
            

FAST TRACK COMMUNICATION • OPEN ACCESS

From randomized benchmarking experiments to
gate-set circuit fidelity: how to interpret
randomized benchmarking decay parameters
To cite this article: Arnaud Carignan-Dugas et al 2018 New J. Phys. 20 092001

 

View the article online for updates and enhancements.

You may also like
Quantum information processing with
superconducting circuits: a review
G Wendin

-

On the freedom in representing quantum
operations
Junan Lin, Brandon Buonacorsi, Raymond
Laflamme et al.

-

Randomized benchmarking with
confidence
Joel J Wallman and Steven T Flammia

-

This content was downloaded from IP address 52.15.57.52 on 12/05/2024 at 06:13

https://doi.org/10.1088/1367-2630/aadcc7
https://iopscience.iop.org/article/10.1088/1361-6633/aa7e1a
https://iopscience.iop.org/article/10.1088/1361-6633/aa7e1a
https://iopscience.iop.org/article/10.1088/1367-2630/ab075a
https://iopscience.iop.org/article/10.1088/1367-2630/ab075a
https://iopscience.iop.org/article/10.1088/1367-2630/16/10/103032
https://iopscience.iop.org/article/10.1088/1367-2630/16/10/103032


New J. Phys. 20 (2018) 092001 https://doi.org/10.1088/1367-2630/aadcc7

FAST TRACK COMMUNICATION

From randomized benchmarking experiments to gate-set circuit
fidelity: how to interpret randomized benchmarking decay
parameters

ArnaudCarignan-Dugas1 , Kristine Boone1, Joel JWallman1 and Joseph Emerson1,2

1 Institute forQuantumComputing and theDepartment of AppliedMathematics, University ofWaterloo,Waterloo,OntarioN2L 3G1,
Canada

2 Canadian Institute for Advanced Research, Toronto,OntarioM5G1Z8, Canada

E-mail: arnaud.carignan@gmail.com

Keywords: quantum characterization, randomized benchmarking, process fidelity, quantum computing, quantum control

Abstract
Randomized benchmarking (RB) protocols have become an essential tool for providing ameaningful
partial characterization of experimental quantumoperations.While the RBdecay rate is known to
enable estimates of the average fidelity of those operations under gate-independentMarkovian noise,
under gate-dependent noise this rate ismore difficult to interpret rigorously. In this paper, we prove
that single-qubit RB decay parameter p coincides with the decay parameter of the gate-set circuit
fidelity, a novel figure ofmerit which characterizes the expected average fidelity over arbitrary circuits
of operations from the gate-set.We also prove that, in the limit of high-fidelity single-qubit
experiments, the possible alarming disconnect between the average gatefidelity andRB experimental
results is simply explained by a basismismatch between the gates and the state-preparation and
measurement procedures, that is, to a unitary degree of freedom in labeling the Paulimatrices. Based
on numerical evidence and physicallymotivated arguments, we conjecture that these results also hold
for higher dimensions.

1. Introduction

The operational richness of quantummechanics hints at an unprecedented computational power. However, this
very richness carries over to a vast range of possible quantum error processes for which a full characterization is
impractical for even a handful of quantumbits (qubits). Randomized benchmarking (RB) experiments [1–8]
were introduced to provide a robust, efficient, scalable, SPAM-independent3, partial characterization of specific
sets of quantumoperations of interest, referred to as gate-sets. Such experiments have beenwidely adopted
across all platforms for quantum computing, e.g. [9–17], and have become a critical tool for characterizing and
improving the design and control of quantumbits (qubits).

Recently it has been shown that RB experiments on an arbitrarily large number of qubits will always produce
an exponential decay under arbitraryMarkovian errormodels (that is, where errors are represented as
completely-positivemaps). This ensures awell-defined theoretical characterization of these experiments and
enables an important test for the presence of non-Markovian errors, in spite of the gauge freedombetween the
experimental quantities and a theoretical figure ofmerit such as the average gatefidelity [18–20]. However, this
theoretical advance still lacks a clear physical interpretation that rigorously connects the experimentally
observed decay to afidelity-based characterization of a physical set of gate- dependent errors. Linking an
experimentallymeasured quantity to a physicallymeaningful figure ofmerit is not amere intellectual
satisfaction. It is crucial to ensure that a quantitymeasured in the context of a process characterization protocol
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indeed yields an outcome that assesses the quality of operations.What if a very noisy quantumdevice could yield
a decent RB parameter?What if there exist scenarios where RB substantially underestimates the quality of a
quantumdevice?

In this paper, we show that in the regime of high fidelity gates on single qubits, a simple physical
interpretation of RB data does exist and allows a reliable characterization of quantumoperations. Further we
conjecture, based on numerical evidence, that such an interpretation extends to arbitrary dimensions.
Consequently, this work provides the theoretical foundation behind a fundamental tool for identifying and
eliminating errors through examining the results of RB experiments.

Consider a targeted ideal gate-set  = { }and its noisy implementation  =˜ { ˜}.We denote a circuit
composed ofm elements by

   ˜ ≔ ˜ ˜ ˜ ( ). 1m m:1 2 1

For leakage-free RB experiments with arbitrarily gate-dependent (but stillMarkovian) errors, the average
probability of an outcomeμ after preparing a state ρ and applying a circuit ofm+1 operations thatmultiply to
the identity is [19, 20]

 m rá ñ = + +++
˜ ( ) ( ) ( )Ap B m, , 2m

m
1:1m 1:1

where á ñ ≔ †M M M M, Tr1 2 1 2 refers to theHilbert–Schmidt inner product. On the right-hand side of
equation (2),A andB are independent ofm (i.e., they only depend upon ρ,μ and ̃) and ò(m) is a perturbative
term that decays exponentially inm.

By design, RB gives some information about the error rate ofmotion-reversal (i.e., identity) circuits
composed of gate-set elements. In this paper, we showhow this information relates to general circuits. Consider
the traditional notion of average fidelity for a noisy circuit ̃ to a target unitary circuit  ,

   ò y y yá ñ( ˜ ) ≔ ˜( ) ( ) ( )F , , d , 3

where the integral is taken uniformly over all pure states. Equation (3) corresponds to the definition of the usual
notion of average gate fidelity, but is instead formulated in terms of ‘circuit’, which is to be understood as a
sequence of elementary gates.We introduce this nuance to define a novel figure ofmerit, the gate-set circuit
fidelity, which compares all possible sequences ofm implemented operations from the gate-set ̃ to their targets
in,

Definition 1 (Gate-set circuitfidelity).

    ( ˜ ) ≔ [ ( ˜ )] ( )m, , F , . 4m m:1 :1

The casem=1 yields the average fidelity of the gate-set ̃ to. In general, the overall action of ideal circuits
m:1 is reproduced by ̃m:1withfidelity   ( ˜ )m, , . Having access to the gate-set circuit fidelity enables going
beyond quantifying the quality of gate-set elements as it also quantifies the quality of circuits based on those
elements. In this paper, we prove that for all single-qubit gate-sets withfidelities close to 1 and for an
appropriately chosen targeted gate-set, the gate-set circuit fidelity can be closely estimated via RB
experiments, for all circuit lengthsm, even in cases of highly gate-dependent noisemodels. This is possible
because it turns out that   ( ˜ )m, , essentially behaves like an exponential decay inm, uniquely parametrized
by the RB decay constant p. The robust inclusion of gate-dependence is amajor step forward since it
encompasses very realistic noisemodels.We conjecture this result to hold for higher dimensions, based on
numerical evidences and physicallymotivated arguments. Notice that the gate-set circuit fidelity quantifies the
expected fidelity of all circuits (built from gate-set elements), and not onlymotion-reversal ones. This is an
important observation to keep inmind because althoughRB experiments intrinsically revolve aroundmotion-
reversal circuits, the figure ofmerit that it yields is not limited to such paradigm.Quantifying the quality of all
circuits ismuchmore useful than quantifying identity ones.

2. The dynamics of the gate-set circuitfidelity

It follows from the RB literature [1, 5] that for gate-independent noisemodels of the form  =˜ or  =˜ ,
where  is afixed error, the gate-set circuit fidelity behaves exactly as

   = +
-( ˜ ) ( )m

d

d

d
p, ,

1 1
, 5m

where p is estimated through standard RBby fitting to equation (2)with ò(m)=0 and d is the dimension of the
system. The relationship between the survival probability decay curve and the decay in equation (5) should not
be surprising. Indeed, consider a RB experiment with a noisemodel of the form  and a perfect inversion step

2
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 Î+m 1 and perfect SPAM. In such case, the gate-set circuitfidelity and the survival probability exactly
coincide. A less trivialmatter is to show the link between the RBdecay parameter and equation (5) for gate-
dependent leakage-free noisemodels for which the choice of targeted gate-set is to be treatedmore carefully. In
fact, as wewill show, a poor choice of targeted gate-set can lead to a strong violation of equation (5) in the sense
that   - ( ˜ )m1 , , can relatively differ from - + -( )p1

d

d

d
m1 1 bymultiple orders ofmagnitude. An

appropriate choice of targeted gate-set will essentially restore the decay relation shown in equation (5).
Equation (5) generalizes to

    = +
-( ˜ ) ( ˜ ) ( )m

d

d

d
f m, ,

1 1
, , , 6tr

where thefidelity on the traceless hyperplane is similar to the gate-set circuitfidelity, but is averaged over the
traceless part of the pure states, y y= - dtr :

 
 

 ò

ò

y y y

y y y

á ñ

á ñ

( )
( ˜ ) ≔

˜ ( ) ( )
( )f m, ,

, d

, d
. 7

m m

tr

:1 tr :1 tr

tr tr

The integrand in the numerator of the right-hand side of equation (7) can be visualized as thefidelity restricted
on the Bloch space, comparing the ideallymapped Bloch vectors y y ( )mtr :1 tr to their noisy analog  y˜ ( )m:1 tr .
Equation (6) is quickly obtained by realizing that the symmetric integral over the Bloch space òy y =d 0tr .

Under gate-dependent noise,  - ( ˜ )f1 , , 1tr could relatively differ from1−p by several orders of
magnitude [18, 21]. Such discrepancywas seen as a serious concern: the observedRB decay seemingly fails in
characterizing the quality of quantumoperations. To see the possible immense disconnect between p and

 ( ˜ )f , , 1tr , consider the canonical example where single-qubit gates are perfectly implemented, but differ
from the targets  Î by a labeling of the Pauli axes:

 =˜ ( ) ( ) ( )X Y a, 8

 =˜ ( ) ( ) ( )Y Z b, 8

 =˜ ( ) ( ) ( )Z X c. 8

This noisemodel would lead to an abscence of decay in the survival probability, that is p=1. Indeed,motion-
reversal circuits are perfectly implementing the identity gate, regardless of the length of the circuit. A quick
calculation results in   =( ˜ )f m, , 0tr , which demonstrates a difference in orders ofmagnitude

 - - -∣ ( ) ( ( ˜ ))∣p flog 1 log 1 , , 1tr that tends to infinity as p 1. The RB experiment indicates no
operational errorwhile the average gatefidelity indicates 1/2.Does the outcome of RBmassively underestimate
the error?Notice that since the implementation error is a permutation of labels, there is actually no observable
error in the device. The alarmingly low value of gate-set circuitfidelity of ̃ to is simply a consequence of a
poor choice of targeted gate-set.

As amore involved example, let the noisemodel be   =˜ † for any non-identity unitary channel  and
let the set of targeted operations be (this includes our previousmislabeling example as a special scenario). In
such cases  ( ˜ )f , , 1tr can take any value in the interval [0,1), depending on the choice of  . However, using
the same argument as in the previous example, the survival probability is not subject to a decay (p= 1), showing
once again how the decay parameter could arbitrarily differ from a poorly defined average gatefidelity. This
apparent disconnect arises due to a basismismatch between the bases inwhich the noisy gate-set and the targeted
gate-set are defined. A reconciliation of the RBobservations with a gate-set circuit fidelity is obtained by
changing the set of targets to   † since    =( ˜ )†f , , 1 1tr . Onemight argue that implementing

  =˜ † instead of the ideal should raise an operational error. Not necessarily: consider a circuit uniquely
constructed fromoperations  Î˜ ˜

i . According to Born’s rule, the probability ofmeasuring the outcome i
associatedwith the positive operatorμi after performing the circuit on a state ρ is:



     

 



m r

m r

m r

m r

=á ñ

= á ñ

= á ñ

= á ¢ ¢ ñ



˜ ( )
( )

( )
( ) ( )

† † †

†

p ,

,

,

, , 9

i i m

i m

i m

i m

:1

2 1

:1

:1

where  r r m m¢ = ¢ =( ) ( )† †, i i . That is, the error can be interpreted as part of SPAMprocedures instead of
operations. Since the unitary transformation can be pushed to either SPAMprocedures or coherent
manipulations, it should be seen as amismatch between them. Indeed, the physical unitary conjugation

  =˜ † does not affect the internal action of operations, but exclusively the connection between operations
and SPAMprocedures. Changing the targeted gate-set to   † is allowed by the degree of freedom in
labelingwhat is the basis for SPAMprocedures andwhat is the basis for processes.

3
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In appendix A, we showhow exactly the disconnect between pm and   ( ˜ )†f m, ,tr depends on the
choice of targeted gate-set   †. That is, we provide an expression of the form

     = +( ˜ ) ( ) ( ) ( )†f m C p D m, , , , 10m
tr

where  is a physical unitary channel (see theorem5). Afirst interesting observation is that ( )D m, is typically
negligible or becomes rapidly negligible as it is also exponentially suppressed inm4. Thismeans that the relative
variation in ftr as the circuit grows in length

 

 


 
 

d
+

= +
( ˜ )

( ˜ )
( ) ( )

†

†

f m

f m
p m

, , 1

, ,
, , 11tr

tr

dependsweakly on the choice of targeted gate-set.More precisely, d ( )m, is composed of two factors: thefirst
one decays exponentially inm and is atmost of order -( )p1 m 2, while the second carries the dependence in ;
the existence of a specific choice of  such that this last factor becomes atmost of order -( )p1 3 2 is proven in
the single-qubit case (appendix B), and conjectured to hold in general. The explicit behavior of d ( )m, given a
numerically simulated gate-dependent noisemodel is illustrated infigure 1.

Consequently, the gate-set circuit fidelity can be updatedwith a good approximation through the recursion
relation

        + » + -⎜ ⎟⎛
⎝

⎞
⎠( ˜ ) ( ˜ ) ( )† †m

d
p m

d
, , 1

1
, ,

1
. 12

Roughly speaking, thismeans that the choice of basis  inwhich are expressed the targets in   † is not highly
significantwhen it comes to updating the gate-set circuit fidelity as the circuit grows in depth. The RBdecay rate
p enables the decrease infidelity due to adding a gate to a circuit to be predicted.

However, to provide insight on the total value of the gate-set circuitfidelity given a circuit’s lengthm, we
need a stronger relation between the RB estimate of p and the gate-set circuit fidelity. Fortunately, the basis
freedom in the choice of targeted gate-set can befixed in away that allows us to estimate the total change in gate-
set circuit fidelity for arbitrary circuit’s lengths. In appendix B, we prove that the potentially large disconnect
between p and   ( ˜ )†f , , 1tr under general gate-dependent noise is almost completely accounted for by a
basismismatchwhich, as we argued earlier, does not exactly correspond to a process error since unitary
conjugation does not affect the internal dynamics of operations.

Proposition 2. For any single-qubit noisy gate-set ̃ perturbed from, there exists an ideal targeted gate-set   †,
where  is a physical unitary, such that

    = +
-

+ -( ˜ ) (( ) ) ( )† m
d

d

d
p O p, ,

1 1
1 . 13m 2

In fact, we conjecture this result to hold for any dimension, or at least formost realistic gate-dependent noise
models. To grasp the physical reasoning behind this, we refer to the end of appendix B, as it rests on some prior

Figure 1.Absolute value of the deviation d ( )m, , described in equation (11) (also see equation (A16)), as function of circuit lengthm
with noisemodel generated by   s= -˜ ( ), 10x z x

1 and     s s s s s p= = - - +- -˜ ( ) ˜ ( ), 10 , , 2 10y z y CZ z z z z
1 1 2 1 2 1 (see

equation (18)). The red triangles are obtainedwith the choice of basis  = , while the blue circles are obtainedwith the choice
 = where  is found through equation (17). The purple horizontal dashed line corresponds to -( )p1 2, while the full green line
corresponds to   -( ( ˜ ))1 , , 1 2. For both ideal gate-sets  and   †, the deviation becomes quickly negligible as the sequence
length increases. In fact, in the case  = (blue circles), the deviation is always below -( )p1 2.

4
Since ( )D 1, is typically close to 0, the exponential suppression is quite effective compared to » - -( )p m p1 1m which is essentially

linear for smallm.
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technical analysis. The extension of proposition 2 to two-qubit systems is supported by numerical evidences (see
appendices A andB).

The unitary freedomappearing in the gate-set circuit fidelitymeans that there exists an infinite amount of
fidelity-based figures ofmerit describing noisy circuits, one for each infinitelymany targeted gate-set   †. Of
course, there exist choices of targeted operations that yield in gate-set circuit fidelities that differ from
equation (13) (see [18, 21]); the example shown in equations (8a)–(8c) is an elementary instance thereof.
Proposition 2 simply states that there exists a natural choice of gate-set   † that allows connecting the
outcome of anRB experiment to a gate-set circuit fidelity. The choice of basis  is like taking the perspective of
the gates rather than the perspective of SPAMprocedures (as is implicitly donewhen defining gates relative to
the energy eigenbasis of the system). In this picture, the gate-set circuitfidelity describes the accuracy of the
internal behavior of operations as they act in concert.

To reformulate the result, the family of circuits ̃m:1built from a composition ofm noisy operations  Î˜ ˜
mimics the family of ideal circuits   †

m:1 withfidelity + - p
d

d

d
m1 1 . In the paradigmwhere the initially

targeted operations  Î are definedwith respect to SPAMprocedures,  captures themisalignment between
the basis inwhich the operations  Î˜ ˜ are defined and the basis defined by SPAMprocedures. This goes
farther: consider an additional gate-set, for which the targeted operations Î are also are defined respect to
SPAMprocedures. Fromproposition 2,there exists a physical unitary  for which ̃m:1 imitates the action of

 †
m:1 withfidelity + - q

d

d

d
m1 1 (where q is estimated throughRB).  † captures the basismismatch

between the gate-sets ̃ and ̃. Such a non-trivialmismatch could easily be imagined if, for instance, gates
belonging to ̃ were obtained through a different physical process than ̃, or calibratedwith regards to alternate
points of reference.

3. Finding the appropriate set of targeted gates for specific noisemodels

Wenowdiscuss how the appropriate unitary conjugation on the initial targeted gate-set can be calculated for
specific noisemodels, whether fromnumerical simulations, analytic approximations, or tomographic
reconstructions. As shown in theorem5 and equation (10), the total change of gate-set circuit fidelity depends on
the physical basis inwhich the ideal gate-set is expressed. In the single-qubit case, we showed the existence of a
physical basis  that reconciles   ( ˜ )†f m, ,tr with pm through proposition 2.Onemight suspect that the
unitary  can be found through themaximization of the gate-set fidelity:

   


 = ( ˜ ) ( )†argmax , , 1 , 14

and indeed this would handle noisemodels of the form   =˜ †, as

     = ( ˜ ) ( ˜ )†p f f, , 1 , , 1 .tr tr

However, this hypothesis fails for simple noisemodels of the form    =˜ † †, where

     = ( ˜ ) ( ˜ )†p f f, , 1 , , 1 .tr tr

Those last two examples show that p can be greater or less than  ( ˜ )f , , 1tr , depending on the noisemodel.
More examples are derived in [18, 21]. This particular case study is informative as these two last noisemodels
share something in common: there exists a choice of unitary  that cancels the noisymap on the right of the
noisy gate-set. Although such exact cancellation is not always possible, we now show that a close approximation
is sufficient. Consider the slightlymore general noisemodel of the form   =˜

L R, wherewe allowfixed but
arbitrary errormaps to the left and the right of an ideal gate-set. It can be shownwhile staying under the scope of
the original analysis provided in [5, 6] that    = ( )p f m, ,m

R Ltr , since  R L is the effective errormapbetween
two otherwise perfect implementations of the gate-set elements. In the single-qubit case (and formany, if not all
physicallymotivated higher dimensional noisemodels) there exists a unitary operation  such that

        = + -( ) ( ) (( ) ) ( )† O pF , , , 1 1 , 15R L L R
2

(see appendix B). That is, the fidelity of themap between two noisy gate-sets can be seen as the gate-set circuit
fidelity between a noisy gate-set and an appropriately targeted ideal one. A choice of such physical unitary is

   


= ( ) ( )Fargmax , , 16R

which essentially cancels the unitary part of R
5 . Anotherway to see this is that the unitary freedomallows us to

re-express the errors  ,L R as

5
Of course,    ( )†Fargmax ,L would also fulfill equation (15).
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  
  




†

.
L L

R R

Wecan then chose the unitary that depletes  R from any coherent component. Intuitively, re-expressing the
error on one side tomake it incoherent prevents any type of unitary conjugation of the form   =˜ †.

Formore general gate-dependent noisemodels, the idea remainsmore or less the same. As shown in
appendix B, the right error R is replaced by its generalization, the 4th order right error   = [ ˜ ]( ) †

R
4

4:1 4:1

(equation (B4a)). From there, wefind:

Proposition 3 (Finding the appropriate targeted gate-set).Aproper choice of physical basis  for which
equation (13) applies is

    


= ( [ ˜ ] ) ( )†Fargmax , , 174:1 4:1

 cancels the unitary part of the 4th order right error.

This provides ameans to guide the search of the appropriate ideal targeted gate-set of comparison   †

given a numerical noisemodel ̃. Indeed, the 4th order right error is easily found, either by direct computation
of the average  [ ˜ ]†

4:1 4:1 , ormore efficiently by solving the eigensystemdefined in equation (A7a). The
optimization defined in equation (17) can be solved via a gradient ascent parametrized over the -d 12 degrees
of freedomof SU(d).

In the single-qubit case, the optimization procedure can be replaced by an analytical search. Given the
processmatrix  ( )

R
4 of the 4th order right error, it suffices tofind the polar decomposition of its 3×3 submatrix

acting on the Bloch vectors:   P =( )
R
4

tr tr tr. The unitary factor  corresponds to  †, while the positive factor
 captures an incoherent process (rigorously defined in equation (B7)).

With this at hand, we performed numerically simulated RB experiments under gate-dependent noise
models. Each of the 24Cliffords was constructed by a sequence ofX andY pulses, s p= ( )G P , 2x x and

s p= ( )G P , 2y y , where

q q( ) ≔ ( )P H , e . 18Hi 2

The two-qubit Cliffords were obtained through the construction shown in [10, 12], where the 11 520 gates
are composed of single-qubit Clifford andCZ gates. The implementation of the 2-qubit entangling operation
was consistently performedwith an over-rotation:   s s s s p= - - + -˜ ( ), 2 10CZ z z z z

1 2 1 2 1 . Infigure 2, the
single-qubit gate generators aremodeledwith a slight over-rotation:   s p= + -˜ ( ), 2 10x x

1 and
  s p= + -˜ ( ), 2 10y y

1 . Thismodel exemplifies the failure of themaximization hypothesis proposed in
equation (14). Infigures 1 and 3, the single-qubit gate generators are followed by a shortZ pulse,
  s q=˜ ( ),x z z x and   s q=˜ ( ),y z z y , which reproduces the toymodel used in [18].

4. Conclusion

RB experiments estimate the survival probability decay parameter p ofmotion-reversal circuits constituted of
operations from anoisy gate-set ̃ of increasing length (see equation (2)).Whilemotion-reversal is intrinsic to

Figure 2.Gate-set circuit fidelity    ( ˜ )† m, , as a function of circuit lengthmwith noisemodel generated by  =˜
x

    s p s p s s s s p+ = + = - - +- - -( ) ˜ ( ) ˜ ( ), 2 10 , , 2 10 , , 2 10x y y CZ z z z z
1 1 1 2 1 2 1 (see equation (18)). The different colors

portray choices of basis; the yellow circles  = , the blue stars  = where  is found through equation (17), and the green
squares  = 2. Here the lines correspond to the fit for sequence lengths ofm=5–10. The choice  = produces the evolution
prescribed by proposition 2, which through extrapolation has an intercept of 1.

6

New J. Phys. 20 (2018) 092001



the experimental RB procedure, the estimated decay constant p can be interpreted beyond this paradigm. In this
paperwe have shown that, in a physically relevant limit, the very same parameter determines an interesting
figure ofmerit, namely the gate-set circuit fidelity (defined in equation (4)): as a randomoperation from ̃ is
introduced to a random circuit constructed from elements in ̃, p captures the expected relative change in the
gate-set circuitfidelity through equation (12).

It is also possible to characterize the full evolution of gate-set circuit fidelity as a function of the circuit length.
In this paper, we have also demonstrated that given a single-qubit noisy gate-set ̃ perturbed from, there
exists an alternate set of targeted gates obtained through a physical basis change   † such that the gate-set
circuitfidelity takes the simple form given in equation (13). This gives a rigorous underpinning to previouswork
that has assumed that the experimental RB decay parameter robustly determines a relevant average gatefidelity
(equation (3)) for experimental control under generic gate-dependent scenarios.We conjecture a similar result
to hold for higher dimensions and provide numerical evidence and physicallymotivated arguments to support
this conjecture. Given any specific numerical noisemodel ̃ perturbed from, we showed how to obtain a
physical unitary  for which equation (13) holds. The procedure can be seen as afidelitymaximation of the 4th
order right error acting on the gate-set through a unitary correction (see proposition 3).

The introduction of such a physical basis adjustment is natural because it has no effect on how errors
accumulate as a function of the sequence length. Rather, it only reflects a basismismatch to the experimental
SPAMprocedures. This is in principle detectable by RB experiments but in practice not part of the goals of such
diagnostic experiments. In particular, differences in the (independent) basis adjustments required for distinct
gate-sets will not appear in any characterization of the individual gate-sets, but will be detectedwhen comparing
RB experiments for this distinct gate-sets (e.g., comparing dihedral benchmarking and standard RB experiments
which have distinct gate-sets but share gates in common, or comparing independent single-qubit RB on two
qubits—which has no two-qubit entangling gate—with standard two-qubit RB).We leave the problemof
characterizing relative basismismatch between independent gate-sets as a subject for further work.
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AppendixA. An expression for the total change in the gate-set circuitfidelity

In this section, we extend the standardRB analysis under gate-dependent noise provided in [19, 20] in order to
prove the claim from equation (11) that standard RB returns the relative variation of the gate-set circuit fidelity.

Let be the Liouvillematrix of a linearmap and r r rP = -( ) dTrtr be the projector onto the
traceless component.We denote the Frobenius norm,which is defined by theHilbert–Schmidt inner product,
as · F . For instance, in the qubit case P =  3Ftr

2 .We denote the induced two-norm as · 2, which corresponds

to themaximal singular value. Let ej be the canonical unit vectors, = åA a e ej k j k j k
T

, , , and

Figure 3.    - =( ˜ )† m1 , , 1 as function of the angle qz in noisemodel generated by   s q=˜ ( ),x z z x and  =˜
y

   s q s s s s p= - - + -( ) ˜ ( ), , , 2 10z z y CZ z z z z
1 2 1 2 1 (see equation (18)), with  = (green squares) and  = (blue circles)

where  is found through equation (17). The red crosses correspond to -( )p1 2 obtained throughRB experiments.
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,

,

Using the identity

= Ä( ) ( ) ( ) ( )ABC C A Bvec vec , A2T

wehave
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

   P P
P

P
P

P
P

=
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=

 

   
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( ) ( ) ( )
†

f m, ,
,

vec vec
, A3

m m

F

F

m

F

tr
:1 tr :1 tr

tr
2

tr

tr

tr

tr

where the twirling superchannel [18, 19, 22] is

  = Ä[ ˜ ] ( )A4tr

and P=tr tr. Changing the gate-set to   † for some physical unitary  leaves  P P= †
tr tr .

Therefore





   P

P
P

P
=

   
( ˜ ) ( ) ( ) ( )†

†
f m, ,

vec vec
. A5

F

m

F
tr

tr

tr

tr

tr

The spectrumof  is unchanged under the basis change  †.Moreover, itsmost important
eigenvectors are as follows:

Lemma4. Let p be the highest eigenvalue of  and

   P-≔ [( ) ˜ ] ( )†p a, A6m
m

m mtr, :1 tr :1

   P-≔ [ ˜ ( ) ] ( )†p b. A6m
m

m m:1 tr tr, :1

Thenwe have

  =¥ ¥( ) ( ) ( )† †p avec vec , A7T T

  =¥ ¥( ) ( ) ( )p bvec vec . A7

Proof.By equation (A2)

*   P= Ä-( ) (( ) ˜ ) ( ) ( )pvec vec . A8m
m

m mtr, :1 :1 tr

As the Liouville representation is real-valued and thej are independent

  P=( ) ( ) ( ) ( )pvec vec . A9m
m

tr

Since the noisy gate-set ̃ is a small perturbation from the spectrumof  will be slightly perturbed
from ¼{ }1, 0, 0, . Therefore ( )p m approaches a rank 1 projector asm increases and so ¥( )vec is a
+1-eigenvector of  p.

The same argument applies to¥
T . ,

Lemma 4 allows us towrite


 

 
D=

á ñ
+¥ ¥

¥ ¥

( ) ( ) ( )
†

p
vec vec

,
, A10

T

T

with  D D= =¥ ¥( ) ( )†vec vec 0T . In equation (A5), we can expand the vectors as

 


  

P
P

= + -¥

¥   
( ) ( ) ( ) ( ) ( ) ( )

† †
†a a w a

vec vec
1 , A11

F

T

F

tr

tr

2

 


  

P
P

= + -¥

¥   
( ) ( ) ( ) ( ) ( ) ( )b b v b

vec vec
1 , A11

F F

tr

tr

2

where

  


P P
á ñ¥ ¥

-

 
 
 

⎛
⎝⎜

⎞
⎠⎟( ) ≔ ( )a

,
, A12

T

F

F

Ftr
2

2

tr
2

1 2

  


P P
á ñ¥ ¥

-

 
 
 

⎛
⎝⎜

⎞
⎠⎟( ) ≔ ( )b

,
A13

F

F

Ftr
2

2

tr
2

1 2

and  ( ) ( )v w, are implicitly defined unit vectors. Using this expansion togetherwith equation (A10) in
equation (A5) yields the following result:
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Theorem5 (Total gate-set circuitfidelity).The gate-set circuit fidelity obeys

      = +
-

+( ˜ ) ( ( ) ( )) ( )† m
d

d

d
C p D m, ,

1 1
, , A14m

where

     

   
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P P P

P
P

P
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P
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=

=

¥ ¥ ¥ ¥
-

¥ ¥

¥ ¥
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   
 

⎛
⎝⎜

⎞
⎠⎟( ) ⟨ ⟩ ⟨ ⟩ ⟨ ⟩

⟨ ⟩ ⟨ ⟩
⟨ ⟩

( )
†

C U

a

:
, , ,

, ,

,
A15

T

F F

T

F

F F

F

tr
2

tr
2

tr
2

1

tr

tr
2

tr

tr
2

tr
2

tr

    D- -( ) ≔ ( ) ( ) ( ) ( ) ( )†D m a b w v b, 1 1 . A15m2 2

In [18–20] it is shown that standard RB provides an estimate of p. Notice that p is independent of the basis in
which the ideal gate-set of comparison,   †, is expressed.

From equation (A14), it is straightforward to show that


 

 

 
 

 

 
 
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D D P
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= - -
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†
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m
f m

f m
p

a b
w p v

f m

,
, , 1

, ,

1 1
, ,

, A16
m

tr

tr

2 2 tr

tr

which is exponentially suppressed.We show in the next section that the eigenvalues ofD are atmost of order
- p1 , which ensures a very fast decay, as shown infigure 1. Equation (11) is in fact a reformulation of

equation (A16).

Appendix B. Varying the ideal gate-set of comparison

In this section, we prove proposition 2 by determining how the basis  of the ideal gate-set   † affects the
coefficients in equation (A14).

Let be an ideal gate set definedwith respect to the SPAMprocedures.We canwrite the elements of a noisy
gate-set as

  d= +˜ ( )( ) , B1I

so that the perturbations d both capture the errors in the noisy gate and themismatchwith the targeted
computational basis. Under gate-independent noise with no basismismatch,  =˜ and the infidelity of the
perturbed operations  d+ ( )I is   -( ) ≔ ( )r 1 F , . A basismismatchwill change the infidelity of the
perturbations roughly to  +( ) ( )†r r for some unitary channel  , whichwill typically differ substantially
from the fidelity inferred from the associated RB experiment.

Experimentally, such basismismatches will be relatively small as operations will be somewhat consistent
with SPAMprocedures. Under this assumption, we now show that there exists an alternate perturbative
expansion

  d= +˜ ( )† ( ) †, B2U

for which  d+( )( )r U is in linewith the data resulting fromanRB experiment.
In appendix A, we showed that ( )p n converges to a rank-1 projector.We nowquantify the rate of

convergence. Recall that  is perturbed from a rank-1 projectorwith spectrum { }1, 0, 0, . Hence, by the
Bauer–Fike theorem [23], for any eigenvalue l ¹ p of  ,

 

 

 
 


 
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d

d
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d
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+
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Unitary invariance
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I
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I
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I

tr 2

tr 2

2

This spectral profile implies that ( )p n converges quickly to a rank-1 operator since the eigenvalues close to
zero are exponentially suppressed.
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Hence, we can approximate the asymptotic eigen-operators defined in equations (A6a) and (A6b) as:

   d= + +¥ ( ( ) ) ( )( )O r a, B3I
4

2

   d= + +¥ ( ( ) ) ( )( )O r b. B3I
4

2

In the simple noisemodel    Pµ¥,L R Rtr and  Pµ¥ L tr. To pursue the analogy, we denote themth
order right and left errors as

  = [( ) ˜ ] ( )( ) † a, B4R
m

m m:1 :1

  = [ ˜ ( ) ] ( )( ) † b. B4L
m

m m:1 :1

Combining equations (B4) and (B3), we get

   dPµ + +¥ ( ( ) ) ( )( ) ( )O r a, B5R
I

tr
4 2

   dPµ + +¥ ( ( ) ) ( )( ) ( )O r b. B5L
I4

tr
2

The structure of single-qubit error channels allows us to pursue a deeper analysis. It follows from the channel
analysis provided in [25] that, for high-fidelity qubit-channels, the 3×3 submatrix acting on the traceless
hyperplane can always be decomposed as

 P P= ( ), B6tr tr

where  is a physical unitary, and  is an incoherent process. Herewe label a channel  incoherent if

 P
P

P
P

= +
 

 
 

⟨ ⟩ ( ( ) ) ( )O r D
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. B7
F

F

F

tr

tr
2

tr

tr

2

Incoherent channels have the additional property that, given an error channelL [26]

 P L
P

P
P

P L
P

= + L
     
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. B8
F F F

tr

tr
2

tr

tr
2

tr

tr
2

2

Expressing the 4th order right error  ( )
R
4 as

 P P= ( )( ) . B9R
4

tr tr

Allows us tomaximally correct it through a physical unitary:

       


=( ) ( ) ( ) ( )( ) † ( ) ( )F F F, max , , . B10R R R
4 4 4

Using the property expressed in equation (B8), we get:

     
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Looking back at theorem5 andusing equations (B11), (B5a) and (B5b) results in

  d= + +( ) ( ( ) ) ( )† ( )C O r1 . B12I 2

Since both  and  ( )
L
4 have atmost infidelity of order  d+( )( )r I , it follows that the composition  ( )

L
4 must

also have an infidelity of order  d+( )( )r I , which guarantees

  d- = +( ) ( ( )) ( )† ( )b O r1 , B13I2

while incoherence guarantees

  d- = +( ) ( ( )) ( )† ( )a O r1 . B14I2

Using

   d dD + ∣ ( ) ( )∣ ) ( ( ) ) ( )† † † ( ) ( )w V v V O r I B15G
I

G
I

2

in equation (A15b), wefind

  d= +( ) ( ( ) ) ( )† ( )D O r1, , B16I 2

which, togetherwith equations (A14) and (B12) leads to

     d= + +( ˜ ) ( ( ) ) ( )† ( )f m p O r, , . B17m I
tr

2
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This expression allows us to pick a better perturbative expansion than equation (B1). Indeed, choosing

    d= +˜ ( )† ( ) ††
, B18V

ensures that the noisy operations  d+ ( )†V have an gate-set circuit infidelity which ismore in linewith theRB
data:

  d d+ =
-

- + +( ) ( ) ( ( ) ) ( )( ) ( )†
r

d

d
p O r

1
1 . B19V I 2

Iterating the analysis leads to

   = + -( ˜ ) (( ) ) ( )†f m p O p, , 1 . B20m
tr

2

This completes the demonstration of proposition 2.
Our current proof technique relies on the structure of single-qubit channels. For higher dimensions, we

conjecture that an analog of proposition 2 holds, although the scalingwith the dimension is unclear.

Conjecture 6. If the fidelity of  ( )
R
4 is high, then∃ a physical unitary † s.t.  ( ) †

R
4 is incoherent.

Aswe now show constructively, conjecture 6 holds for physicallymotivated noisemodels composed of
generalized dephasing, amplitude damping, and unitary processes. Under such noisemodels,

      =  ( )( ) B.21R T T
4

2 2 1 1

for some unitaries i and incoherent channels i.
The channel  † is incoherent for any physical unitary  , and the composition of incoherent channels is

also incoherent, so equation (B.21) can be rewritten as  =( )
R
4 , where  and  are incoherent and unitary,

respectively:

      = ( ) ( ) ( )† † B.22T T T T T:1 1 :1

 = ( ). B.23T :1

ORCID iDs

ArnaudCarignan-Dugas https://orcid.org/0000-0002-2036-2688
Joel JWallman https://orcid.org/0000-0001-6943-5334

References

[1] Emerson J, Alicki R andŻyczkowski K 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S347
[2] Levi B, LopezCC, Emerson J andCoryDG2007Phys. Rev.A 75 022314
[3] Knill E, LeibfriedD, Reichle R, Britton J, Blakestad R, Jost J D, Langer C,Ozeri R, Seidelin S andWinelandD J 2008 Phys. Rev.A 77

012307
[4] Dankert C, Cleve R, Emerson J and Livine E 2009Phys. Rev.A 80 012304
[5] Magesan E, Gambetta JMand Emerson J 2011Phys. Rev. Lett. 106 180504
[6] Magesan E, Gambetta JMand Emerson J 2012Phys. Rev.A 85 042311
[7] Dugas A,Wallman J J and Emerson J 2015Phys. Rev.A 92 060302
[8] Cross AW,Magesan E, Bishop L S, Smolin J A andGambetta JM2016NPJQuantum Inf. 2 16012
[9] Gaebler J P et al 2012Phys. Rev. Lett. 108 260503
[10] Córcoles AD,Gambetta JM, Chow JM, Smolin J A,WareM, Strand J, Plourde B LT and SteffenM2013 Phys. Rev.A 87 030301
[11] Kelly J et al 2014Phys. Rev. Lett. 112 240504
[12] Barends R et al 2014Nature 508 500
[13] Casparis L, LarsenTW,OlsenMS, Kuemmeth F, Krogstrup P,Nygârd J, PeterssonKDandMarcus CM2016 Phys. Rev. Lett. 116

150505
[14] TakitaM,Córcoles AD,Magesan E, AbdoB, BrinkM,Cross A, Chow JMandGambetta JM2016 Phys. Rev. Lett. 117 210505
[15] Sheldon S,Magesan E, Chow JMandGambetta JM2016Phys. Rev.A 93 060302
[16] McKayDC, Filipp S,MezzacapoA,Magesan E, Chow JMandGambetta JM2016Phys. Rev. Appl. 6 064007
[17] McKayDC, Sheldon S, Smolin J A, Chow JMandGambetta JM2017 arXiv:1712.06550
[18] Proctor T, Rudinger K, YoungK, SarovarM andBlume-Kohout R 2017Phys. Rev. Lett. 119 130502
[19] Wallman J J 2018Quantum 2 47
[20] Merkel S T, Pritchett E J and Fong BH2018 arXiv:1804.05951
[21] Qi J andNgHK2018 arXiv:1805.10622
[22] Chasseur T andWilhelmFK 2015Phys. Rev.A 92 042333
[23] Bauer F L and FikeCT1960Numer.Math. 2 137
[24] Wallman J J 2015 arXiv:1511.00727
[25] RuskaiMB, Szarek S andWerner E 2002 Linear Algebr. Appl. 347 159
[26] Dugas AC,Wallman J J and Emerson J 2016 arXiv:1610.05296

11

New J. Phys. 20 (2018) 092001

https://orcid.org/0000-0002-2036-2688
https://orcid.org/0000-0002-2036-2688
https://orcid.org/0000-0002-2036-2688
https://orcid.org/0000-0002-2036-2688
https://orcid.org/0000-0001-6943-5334
https://orcid.org/0000-0001-6943-5334
https://orcid.org/0000-0001-6943-5334
https://orcid.org/0000-0001-6943-5334
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1103/PhysRevA.75.022314
https://doi.org/10.1103/PhysRevA.77.012307
https://doi.org/10.1103/PhysRevA.77.012307
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1103/PhysRevLett.106.180504
https://doi.org/10.1103/PhysRevA.85.042311
https://doi.org/10.1103/PhysRevA.92.060302
https://doi.org/10.1038/npjqi.2016.12
https://doi.org/10.1103/PhysRevLett.108.260503
https://doi.org/10.1103/PhysRevA.87.030301
https://doi.org/10.1103/PhysRevLett.112.240504
https://doi.org/10.1038/nature13171
https://doi.org/10.1103/PhysRevLett.116.150505
https://doi.org/10.1103/PhysRevLett.116.150505
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevA.93.060302
https://doi.org/10.1103/PhysRevApplied.6.064007
http://arxiv.org/abs/1712.06550
https://doi.org/10.1103/PhysRevLett.119.130502
https://doi.org/10.22331/q-2018-01-29-47
http://arxiv.org/abs/1804.05951
http://arxiv.org/abs/1805.10622
https://doi.org/10.1103/PhysRevA.92.042333
https://doi.org/10.1007/BF01386217
http://arxiv.org/abs/1511.00727
https://doi.org/10.1016/S0024-3795(01)00547-X
http://arxiv.org/abs/1610.05296

	1. Introduction
	2. The dynamics of the gate-set circuit fidelity
	3. Finding the appropriate set of targeted gates for specific noise models
	4. Conclusion
	Acknowledgments
	Appendix A.
	Appendix B.
	References



