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Abstract
Weconsider frequency estimation in a noisy environment with noisy probes. This builds on previous
studies,most of which assume that the initial probe state is pure, while the encoding process is noisy,
or that the initial probe state ismixed, while the encoding process is noiseless. Ourwork ismore
representative of reality, where noise is unavoidable in both the initial state of the probe and the
estimation process itself.We prepare the probe in aGHZdiagonal state, starting from n+1 qubits in
an arbitrary uncorrelatedmixed state, and subject it to parameter encoding under dephasing noise.
For this scheme, we derive a simple formula for the (quantum and classical) Fisher information, and
show that quantum enhancements do not depend on the initialmixedness of the qubits. That is, we
show that the so-called ‘Zeno’ scaling is attainable when the noise present in the encoding process is
time inhomogeneous. This scaling does not depend on themixedness of the initial probe state, and it is
retained even for highlymixed states that can never be entangled.We then show that the sensitivity of
the probe in our protocol is invariant under permutations of qubits, andmonotonic in purity of the
initial state of the probe. Finally, we discuss two limiting cases, where purity is either distributed evenly
among the probes or concentrated in a single probe.

1. Introduction

Quantummetrology is a promising research area, where the aim is to develop newquantum technologies that
may one day surpass the classical limits of sensing and estimation [1–3]. Quantum sensing has awide array of
applications, from gravitational wave detection [4] to imaging in biological andmedical sciences [5]. This is why
a great deal of effort has been put into understandingwhere the power of quantummetrology comes from, but
there is no clear answer to this question.Often, the power of quantummetrology is thought to come from
quantum entanglement [6], but entangled states are hard to prepare and inherently fragile [7]. On the other
hand, there aremany examples where a quantum enhancement is found even in the absence of quantum
entanglement [8]. Here, we add to the latter volume of literature by showing that quantum enhanced scaling is
attainable for noisy frequency estimation using a probe in amixed quantum state.

In the standard case for estimating a parameterω, that is unitarily encoded, the ultimate limit to sensing is
achieved using pureN00N states [9, 10] (a state that has n photons in superposition in the two arms of an
interferometer). Equivalently, for spins and atoms,Greenberger–Horne–Zeilinger (GHZ) states [11] are optimal
probe states. These scenarios lead toHeisenberg limited precision ofΔω∼1/n, whereΔω is the standard
deviation of the estimate, in contrast to the standard quantum limit (SQL) of wD ~ n1 . The latter is the best
precision available to a classical probe.However, this quadratic enhancement quickly disappears with large n
when either the initial probe state is noisy [12] orwhen the encoding is performed in the presence of unavoidable
effects of environmental noise [13, 14]. Another way to attain a quantum advantage is by extending the length of
sensing time [12]. However, this too is limited by the decoherence time scale. Because of this, in the last decade a
flurry of research has sought to develop techniques to battle environmental effects [15].
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In practice, preparingN00N, or other highly entangled, states is very difficult andwe do not always even have
access to pure states. However, the role of entanglement in the initial state of the probewas questionedwhen
quadratic enhancementwas observed in a nuclearmagnetic resonance sensing experiment [16, 17], where it is
known that there is little or no entanglement present in the quantum state. The observations of these
experiments are explained by the calculations of [18], where it is shown that correlations (thatmay beweaker
than entanglement) can lead to a quadratic enhancement in the sensitivity. Expanding on the same ideas, [19]
(also see the experimental proposal [20])made use of ideas from the computationalmodel called deterministic
quantum computation with one bit of quantum information (DQC1) [21] to show that using nmaximallymixed
qubits, alongwith one pure qubit, is sufficient to saturate the classical limit to sensing.On the other hand,
[22, 23] showed that thefigure ofmerit inmetrology reduces to ameasure of quantumdiscord [24, 25]when
there is lack of knowledge about the generator of the parameter. These studies have shown that using noisy probe
statesmay not be so bad; however, all of these studies assume that the parameter encoding is a noiseless process.

Recently, several researchers have studied the cases where the parameter encoding is a noisy process.While
these studies allow for arbitrary initial states,most often only the optimal performance of the probe is examined
in detail, i.e., the initial state of the probe is taken to be pure.Many of these studies are typically concernedwith
estimating the frequencyω rather than the phasef; the two parameters are related to each other by the encoding
time t, i.e.,f=ω t. Thus, the total running time of the encoding process itself is regarded as a resource [13].
These studies have shown that a super-extensive growth of the frequency sensitivitymay still be attained under
time-inhomogeneous, phase-covariant noise [26–30], and evenmore genericOhmic dissipation [31], noise with
a particular geometry [32, 33], or setups related to quantum error correction [34–36]. See also [37, 38]which
question the role of entanglement in such schemes and give advice on practical implementations. In general,
these studies have shown that, while the 1/n precision scaling in frequency estimationmay not be available in the
presence of noise, it is possible to achieve a scaling that goes as n1

3
4 , n1

5
6 , or n1

7
8 depending on the details of

the problem.
In this paper, we combine the tools described in the last two paragraphs.We consider frequency estimation

in the presence of dephasing noise, with probe states that are noisy themselves.We describe our setup in
section 2.1, preparation of the probe state in section 2.2, and the noisy process the probe undergoes in
section 2.3. In sections 3.1 and 3.2we compute the quantumand classical Fisher information (CFI), respectively,
for our protocol; while in section 3.3 the Fisher information of the uncorrelated probe is given. In section 4.1, we
demonstrate that the precision of our protocol can be approximately related to a simple function of the purity of
the initial probe. Using this we show that, by optimising the protocol, we retain the 1/n3/4 (or ‘Zeno scaling’)
scaling reported in [26, 28, 27] for anymixedness of the initial probe state. This result shows the robustness of
mixed states for the purpose of sensing. Finally, we explore two limiting cases in section 4.2, and several other
properties, such as the permutation symmetry (section 4.3) andmonotonicity (section 4.4) of our protocol. Our
conclusions are presented in section 5.

2. Initial state and the protocol

Webegin by laying out the details of the protocol wewill consider in this work. First, we describe the initial state
of the probe, before discussing the threemain stages of the protocol: preparation, parameter encoding in the
presence of noise and,finally,measurement. The protocol is graphically illustrated infigure 1.

2.1. Initial state of the probe
Each of the n+1 qubitsmaking up the probe can, in general, be in a differentmixed state initially, with the ith
qubit in state ρi. The overall initial state is the product
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Here, l( )i
0 and l( )i

1 are the probabilities of the ith qubit being in state ñ∣0 and ñ∣1 , respectively. This setup could
describe an experiment which sensesmagnetic or gravitational fields using an ensemble of atoms [20, 39]. Such
an ensemble can be initially alignedwith the direction an externalmagnetic field so that the Bloch vector of each
qubit will be pointing in the same direction. In that casewe have Î [ ]p 0, 1i and l l( ) ( )i i

0 1 .
This initial statemay be fully described by a vector = ( )p p pp , , ..., n0 1 . By setting these parameters to

different values, we can obtain any combination of diagonalmixed states ranging from fullymixed (pi=0) to
pure (pi=1). In section 4.1wewill show a simple relationship between the sensitivity of our probe and p. And
in section 4.2, wewill examine two special cases, whichwe dub uniform, where all =p pi for Î [ ]i n0, and
tilted, where p0=1 and pi

=0 for all i>0.
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As the 0th qubit is used tomake control operation on the rest, we call it the special probe qubit (SPQ), while
the latter n qubits are called register probe qubits (RPQs). Throughout this article we represent the state of the
RPQs in thematrix basis of the SPQ:

l r
l r
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Ä
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⎠⎟ ( )

0

0
, 2i

n
i

i
n

i
0
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where for simplicity we have dropped the superscript 0 from theλʼs in the state ρ0.

2.2. Preparation of the probe
Parameter estimationwith a pure state is optimal when the probe state is taken to be aGHZ state

ñ + ñ(∣ ∣ )0 ... 0 1 ... 11

2
. To attain optimal performance in this limit, we adopt a preparation procedure which

creates aGHZ state in the case = ¼( )p 1, , 1 ;more generally, we end upwith amixedGHZ-diagonal state, i.e., a

mixture of state of the form ñ + - ñ(∣ ∣ )k 1 k1

2
, where ≔ ( )k kk , ..., n1 with kj=0,1.Here the superscript

denotes the jth qubit, and ≔ ( )1 1, ..., 1 .
In fact, we conjecture thatGHZdiagonal states lead to optimal performance for any configuration of noisy

qubits in equation (1). The preparation involves three steps:first we apply a set of controlled-not (CNOT) gates to
all RPQswith the SPQ as the control. The CNOT gate applies the PaulimatrixX to the target if the control qubit
SPQ is in the state ñ∣1 , and the identity operator I if the control qubit is in the state ñ∣0 . Next, aHadamard gate is
applied to the SPQ, followed by another set of CNOT gates on the RPQs, again controlled by the SPQ.

The state after the full preparation procedure has the following form:
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The subscript i inXi denotes that theX operator acts on the ith qubit. Note here that thematrix rX Xi i i is
diagonal in the same basis as ρi, but with the eigenvalues switched:

r
l

l
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

( )

( )X X
0

0
. 4i i i

i

i
1

0

This prepared state is aGHZdiagonal state, which is easily seen by tracking how its eigenvectors are built up.
After the application of the first CNOT gate and theHadamard gate, the eigenvalues and eigenvectors of the probe
state are
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. After the second CNOT gate, the eigenvectors and eigenvalues of the probe state are
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.While the eigenvalue corresponding to ñ-∣ ( )Gk is
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1

1 n1
, whichwewillmake use of a little later.

Figure 1.The protocol. The initial state is a tensor product of n+1 qubits inmixed states {ρi}. The zeroth qubit is used as a control,
andwe call it the special probe qubit (SPQ). The latter n qubits are register probe qubits (RPQ). The protocol has three parts: first the
initial state is prepared in amixedGHZdiagonal state; next, the parameter is encoded in a noisy process; finally, CNOT gates are
applied again, beforemeasuring all qubits.
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The application of two CNOT gatesmay seem redundant. However, it is well known that this probe
outperforms the probewhere the first CNOT is omitted [17, 18].Wewill show in section 4.3 that thefirst CNOT
gate also introduces a nice symmetry in our protocol.

2.3. Parameter encoding in presence of noise
Weare now ready to encode the parameter wewant to estimate onto our prepared state. The parameter is
encoded via free evolution of the probe.However, as we encode the desired parameter, the free evolution also
introduces noise, which can be described by a phenomenological quantummaster equation [40–42].

For simplicity, we restrict ourselves to a pure dephasing process that commutes with the encoding process.
Thismeanswe can treat the parameter encoding and noise as occurring sequentially.Withminormodifications
we can consider amore general phase-covariant form for the noisy process3. However, the case we consider is
sufficient to show that ‘Zeno scaling’ is possible evenwhen the probe state is noisy.

The parameterω stems from a classical field, e.g.magnetic field, and it is applied identically to all qubits
through the unitary operation Ä +U n 1, with w= -[ ]U tZexp i 2 , whereZ is a Paulimatrix and t is the time of
free evolution. The system just after the free evolution is in the following state:
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The unitary operator on the SPQhas already been applied implicitly. Note that the states ρi and rX Xi i i commute
with the unitarymatrixUi. As before, the subscript i inUi denotes the unitary operator action on the state ρi.

While the parameter is encoded, the probe is also subjected to dephasing noise.We can describe such a noisy
process on the probe by the action of a superoperatorΛ that consists of twoKraus operators L0 and L1:
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with the rate of dephasing g a positive real number andα a constant which determines the type of noise we face.
Whenα=1, the noisy process is described by a semigroup [43, 44], i.e., L L = Lt t+◦ t t . On the other hand,
a ¹ 1corresponds to a time-inhomogeneous indivisible process.

Although the encoding and the noisy process are happening simultaneously, we can consider them as
sequential processes, because the actions ofΛ andU commute. Using the fact that r r rL = L =[ ] [ ]X Xi i i i i i i,
when ρi is diagonal, and r rL = L[ ] [ ]† †U U U Ui i i i i i for any ρ, we can compute the state after the noisy encoding:
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2.4. Probemeasurement (all qubits)
Themeasurement procedure consists of two steps: afinal CNOT gate applied to all RPQswith the SPQ as the
control followed by ameasurement of the RPQs in theZ basis and the SPQ in theX basis. In the appendix, we
consider a different readout strategy, where only the SPQ ismeasured and all RPQs are discarded. In the casewe
are treating here, thefinal (pre-measurement) state, after the third CNOT gate, takes the following form
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In an adjoining article [57]wedo consider phase-covariant noise, but restrict the probe qubits to be identical initially.
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Going from equations (9) to (10), we have used several properties of the superoperatorΛ.Wewill describe
the transformation for the ith qubit, andwill therefore drop the subscript i for themoment. Since theKraus
operator L0 in equation (8) is proportional to the identitymatrix, it commutes with everything. The L1 Kraus
operator is proportional to theZPaulimatrix, therefore = -L X XL1 1. From this, one can show that the
superoperatorΛ acting on an arbitrary 2×2matrix η has the following properties: h hL = -[ ]X L XL0 0

hL XL1 1. Setting h r= †U XU , the upper left element of thefirstmatrix of equation (9) becomes
r r rL = -[ ]† † †U XU X L U XU XL L U XU XL0 0 1 1. Next, we have that = †U XU X and the fact that
rU L L, , , and0 1 all commutewith each other, which yields r r rL = - =[ ]†U XU X L U L U0

2 2
1
2 2

r- a[ ]gt Uexp 2 . The derivation of the other off-diagonal terms above follow in the samemanner.
Next, the RPQs aremeasured in theZ basis. Eachmeasurement can result in a qubit being either in state ñ∣0 i

or ñ∣1 i, and the given outcome of themeasurement is fully defined by a vector = ( )k kk , ..., n1 , where ki=0,1
corresponds to state ñ∣0 i or ñ∣1 i, respectively, for the ith RPQ. The overall phase factor coming from the action of
theU2 operator depends only on theHammingweightmk of k. Every timewemeasure state ñ∣0 i, we get a factor
of w-[ ]texp i , while for state ñ∣1 i we get a factor of w[ ]texp i . Let us assume that for a given permutation of kwe
measure = å =m ki

n
ik 1 times state ñ∣1 ; thismeans that wemeasured state ñ∣0 -n mk times. Therefore, we get a

phase factor of w w w´ - - = - -[ ] [ ( ) ] [ ( ) ]m t n m t n m texp i exp i exp i 2k k k for this permutation.
The SPQ state after observing a particular string of RPQoutcomes k is
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Next, wemeasure the SPQ in theX basis to get the probabilities rá  ñ ≔ ∣ ∣( ) ( )qm
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In the next section, wewill use these probabilities to compute theCFI of this distribution. Butfirst, in order
to determine the optimality of thismeasurement scheme, we compute the quantumFisher Information (QFI)
for our protocol.

3. Fisher information

Let us suppose a total time of  is allocated to the estimation procedure. In the protocol above, each experiment
has a running time of t, allowing for the experiment to be repeated  t times. The precision in estimatingω is
bounded by theCramér–Rao bound [45, 46]

wD = ( )
F

F
t

1
where . 13

C
C

C

Here,Δω is the standard deviation of our estimate ofω, FC is the total CFI after time  . This quantity is related
to C, theCFI of a single experiment of length t, which is obtained from themeasurement statistics given in
equation (12).

Finally, the CFI is bounded by theQFI  C Q, where the lattermay be derived by optimising theCFI over
allmeasurement strategies [47]. TheCFI can saturate theQFI [48], provided it is possible to implement a suitable
measurement. Thus theQFI points to the ultimate precision that could be achievedwith our probe state.
However, in practice, the requiredmeasurementsmay be non-trivial [49] and our particular choice of
measurementmay lead to a gap between theCFI andQFI. Thus, wefirst compute theQFI and then show that
ourmeasurement scheme indeed leads to a CFI that saturates the correspondingQFI.

3.1.QuantumFisher information (QFI)
To compute theQFI, wewrite the probe state in equation (3) in its eigenbasis W = å ñá

  ∣ ∣( ) ( ) ( )g G Gk k k kprobe , .
The eigenvectors and eigenvalues of our probe are given in equation (6). If our encoding process were noiseless,
we could compute theQFI using the formula [47, 50]
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-
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á ñ
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( ) ( )

( ) ( )
( ) ( )g g

g g
G G2 , 14Q

r r

r r
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r r

k k

k k

k k

k k
, ,

2
2

where  is the generator encoding the parameter. Unfortunately, our process is not noiseless. However, since the
noisy process and the unitary process commute, we canfirst subject the probe to noise to arrive at
W L WÄ +˜ ≔ [ ]n

probe
1

probe , before using equation (14), providedwe know the eigen-decomposition of W̃probe.

Let us consider the action of the noise on the operator G = ñá + ñá+ + + - - -∣ ∣ ∣ ∣( ) ( ) ( ) ( ) ( ) ( )g G G g G Gk k k k k k k for
some choice of k.We expand the states in the computational basis to get

L G = + L ñá + - ñá -

+ - L ñá - + - ñá

Ä + + - Ä +

+ - Ä +

[ ] ( ) [∣ ∣ ∣ ∣]

( ) [∣ ∣ ∣ ∣] ( )

( ) ( )

( ) ( )

g g

g g

k k 1 k 1 k

k 1 k 1 k k

0, 0, 1, 1,

0, 1, 1, 0, 15

n n

n

k k k

k k

1 1

1

= ñá + ñá+ + + - - -˜ ∣ ∣ ˜ ∣ ∣ ( )( ) ( ) ( ) ( ) ( ) ( )g G G g G G , 16
k k k k k k

wherewe have used L ñá - = ñá -Ä + - + a[∣ ∣ [∣ ∣( )k 1 k k 1 k0, 1, e 0, 1,n n gt1 1 . In other words, the noisemaps the
GHZdiagonal state into anotherGHZdiagonal statewith new eigenvalues

=
+


-

+ -
- +

+ -
a˜ ( )( )

( ) ( )
( )

( ) ( )

g
g g g g

2
e

2
. 17n gt

k
k k k k1

To compute theQFI, wewrite down the generator  = å Ä( ) (¯)Z It
i

i i
2

. Its action on an eigenvector yields

 ñ = + - ñ  - - + - ñ

=
+ -

ñ
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where again = å =m ki
n

ik 1 . From this we have that  d dá ñ =¢
¢ + -

¢ ¢+∣ ∣( ) ( )G G tr r n m
r rk k kk

1 2

2 , 1
k . Immediately, we

find theQFI to be

 å å=
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+
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Wewill shortly show that our readout scheme yields the same value for theCFI, i.e., it is experimentally possible
to achieve the theoreticalmaximumprecision.

3.2. Classical Fisher information (CFI)
TheCFI to estimate parameter x is given by the following formula:

 å=
¶( )

( )
q

q
, 21C

i

x i

i

2

where the qi aremeasurement outcomes, in our case taken from equation (12).
Our readout scheme begins withmeasuringmkRPQs in state ñ∣1 (and -n mk in state ñ∣0 ), followed by a

measurement of the SPQ in the ñ∣ basis. Since different qubits have different purity, i.e., different values of pi
,

the CFI depends on the specific string of outcomes:  = å fC k k with

=
¶

+
¶

= ¶
+w w

w

+

+

-

-


+ -

+ -

( ) ( )
( ) ( )

( )

( )

( )

( )
( )
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q

q
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q
q

q q

q q
. 22k
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k

k

k
k

k k

k k

2 2
2

Here, the derivatives of the probabilities tomeasure +ñ∣ and -ñ∣ only differ by a sign; therefore, the squared
derivatives are equal for both cases.Wefirst rearrange equation (12) as
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and substitute into equation (22) to get
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where  w= + -- + a [( ) ]( ) n m te cos 1 2n gt
k

2 1 2 .
Wewant to look at the specific case where the Fisher information ismaximised for any k. If one assumes that

n is an even number (if it is odd, one of the RPQs can be discarded at the beginning of the protocol) and w = pt
2
,

then + -( )n m1 2 k is an odd number and the argument of the sin and cos functions has the form p+p l
2

,

where l is an integer. The sin function then gives one, and the cos function is equal to zero. This simplifies
equation (24) to

= + -- + a ( ) ( )( )f t n me 1 2 , 25n gt
k k k

2 2 1 2

where k is defined in equation (20). To calculate the total CFI, one has to sumover all possible strings of
measurement outcomes, characterised by k:

 
 å å= = + -- + a ( ) ( )( )f t n me 1 2 . 26C

n gt

k
k

k
k k

2 2 1 2

Here,  C is the time-optimised CFI, with optimal time for the correlated probes denoted by té. The last equation
is identical to equation (19). Thismeans that the readout procedure introduced here achieves optimal sensitivity
for estimating frequency.We no longer need to differentiate betweenQFI andCFI, but for concreteness we only
use the abbreviation CFI fromhere on.

In the appendix, we derive theCFI for the case when only the SPQ ismeasured and all RPQs are discarded.
Even then, wefind that theCFI scales verymuch like in equation (26).

3.3. Uncorrelated probe
Before discussing ourmain results, let us compute the Fisher information for the case where the probe does not
exploit correlations. Eventually, wewant to compare the performance of the probe in theGHZdiagonal state to
that of the uncorrelated state, i.e., the product state rW = Ä =i

n
i0 0 .

For the ith qubit, theQFI can be easily computed to be  = - ( ) peQ
i gt

i
2 2 [18], which can be achievedwith anX

basismeasurement on each qubit, hence  =( ) ( )
Q
i

C
i . In general, the run time for the uncorrelated probewill be

different from that of the correlated probe; we denote the optimal run time for the former by t .
As the Fisher information is additive, the total Fisher information for all qubits inΩ0 is

 å= = + á ñ- ( ) ( )( ) n pe 1 , 27C
i

C
i gt2 2

where á ñ å+ =≔ pp
n i

n
i

2 1

1 0
2 is the normalised length squared. This quantity is closely related to the average purity

of all qubits, which has the form å = + á ñ
+ =

+ ( )p1
n i

n p1

1 0
1

2

1

2
2i

2

.

4. Features of the protocol

4.1. ‘Zeno’ scaling
Wehave given anexpression for theCFI in the last section that is rather complicated anddoesnot shedmuch light on
howwell our probeperformsThe complexity entirely lies in thefinal termof equation (26). It turnsout that this term
canbe approximated, in termsof the vector p for any initial state, by å + - » á ñ +( ) ( )n m np1 2 1k k k

2 2 2. This
approximationholds remarkablywell, as numerically evidenced infigure 2.There,weplot å + -( )n m1 2k k k

2

against á ñ +( )np 12 2 for randomly chosen  n1 11 (numberofRPQs) anduniformly sampled Î [ ]p 0, 1i . For
104 realisations, thePearson correlation coefficient is 99.3%.Wehaveperformed∼106 calculations for a larger range
of theparameter Î [ ]n 1, 15 , and the results hold. For claritywe show the reduced range results. This shows that for
any vectorp theCFI scales as (n+1)2:

   » á ñ +- + a ( ) ( )( )t npe 1 . 28C
n gt2 2 1 2 2

To compare the sensitivity of a correlated probe to that of an uncorrelated probe, wefix the total sensing time
to  , as well as the number of probes n, and compute the total Fisher information acquired. Each run of sensing
with a correlated probe takes time té, while sensingwith an uncorrelated probe takes time t . The total number of
runs is given by  t and  t in the two cases, respectively, and the corresponding total CFIs are
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We then look at the case where the amount of noise in the system is the same after the experiment is concluded,
i.e., we set


- = - +a a

[ ] [ ( ) ]gt n gtexp 2 exp 2 1 . Solving this for té, we get  = +at t n 1 . Another way to

motivate this choice is by finding the optimal values for té and t independently, andwefind the same
relationship between the two times.

By substituting this into the total Fisher information and taking the ratio of the twoCFIs in the last equation,
we get the quantumadvantage



~
+
+a

( ) ( )
F

F

n

n

1

1
. 30C

C

It is clear that the correlations in the probe give us an enhancement in the Fisher information that scales with the
number of qubits. For the simplest time inhomogeneous noisemodel, whereα=2, one gets a CFI that scales as

+( )n 1
3
2 .While for the semigroup case, withα=1, no advantage is drawn from the correlated probe. In other

words, we have shown that the Fisher information scales exactly as for the case where a pure probe state is used
[26–28]. This finding generalises the result of [18], wheremixed state probeswith pi =p for noiseless encoding
were considered.

The sensing times t and té do not depend on themixedness of the probe. The only difference is that we have

an overhead of á ñp2 , which can be overcome by repeating the experiment
á ñp

1
2 times. The correlations in the state

of the probe lead to this enhancement for any á ñ ¹p 02 . This includes highlymixed states that live in the
separable ball [51] and thus cannot be entangled. Therefore, ourwork further highlights the importance of
correlations beyond quantum entanglement in quantummetrology. This is one of ourmain result.

Asmentioned before, in the appendixwe consider the casewhere only the SPQ ismeasured and all RPQs are
discarded. Even in this case, the ‘Zeno’ scaling survives at the expense of an adaptivemeasurement protocol.We
now examine two special cases of this general results.

4.2. Uniform ( ) and tilted ( )$ probes
Wenow examine two special cases of our protocol. In thefirst case, we set all pi

=p and call this the uniform
protocol. For the second case, we set =p 10 and = " ¹p i0 0i and call it the tilted protocol. Here all RPQs
aremaximallymixed and the SPQ is pure. These two protocols were previously studied for noiseless encoding in
[18, 19], respectively.

Figure 2.Approximating theCFI. The relationship between å + -( )n m1 2k k k
2 and á ñ +( )np 12 2. The plot shows linear

behaviour with slope 1. The correlation function is 99.3%.Calculations aremade for 104 randomly chosen vectors p, with RPQ
number Î [ ]n 1, 11 chosen randomly. The elements of the vector, Î [ ]p 0, 1i , are chosen from the uniformprobability distribution.
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The initial probe state in the uniformprotocol has a high degree of degeneracy, and its eigenvalues have the

form + + - -( ) ( )p n m p m1
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. This simplifies the sumover the possible values of k in equation (26), and it can be

rewritten as:
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The inequality was numerically shown to hold in [18], with the difference between the left and the right hand
sides to be in relatively small. This is in perfect correspondence with our result in equation (28), since á ñ = pp2 2

in this case.

In contrast, the state of the probe in the tilted protocol has eigenvalues{ }, 01

2n , which simplifies the term k

in equation (26) to
1

2n
. There are exactly ⎜ ⎟⎛

⎝
⎞
⎠

n

m
vectors k that havem 1s and n−m0s; therefore, the CFI can be

rewritten as:
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This is in exact agreementwith equation (28), for which á ñ =
+

p
n

2 1

1
here.

Now, consider theCFI for the tilted protocol for the caseα=2.We can simplify equation (29) to get
 = - + [ ]F t gt nexp 2 1C$

2 . The scaling of +n 1 may give the impression that our quantum

correlated probe performsworse than the SQL.However, if wewere to use an uncorrelated probe consisting of

one pure qubit and n fullymixed qubits, after a time  the CFIwould be = -
 [ ]F t gtexp 2C$

2 . Thus, the

correlations are still giving us an enhancement that growswith the number of qubits in the probe.
The constant terms of theCFIs for the uniform and the tilted protocols are identical. However, in terms of

the probe size the former scales as +( )p n 12 2, and the latter scales as n+1. Thus, when p +n1 1 the
uniformprotocol fares better and  +p n1 1 the tilted protocol fares better. This relation gives us away
to understand the trade-offs between the two extreme choices for the initial state of the probe. That is, when is it
favourable for the coherence to be concentrated in a single qubit, andwhen is it favourable for it to be spread
amongst all qubits.

Finally, in [19], where the tilted protocol was originally introduced, the state preparation did not include the
first CNOT gate (seefigure 1). This is of course because the SPQ is pure and initially in state ñ∣0 . Thefirst CNOT
gatewould simply do nothing to the probe.However, it turns out that with the inclusion of this gate we need not
carewhich qubit serves as the SPQ.

4.3. Symmetry of p
Wenow show that CFI does not change under permutations of qubits or equivalently the elements of vector p.
Thismeans our protocol does not depend onwhich qubit is used as SPQ. First, note that the term k in
equation (26) is symmetric under permutations of the RPQs and thus changing their order does not change the
value of CFI. Now,we consider swapping one RPQwith the SPQ.Without loss of generality, we consider a pair
of vectors ¼≔ ( )p p pp , , , n0 1 and ¼≔ ( )p p pq , , , n1 0 , where the first two entries have been switched.

Wewrite theCFI given in equation (26), omitting the constant terms, for these two vectors:
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Let us look at one term in the sum. The vector describing this term (excluding first RPQ) is ¢ = ¼( )k kk , , n2 ,
withHammingweight å=¢ =m k

i

n
ik 2
.Wewill show that for each term in the sum in C p, , there is an equivalent

term in C q, . For a given vector ¢k and C p, there are two options: =k 01 or =k 11 .
When k1=0 the corresponding term in C q, will be termwhere k0=0. For bothp and q theHamming

weight of the vector k=(k1, k2,K, kn)will be the same and equal tomk′, hence themultiplying factor
+ - ¢( )n m1 2 k

2 will be the same.
When k1=1 then theHammingweight of vector pwill be equal to +¢m 1k and themultiplying

factorwill be + - ¢ + = - -( ( )) ( )n m n m1 2 1 1 2k k
2 2. This termmatches the term in C q, with

=k 10 and vector ¢¢ = - ¼ -( )k kk 1 , , 1 n2 . Thismakes the numerator for equation (34)
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. The signwill be cancelled by squaring this term and the denominator
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will be the same as in C p, . TheHammingweight of the vector q in this case will be - ¢n mk , because the

Hammingweight is calculated for vector k describing the product that goes with l( )
0
0 eigenvalue of SPQ. The

multiplying factor in this case will be the same: + - - = - - -¢ ¢( ( )) ( ) ( )n n m n m1 2 1 1 2k k
2 2 2.

We can repeat this argument for all terms in the sum.Also, sinceCFI is invariant under permutations of
RPQs, the proof holds for switching SPQwith any of the RPQs.

The symmetry of our protocol does not simply stem from the fact that the prepared state of the probe is
GHZ-diagonal. To illustrate this, consider the case where thefirst CNOT gate in our protocol is omitted, while
keeping the remainder of the procedure identical (as infigure 1). Using the arguments in section 2.2, it is easy to
show that the prepared state in this case is alsoGHZ-diagonal. For concreteness we nowworkwith three qubits
andwrite down theCFI. Ignoring the constant terms that contain variables like t,g, etc, wefind that CFI is
proportional to the termwith the sum, i.e., l l +( )( ) ( )p 8 10 0

1
0
2 . This quantity is clearly not symmetric under

exchange of qubits. Therefore, the first CNOT gate, while seemingly useless, is responsible for the symmetry of
our protocol.Moreover, asmentioned above, the first CNOT gate also leads to better sensitivity. To see this,
consider the fact that for a small value of p0 this CFIwill be very small if the first CNOT gate is omitted. In
contrast, theCFI for our protocol will be proportional to + +( )p p p3 0

2
1
2

2
2 .

4.4.Monotonicity
Our approximation for theCFI in equation (28) is clearlymonotonic in each of the elements of vector p.Wewill
now argue, againwith numerical support, that the exact CFI in equation (26) is indeedmonotonic in this way.
Since any permutation of the elements in vector p gives the same value of CFI, we can focus on changing just one
parameter by adding a vector e = ¼ ¼( )0, 0, , , , 0j j , where  > 0j and  +p 1j j .Wefirst show that CFI

grows as any one parameter of vector p becomes larger:  e+C Cp p, ,j
.

We have tested the last inequality numerically for 104 realisations; the results are presented in the figure 3(a).
The plot shows that the difference inCFIs corresponding to randomly chosen e+p j and p, subject to
constrains from the last paragraph, is non-negative and growswith the size òj. The implications of the numerics
is that theCFI ismonotonic in each elements ofp. Note that in this demonstrationwe are only interested
whether theCFI grows and that the said difference is non-negative. Themonotonicity stems from the
monotonic nature of the sum in equation (26), and does not depend on t and g. For concreteness, we have taken

 =t 1and =g 0 for the purpose of the plot. These constants only contribute to a positive factor in theCFI and
will be the same for any vector p. Different values of t and gwill not change the sign of the difference, just its
magnitude.

Building on this result, we can see that if  > > 0j k than  e e+ +C Cp p, ,j k
, since we can change the order

of the qubits and   ¢e e+ +C Cp p, ,j j for   > ¢ =j j k.Moreover, we can order theCFI for different vectors:

     e e e e+ + + +C C C Cp p p p, , , ,j k j k
for  > > 0j k . Thefigure 3(b) shows the difference betweenCFIs for

arbitrary vector   e = ¼( ), , , n0 1 , where òj>0 for all j, as a function of normalised length squared of this

Figure 3.Monotonicity of CFI inp. (a)The difference in CFIs  e+C p, j and Cp is plotted against òj. Here e = ¼( )0, , , ..., 0j j with
constraints òj> 0, and  +p 1j j . The elements ofp are sampled from the uniformprobability distribution in the range [ ]0, 1 and

 j n0 is chosen randomly. (b)The difference inCFIs  e+C p, and  e
e e

á ñ =
+
·

n
against

1
C p,

2 . Like p, the elements of ε are

sampled from the uniformprobability distribution in the range [0,1] subject to constraint that all elements ofp+ε are less than 1.
Both calculations aremade for 104 realisations for randomly chosen Î =[ ]n t1, 11 , 1 and =g 0.We did not observe a single event
where the difference in the twoCFIswas negative.We have performed∼106 calculations for a larger range of the parameter
Î [ ]n 1, 15 , and the results hold.
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vector e
e e

á ñ =
+
·

n 1
2 . The difference growswith the eá ñ2 . The twofigures present strong numerical evidence for

monotnicity of CFIwith respect top.
Majorisation. Finally, we present a negative result. Numerically we testedwhethermajorisation [52] has an

affect on the Fisher information. Specifically, we considered how themajorisation of the two normalised vectors
p̂ and q̂ first. Here p̂ and q̂ describe two sets of n+1 qubits.We found that despite ofmajorisation the
corresponding Fisher information do not have any hierarchy.We also considered themajorisation conditions
for the spectrumof the initial state of the probe. In this case aswell, we found no hierarchy for the corresponding
Fisher information.

5. Conclusions

Wehave studied frequency estimation in the presence of noise with initially noisy probes. Our protocol begins
by considering n+1 differentlymixed qubits, all diagonal in theZ basis. Thismodel closelymimics an
ensemble of atomswhose spins are alignedwith amagnetic field.We then use one qubit to apply series of CNOT
gates on the rest, resulting aGHZ-diagonal state for the probe ontowhich the desired parameter is encoded by
allowing it to evolve freely. The free evolution is accompanied by unwanted time inhomogeneous dephasing
noise. Ameasurement procedure for optimal readout, to be employed after the encoding, is specified.

For this protocol we have derived a simple formula that accurately approximates both the quantumandCFI
in terms of the number of qubits in the probe and the average purity of the initial qubits.We have additionally
shown that, despite the singling out of the SPQ, our protocol turns out to be symmetric under permutations of
the qubits. This has practical implications, in that we are free to take any qubit as the control qubit. Finally, we
have shown that the sensitivity of the probe ismonotonic in the purity of the qubits, which clearly identifies a
simple resource for a complexmany-body probe.

Ourmost important finding is that the ‘Zeno’ scaling is attainable independently of themixedness of the
initial probe state (except for in the trivial case when all RPQs aremaximallymixed).While, theGHZ-diagonal
state is entangled in general, it does become separable when the initial probe is (highly)mixed. In this case the
state is confined to the separable ball [51], but even here the correlated probe yields an enhancement over
uncorrelated probes, provided the encoding noise is not described by a semigroup. The brings into question
where lies the boundary between the quantumworld and the classical world.

Similar enhancements, due to correlations, even for highlymixed states were reported in [18] for phase
estimation, and in [53] for the charging power of quantumbatteries. In all of these instances it remains unclear
whether other quantum correlations, like quantumdiscord [24] or even quantum coherence [54], are important
in attaining the quantum enhanced scaling. In some sense in each of these studies, the enhancement seems to
stem from collective coherence. This ismost strongly evidenced by the fact that our protocol, like previous
works, is highly sensitive to loss of even a single qubit. A detailed connection between quantum coherence and
quantummetrology is explored in [55].

Practically speaking, our results imply that quantummetrologymay be robust against noise, provided that
no qubits are lost during the sensing period.While we have conjectured that, for a given set of qubits, the
protocol we have considered here leads to the best sensitivity for the probe, we are not able to prove this
statement.Moreover, while the optimal pure states lead to the same sensitivity, this degeneracymay break for
mixed states. Thus, the optimal preparation for the probe remains an open problem.Our analysis could be
extended to awider set of optimal states [56] beyondGHZ-diagonal ones. Furthermore, in the article we have
restricted ourselves to simple dephasing noise, it should be possible to generalise ourfindings for time-
inhomogeneous, phase-covariant noise. It remains to be seenwhether the n1

5
6 scaling in [32] or n1

7
8 scaling in

[31] are also achievable with a noisy probe state.
Finally, in a relatedmanuscript [57], an alternative figure ofmerit is considered, with energy, rather than

total time, as the ‘scarce resource’. There, the uniformprotocol is applied to an ensemble of thermal qubits in the
presence of general phase-covariant noise, with the result that the notion of optimality changes considerably
when one is concernedwith conserving energy. Indeed, in this latter scenario, onefinds that, even for time
inhomogeneous noise, it is preferable to use small sized probes—contrary to the case of limited total time, for
which, as shown in this work, one can obtain an indefinite super-extensive (Zeno) scaling in the number of
qubits.
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Appendix.Measurement of SPQonly

Wenow show that it is possible to obtain near optimal CFI by onlymeasuring the SPQ,while discarding all
RPQs. This protocol is graphically illustrated infigure A1(a). Themain difference here is that, in place of the final
CNOT gate, we do controlled rotation by an angle θ on the RPQs so that d w q- »q ≔ t 0. After the controlled
operation, we discard the RPQs andmeasure the SPQ in theX basis. The angle θ is our guess for the frequencyω;
thus, the sensitivity depends on our knowledge ofω, whichmay be updated from run to run. The same strategy is
employed in [19].

The state just after discarding RPQs and before themeasurement of the SPQhas the following form:

* r l l
=

-d- - +
= =

q⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( ) x x1

2

1 e e

h.c. 1
, A1

n gt
i

n

i

n

SPQ

i 1
0 1 1 1

where d d= -q q( ) ( )x pcos i sini . Nextwemeasure the SPQ in theX basis:
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Since δθ is small, we can expand the cos and sin functions and keep terms of the order of dq t2 2 or smaller to get
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Next, we calculate theCFI according to equation (21):
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As before, wewant to express the CFI in terms of an average of the elements of the vector p.We approximate

the sumover two parameters aså å » á ñ= <
-( )p p pi

n
i j i j

n n
1

1

2
2, where á ñ å =≔p

p

n
i
n

i1 .With this, we can

approximate theCFI as

Figure A1. Single qubit readout. (a)The protocol withmeasurement on SPQonly. Before discarding RPQs, a controlled operation is
made to rotate themby an angle θ so that δθ=f−θ≈0. (b)Weapproximate this CFI in terms averages ofp. The plot shows the
CFI ( ( )

C
1 ) in equation (A4) against its approximation in  ( )

C,av
1 in equation (A5). The elements ofp are sampled from the uniform

probability distribution in range [0,1].We have computed the two functions for 105 randomvectors p of randomRPQnumber
Î [ ]n 1, 11 . The plot is found to be linearwith nearly unit slope, and the Pearson correlation coefficient is 99.99%.
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Figure A1(b) shows that this approximation holds verywell, with 105 random realisations ofp, whose elements
are chosen from the uniformdistribution in the range [0,1], and randomnumber of RPQs, Î [ ]n 1, 11 . There is
a linear trend between equations (A4) and (A5)with nearly unit-slope and Pearson correlation coefficient
of 99.99%.

Wewant to further simplify the expression for theCFI. Specifically, wewant the denominator to be equal to

one. For large values of n, this is the casewhen d ~q + á ñ( )
t

n n p

2

1 2 . TheCFI has the following form:
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For large enough n, the ratio goes to 1 andwe have the desired scaling for theCFI.
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