such system,which is interpolating—in space
—between order and disorder phases. They are spatially separated by an effective critical regimewhich size,
called a penetration depth, can be estimated as

. 17i 1x a~ - n
n+ˆ ( )

It follows from a variant of KZMargument, so-calledKZM in space [46–49], where one asks about characteristic
distance from nfixed up towhich the system is able to locally adjust to ε(n) changing in space as if it were locally
homogeneouswith local correlation length determined by ε(n). Apart from the Isingmodel [46–49], the
interplay between inhomogeneous external field and criticality was studied in the context of spin-1 Bose–
Einstein [50], the XYmodel [51], and theXXZmodel [52].

Thefinite size of the effective critical region in equation (17) allows to estimate the gap of the instantaneous
Hamiltonian as

. 18i
z

1aD ~ n
n+ˆ ( )

By combining those characteristic scales we obtain a threshold velocity vtwhich is again given by equation (16).
Themeaning of this threshold velocity is however different here. Namely, we can expect that if the velocity v in
equation (15) is v=vt, then the systemwould be able to follow its instantaneous ground state.

It should be noted that whenever z=1 the threshold velocity becomes constant andwe get a sharp
suppression of topological defects whenever we drive the systemwith critical front that is slightly below vt. The
value of vt becomes equal to 2 for a transverse Ising chainwhen all couplings are equal to one [35]. This
suppression of defects and causal synchronization, however, could be affectedwhenwe drive the systemwith a
multi-front strategy. For a simple pure systemdriven by two critical fronts, bothmovingwith velocity smaller
than vt, infigure 5we illustrate how the defects can be createdwhen two clusters aremerging together. This
highlights the interplay of the causal effects and different boundary conditions on the defect suppression.

Aswe have discussed in section 1, the disordered systems have a completely different critical phenomena as
zn  ¥. In this case one has tomodify equation (18) accordingly [37] by taking into account that at the critical
point the gap is expected to vanish as a stretched exponential with the system size—effectively given in our case
by equation (17).We elaborate on this in the next section in the context ofmultiple critical fronts driving
strategy.

3.2. Universality of causal gaps via SDRG
In this sectionwe use a combination of analytical and numerical SDRG techniques to show that the distribution
of causal gaps are universal irrespective of the shape of inhomogeneities for strongly-disorder Ising systems.We
also derive a scaling relation for the dependence of theminimal causally-induced gap on the actual system size
and slope of inhomogeneity.Wefirst present implementations of SDRG for disordered spin chains under
various schedules.

The core concept of all RG techniques is to re-express the parameters which define a problemby coarse-
graining somemicroscopic degrees of freedoms. In each step of the RGflowwe arrive at effectiveHamiltonian
terms that have fewer andmuch simpler parameters acting on a lower energy and larger (macroscopic) length
scale, such that certain physical or computational aspect of interest in the original problem remain unchanged.
The procedure can be recursively repeated until theHamiltonian is no longer changingwhich indicates that we
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have arrived at the fixed point of the RG flow. In SDRG, that is specifically developed for disordered systems and
has been generalized to higer-dimensional systems [53], the largest energy scales is systematically removed via
two different operations: site decimation and bond decimation [28, 54], see [55] for a review.

A site decimation occurs whenever we have a site-dependent transverse fieldwhich is the largest energy scale
within a local neighborhood of our system; that is g J ji ij> " . Site decimationmeans thatwe basically lock the
spin i to the direction of its local transverse field. Such spinwill be effectively decouples from the rest of the
system. Emerging new couplings are generated between all neighbors of the decimated spin i. These effective

couplings can be computedwithin second order perturbation theory as Jjk
J J

g

ij ik

i

=˜ , if Jjk=0 or otherwise

J Jmax ,jk jk
J J

g

ij ik

i

= ( )˜ . A bond decimation is performed in similar fashion. A bond decimation occurs whenever

we have two sites i and j interacting via Jij that is the largest energy scale within a local neighborhood of our
system; i.e. Jij�gi and Jij�gj; and also J J kij ik " and J J lij lj " . Bond decimation simplymeans thatwe lock
the two sites i and j into amacrospin by projecting the combined pair into their local ground states. No
additional bonds or coupling between any spins are generated in this case. All the spins that were previously
coupled to at least one of the sites are now interacting with the combined cluster. For the spins thatwere coupled
to both i and jwe invoke amaximum selection rule. Effective transverse field at the emergingmacrospins

becomes gi

g g

J

i j

ij
=˜ .

We apply the above RGprocedure to our time dependentHamiltonian by considering each time as a
snapshot for different instances of static spin chains, see figure 6. The SDRG simulation confirms our
assumption of causally independent clusters in the homogeneous strategy, in the low-energy or longwavelength

Figure 5.Defect formation as the clusters aremerging: we consider a pure Isingmodel for illustrative purpose. In (a)we consider the
1D chainwith open boundary conditions and a single cluster growing from the center of the chain. The critical fronts aremovingwith
vertical velocity below the threshold and, as a result, we obtain a systemwithout defects after the quench. In (b)we consider the setup
with two clusters and two frontsmerging in themiddle of the chain. Again, the fronts velocity is below the threshold and there are no
defects inside clusters. However, as the clusters were independent, defects can be created as theymerge, reflecting the possibility that
two independent clustersmight break the symmetry differently. The probability of having such a defect is equal 1/2 as can indeed be
seen from the numerics. In (c)we consider the systemwith periodic boundary conditions. Effectively, in this setupwe have one cluster
which is self-merging at the end of the quench. Importantly, such a process does not lead to the creation of a defect—in contrast to the
situation in panel (b).
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limit. In contrast, we observe inter-cluster causal dependence emerging in themultiple critical fronts strategy,
see the SDRG visualizations of our protocols infigure 6.

Next, we discuss an upper-bound for a global threshold velocity such that themultiple critical fronts strategy
can lead to suppression of excitation between the low energymanifold and the rest of excited states. If we have
full parallel annealing in all clusters simultaneously, we essentially interrupt the causality of symmetry breaking
events between different clusters as illustrated infigure 6.When the fronts are sufficiently separated, the RG flow
makes the corresponding clusters exponentially decoupled. Consequently, when looking at the possible
transitions, we can consider each front independently. The transitionmatrix elements for each cluster k:

t
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n v0,

d
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= is its vertical velocity. nk k
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local instantaneous ground state tofirst excited state transitionmatrix elements for that front. For simplicity of
analysis in following sectionswe choose a constant and uniform velocity for all the critical fronts in various
clusters i.e. vk=v. Due to causal independence of clusters inmultiple criticality, the adiabatic condition for low-
energy states (approximate solutions) can be characterized bymaximumover of all possible local transition

matrix over its local gap, n ;k k
fD ( ) that is
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In the followingwe are going to discuss the universality of the threshold velocity, reflected in its dependence on
the shape of critical front characterized by the slopeα.

Firstly, it is worth drawing the connection between the condition in equation (20)with the threshold velocity
whichwas derived in the previous section. There, it was calculated as v ti ix=ˆ ˆ ˆ , where ix̂ and tî were the
characteristic length scale (the penetration depth) and time scales (given by the inverse of the gap) relatedwith
the slope of inhomogeneityα. Similarly, the adiabatic condition is sometimes formulated as, v=Δ·Γ, where
Δ is the energy gap, andΓ estimates thewidth of the region (in the driving parameter space) for which the gap is
close to itsminimal value, see e.g. [57]—in analogy to the avoided level crossing and the Landau–Zener problem.
To resolve this seeming inconsistency (i.e. that the gap appearing in equation (20) is squared comparing to other
expression), we note that nk k

fW ( ) and nk k
fD ( ) are not independent.We expect that n nk k

f
k k

f
i

1xW D ~ -( ) ( ) , i.e. it

Figure 6.Causal zones formation duringRGflow: a tree representation of SDRGcluster formation for four snapshots of homogeneous
(left) and inhomogeneous (right) quantum annealing at transverse fields g=0.8, 0.4, 0.3 and critical value, gc=0.37 for an instance
of a 64 spin chain. The RGflow starts with physical spins (as tree leaves represented by dots on a gray scale) and ends at the RGfixed
point (roots) via othermacrospins (color dots) in descending energy scales. The black physical spins are those that are already in the
ordered or symmetry breaking phasewhile the graymeans that they are still partially or fully in symmetric phase. The snapshot at
g=0.8 highlights how radically different these two strategies are: causally independent cluster formation inHQA and naturally
growing of a central cluster nucleus in IQA. The other snapshots at g=0.4, 0.37, 0.3 are chosen to be close to the critical point. The
shaded blue areas are causal zones that occur for 0.2 SDRG energy cutoff for thefirst two panels showing qualitatively and
quantitatively different cluster formations for IQA andHQA. In the last two panels the shaded gray areas correspond to causal zones
for thefixed point of SDRG. The key observation here is thatHQAhas several causally separated holes in the shaded areawhere certain
physical spins cannot communicate their choice of symmetry breakingwith other spins. These are the places that topological defects
are highly likely. Nevertheless, within each causal zone forming at low-energy scale there is also some chance of defects formacrospins
that are causally separated in higher energy scales (indicated by different colors within each causal zone).
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is directly proportional to the size of the effective critical region.We show this in figure 7 and discuss further
below. Importantly, this allows us to focus on the scaling of the gap.

The effective size of the critical region (for a given front) is given by equation (17). In our case ν=2, which
gives i

2 3x a~ - . The fronts are independent if their respective distances, or the sizes of the clusters, are?ξi.
The typical gap relatedwith such critical front is then expected to scale as a stretched exponential in ξi,

n e ek k
f const consti

1 3D ~ ~x a- - -( ) · [37].
To bemore precise, we consider P(Δ,α) as a distribution of theminimal relevant instantaneous gapΔ, as

each front is travelingwithin a cluster for afixedα.We argue that we can observe the universality of local gap
probability distributions by introducing a rescaled log-gap x log1 3a= D, with the expected
P P x x, d daD D =( ) ˜( ) , and universal distribution P x˜( ). In contrast, the universal scaling of the gap in the finite
size homogeneous system at criticality is known to be described by universal distribution
P N P x x, d dD D =( ) ˜( ) with x N log1 2= D- [56, 58]. Our ansatz is then a directly consequence of an
assumption that the effective size of the critical region in our protocol is no longer given byN but instead is
characterized by the penetration depth in equation (17).

We verify those scaling predictions infigure 7.We consider the systemwith two clusters, i.e. 4 critical fronts
to highlights the independence of the front and that the scaling prediction naturally carry on to the case of
multiple fronts.We calculate theminimal relevant gap (whichwould be relatedwith one of the fronts), whichwe
distinguish by finding theminimal energy eigenstate with the corresponding transitionmatrix elementΩ above
some threshold.We calculate the gap via numerical SDRGwhich ends at a systemof few spinswhich is
subsequently exactly diagonalized.While the SDRGprocedurewhichwe use is introducing some errors, we
check that the results can be essentially reproduced by the numerically exact solutions based on free-fermionic
picture for transverse-field Isingmodels. Using SDRGallows us to highlight that the fronts are independent as
they become effectively decoupled during SDRG flow.We compute the distribution ofΔ by sampling, for each
disorder instance, fromdifferent equidistant front positions as they aremoving though the chain.We disregard
the beginning and the end of the protocol when the system is far from criticality and focus on the relevant
intermediate part wherewe have independent critical fronts. Infigure 7we collect the statistics using 5000
disorder instances. Indeed, we can see that the peaks of the rescaled distribution collapse validating the scaling
anzats. The tail corresponding to small energies, where the distributions do not properly collapse, is non-
universal and results fromoccasional veryweak links (as J 1, 1Î -[ ]). They give rise to gaps of similar order
(occurring againwhen themagnetic field acting on the neighboring spins is again almost switched off), which are
characteristic for strictly 1D system.We elaboratemore on this later in this section. The presence of such gaps is
especially pronounced for larger values ofαwhen the typical gap e const 1 3~ a- -· , which can be attributed tomany-
body effects, is larger.

The analysis above regards local, instantaneous gap relatedwith the critical fronts traveling though the chain.
To quantify the difficulty of the problem,we consider theminimal gap encounter during such quench. To that

Figure 7.Universal scaling of the gap distributions with respect to the shape of inhomogeneity. In order to achieve smooth shapes of
transverse fields at the border of various clusters, we consider a type-I inhomogeneity (standing critical wave)with 4 clusters in a
system ofN=1024. By comparison to Fisher andYoung SDRG simulations for universality of quantum Isingmodels [56], we can
conclude that our inhomogeneous protocol has changed the effective length scale of system fromN toO(α−2/3). Alternatively, we can
consider thatmultiple critical front strategy has changed the critical dynamical exponent of full system from z  ¥ to z→ 0; that is
the system always stay close to a critical point during almost the entire evolution, however it never experiences a true quantumphase
transition on thewhole system (shortcutting adiabatic evolution).
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endwe focus on the distribution P P x x, d daD D =( ) ˜( ) . Importantly P x˜( ), as calculated for the homogeneous
critical case in [56, 58], has aGaussian tail for x 1∣ ∣ ,4 i.e.

P x e . 21ax 2~ -˜( ) ( )

Figure 7, especially in the limit of smallαwhen gaps attributed toweak links are less relevant, indicates that the
above holds also in our case5. Now, let the probability thatΔ is smaller than some q

minD be

P P x x, d , 22q
x

min

q

òaD < D = =
-¥

( ) ˜( ) ( )

where x logq
q
min

1 3a= D( ) . In order tofind the probability distribution forminimal gapwe assume that we are
samplingN times from P(Δ,α) (ormore precisely proportional toN times in the limit of largeN). That way, the
probability

P q1 , 23q N
min min D > D = - =( ) ( ) ( )

whereΔmin is theminimum from the sample ofN instantaneous gaps. This equation defines q
minD as a q-

quantile for the globalminimal gap. Now,we obtain q
minD from the above equation. This gives

qlog log 1 e
N ax

ax1 1

2 q

q
2

e= - - ~ -( ) , which is obtained by expanding the error function for theGaussian

tail in equation (21), to the leading order in small xq. Solving this equation in the leading order we obtain

x
a

N

a q
log

1

2
log

2 log
. 24q

q
1 3

min 1
a D = » -

-
( )

This suggests that if wefix a quantile q, then in the asymptotic limit

Nexp const log , 25q
min

1 3aD ~ - -( · · ) ( )

i.e. it is vanishing slower than any polynomial with increasingN. This has to be comparedwith homogeneous
gap scaling as: Nexp constq

minD ~ -( · ), which vanishes as stretched exponential withN.We note here that
similar analysis in case when P x˜( )would have exponential tail for large negative xwould give polynomial
dependence for theminimal gap onN.

In order to fully analyze the tail of the gap distributionwe also consider the situation that theminimumgap
is enforced by very small local link rather thanmany-body gap of critical systemof effective size ξi. This issue,
which is essentially an artifact of 1D systems, can be largely avoided by amulti-front strategy where such links are
placed in-between clusters which are driven quasi-adiabatically. To that end, let us assume that the links are
drawn fromuniformdistribution J 1, 1i Î -[ ]. Probability that a single link is weaker then some ò is equal ò, or
P J 1i  > = -(∣ ∣ ) . Let us consider that q is the probability that all the links are stronger than this ò is
q 1 N= -( ) . For small ò this yields

q

N

log
. -

Theminimal gap relatedwith such aweak link is of similar size, and such effects become relevant in 1D
geometry. Finally, we should note that if we consider the distribution of the logarithmof the gap x, the uniform
distribution and relatedweak links directly translate to the exponential tail ofP(x)—mentioned in the previous
paragraph—which is indeed still visible infigure 7 for larger values ofα.

Finally, infigure 8we illustrate the relation between the transitionmatrix elementsΩ and the gapΔ. To that
end, for simplicity we consider protocol with single front and, as infigure 7, sample the values ofminimal
relevant gap and correspondingΩ as the front is traveling though the chain. The results are collected as
probability distribution, where the statistics is collected from5000 instances. In order to illustrate the universal
behaviorwe employ rescaled variables. For the gap x log1 3a= D( ) as above, and y log 2 3a= W D-( ) to
reflect the expected relation i

1 2 3x aW D ~ ~- .We plot the obtained distributions ofP(x, y) infigure 8 for
several different values ofα.We observe that they are roughly similar in agreement with our prediction.We
should note that localmaxima ofΩ/Δ—i.e. where it ismost relevant—coincide with the localminima of energy
gap. Apart from those point,Ω/Δ is quickly approaching zero, which is reflected by elongated shape of the
distribution P(x, y) in the direction of small (irrelevant) y.

4
This derivation corresponds to the smallest, single quasi-particle gap in the Isingmodel. Here due to conserved parity symmetry the

relevant gap corresponds to two excited quasi-particle.
5
More precisely we expect the tail vanishing as P x e a x x0

2~ - -˜( ) ( ) , with somenon-universal constant x0.We set x0=0 for clarity of
derivation as it is not relevant for themain conclusion.
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4. Random cluster-IsingHamiltonian

The numerical results in the previous sections were confined to 1D geometry where, in the final ground state, the
neighboring spins are aligned according to corresponding Jn n, 1+ . In this sectionwe show that the general
approach discussed in this article does not hinge on the possibility to align nearest-neighbor interacting spins in
strictly 1D Ising geometry. To that endwe consider random cluster-IsingHamiltonian as follows:

H t J K

g n t, , 26
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where thefirst two terms contains the problemHamiltonian and the last term is the (inhomogeneous) driving
term given by external transverse field. The quench dynamics generated by thisHamiltonian can be simulated
analogously as for the Ising chain from the previous section as—using Jordan–Wigner transformation—it can
bemapped onto a free fermionic system.

First, lets consider the pure and homogeneousmodel with Jn=J>0,Kn=K>0 and gn=g>0.
Depending on the relative strength of those terms themodel has 3 distinct phases, see e.g. [59–63]. It is
convenient to setK+J=1.When themagnetic field is dominating, g>1, the system is in paramagnetic phase
analogously to the Isingmodel.We are going to initialize the evolution in this phase. In the opposite limit, g<1,
the system is in ferromagnetic phase for J+g>K and symmetry-protected topological order phase for
K>J+g. For J=g=0 it reduces to the clusterHamiltonian [64]. The phases are separated by critical points
with z=1 or z=2.

We consider random couplings Jn andKn, whichmakes the final target state far frombeing trivial for a 256
spin system.We present the results of the quench infigure 9.We consider two different disorder distributions: in
figure 9(a) Jn are dominating—that is J 0.75, 0.75n Î -[ ]and K 0.25, 0.25n Î -[ ], and infigure 9(b) all Jn=0
and K 1, 1n Î -[ ]. For homogeneous driving the residual energy is vanishing logarithmically with the quench
time in both cases, which is a similar behavior as for the random Isingmodel. It can be observed that there is
crossover of the performance for sufficiently long times and the homogeneous protocol is considerably
outperformed by an inhomogeneous driving fields with the optimal slope. The advantage for the case of random
Jn could be exponential, seefigure 9(a). In this case, the spatial inhomogeneity allows the system to reach the
quality of solution (small residual energies)which are practically unattainable within the homogeneous
approach.Here, we use a versionwith single cluster and two critical fronts spreading from the center of the
chain. It should be noted that the optimal shapes (α) in those two cases are different. This optimal value ofα can
be found numerically for given distribution of disorders as a simple preprocessing, or hyper-parameter

Figure 8. Inherent dependence ofHamiltonian transitionmatrixΩ and the local gapsΔ, which can be observed for different
inhomogeneity slopes.We show the probability densityP(x, y), where x log1 3a= D is the gap recalled gap and
y log 2 3a= W D-( ) captures the recalled relation between themixing term and the gap. The probability densities for different slopes
α, expressed in the recalled variables x and y, are roughly the same.We conclude that themaxima ofΩ/Δ are consistent with the
expected scaling of i

1 2 3x aW D ~ ~- .
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characterization, similar to the spirit offinding the optimal annealing time or number of sweeps for simulated
annealing or quantumMonteCarlo solvers.

5. Conclusion and futureworks

Wehave presented amodel for engineering quantumphase transitions in disordered systems bymanipulating
information flow among clusters that are formedwithin a quantum critical region.We have shown that space–
time inhomogeneities in the control fields could lead to reconstruction of causal zones (light cones), such that
symmetry breaking events can be synchronized suppressing the density of topological defects and/or
redistributing their spatial arrangements.We have used exact diagonalization techniques for 1D systems to show
an exponential speedup of non-adiabatic IQAover standard adiabatic quantum computing, even in the presence
of higher order interactions. By application of renormalization group techniqueswe have demonstrated that the
effective causal gaps exhibit universality with respect to the shape of inhomogeneity.We have derived a scaling
relation showing such effective gaps have sub-polynomial scalingwith the system size, in contrast to stretch
exponential for homogeneous control strategies. In a subsequent work [17], wewill provide a detailed
theoretical discussion of ourwork as a generalization of KZM for disordered systems including various bounds
for the shape of critical fronts and threshold velocities under different assumptions.Wewill also discuss how our
approach can be applied to low-dimensional spin-glass problemHamiltonians [16, 17]. During the preparation
of thismanuscript an exponential speedup for IQAof p-spinmodel was reported showing ferromagnetic first-
order phase transitions can be smearedwith inhomogeneous control strategies [65].
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