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Abstract

We introduce a phenomenological theory for many-body control of critical phenomena by
engineering causally-induced gaps for quantum Hamiltonian systems. The core mechanisms are
controlling information flow within and/or between clusters that are created near a quantum critical
point. To this end, we construct inhomogeneous quantum phase transitions via designing
spatiotemporal quantum fluctuations. We show how non-equilibrium evolution of disordered
quantum systems can create new effective correlation length scales and effective dynamical critical
exponents. In particular, we construct a class of causally-induced non-adiabatic quantum annealing
transitions for strongly disordered quantum Ising chains leading to exponential suppression of
topological defects beyond standard Kibble—Zurek predictions. Using exact numerical techniques for
1D quantum Hamiltonian systems, we demonstrate that our approach exponentially outperforms
adiabatic quantum computing. Using strong-disorder renormalization group (SDRG), we demon-
strate the universality of inhomogeneous quantum critical dynamics and exhibit the reconstructions
of causal zones during SDRG flow. We derive a scaling relation for minimal causal gaps showing they
narrow more slowly than any polynomial with increasing size of system, in contrast to stretched
exponential scaling in standard adiabatic evolution. Furthermore, we demonstrate similar scaling
behavior for random cluster-Ising Hamiltonians with higher order interactions.

Controlling non-equilibrium dynamics of quantum many-body systems is one of the main challenges in
condensed matter physics and quantum control. Such complex quantum systems have very rich parameter
space and unusual dynamical properties that makes them very hard to simulate and control as they are driven
through critical regions [1]. The main difficulties arise from the fact that these systems generally contain high
degree of disorders and effectively low dimensions such that they are not prone to exact analytical treatment or
mean-field approximations. In principle their dynamics can be mapped to the dynamics of spin-glass systems
that are driven/quenched by external control fields and could experience various first and second-order
quantum phase transitions and Griffiths singularities [2, 3]. Quantum dynamics of such complex systems,
except trivial cases, would be out-of-equilibrium when they are quenched in any finite time. However, such rich
dynamical properties could lead to novel computational resources [4—7] provided that we obtain sufficient
degree of control over their dynamics.

Adiabatic quantum computation (AQC) has been developed as a particular paradigm that utilize the
continuous-time dynamics of driven many-body quantum systems for solving optimization tasks [4, 5]. In this
model, the solution of a hard combinatorial optimization problem is encoded in the ground state of an
interacting many-body system which can be prepared adiabatically from an initially trivial ground state,
provided that time evolution is much longer that the inverse of minimum gap square [5]. One of the major
challenges to AQC, that has been largely ignored in the quantum computing literature, is that for many realistic
problems the analog quantum annealer will inevitably contain a significant amount of quenched disorder
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Figure 1. Exact numerical simulations of instantaneous eigenenergies of a random quantum Ising model as a function of evolution
time for two distinct algorithms: (a) homogeneous or standard adiabatic quantum evolution, (b) inhomogeneous non-adiabatic
quantum annealing. In (a) the instantaneous ground state energy is represented by red lines and it is set at 0. Yellow marks the
instantaneous excited energy states that can be reached if evolution time-scale becomes comparable to the inverse of instantaneous
gap. In contrast blue lines show unaccessible excited eigenenergies due to vanishing instantaneous Hamiltonian state-to-state
transition moments (see section 3). In panel (b) it can be observed that the complexity of problem can be substantially changed via
inducing certain causally-induced local gaps separating low-energy sector (red lines) from instantaneously accessible excited states
(yellow lines).

smearing the corresponding quantum phase transitions for pure systems. Thus, the required time-scale for
satisfying adiabatic limit could grow as a stretch exponential due to Griffiths singularity [3], even in the absence
of any first order phase transitions. The Griffiths effects have pronounced consequences for finite-dimensional
quantum systems, much stronger than in the classical counterparts. In fact, near-term quantum processors are
best examples of low-dimensional quantum systems due to the inherent locality of physical interactions and
geometrical constraints on the degree of connectivity [8]. After the embedding of a computational problem into
quantum annealers, or their digital simulations [9], they will inevitably react to quantum fluctuations
inhomogeneously at the physical level. Consequently, near-term quantum processors will typically experience
locally inhomogeneous and smeared first and second order phase transitions, even if we drive them with an
external field which is homogeneous in space. In particular, annealing schedules exhibit multiple vanishing gaps
between ground state and first excited state, see figure 1(a), leading to exponentially long annealing time-scales.
In practice, we always have a finite annealing time-scale that would inherently violate the adiabaticity condition,
even for finite-size systems, leading to emergence of domain walls or topological defects that emerge ata
relatively wide effective quantum critical region. This is in sharp contrast to a single, well-defined quantum
critical point for pure system, where their density of defects can be estimated via Kibble—Zurek mechanism
(KZM) in the thermodynamics limit [10-14]. As of today, there is no known way to guarantee the quality of
solutions, given finite space—time physical resources, and there is no constructive or algorithmic way to improve
performance for such analog quantum information processors within a given accuracy. These issues have lead us
to the following fundamental questions: Is it possible to engineer quantum phase transition in disordered
systems by inhomogeneous control fields to enforce spatially-induced gaps between low energy sector and
higher energy states (see figure 1(b)).

Here, we present a general approach for controlling quantum critical dynamics. We introduce different
classes of spatial and /or temporal inhomogeneous protocols to drive strongly disordered quantum spin chains
across a quantum phase transition and minimize the residual energy of the final state. This is achieved by
creating governing Hamiltonian with multiple critical fronts that can synchronize the local phase transitions in
space and time. In each local region, the number of spins that simultaneously experience the critical dynamics is
controlled by the length scale and shape of the inhomogeneity in which the magnetic field is modulated.
Causality is introduced as the main control strategy to spatially coordinate symmetry breaking events among
neighboring regions by finding the appropriate degree of inhomogeneities and the speed of critical fronts to
reduce the number of topological defects. We explore the conditions for an optimal suppression of domain walls
and show that we can beat the standard homogeneous KZM prediction for the density of the topological defects
for strongly disordered transverse Ising problem in 1D. Moreover, we show that these phenomena can similarly
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be observed for systems with k-local physical interactions. We demonstrate that inhomogeneous driving can be
exponentially faster for such systems than conventional (homogenous) schemes such as adiabatic quantum
annealing. Furthermore, we show that the universality of quantum critical phenomena holds for
inhomogeneous quantum critical dynamics even in the presence of strong disorder.

The outline of this paper is as follows: in section 1, we review causal origins of topological defects in the
context of KZM for pure and disorder systems. In section 2, we describe two general classes of inhomogeneous
quantum annealing (IQA), type I and type I1, for re-constructing phase transitions and present numerical results
for strong-disorder 1D transverse Ising model. In this context, we show that AQC can be understood as a trivial
form of either type I or type Il IQA. In section 3, we first provide a phenomenological theory of the emerging
local gaps and its connection to threshold velocities for critical fronts. We then derive an expression for
distribution of local gaps as a function of inhomogeneity slope with a logarithmic correction on the system size.
We demonstrate universality of critical fronts shapes via strong-disorder renormalization group (SDRG)
techniques. We also discuss how the shape of inhomogeneity is related to its penetration depth into disordered
phase. A generalization of our work for k-local Hamiltonian system is presented in section 4. A detailed
treatment of our work as a generalization of KZM and discussions on lower- and upper-bounds for the shape of
critical fronts is provided in a separate manuscript [ 15]. The generalization to spin-glass systems will be
presented in another subsequent work [16, 17].

1. Causal origin of topological defects

We start by reviewing the KZM for pure systems (in absence of any disorders) which has been developed as the
phenomenological theory to describe the breakdown of adiabaticity in critical systems [10—14]. The theory
provides a rough estimate for the density of topological defects that arise when a quantum or classical many-
body system is driven through a continuous critical point at a finite rate. The key observation is that in the
vicinity of a quantum critical point a system at the thermodynamical limit effectively stops following the
adiabatic evolution for any finite quench rate—no matter how slow it is driven. This results in emergence of
universal KZ length scale which depends on the quench rate and manifests itself, among others, in the density of
topological excitations.

The time dependent evolution of system can be expressed by a Hamiltonian as: H(g) = gH. + H, where H.
is controllable Hamiltonian, g(t) is a control parameter with value g. at the critical point, and H,, is the
Hamiltonian of interest or the ‘problem Hamiltonian’. Near a critical point the characteristic energy scale of the
system behaves as A ~ 1/[¢[*” at the thermodynamical limit. The system experiences a divergence of the
equilibrium relaxation time, 7 = 7, /|¢|?, as well as a divergence of the equilibrium correlation length,
§=¢&,/lel’swhere e = (g. — g) /g, is the dimensionless distance to the critical point. The 7and zvare the
critical exponents that characterize the universality class of the phase transition. The derivation below assumes
that the exponents are well defined, i.e. they do no dependent on € and describe pure power-law dependence,
and that there are no other relevant long-distance scales in the problem.

The speed of information, or the speed of second sound, is on the order of the ratio of critical length-scale to
the critical time-scale

v~ &/ = (/o) el Y. (eY)

A causal separation near a critical point for any pair of spins could emerge if their relative distance is much larger
than length scale that the information can propagate with the corresponding second sound velocity, v, for given
finite quenching time interval. Consequently, choices of broken symmetry for spins belong to two different
causal zones are not necessarily related. This is the origin of topological defects formation. The Lieb—Robinson
bound [18], which characterizes the maximum speed of information in quantum many-body systems with local
interactions, provides an upper-bound for v;. We note that v; can achieve its Lieb—Robinson upper-bound when
z = 1, such as the prototypical 1D transverse Ising model.

Within the vicinity of g, the quenched external field can be linearized in the form g (¢) = g.(1 — t/7),such
that e (t) = t/7q, where 7 is the quench rate and the critical point is crossed at ¢ = 0. The parameter regime
close to the critical point in which the system is not able to adiabatically adjust to the slowly changing external
field, and effectively, to zeroth order approximation not responding, is called frozen or impulse regime. The
freezing occurs ata particular time scale f in which the relaxation time 7(f) becomes approximately equal to
quench rate £/&. Thus, by setting 7 () = |e(f) /& (f)| we arrive at

= (rorg ). @)

This equation gives the KZ time-scale relevant to describe the universal behavior of the system slowly quenched
though the critical point. The corresponding length-scale is a power-law of the quench rate as well
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&= Ele®)] = & (/)= 3)

This length scale can be used to estimate the size of the domains in the broken symmetry phase.
Consequently, the density of defects is expected to vanish as d ~ & ()", where D is the dimensionality of
system and we assume that the defects are sufficiently robust and do not relax quickly during the subsequent
evolution. This is the key predication of KZM. For example, in the well-studied case of 1D Ising model in
absence of any disorder we have v = z = 1. The KZM prediction for the density of excitations reads
d~ @)~ 751/ % in that case [19—21], which can indeed be verified analytically [20]. The above argument
was later developed into full dynamical scaling hypothesis, which allows to obtain similar power-laws for other
observables of interest [22—-26].

Understanding causal effects in disordered systems near a critical point and any attempt for estimation of
density of defects requires careful analysis and not much is known outside of specific cases. Experimentally,
quenches from the superfluid to the Bose glass were reported [27], with the resulting residual energies vanishing
very slowly with the increasing quench rate. Full theoretical understanding is still missing in this case.
Theoretical investigations are mostly limited to the class of systems with the critical point in the universality class
of so-called infinite-disorder fixed point. Here, we are interested in systems belonging to this class. We first
consider the prototypical example of a random transverse Ising Hamiltonian for a chain of N spins,

A= —>N gmyar — SN, 0207, , with quenched (fixed) disorder in the nearest-neighbors couplings
Jun+1- In this article we assume that they are drawn from the flat distribution over interval [—1, 1]. The unit of
timeissetby i = 1. Using SDRG techniques, the equilibrium properties of this model were first evaluated by
Daniel Fisher [28]. For ahomogenous or uniform transverse field in the model, the distribution of disorders
induces a critical point that can be evaluated by relation g. = exp(log(|J,,s+1])). For uniform distribution of
Jan+1 € [—1, 1]thisyields a critical value of g = e™! =~ 0.367 879. It should be pointed out that the critical
point for similar systems in two-dimensions [29] and in presence of dissipation [30] are also known to belong to
this universality class. We use numerical SDRG to demonstrate universality of our non-equilibrium protocols in
the section 3. We also generalize our results to Ising model with certain k-local interactions in the section 4.

The presence of disorder, changes the universality class of the critical point of the Ising model from
v =z = ltorv = 2and z — 00, and thus quantitatively and qualitatively modifies the dependence of
correlation length and density of defects on the quench time-scale. Most importantly, using SDRG techniques, it
was evaluated that as the system approaches the critical point the gap of random Ising model scales as
Ale] = |e[/1€1[28], and consequently the critical exponent zv = 1/|e| + O(1) diverges as e — 0. For that
reason the KZM derivation described earlier has to be modified to take this into account [31, 32]. The
characteristic time-scale 7 follows from the condition |2 (£) /e (£)| = 1/(10le (F)]) = e (F)[/1<D], where r isa
constant factor on the order of one. The above relation can be solved in the limit of infinitely long annealing
time, In(7g) > 1,yielding [31]

A In?(19/K)
In?[In(7q/ k)]

The density of defects is then suppressed logarithmically with quench time d ~ 1/ In? 7o, which is
quadratically faster than simulated annealing, where defects scale as d ~ 1/ 1n 7 [33, 34]. The existence of these
logarithmic scaling laws implies that one has to run exponentially long annealing times to reduce the residual
energy of the final state. However, as we will show in the next section one can recover a polynomial scaling by
driving the system with a spatially inhomogeneous transverse field.

(C))

2. Causal control of topological defects with multiple critical fronts

From carefully studying defect formation under homogeneous drive fields, one can see how a new way of
suppressing or controlling topological defects can emerge by being aware of causal separation of subsystems due
to the extremely small values of velocity for information propagation near a critical point according to
equation (1). In other words, one can try causal synchronization of the local phase transitions by
inhomogeneous driving fields, as far as the critical front do not move faster than a threshold velocity
corresponding to the speed of information, see [35-38] for a quantum case and [39—44] for classical counterpart.
Note that this is fundamentally different than the standard annealing paradigm which is guided by the inverse of
aglobal gap of a quantum Hamiltonian system which provides an upper-bound for relaxation time scales
according to the adiabatic theorem. In other words, adiabaticity provides a sufficient condition for annealing
time and it is not necessary to get low-energy states or even the ground state of disordered Ising systems.

Here we provide a phenomenological description of causally-induced non-equilibrium quantum phase
transitions. Specifically, we develop an algorithmic quantum annealing approach to create a causal sequence of
locally gapped Hamiltonians. We note that for strongly disordered systems in low dimensions there is a
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quantum Griffiths region that is spread in the disordered and ordered phases, i.e. on both sides of a critical point
[28]. Within the Griffiths region the system undergoes effective local phase transitions that are space—time
separated in nature even if the control fields are homogeneous. The key observation is that one can create
situations in which the choices of symmetry-breaking events in a local neighborhood that have already
experienced phase transitions earlier could influence the symmetry breaking events elsewhere, provided that the
control fields have certain inhomogeneous spatiotemporal structures. These symmetry breaking events are
perceived by the rest of the system, which is still in a disordered phase, as effective boundary conditions
influencing their local fields.

In order to develop an algorithmic quantum annealer, here we construct a general class of IQA schedules.
They are a function of a fixed total quench time or annealing time T ~ 7, proportional to the annealing rate of
the homogeneous quench 7 introduced in the previous section. The performance of the algorithms are
evaluated by computing the precision e of approximating the ground state. Here we mostly focus on the
random instances of strongly-disorder spin chains, nevertheless our construction is general and can be applied
to higher-dimensional systems [17]. There are two main reasons for such a choice. First, for 1D case we can
simulate their dynamics exactly using a mapping to free-fermionic system, as e.g. in [31, 32, 37]. Also the critical
behavior of such systems when driven via homogeneous external fields have been studied extensively, thus the
new non-equilibrium physics of such systems when driven inhomogeneously can be better benchmarked and
appreciated. The overall Hamiltonian for a system of N spins under a inhomogeneous driver field can be written
as:

N N
H(t) = _Z g(n) l’)O’ﬁ - Z ]nmo'flo—;p ©)
n=1 (n,m)
and the quality of an output state is characterized by a normalized residual energy as: e, = Q/N, with
Q = (Y(1Q)| Hpl(1q)) — (| Hyltys), where |10 (1)) is the quantum state of the system at the final annealing
time. |1)y) is the ground state of the classical time-independent Hamiltonian, or the problem Hamiltonian,
H, = —ng Jum 005, with eigenvalue Eg = (vgs| Hpl|1)s). We note that for pure systems, where J,,,,, = J, the

normalized residual energy can be related to Kibble—Zurek correlation length ¢ by eq ~ || ¢ " where ¢ Pis
the density of topological defects and D is the dimension of system.

Here we assume that the inhomogeneous drive field is a transverse field that can be locally modulated for
every individual spin. This Hamiltonian can be realized with the near-term quantum annealing technologies
currently being developed at the D-Wave Quantum Computing Systems and Google Quantum Al Lab.

As we describe in the next section, for any given instance of disorders {J,,,, } as we drive the system toward the
quantum critical point, the system responds to quantum fluctuations within M distinct ‘clusters’, which are
related to the emergence of rare local regions within the Griffiths phase. As we will show, the number and
locations of clusters can be estimated via a simple preprocessing step that grows linearly with the size of the chain
for 1D system. The generalization to higher dimensional system is presented in [17].

In each cluster we drive the many-body system by a transverse Ising Hamiltonian with some local structure.
Thus, we drive these M clusters simultaneously into some space—time separated inhomogeneous transitions

M
g(n, 1) =Y lmN(1) + Y wiglln — mell — vi(n, 1)1), (6)
=0 k=1

where each £, is the time-independent global magnetic field which has a spatial structure and each A(#) is
spatially uniform but it can generates nonlinear dependence to time. The terms
Zkle wig (ln — n|| — vi(n, t)t) characterize various spatiotemporal dependencies of traveling quantum
critical fronts, where ||n — || denotes a distance measure of node #n from some center node 7 per cluster where
we trigger the quantum fluctuations. The center of these spatiotemporal inhomogeneities can be shifted linearly
in time by v (n, t)t with a spatiotemporal dependence for each k cluster. However, for simplicity, for rest of this
work we concentrate on a constant critical front motion for each cluster; thatis v, (n, t) = w.

In the following section, we define the shape and two different kind of velocities for critical fronts and
provide two simple examples of type I and IT annealing, namely periodic inhomogeneous annealing, and
mutliple-critical-fronts inhomogeneity.

2.1. Shape and velocity of critical fronts

The inhomogeneity slope and its horizontal and vertical velocities of inhomogeneity can be characterized by a set
of hyper-parameters {«, v/, v*} corresponding, respectively, to local slope of the instantaneous field in space
and it’s spatial (horizontal) and temporal (vertical) velocities, that are defined by derivatives of g(n, t) and

n(gﬁx, t)as:
Vv(na t) - —8g(7”l» t)/@t, (7)
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vl (n, £) = On(gg 1) /at, (8)
a(n, t) = dg(n, t)/on. 9)

Thus, we can derive closed form expressions over these hyperparameters for different annealing schedules. To
appreciate the generality of the shape of g(n, £), we consider two concrete and qualitatively distinct classes for
IQA with respect to possible temporal and/or spatial inhomogeneities.

2.2. Type IIQA: space and time separated inhomogeneity
In this class, we consider a general form of independent or separated space and time quantum fluctuations to
drive the annealing dynamics

gn, 1) =3 hi(m) (o). (10)

=0

An example of this class will be a periodic spatial inhomogeneity (standing wave) combined with spatially-
independent time-local inhomogeneity as:

g(ny t) = hvo(t) + Al(t) Z akeiﬂkn)

k=—o00

where each term in the spatial contribution in the second term corresponds to an estimated cluster size. We
provide a simple illustration of these periodic spatial inhomogeneities in the next section. We note that KZM—
in the context of pure systems—was also extended to quenches that are homogeneous in space, but nonlinear
(inhomogeneous) in time [25, 45]. Such inhomogeneity adjusts the quench rate to the distance from the critical.
Consequently it allows to reduce the number of generated defects.

2.3. Type I1 IQA: spatiotemporal inhomogeneities
In this class, we build a sufficiently general example by creating a mutliple-critical-fronts annealing schedule in
M clusters where critical fronts in each cluster are moving with the speed v (1) and each are governed by a

separate activation function tanh [0 (||n — ni|| — v (n)1)]:
M
gn, t) = gc{l + > witanh [Ox(|ln — mil| — Vk(n)t)]}, (11)
k=1

where g is the critical value of transverse field. We note that there is no particular significance for our choice of
activation function here. As an important special class of the above driver field, we linearize the activation
function in each cluster near quantum critical point, thatis tanh[0y (n — vi(n)t)] =~ O (n — v (n)t), then for
each cluster we get:

g (n, 1) = g {1 + b(n — v(m)H)1}. (12)

In the first example of this type, we consider an inhomogeneity with constant v, for each cluster of the form
& (n, t) = g {1 + tanh[0(n — vt)]} whichyields n = tanh™!(g, 5 /g. — 1)/0k + vit.

v(n, 1) = g [1 — tanh?[6(n — vi)]1Okvic = cu(n, )i,
vi(n, £) = v
ai(n, t) = g [1 — tanh?[0x(n — vi1)]] 6k

In the next example of this type, we consider linear approximation of activation function near critical point
whichyields g, (n, t) = g {1 + 6(n — wt)l}and n = (g,_4. /8. — 1)/ + vit. Thus we have:
V' = g OV = Vi, v,f = v,and o = g 0.

2.4. Standard AQC: absence of any inhomogeneity

We note that the standard or homogeneous quantum annealing schedule which has been extensively studied
and numerically benchmarked for almost two decades can be considered as the extreme limit of either type-I or
type-11 of IQA. In the former case we have one spatially uniform transverse field, g,(n) = const., and linear
velocity A\g(t) = (1 — t/7q), where 7 is the overall annealing time-scale. Thus we have the familiar form of
homogeneous transverse field, which is linear in time, as: g (1, t) = g,(1 — t/7). Inorder tosee AQCasa
extreme limit of type-1I IQA, we must note that the homogeneous transfer field can be considered as a single
critical front with a trivial flat shape with infinite velocity; thatis §# — 0and v(n) — oo, while 0v (1), which is
basically the vertical velocity, will be equivalent to the inverse of annealing time and thus will be finite. The
hyperparameters for homogenous annealing, respectively, become v"(n, t) = 1/7q, v,i’ (n, t) = oo,and
(n,t) = 0.
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Figure 2. [llustration of three different annealing protocols. Different lines indicate different snapshots of the time-dependent
magnetic field as it has been driven from the initial to the final value across a quantum critical point. Top panel shows the standard or
homogeneous transverse field which can be also considered as a trivial case of both type I and IT annealing. Middle panel illustrates the
periodic driving of type I inhomogeneous annealing as in equation (13) with 4 clusters and amplitude a = 1. Lower panel shows a
prototypical example of type Il inhomogeneous quantum annealing with 4 clusters. The borders between clusters is tuned to coincide
with the weakest values of J,, ,+ 1 for a given realization of disorder as a result of a simple preprocessing procedure. Here we have
chosen a constant inhomogeneity slope of & = 1/8 for each cluster. The dashed lines in each figure show the critical value of the
transverse field.

2.5. Exponential suppression of defects

To illustrate the power of multi-front critical control, we numerically investigate two concrete forms of type I
and IT inhomogeneous annealing as described above and compare their performance against standard QA. All
the simulations in this section are done using the Jordan—Wigner transformation that maps the Hamiltonian in
equation (5) onto the system of free fermions where it can be solved numerically in a standard way. For details of
these techniques, we refer the readers to the appendix B of [37]. For our numerical analysis here the cluster
formation that we invoke is simple and has linear scaling with the system size for Ising chains. In the next section
we use SDRG to examine construction and scaling of causal gaps.

Examples of the type I and II annealing schedules for one random instance of Ising chain are given in figure 2,
in which different snap-shots of time-dependent transverse fields are plotted along the chain. In figure 2(a), we
illustrate the trivial /homogeneous schedule. In figure 2(b) we explore the effects of periodic critical fronts by
constructing the schedule

g(n, t) = g;(1 — t/T) + acos (kn) sin(nt/T), (13)

where T'is the total evolution time. Finally, in figure 2(c) we illustrate an example of multiple-critical-fronts
strategy.

In the latter, in order to decide the position of the cluster, we employ a simple preprocessing. It is based on
observation, that for strictly 1D geometry, the instantaneous local gap may be set by a single, very weak link. We
discuss it in more detailed in section 3. Such weak link sets the local time-scale needed for adiabatic transition
dividing the chain into two weakly interacting parts. We want to place the borders between the clusters at such
links, as (i) they would require the longest time to align according to the weak coupling and (ii) the energy
penalty for placing the defects there is the smallest. To that end, we look for the largest cluster—starting at the
end of the chain or at the end of the previous cluster—where minyseer,J,n+1) - & > vi. Here, vy would be the
velocity of the front for this (kth) cluster, and « is a parameter fixing the exact value of the threshold (in practice
K = 2). This condition would allow for adiabatic transition as if the energy gap were set by single links only. If
the condition is not satisfy the considered candidate for cluster is cut at its weakest link, creating a new smaller
cluster where we check the condition again. The procedure is repeated until full chain is divided into clusters. As
aresult, for a total fixed annealing time, all velocity v, are cluster dependent; allowing optimization of the
computational parameters over the available time. For a cluster of size Ly sites the (vertical) velocity is given by
vy = (| g — &l + ol / 2) / T for a given fixed total annealing time T. Fach cluster is driven separately, and the
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Figure 3. Comparing distribution of topological defects for different protocols applied to a single instance of disorder Ising model at
T = 2 x 10" Thisinstance is chosen to be typical in a sense that residual energies are close to the respective median values for either
strategies. (a) Homogeneous strategy where density of defects is expected to diminish as log =2 T. (b) defects distribution for type I
inhomogeneous protocol from equation (13) with 7 clusters of the same size. (c) Defects distribution for a type Il annealing schedule
where the clusters are formed is such a way that the weakest links resides at the borders. Inhomogeneous strategy essentially brushes
the defects and place them at the borders between clusters where the energy penalties are minimized. We use @ = 1/8. (d). For
reference we show the values of random couplings for the corresponding realization—notice logarithmic scale which is emphasizing
the position of the weakest links.

inhomogeneous front is brushing from the middle of each cluster to both ends simultaneously. For each cluster
spanningspins n = 1,2... L (counting from the beginning of the cluster) the magnetic field is constructed as:

-

L & &
2 n——=\|—tv >——,
2 2a

& T & ( L‘ ) L‘ & — &
nt)=3——=+a|l|ln—=|-w| ||n-=|—-tv] <——, 14
8 ) 2 2 2 2« (14)

I’I—L — tv <gf7gi

& 2 2a

The probability distribution of topological defects for these protocols are presented in figure 3. The defect
density is evaluated for a strongly disordered instance of a spin chain consist of up to about 1000 qubits with
Jo.nt1sampled randomly from [—1, 1]. Here, the inhomogeneous annealing can be regarded as a many-body
quantum control strategy which can significantly reduce the number of topological defects by synchronizing the
symmetry breaking events and can brush the reminder of defects into the weakest J;; where they act as defect
sinks. In other words, not only do these non-adiabatic paths suppress the emergence of domain walls, but also
minimize the energy cost per defect by several order of magnitudes.

The scaling of annealing or quenching time as a function of inverse residual energy is plotted in figure 4 for
1000 random instances of 1D Ising chains ranging from 256 spins to 1024 spins. It can be observed that the
annealing time is improved exponentially over standard AQC scheme for typical, 50% quantile, as well as harder
instances, 99% quantile (each corresponds to the residual energy in which x% instances have smaller values). In
the homogeneous protocol we have €5 ~ (log T)™” . We obtain y ~ 3.8 % 0.4.It can be compared with
~ & 3.4 which has been obtained by from Caneva et al [32] from smaller values of quench times T'and for

8



10P Publishing

New J. Phys. 20 (2018) 105002 M Mohseni et al
1055 \)\\\O\VH‘ T \1\\\\\\‘ T T T TTTT] T T T TTTTT] E|
I (a) 50% quantile m A
4 1ot ic\)\mm\ T __1{10"' / b
107 F _oF 1 E
Q| B B
< I i e e
=) 103 1103 Elmmm = i ]
e F10=2 1071 10} E
r o 3 multi-front homogeneous |
102 b o N =256 —w— x .
E g N =512 —— N E
Lo N = 1024 ]
101 | Ll Ll Ll
E T T TTTTI] T T T TTTT] T T T T TTTT] T T T TTTTT] E|
10°
F (b) 99% quantile K é/LLH g
|- MH = -
10* | R e -
E K B
@ [ R 103 1
E 103 L H}/ le {;\ LLLLLL LU AL (a !
= = Q. 2K
= B H §102 F
2| e - Siol | -
10° ¢ ' # E
E 100 Ll il ] X
F 2 3 4
1017\\\\\\\\ Ll \\\Hu\lo \“1\2‘?\\\\1\0\
10 10° 10* 10°
-1 —1
€ = (Q/N)
Figure 4. Scaling of the total annealing time as a function of the inverse residual energy for homogeneous control (dashed lines) versus
multiple critical fronts of phase transitions (solid lines). Various colors/symbols indicate different system sizes: blue asterisks for
N = 256, red pluses for N = 512, and yellow crosses denoting N = 1024. Panel (a) shows the median (50% quantile) and panel (b)
shows 99% quantile. Statistics is build from 1000 instances of disorders. An exponential improvement in annealing time to obtain a
fixed residual energy is observed from g ~ (log T)~>® for adiabatic quantum annealing to eq ~ T~'% for inhomogeneous non-
adiabatic annealing. The slope of all multi-front schedules are chosen to be at optimal value of v = 1/8, see panel (c). Panel (d) shows
the mean number of clusters for type Il annealing for different time-scales resulting from the preprocessing procedure.

slightly different protocol, where the magnetic field was also disordered. What is important here is that yis larger
than 2, i.e. the value of exponent governing the scaling of defect density. This results from defects being more
likely to appear on the links with smallest |], ,,11|. For uniform distributionin [— 1, 1],y = 4 would correspond
to defects appearing only at the weakest links.

On the other hand, in type II protocol we observe e ~ T—103 (fit for N = 1024, T > 100% and 50%
quantile). Multi-front protocol have been constructed by fixed o« = 1/8, where optimality of such choice is
shown in panel (c) for T' = 1000. Similar plots for other time-scales (not shown) suggest that in this system this
value is optimal independently if T > 1. Panel (d) shows the mean number of clusters in type Il annealing for
different time-scales. For large times it should scale as ~N /T% which results from the preprocessing
procedure. This follows from the expected size of clusters which can be solved in given T for J, ,,+; drawn from a
uniform distributionin [—1, 1].

3. Scaling relations for causal gaps

Here, we introduce the notation of causally gapped Hamiltonians that are created by time-dependent multiple
critical fronts introduced in the previous section. In particular, we derive a scaling relation for the distributions
of minimum causal gaps as the function of system size and inhomogeneity slope. In this work, we define the
causal gaps as the inhomogeneously-induced instantaneous energy gap which becomes relevant when the critical
front is driven below a threshold velocity allowing for information of symmetry-breaking events to propagates.
The core idea is that there is an effective threshold velocity V¥ that determines the suppression of topological
defects formation within each cluster in disordered systems. If the velocity of the front in each cluster is much
larger than this threshold speed, v; >> v* for all k, then the effect of the spatial variations of the control field
become irrelevant in the sense that we will recover the standard critical dynamics created by homogeneous
driving, which can be understood by the standard KZM. However, when we drive each critical front such that

v < v, thelength scale and shape of the critical front becomes highly relevant allowing to suppress creation of
the topological defects in each cluster. The shape of the critical front determines the number of spins that
simultaneously experience criticality creating an effective (finite-size) energy gap. Otherwise, the homogeneous
system would be gapless at the critical point in the thermodynamical limit.
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3.1. Causal gap for pure systems

In the absence of disorder and with sufficiently smooth critical front, thatis o < 1, one can invoke a variant of
KZM to estimate when the inhomogeneity of the driving front is relevant. This question can be regarded from
two perspectives [35, 36].

Firstly, starting from the limit of homogeneous driving, we note that the relevant speed of information at the
critical front can be expressed as 7 ~ ¢ / f.Here, & and 7 are the effective length scale and time scale that the
system experience according to KZM given by the relations (2) and (3), respectively. This yields
V= 76(1 —2)/(+2) Next we consider the control parameter £(11, £) to be position dependent. We linearize the
relation at the critical front for fixed position #g,.q as

e(n, t) = a(Nfxed — Vt) = —avt + const. (15)

This gives the local annealing rate 7 (1) = 1/(av). Causality implies thatif v >> 7, then the choice of symmetry
breaking which happened earlier along the chain cannot influence what is happening later and we recover the
independent defect formation assumed in the standard KZM. The self-consistency condition allows to express
such threshold velocity as a function of our main control parameter «. This is obtained by inserting the above
annealing rate into the expression for ¥, which leads to

v~ a?@D/0+v). (16)

Alternatively, we could look at the instantaneous Hamiltonian resulting from inhomogeneous front in
equation (15). We focus here on the instantaneous ground state of such system, which is interpolating—in space
—Dbetween order and disorder phases. They are spatially separated by an effective critical regime which size,
called a penetration depth, can be estimated as

& ~ a i (17)
It follows from a variant of KZM argument, so-called KZM in space [46—49], where one asks about characteristic
distance from #1g4.q up to which the system is able to locally adjust to e(n) changing in space as if it were locally
homogeneous with local correlation length determined by e(n). Apart from the Ising model [46—-49], the
interplay between inhomogeneous external field and criticality was studied in the context of spin-1 Bose—
Einstein [50], the XY model [51], and the XXZ model [52].

The finite size of the effective critical region in equation (17) allows to estimate the gap of the instantaneous
Hamiltonian as

A; ~ it (18)
By combining those characteristic scales we obtain a threshold velocity v, which is again given by equation (16).
The meaning of this threshold velocity is however different here. Namely, we can expect that if the velocity vin
equation (15)isv < v,, then the system would be able to follow its instantaneous ground state.

It should be noted that whenever z = 1 the threshold velocity becomes constant and we get a sharp
suppression of topological defects whenever we drive the system with critical front that is slightly below v,. The
value of v,becomes equal to 2 for a transverse Ising chain when all couplings are equal to one [35]. This
suppression of defects and causal synchronization, however, could be affected when we drive the system with a
multi-front strategy. For a simple pure system driven by two critical fronts, both moving with velocity smaller
than v, in figure 5 we illustrate how the defects can be created when two clusters are merging together. This
highlights the interplay of the causal effects and different boundary conditions on the defect suppression.

As we have discussed in section 1, the disordered systems have a completely different critical phenomena as
zv — oo. In this case one has to modify equation (18) accordingly [37] by taking into account that at the critical
point the gap is expected to vanish as a stretched exponential with the system size—effectively given in our case
by equation (17). We elaborate on this in the next section in the context of multiple critical fronts driving
strategy.

3.2. Universality of causal gaps via SDRG

In this section we use a combination of analytical and numerical SDRG techniques to show that the distribution
of causal gaps are universal irrespective of the shape of inhomogeneities for strongly-disorder Ising systems. We
also derive a scaling relation for the dependence of the minimal causally-induced gap on the actual system size
and slope of inhomogeneity. We first present implementations of SDRG for disordered spin chains under
various schedules.

The core concept of all RG techniques is to re-express the parameters which define a problem by coarse-
graining some microscopic degrees of freedoms. In each step of the RG flow we arrive at effective Hamiltonian
terms that have fewer and much simpler parameters acting on a lower energy and larger (macroscopic) length
scale, such that certain physical or computational aspect of interest in the original problem remain unchanged.
The procedure can be recursively repeated until the Hamiltonian is no longer changing which indicates that we
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Figure 5. Defect formation as the clusters are merging: we consider a pure Ising model for illustrative purpose. In (a) we consider the
1D chain with open boundary conditions and a single cluster growing from the center of the chain. The critical fronts are moving with
vertical velocity below the threshold and, as a result, we obtain a system without defects after the quench. In (b) we consider the setup
with two clusters and two fronts merging in the middle of the chain. Again, the fronts velocity is below the threshold and there are no
defects inside clusters. However, as the clusters were independent, defects can be created as they merge, reflecting the possibility that
two independent clusters might break the symmetry differently. The probability of having such a defect is equal 1/2 as can indeed be
seen from the numerics. In (c) we consider the system with periodic boundary conditions. Effectively, in this setup we have one cluster
which is self-merging at the end of the quench. Importantly, such a process does not lead to the creation of a defect—in contrast to the
situation in panel (b).

have arrived at the fixed point of the RG flow. In SDRG, that is specifically developed for disordered systems and
has been generalized to higer-dimensional systems [53], the largest energy scales is systematically removed via
two different operations: site decimation and bond decimation [28, 54], see [55] for a review.

A site decimation occurs whenever we have a site-dependent transverse field which is the largest energy scale
within alocal neighborhood of our system; thatis g; > J;; ;. Site decimation means that we basically lock the
spin i to the direction of its local transverse field. Such spin will be effectively decouples from the rest of the
system. Emerging new couplings are generated between all neighbors of the decimated spin i. These effective

couplings can be computed within second order perturbation theory as Ji = %, if Jjx = O or otherwise

f]'k = max (]jk> ]if:k
we have two sites i and j interacting via J;; that is the largest energy scale within alocal neighborhood of our
systemsi.e.J; > g;and J; > gipandalso J; > JxVkand J; > J; V1. Bond decimation simply means that we lock
the two sites i and jinto a macrospin by projecting the combined pair into their local ground states. No
additional bonds or coupling between any spins are generated in this case. All the spins that were previously
coupled to at least one of the sites are now interacting with the combined cluster. For the spins that were coupled

to both iand j we invoke a maximum selection rule. Effective transverse field at the emerging macrospins
8i8;
Ji
We apply the above RG procedure to our time dependent Hamiltonian by considering each time as a
snapshot for different instances of static spin chains, see figure 6. The SDRG simulation confirms our

assumption of causally independent clusters in the homogeneous strategy, in the low-energy or long wavelength

). Abond decimation is performed in similar fashion. A bond decimation occurs whenever

becomes g, =
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Figure 6. Causal zones formation during RG flow: a tree representation of SDRG cluster formation for four snapshots of homogeneous
(left) and inhomogeneous (right) quantum annealing at transverse fields g = 0.8, 0.4, 0.3 and critical value, g, = 0.37 for an instance
of a 64 spin chain. The RG flow starts with physical spins (as tree leaves represented by dots on a gray scale) and ends at the RG fixed
point (roots) via other macrospins (color dots) in descending energy scales. The black physical spins are those that are already in the
ordered or symmetry breaking phase while the gray means that they are still partially or fully in symmetric phase. The snapshot at

g = 0.8 highlights how radically different these two strategies are: causally independent cluster formation in HQA and naturally
growing of a central cluster nucleus in IQA. The other snapshots at g = 0.4,0.37, 0.3 are chosen to be close to the critical point. The
shaded blue areas are causal zones that occur for 0.2 SDRG energy cutoff for the first two panels showing qualitatively and
quantitatively different cluster formations for IQA and HQA. In the last two panels the shaded gray areas correspond to causal zones
for the fixed point of SDRG. The key observation here is that HQA has several causally separated holes in the shaded area where certain
physical spins cannot communicate their choice of symmetry breaking with other spins. These are the places that topological defects
are highly likely. Nevertheless, within each causal zone forming at low-energy scale there is also some chance of defects for macrospins
that are causally separated in higher energy scales (indicated by different colors within each causal zone).

limit. In contrast, we observe inter-cluster causal dependence emerging in the multiple critical fronts strategy,
see the SDRG visualizations of our protocols in figure 6.

Next, we discuss an upper-bound for a global threshold velocity such that the multiple critical fronts strategy
can lead to suppression of excitation between the low energy manifold and the rest of excited states. If we have
full parallel annealing in all clusters simultaneously, we essentially interrupt the causality of symmetry breaking
events between different clusters as illustrated in figure 6. When the fronts are sufficiently separated, the RG flow
makes the corresponding clusters exponentially decoupled. Consequently, when looking at the possible
transitions, we can consider each front independently. The transition matrix elements for each cluster k:

da dn/
(0, ] dn_fll’ f) d—: = Qk(nkf)vk: (19)
k

where 1, encodes the (time dependent) position of the front and vy = ddlff is its vertical velocity. Qk(nkf ) defines
local instantaneous ground state to first excited state transition matrix elements for that front. For simplicity of
analysis in following sections we choose a constant and uniform velocity for all the critical fronts in various
clustersi.e. v, = v. Due to causal independence of clusters in multiple criticality, the adiabatic condition for low-
energy states (approximate solutions) can be characterized by maximum over of all possible local transition

7
matrix over its local gap, Ak(nkf ); that is %. Then the low-energy quasi-adiabatic dynamics is expected for
k(1
Al
y < v = min Lj}) (20)
k Qk(”k )

In the following we are going to discuss the universality of the threshold velocity, reflected in its dependence on
the shape of critical front characterized by the slope a.

Firstly, it is worth drawing the connection between the condition in equation (20) with the threshold velocity
which was derived in the previous section. There, it was calculated as # = &, /f;, where £, and f; were the
characteristic length scale (the penetration depth) and time scales (given by the inverse of the gap) related with
the slope of inhomogeneity a. Similarly, the adiabatic condition is sometimes formulated as, v < A - I', where
A is the energy gap, and I estimates the width of the region (in the driving parameter space) for which the gap is
close to its minimal value, see e.g. [57]—in analogy to the avoided level crossing and the Landau—Zener problem.
To resolve this seeming inconsistency (i.e. that the gap appearing in equation (20) is squared comparing to other
expression), we note that Qk(n,f )and Ak(nkf ) are not independent. We expect that Qk(n,f ) / Ak(nkf )y~ & ;1, ie.it
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Figure 7. Universal scaling of the gap distributions with respect to the shape of inhomogeneity. In order to achieve smooth shapes of
transverse fields at the border of various clusters, we consider a type-I inhomogeneity (standing critical wave) with 4 clustersin a
system of N = 1024. By comparison to Fisher and Young SDRG simulations for universality of quantum Ising models [56], we can
conclude that our inhomogeneous protocol has changed the effective length scale of system from N'to O(a~*/?). Alternatively, we can
consider that multiple critical front strategy has changed the critical dynamical exponent of full system from z — 00 to z— 0; that is
the system always stay close to a critical point during almost the entire evolution, however it never experiences a true quantum phase
transition on the whole system (shortcutting adiabatic evolution).

is directly proportional to the size of the effective critical region. We show this in figure 7 and discuss further
below. Importantly, this allows us to focus on the scaling of the gap.

The effective size of the critical region (for a given front) is given by equation (17). In our case v = 2, which
gives &; ~ a~2/3, The fronts are independent if their respective distances, or the sizes of the clusters, are >>¢;.
The typical gap related with such critical front is then expected to scale as a stretched exponential in &,

Ak(n]{) ~ efconstﬁ ~ efconst-oz’l/3 [37].

To be more precise, we consider P(A, ) as a distribution of the minimal relevant instantaneous gap A, as
each front is traveling within a cluster for a fixed o. We argue that we can observe the universality of local gap
probability distributions by introducing a rescaled log-gap x = a!/?log A, with the expected
P(A, a)dA = P(x)dx, and universal distribution P(x). In contrast, the universal scaling of the gap in the finite
size homogeneous system at criticality is known to be described by universal distribution
P(A, N)dA = B(x)dxwith x = N~1/2 log A [56, 58]. Our ansatz is then a directly consequence of an
assumption that the effective size of the critical region in our protocol is no longer given by N but instead is
characterized by the penetration depth in equation (17).

We verify those scaling predictions in figure 7. We consider the system with two clusters, i.e. 4 critical fronts
to highlights the independence of the front and that the scaling prediction naturally carry on to the case of
multiple fronts. We calculate the minimal relevant gap (which would be related with one of the fronts), which we
distinguish by finding the minimal energy eigenstate with the corresponding transition matrix element {2 above
some threshold. We calculate the gap via numerical SDRG which ends at a system of few spins which is
subsequently exactly diagonalized. While the SDRG procedure which we use is introducing some errors, we
check that the results can be essentially reproduced by the numerically exact solutions based on free-fermionic
picture for transverse-field Ising models. Using SDRG allows us to highlight that the fronts are independent as
they become effectively decoupled during SDRG flow. We compute the distribution of A by sampling, for each
disorder instance, from different equidistant front positions as they are moving though the chain. We disregard
the beginning and the end of the protocol when the system is far from criticality and focus on the relevant
intermediate part where we have independent critical fronts. In figure 7 we collect the statistics using 5000
disorder instances. Indeed, we can see that the peaks of the rescaled distribution collapse validating the scaling
anzats. The tail corresponding to small energies, where the distributions do not properly collapse, is non-
universal and results from occasional very weak links (as J € [—1, 1]). They give rise to gaps of similar order
(occurring again when the magnetic field acting on the neighboring spins is again almost switched off), which are
characteristic for strictly 1D system. We elaborate more on this later in this section. The presence of such gaps is
especially pronounced for larger values of v when the typical gap ~e~<°t™"* which can be attributed to many-
body effects, is larger.

The analysis above regards local, instantaneous gap related with the critical fronts traveling though the chain.
To quantify the difficulty of the problem, we consider the minimal gap encounter during such quench. To that
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end we focus on the distribution P(A, a)dA = P(x)dx. Importantly P(x), as calculated for the homogeneous
critical case in [56, 58], has a Gaussian tail for |x| > Lie.

B(x) ~ e, 1)

Figure 7, especially in the limit of small v when gaps attributed to weak links are less relevant, indicates that the
above holds also in our case”. Now, let the probability that A is smaller than some A’fnin be

HA<A%J@ZI%Q@MZQ (22)

where x; = log(A%, )a!/?.In order to find the probability distribution for minimal gap we assume that we are
sampling N times from P(A, &) (or more precisely proportional to N times in the limit of large N). That way, the
probability

P(Amin > A?nin) = (1 - E)N =4q, (23)
where A i, is the minimum from the sample of N instantaneous gaps. This equation defines Al . ‘asag-
quantile for the global minimal gap. Now, we obtain AZ.  from the above equation. This gives
% logg =log(l — &) ~ —e~ ief”"; , which is obtained by expanding the error function for the Gaussian

tail in equation (21), to the leading order in small x,. Solving this equation in the leading order we obtain

alPlog Al =x,~ — LlogL. (24)
2a " 2alogq!

This suggests that if we fix a quantile g, then in the asymptotic limit

Al ~ exp(—const - a3 . [logN), (25)

i.e.itis vanishing slower than any polynomial with increasing N. This has to be compared with homogeneous
gapscalingas: A?. ~ exp(—const - v'N), which vanishes as stretched exponential with N. We note here that
similar analysis in case when P(x) would have exponential tail for large negative x would give polynomial
dependence for the minimal gap on N.

In order to fully analyze the tail of the gap distribution we also consider the situation that the minimum gap
is enforced by very small local link rather than many-body gap of critical system of effective size &;. This issue,
which is essentially an artifact of 1D systems, can be largely avoided by a multi-front strategy where such links are
placed in-between clusters which are driven quasi-adiabatically. To that end, let us assume that the links are
drawn from uniform distribution J; € [—1, 1]. Probability that a single link is weaker then some € is equal ¢, or
P(|Jl > ¢) = 1 — e.Letusconsider that g is the probability that all the links are stronger than this € is
q = (1 — €)N. For small ¢ this yields

logg
N

The minimal gap related with such a weak link is of similar size, and such effects become relevantin 1D
geometry. Finally, we should note that if we consider the distribution of the logarithm of the gap x, the uniform
distribution and related weak links directly translate to the exponential tail of P(x)—mentioned in the previous
paragraph—which is indeed still visible in figure 7 for larger values of c.

Finally, in figure 8 we illustrate the relation between the transition matrix elements €2 and the gap A. To that
end, for simplicity we consider protocol with single front and, as in figure 7, sample the values of minimal
relevant gap and corresponding €2 as the front is traveling though the chain. The results are collected as
probability distribution, where the statistics is collected from 5000 instances. In order to illustrate the universal
behavior we employ rescaled variables. For the gap x = a!/?log(A) asabove, and y = log(a~2/3Q/A) to
reflect the expected relation /A ~ &' ~ a?/3. We plot the obtained distributions of P(x, y) in figure 8 for
several different values of a. We observe that they are roughly similar in agreement with our prediction. We
should note that local maxima of §2/A—i.e. where it is most relevant—coincide with the local minima of energy
gap. Apart from those point, 2/ A is quickly approaching zero, which is reflected by elongated shape of the
distribution P(x, y) in the direction of small (irrelevant) y.

This derivation corresponds to the smallest, single quasi-particle gap in the Ising model. Here due to conserved parity symmetry the
relevant gap corresponds to two excited quasi-particle.

5 . . s 1. = . . .
More precisely we expect the tail vanishing as P(x) ~ e=** —x0?, with some non-universal constant x,. We set x, = 0 for clarity of
derivation as it is not relevant for the main conclusion.
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Figure 8. Inherent dependence of Hamiltonian transition matrix {2 and the local gaps A, which can be observed for different
inhomogeneity slopes. We show the probability density P(x, ), where x = !/ log A is the gap recalled gap and

y = log(a~2/°Q/A) captures the recalled relation between the mixing term and the gap. The probability densities for different slopes
«, expressed in the recalled variables x and y, are roughly the same. We conclude that the maxima of 2/ A are consistent with the
expected scalingof /A ~ &1 ~ /3,

4. Random cluster-Ising Hamiltonian

The numerical results in the previous sections were confined to 1D geometry where, in the final ground state, the
neighboring spins are aligned according to corresponding J;, ,,+ 1. In this section we show that the general
approach discussed in this article does not hinge on the possibility to align nearest-neighbor interacting spins in
strictly 1D Ising geometry. To that end we consider random cluster-Ising Hamiltonian as follows:

N-1 N-2
H(t) = *Z Jn0no 1 — Z Kiy0,0010 042
n=1 n=1
N
- Zg(n> t)O’z, (26)

n=1

where the first two terms contains the problem Hamiltonian and the last term is the (inhomogeneous) driving
term given by external transverse field. The quench dynamics generated by this Hamiltonian can be simulated
analogously as for the Ising chain from the previous section as—using Jordan—Wigner transformation—it can
be mapped onto a free fermionic system.

First, lets consider the pure and homogeneous model withJ, = ] > 0,K,, = K > O0andg, = ¢ > 0.
Depending on the relative strength of those terms the model has 3 distinct phases, see e.g. [59-63]. It is
convenienttoset K + J = 1. When the magnetic field is dominating, ¢ > 1, the system is in paramagnetic phase
analogously to the Ising model. We are going to initialize the evolution in this phase. In the opposite limit, g < 1,
the system is in ferromagnetic phase for ] + g > Kand symmetry-protected topological order phase for
K > ] 4 g.For] = g = Oitreduces to the cluster Hamiltonian [64]. The phases are separated by critical points
withz = lorz = 2.

We consider random couplings J,, and K,,, which makes the final target state far from being trivial for a 256
spin system. We present the results of the quench in figure 9. We consider two different disorder distributions: in
figure 9(a) J,, are dominating—thatis J, € [—0.75, 0.75]and K,, € [—0.25, 0.25], and in figure 9(b) all ], = 0
and K,, € [—1, 1]. For homogeneous driving the residual energy is vanishing logarithmically with the quench
time in both cases, which is a similar behavior as for the random Ising model. It can be observed that there is
crossover of the performance for sufficiently long times and the homogeneous protocol is considerably
outperformed by an inhomogeneous driving fields with the optimal slope. The advantage for the case of random
], could be exponential, see figure 9(a). In this case, the spatial inhomogeneity allows the system to reach the
quality of solution (small residual energies) which are practically unattainable within the homogeneous
approach. Here, we use a version with single cluster and two critical fronts spreading from the center of the
chain. It should be noted that the optimal shapes (<) in those two cases are different. This optimal value of & can
be found numerically for given distribution of disorders as a simple preprocessing, or hyper-parameter

15



New J. Phys. 20 (2018) 105002 M Mohseni et al

T T T T TTTT] T T T T TTTT] T ¥ T T

[ (a) 50% quantile; W B
4| Jn € [-0.75,0.75] ;
10" | K, € [-0.25,0.25) ! E
R # E
) 3L N
1 |
= r ]
10% | o » +-homogeneous |
B A a=1/32 ]
- e ——a=1/8 4
101 iyl Lol Lol L1
10° 10" 10 10° 10*
[ T T T TTTTI] T T T TTITg T T T TTTTT T T FTTTT T T TTTTT —1—7
L (b) 50% quantile; ¥ |
4 | Jn =0 g |
107 F &, e -1, ! E
= k) E
© 31 .
£ |
+ [ ]
10% | ++ homogeneous —
E a=1/32 E
. ——a=1/8 ]
101 LAl il Lol Lol Lol L1
10° 10! 10° 10° 10 10°

g = (Q/N)

Figure 9. Scaling of the total annealing time as a function of the inverse residual energy for homogeneous control (blue lines) versus
inhomogeneous protocol: here we use two fronts spreading from the center of the chain for N = 256. The Ising Hamiltonian in
equation (26) has generally three different paramagnetic, ferromagnetic and topological insulator phases. In (a) the Hamiltonian
contains two- and three- local random terms versus in (b) only three- local random terms are present. It can be observed that in both
cases non-zero « significantly outperform the homogeneous or v = 0 schedule, with an exponential advantage of optimal
inhomogeneous protocol v = 1/8 when we have an interplay of two- and three-body interactions.

characterization, similar to the spirit of finding the optimal annealing time or number of sweeps for simulated
annealing or quantum Monte Carlo solvers.

5. Conclusion and future works

We have presented a model for engineering quantum phase transitions in disordered systems by manipulating
information flow among clusters that are formed within a quantum critical region. We have shown that space—
time inhomogeneities in the control fields could lead to reconstruction of causal zones (light cones), such that
symmetry breaking events can be synchronized suppressing the density of topological defects and/or
redistributing their spatial arrangements. We have used exact diagonalization techniques for 1D systems to show
an exponential speedup of non-adiabatic IQA over standard adiabatic quantum computing, even in the presence
of higher order interactions. By application of renormalization group techniques we have demonstrated that the
effective causal gaps exhibit universality with respect to the shape of inhomogeneity. We have derived a scaling
relation showing such effective gaps have sub-polynomial scaling with the system size, in contrast to stretch
exponential for homogeneous control strategies. In a subsequent work [17], we will provide a detailed
theoretical discussion of our work as a generalization of KZM for disordered systems including various bounds
for the shape of critical fronts and threshold velocities under different assumptions. We will also discuss how our
approach can be applied to low-dimensional spin-glass problem Hamiltonians [16, 17]. During the preparation
of this manuscript an exponential speedup for IQA of p-spin model was reported showing ferromagnetic first-
order phase transitions can be smeared with inhomogeneous control strategies [65].

Acknowledgments

We would like to thank Sergio Boixo, Adolfo del Campo, Hartmut Neven, Susanne Pielawa, and Vadim
Smelyanskiy for useful discussions. MMR acknowledges support by National Science Center Poland under
Projects No.2016/23/D/ST3/00384, as well as receiving Google Faculty Research Award 2017. MMR
acknowledges using the supercomputer ‘Deszno’ purchased thanks to the financial support of the European

16



10P Publishing

New J. Phys. 20 (2018) 105002 M Mohseni et al

Regional Development Fund in the framework of the Polish Innovation Economy Operational Program
(contract no. POIG. 02.01.00-12-023/08).

ORCID iDs

Marek M Rams @ https:/orcid.org/0000-0002-1235-7758

References

[1] Eisert], Friesdorf M and Gogolin C 2015 Quantum many-body systems out of equilibrium Nat. Phys. 11 124
[2] Rieger Hand Young A P 1997 Quantum spin glasses Complex Behaviour of Glassy Systems ed M Rubi and C Pérez-Vicente (Berlin:
Springer) p 256
[3] VojtaT 2006 Rare region effects at classical, quantum and nonequilibrium phase transitions J. Phys. A: Math. Gen. 39 143
[4] Kadowaki T and Nishimori H 1998 Quantum annealing in the transverse Ising model Phys. Rev. E 58 5355
[5] FarhiE, Goldstone ], Gutmann S, Lapan J, Lundgren A and Preda D 2001 A quantum adiabatic evolution algorithm applied to random
instances of an NP-complete problem Science 292 472
[6] Boixo S, Smelyanskiy V N, Shabani A, Isakov S V, Dykman M, Denchev V S, Amin M H, Smirnov A'Y, Mohseni M and Neven H 2016
Computational multiqubit tunnelling in programmable quantum annealers Nat. Commun. 7 10327
[7] Smelyanskiy V N, Kechedzhi K, Boixo S, Isakov S V, Neven H and Altshuler B 2018 Non-ergodic delocalized states for efficient
population transfer within a narrow band of the energy landscape arXiv:1802.09542
[8] MohseniM, Read P, Neven H, Boixo S, Denchev V, Babbush R, Fowler A, Smelyanskiy V and Martinis ] 2017 Commercialize quantum
technologies in five years Nature 543 171
[9] Barends R et al 2016 Digitized adiabatic quantum computing with a superconducting circuit Nature 534 222
[10] Kibble T W B 1976 Topology of cosmic domains and strings J. Phys. A: Math. Gen. 9 1387
[11] Zurek W H 1985 Cosmological experiments in superfluid helium? Nature 317 505
[12] Dziarmaga] 2010 Dynamics of a quantum phase transition and relaxation to a steady state Adv. Phys. 59 1063
[13] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Colloquium: Nonequilibrium dynamics of closed interacting quantum
systems Rev. Mod. Phys. 83 863
[14] del Campo A and Zurek W H 2014 Universality of phase transition dynamics: topological defects from symmetry breaking Int. J. Mod.
Phys. A29 1430018
[15] Mohseni M and Rams M M 2018 Many-body control of topological defects: a phenomenological theory in preparation
[16] Mohseni M et al 2017 Inhomogeneous quantum annealing presented at AQC
[17] Mohseni M et al 2018 Approximate quantum optimization via engineering phase transitions of spin-glass systems in preparation
[18] Nachtergaele B and Sims R 2010 Lieb—Robinson bounds in quantum many-body physics Entropy and the Quantum (Contemporary
Mathematics vol 529) (Providence, RI: American Mathematical Society) pp 141-76
[19] Zurek W H, Dorner U and Zoller P 2005 Dynamics of a quantum phase transition Phys. Rev. Lett. 95105701
[20] Dziarmaga] 2005 Dynamics of a quantum phase transition: exact solution of the quantum Ising model Phys. Rev. Lett. 95 245701
[21] Polkovnikov A 2005 Universal adiabatic dynamics in the vicinity of a quantum critical point Phys. Rev. B72 161201
[22] Dengs$, Ortiz G and Viola L 2008 Dynamical non-ergodic scaling in continuous finite-order quantum phase transitions Europhys. Lett.
8467008
[23] De Grandi C, Gritsev V and Polkovnikov A 2010 Quench dynamics near a quantum critical point Phys. Rev. B 81 012303
[24] Kolodrubetz M, Clark B K and Huse D A 2012 Nonequilibrium dynamic critical scaling of the quantum Ising chain Phys. Rev. Lett. 109
015701
[25] Chandran A, Erez A, Gubser S S and Sondhi S L 2012 Kibble—Zurek problem: universality and the scaling limit Phys. Rev. B 86 064304
[26] Francuz A, Dziarmaga J, Gardas B and Zurek W H 2016 Space and time renormalization in phase transition dynamics Phys. Rev. B 93
075134
[27] Meldgin C, Ray U, Russ P, Chen D, Ceperley D M and DeMarco B 2016 Probing the Bose glass-superfluid transition using quantum
quenches of disorder Nat. Phys. 12 646
[28] Fisher D S 1995 Critical behavior of random transverse-field Ising spin chains Phys. Rev. B51 6411
[29] LinY-C, Igl6i F and Rieger H 2007 Entanglement entropy at infinite-randomness fixed points in higher dimensions Phys. Rev. Lett. 99
147202
[30] VojtaT, Kotabage C and Hoyos J A 2009 Infinite-randomness quantum critical points induced by dissipation Phys. Rev. B 79 024401
[31] Dziarmaga] 2006 Dynamics of a quantum phase transition in the random Ising model: logarithmic dependence of the defect density on
the transition rate Phys. Rev. B 74 064416
[32] CanevaT, Fazio Rand Santoro G E 2007 Adiabatic quantum dynamics of a random Ising chain across its quantum critical point Phys.
Rev.B76 144427
[33] Suzuki$2009 Cooling dynamics of pure and random Ising chains J. Stat Mech. P03032
[34] Zanca T and Santoro G E 2016 Quantum annealing speedup over simulated annealing on random Ising chains Phys. Rev. B 93 224431
[35] Dziarmaga]and Rams M M 2010 Dynamics of an inhomogeneous quantum phase transition New J. Phys. 12 055007
[36] Dziarmaga J and Rams M M 2010 Adiabatic dynamics of an inhomogeneous quantum phase transition: the case ofa z > 1 dynamical
exponent New J. Phys. 12103002
[37] Rams M M, Mohseni M and del Campo A 2016 Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly
disordered spin chains New J. Phys. 18 123034
[38] Agarwal K, Bhatt R N and Sondhi S L2018 Fast preparation of critical ground states using superluminal fronts Phys. Rev. Lett. 120
210604
[39] Kibble T W B and Volovik G E 1997 On phase ordering behind the propagating front of a second-order transition JEPT Lett. 65 102
[40] Dziarmaga], Laguna P and Zurek W H 1999 Symmetry breaking with a slant: topological defects after an inhomogeneous quench Phys.
Rev. Lett. 82 4749
[41] Zurek W H 2009 Causality in condensates: gray solitons as relics of BEC formation Phys. Rev. Lett. 102 105702

17


https://orcid.org/0000-0002-1235-7758
https://orcid.org/0000-0002-1235-7758
https://orcid.org/0000-0002-1235-7758
https://orcid.org/0000-0002-1235-7758
https://doi.org/10.1038/nphys3215
https://doi.org/10.1007/BFb0104832
https://doi.org/10.1088/0305-4470/39/22/R01
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1126/science.1057726
https://doi.org/10.1038/ncomms10327
http://arxiv.org/abs/1802.09542
https://doi.org/10.1038/543171a
https://doi.org/10.1038/nature17658
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1038/317505a0
https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1142/S0217751X1430018X
https://doi.org/10.1090/conm/529/10429
https://doi.org/10.1090/conm/529/10429
https://doi.org/10.1090/conm/529/10429
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1103/PhysRevB.72.161201
https://doi.org/10.1209/0295-5075/84/67008
https://doi.org/10.1103/PhysRevB.81.012303
https://doi.org/10.1103/PhysRevLett.109.015701
https://doi.org/10.1103/PhysRevLett.109.015701
https://doi.org/10.1103/PhysRevB.86.064304
https://doi.org/10.1103/PhysRevB.93.075134
https://doi.org/10.1103/PhysRevB.93.075134
https://doi.org/10.1038/nphys3695
https://doi.org/10.1103/PhysRevB.51.6411
https://doi.org/10.1103/PhysRevLett.99.147202
https://doi.org/10.1103/PhysRevLett.99.147202
https://doi.org/10.1103/PhysRevB.79.024401
https://doi.org/10.1103/PhysRevB.74.064416
https://doi.org/10.1103/PhysRevB.76.144427
https://doi.org/10.1088/1742-5468/2009/03/P03032
https://doi.org/10.1103/PhysRevB.93.224431
https://doi.org/10.1088/1367-2630/12/5/055007
https://doi.org/10.1088/1367-2630/12/5/055007
https://doi.org/10.1088/1367-2630/aa5079
https://doi.org/10.1103/PhysRevLett.120.210604
https://doi.org/10.1103/PhysRevLett.120.210604
https://doi.org/10.1134/1.567332
https://doi.org/10.1103/PhysRevLett.82.4749
https://doi.org/10.1103/PhysRevLett.102.105702

10P Publishing

New J. Phys. 20 (2018) 105002 M Mohseni et al

[42] del Campo A, De Chiara G, Morigi G, Plenio M B and Retzker A 2010 Structural defects in ion chains by quenching the external
potential: the inhomogeneous Kibble—Zurek mechanism Phys. Rev. Lett. 105 075701

[43] del Campo A, Retzker A and Plenio M B 2011 The inhomogeneous Kibble—Zurek mechanism: vortex nucleation during Bose—Einstein
condensation New J. Phys. 13 083022

[44] del Campo A, Kibble T W B and Zurek W H 2013 Causality and non-equilibrium second-order phase transitions in inhomogeneous
systems J. Phys.: Condens. Matter 25 404210

[45] Sen D, Sengupta K and Mondal S 2008 Defect production in nonlinear quench across a quantum critical point Phys. Rev. Lett. 101
016806

[46] Platini T, Karevski D and Turban L 2007 Gradient critical phenomena in the Ising quantum chain J. Phys. A: Math. Theor. 40 1467

[47] Zurek W H and Dorner U 2008 Phase transition in space: how far does a symmetry bend before it breaks? Phil. Trans. A 366 2953

[48] Collura M, Karevski D and Turban L 2009 Gradient critical phenomena in the Ising quantum chain: surface behaviour J. Stat Mech.
P08007

[49] Lacki M and Damski B 2017 Spatial Kibble—Zurek mechanism through susceptibilities: the inhomogeneous quantum Ising model case
J. Stat Mech. 103105

[50] Damski B and Zurek W H 2009 Quantum phase transition in space in a ferromagnetic spin-1 Bose—Einstein condensate New J. Phys. 11
063014

[51] Campostrini M and Vicari E 2010 Trap-size scaling in confined-particle systems at quantum transitions Phys. Rev. A 81 023606

[52] SuzukiSand Dutta A 2015 Universal scaling for a quantum discontinuity critical point and quantum quenches Phys. Rev. B 92 064419

[53] Motrunich O, Mau S-C, Huse D A and Fisher D § 2000 Infinite-randomness quantum Ising critical fixed points Phys. Rev. B 61 1160

[54] MaS-K, Dasgupta C and Hu C-K 1979 Random antiferromagnetic chain Phys. Rev. Lett. 43 1434

[55] Igléi Fand Monthus C 2005 Strong disorder RG approach of random systems Phys. Rep. 412277

[56] Fisher D Sand Young A P 1998 Distributions of gaps and end-to-end correlations in random transverse-field Ising spin chains Phys.
Rev.B589131

[57] Knysh S 2016 Zero-temperature quantum annealing bottlenecks in the spin-glass phase Nat. Commun. 7 12370

[58] YoungA P and Rieger H 1996 Numerical study of the random transverse-field Ising spin chain Phys. Rev. B 53 8486

[59] Zhang G and SongZ 2015 Topological characterization of extended quantum Ising models Phys. Rev. Lett. 115 177204

[60] Titvinidze I and Japaridze G 12003 Phase diagram of the spin extended model Eur. Phys. J. B 32 383

[61] Smacchia P, Amico L, Facchi P, Fazio R, Florio G, Pascazio S and Vedral V 2011 Statistical mechanics of the cluster Ising model Phys.
Rev. A 84022304

[62] Son W, Amico L, Fazio R, Hamma A, Pascazio Sand Vedral V 2011 Quantum phase transition between cluster and antiferromagnetic
states Europhys. Lett. 95 50001

[63] SuzukiM 1971 Relationship among exactly soluble models of critical phenomena. I: 2D Ising model, dimer problem and the
generalized XY-model Prog. Theor. Phys. 46 1337

[64] RaussendorfR and Briegel HJ 2001 A one-way quantum computer Phys. Rev. Lett. 86 5188

[65] SusaY, Yamashiro Y, Yamamoto M and Nishimori H 2018 Exponential speedup of quantum annealing by inhomogeneous driving of
the transverse field J. Phys. Soc. Jpn. 87 023002

18


https://doi.org/10.1103/PhysRevLett.105.075701
https://doi.org/10.1088/1367-2630/13/8/083022
https://doi.org/10.1088/0953-8984/25/40/404210
https://doi.org/10.1103/PhysRevLett.101.016806
https://doi.org/10.1103/PhysRevLett.101.016806
https://doi.org/10.1088/1751-8113/40/7/004
https://doi.org/10.1098/rsta.2008.0069
https://doi.org/10.1088/1742-5468/2009/08/P08007
https://doi.org/10.1088/1742-5468/aa8c20
https://doi.org/10.1088/1367-2630/11/6/063014
https://doi.org/10.1088/1367-2630/11/6/063014
https://doi.org/10.1103/PhysRevA.81.023606
https://doi.org/10.1103/PhysRevB.92.064419
https://doi.org/10.1103/PhysRevB.61.1160
https://doi.org/10.1103/PhysRevLett.43.1434
https://doi.org/10.1016/j.physrep.2005.02.006
https://doi.org/10.1103/PhysRevB.58.9131
https://doi.org/10.1038/ncomms12370
https://doi.org/10.1103/PhysRevB.53.8486
https://doi.org/10.1103/PhysRevLett.115.177204
https://doi.org/10.1140/epjb/e2003-00113-8
https://doi.org/10.1103/PhysRevA.84.022304
https://doi.org/10.1209/0295-5075/95/50001
https://doi.org/10.1143/PTP.46.1337
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.7566/JPSJ.87.023002

	1. Causal origin of topological defects
	2. Causal control of topological defects with multiple critical fronts
	2.1. Shape and velocity of critical fronts
	2.2. Type I IQA: space and time separated inhomogeneity
	2.3. Type II IQA: spatiotemporal inhomogeneities
	2.4. Standard AQC: absence of any inhomogeneity
	2.5. Exponential suppression of defects

	3. Scaling relations for causal gaps
	3.1. Causal gap for pure systems
	3.2. Universality of causal gaps via SDRG

	4. Random cluster-Ising Hamiltonian
	5. Conclusion and future works
	Acknowledgments
	References



