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Abstract
Amajor trendwithin thefield of cavityQED is to boost the interaction strength between the cavity
field and the atomic internal degrees of freedomof the trapped atomby decreasing themode volume
of the cavity. In such systems, it is natural to achieve strong atom-cavity coupling, where the coherent
interaction strength exceeds the cavity linewidth, while the linewidth exceeds the atomic trap
frequency.Whilemost work focuses on coupling of photons to the internal degrees of freedom,
additional rich dynamics can occur by considering the atomicmotional degree of freedom aswell. In
particular, we show that such a system is a natural candidate to explore an interesting regime of
quantumoptomechanics, where the zero-point atomicmotion yields a cavity frequency shift larger
than its linewidth (so-called single-photon optomechanical strong coupling), but simultaneously
where themotional frequency cannot be resolved by the cavity.We show that this regime can result in
a number of remarkable phenomena, such as strong entanglement between the atomicwave function
and the scattering properties of single incident photons, or an anomalousmechanismwhere the
atomicmotion can significantly heat up due to single-photon scattering, even if the atom is trapped
tightly within the Lamb-Dicke limit.

In optomechanicsmuch progress has beenmade improving the control over the interaction between photons
and phonons at the quantum level [1]. Lately there have beenmany important experimental successes, which
include the generation of slow light with optomechanics [2], the entanglement ofmotionwithmicrowave fields
[3], and very recently remote entanglement between twomicromechanical oscillators [4]. Formost of the
quantumphenomena observed thus far or envisioned, sideband resolution, where themechanical frequencyωm

exceeds the cavity linewidthκ, is required. For example, this enables cooling to the quantum ground state [5, 6],
which represents afiducial pure state preparation. In one remarkable theoretical work [7], it has been predicted
that the combination of sideband resolution and single-photon optomechanical strong coupling—where the
zero-pointmotional uncertainty induces a shift in the optical resonance frequency larger than the cavity
linewidth—would enable the generation of non-classical, anti-bunched light.

Here, we study the complementary regime of single-photon optomechanical strong coupling, but with
unresolved sidebands [8, 9].We show that interesting quantum effects both in the light andmotion can be
observed, at least when themechanical system iswell-isolated and can be separately prepared in the ground state.
A natural candidate system consists of a single atom [10–15] or ion [16–21] in cavityQED,whose electronic
transition is strongly coupled to a near-resonant opticalmode. To provide an intuitive picture, strong coupling
within cavityQED [22, 23] implies that a point-like atomproduces a shift in the cavity resonance frequency that
is larger than the cavity linewidth, when the atom is situated at a cavity anti-node. If the atom is displaced by a
quarter wavelength to a node, this shift vanishes. Given the lightmass, it is straightforward for a trapped atom to
have a zero-pointmotion on that scale, thus realizing single-photon optomechanical strong coupling.
Furthermore, realistic trap frequencies for atoms are quite low (MHz), and are naturally exceeded by the cavity
linewidth for small cavities [14, 15, 24, 25]. In this regime of optomechanical strong coupling and unresolved
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sidebands, the interesting physics arises because the resonance frequency of the cavity correlates strongly with
the atomic position, and as the reflection or transmission of a single-photon depends on the resonance
frequency, a strong entanglement between photon andmotion ensues, which is visible in both of these degrees of
freedom.

In this workwe begin by considering a single atom externally trapped inside a cavitymode that is drivenwith
a coherent state.When the cavity frequency is detuned from the atomic resonance, we derive from the full
Jaynes–Cummingsmodel of cavityQEDan effective optomechanicalHamiltonian, which only depends on the
atomicmotion and cavity degrees of freedom.Weproceed by tracing out the cavity degree of freedom and
analytically derive an effective quantummaster equation describing themotional dynamics of the atomonly.
Thismaster equationwould allow for the calculation ofmotional energy eigenvalues and their lifetimes, and
yields interesting insights in the heating processes associatedwith entanglement between light andmotion. This
entanglement is also directly revealed by applying scattering theory to exactly solve for the joint atom-photon
wave function following the scattering of a single incident photon. Using this formalism,we show that the
properties of the scattered photon can become entangledwith the atomicmotion on length scalesmuch smaller
than either the resonant wavelength or the atomic zero-pointmotion. As one consequence, once the photon is
traced out, the atomicmotion is seen to heat up significantly, even if the atom is tightly trappedwithin the Lamb-
Dicke limit.We also show that this entanglement canmanifest itself in the second-order correlation functions of
the outgoingfield given aweak coherent state input, or be used to produce a heralded single-phonon Fock state
of the atomicmotion.

1. CavityQEDwithmotion

In this section, we introduce the Jaynes–Cummings (J–C)model [26] to describe the interaction of a (moving)
two-level atomwith photons in a cavitymodewith amplitude =( ) ( )u x k xcos c , where kc is thewavevector of the
cavitymode as shown infigure 1. In the case where the atomic frequencyω0 is far detuned from the bare cavity
resonanceωc, we eliminate the atomic internal degrees of freedom, to arrive at an effective optomechanical
interaction between the atomicmotion and cavity.We further proceed to derive an effectivemaster equation
describing the atomicmotionwhen the cavity is externally driven by a coherent state with photon number flux
E0

2 and frequencyωL.We note that such a procedure would give rise to, e.g., the usual optical cooling and heating
rates in a conventional optomechanical system [5, 6, 27]. In our case, however, we neither linearize the cavity
field around a steady-state solution nor themotion, owing to the potentially large coupling betweenmotion and
the cavityfield, which leads tomuch richer effects.

The full quantummaster equation associatedwith the J–Cmodel, in an interaction picture rotatingwith the
laser frequencyωL, is given by

r r r r= - + + ºg k˙ [ ] ( ) ( )H L L Li , . 1JC

The J–CHamiltonian includingmotion is given by

w d s d k s= - - + + + +( ) ( )( ) ( )† † † †H b b a a E a a g u x a h.c. . 2m c rJC 0 ee 0 0 ge

It is written in terms of the detuning between laser and atom/cavity d w w= -c L c0 0 , respectively, and the
mechanical frequencyωm of the external trap. Furthermore, a and b denote the photon and phonon annihilation
operators, respectively, while s a b= ñáab ∣ ∣, whereα,β=g, e correspond to combinations of the atomic
ground and excited states.κr denotes the decay rate of the left cavitymirror (reflection), which also serves as the
source of injection of photons. The rightmirror has a decay rate ofκt (transmission). In addition to the external
coupling, the cavity has an intrinsic loss rateκin, such as throughmaterial absorption or scattering losses. The

Figure 1.An atom is trapped externally by a potential (blue)with equilibriumposition x0 inside a cavitywith intensitymode profile
u2(x).Ψ0(x) is the initial wave function of the atomicmotion. Incident photons with frequencyωL arrive from the left. The leftmirror
has a decay rate ofκr and the rightmirror has a decay rate ofκt.
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total cavity linewidth is thusκ=κr+κt+κin. The last termofHJC describes the coupling between cavity and
atomwith the coupling strength g0u(x)depending on the atomic position = +( )†x x b bzp , which can bewritten

in terms of the zero-pointmotion  w= ( )x m2 mzp (m being the atomicmass), andwhere g0 is themagnitude
of the vacuumRabi splitting at the anti-node of the cavity. The Lindblad Lc operator describing cavity dissipation
is given by:

r
k

r r r= - + -k ( ) ( )† † †L a a a a a a
2

2 3

and the general Lindblad operator gL 3D for spontaneous emission into three-dimensions of the atom at a rate γ
reads [28]:

òr
g

s r rs s r s= - + - W 
g  -  ( )( ) ( )· ·L N u

2
2 d e e . 4u f

k u r k u r3D
ee ee ge

i i
eg

c c

This process, additionally to the emission of a photon, causes a recoil of = »wk k
c c

0 opposite to the direction
u of the emitted photon, which is integrated over solid angle W( )d u andweighted by the distribution function

( )N uf corresponding to the dipole emission pattern.However, to provide a simplermodel that qualitatively
captures the correct behavior, wewill just consider one single direction of spontaneous emission along the
positive cavity axis (x).With a single spontaneous emission directionwe canwrite

r
g

s r rs s r s= - + -g
-( ) ( )L

2
2 e e . 5k x k x

ee ee ge
i i

eg
c c

Nowwe consider the dispersive regime w w k gD = -  g , ,c0 0 , where the atom-cavity detuning is large.
Thus the single-excitation eigenstates of the J–CHamiltonian are eithermostly atomic ( y ñ » ñ+∣ ∣e, 0 ) or
photonic ( y ñ » ñ-∣ ∣g , 1 ), where 0, 1 denote the intra-cavity photon Fock state number. These eigenstates have

corresponding eigenenergies w» ++
D

( )E u x
g

1 0
20

2

and w» --
D

( )E u xc
g

1
20

2

, respectively. Here, we focus on the
case when the system is driven near resonantly with the photonic eigenstate. In that limit, the atom can
approximately be viewed as a classical dielectric that provides a position-dependent cavity shift with an effective

optomechanical coupling strengthµ
D

g0
2

.Wewill derive this effective optomechanicalmodel now inmore detail.

1.1. Effective optomechanicalmodel
For large laser-atomdetunings δ0?g0, the atomic ground state population is approximately one, which allows
for an effective elimination of the atomic excited state [28, 29] using theNakajima–Zwanzig projection operator
formalism [27, 30, 31] (details in appendix A.1). The resulting effectivemaster equation is given by

r r r= - +˙ [ ] ( )H Li , , 6om om

with an effective optomechanical Hamiltonian

w k= - D + +( ) ( ) ( )† † †H b b x a a E a a . 7m c rom 0

The position-dependent cavity-laser detuning is given by

d
d

d
D = -

+ g
( ) ( ) ( )x

g
u x , 8c c

0
2

0

0
2

4

2
2

which now accounts for the cavity shift arising fromoff-resonant coupling to the atomic transition. The system
losses are given by the effective Liouvillian

r
k

r r r

g

d
r r r

=- + -

-
+

+ -
g

-

( )

( ( ) ( ) ( ) ( ) ) ( )

† † †

† † †

L a a a a a a

g
u x a a a au x au x u x a

2
2

2
2 e e , 9k x k x

om

0
2

0
2

4

2 2 i ic c
2

which describes the broadening of the cavity linewidth due to atomic spontaneous emission

k k g
d

= +
+ g

( ) ( ) ( )x
g

u x . 100
2

0
2

4

2
2

Aside from appendix C,wherewe discuss in greater detail the corrections to and limitations of the effective
model, wewill work in regimeswhere the atomic contribution is negligible compared to the (large) bare cavity
linewidth.

In typical treatments of optomechanical systems, the position-dependent shift in equation (8)would only be
treated to linear order in the displacement, with the justification that themaximumpossible displacement is very
small. However, for atoms, the zero-pointmotion can be comparable to the optical wavelength (the scale over
which u(x) varies), a ratio that can be characterized by the Lamb-Dicke parameter h º k xcLD zp. For example,

3
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taking a recoil frequency w p= ´2 6.8 kHzrec corresponding to +Ca40 -ions and a trap frequency of
w p= ´2 0.1 MHzm results in h w w= » 0.26mLD rec . For ηLD∼1, the atomicwavepacket would have
significantweight both in a cavity anti-node and node, with an associated cavity frequency shift of

d

d
= -

+ g
( )g

g
11om

0
2

0

0
2

4

2

and zero, respectively. As our perturbative treatment is valid for δ0g0 (see appendix C), one sees that strong
optomechanical coupling gomκ can be achieved if the strong coupling regime of conventional cavityQED
(g0>κ) is realized. The standard optomechanicalHamiltonian (linearized in displacement) describing
interactions between single-photons and single-phonons is given by = +( )† †H g b b a amoms , where

h= D¢ ~( )g x x gm c 0 zp om LD. Thus, in order to achieve strong optomechanical coupling on the single-photon,
single-phonon level (gmκ), additionally a sufficiently large Lamb-Dicke parameter ηLD is required. Given the
above considerations, we next derive an effectivemaster equation for the atomicmotion alone that is valid for
strong and nonlinear optomechanical coupling, which can be viewed as a generalization of the typical optically-
induced cooling and heating rates obtained for linearized optomechanical coupling [5, 6, 27]. Ourmaster
equation also complements previouswork investigating intra-cavity optical forces on atoms in the semi-classical
limit [28, 32–35].

1.2. Effectivemaster equation formotion
Startingwith equation (6)we can use theNakajima–Zwanzig technique to effectively eliminate the cavity degrees
of freedom (appendix A.2). Here, for simplicity we assume that spontaneous emission can be ignored. The
resultingmaster equation for atomicmotion in conventional Lindblad-form is then given by:

r r r r r= - - + +˙ [ ] ( ) ( )† † †H J J J J J Ji ,
1

2
. 12m

TheHermitianHamiltonian and jump operators are given respectively by

w
k

= +
D

D + k

( )

( )
( )†H b b

E x

x
13m m

r c

c

0
2

2
4

2

and

kk
=

D + k( )
( )J

E

x

i

i
. 14r

c

0

2

Wewill provide an intuitive picture of thismaster equation in section 2.Nowwe focus on the effective
mechanical potential which arises in theHamiltonian.We can always re-write amaster equation in terms of an
effective non-HermitianHamiltonianHcwhich then contains a complex potential:

r r r r= - - +˙ ( ) ( )† †H H J Ji , 15c c

w= + ( ) ( )†H b b V x 16c m

with

k
=

D

D +
-

k
( ) ( )

( )
( )†V x

E x

x
J J

i

2
. 17r c

c

0
2

2
4

2

The real and imaginary parts of the complex potentialV(x) are illustrated infigure 2. As the resonance
frequency of the cavity depends on the position of the atom, there can be atomic positions forwhich the cavity is
resonant with the coherent drive. These positions xr are called resonant positions and are defined byD =( )x 0c r .
Around these positions, the real part of the potential changes sign and the imaginary part has sinks indicating
increased heating around those positions.

It is also interesting to compare the ‘coherent’ potential, Re[V(x)], with the classical potentialU(x) as derived
from the average force r= á ñ =( ) ( )F x p t pd d Tr on the atom, and defined via dU/dx=−F(x). The result is
given by

k
k k

= -
D⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( )U x E

x
2 arctan

2
, 18r c

0
2

which agrees with a previous, completely classical analysis of a dielectric object trapped in a cavity [36]. The
potential is illustrated infigure 2. For large kgom ,U(x) is seen to approach a squarewell, with thewalls of the
well aligningwith the resonant positions∼xrwhere the large intra-cavity field results in a large classical restoring
force. By comparingV(x) andU(x), it is clear that a significant contribution of the average forcemust arise from
the stochastic process associatedwith the quantum jumps J. As one consequence, although it would be highly

4
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interesting to realize a square well for atoms (leading, e.g., to a highly anharmonic phonon spectrum), the direct
quantization ofU(x) in this case is notmeaningful. In fact, the separation of themaster equation in terms of a
complex potentialV(x) and jumpoperators J is not unique. In the following section, we show that one can re-
write themaster equation purely in terms of jumpoperators. It is an interesting open questionwhether there
exists a ‘proper’ separation of themaster equation, where the quantization of the complex potentialV(x) leads to
motional eigenstates, whose associated jump rates are directly connected to the physical lifetimes of those
eigenstates.

2. Single-photon scattering theory: optomechanical strong couplingwith unresolved
sidebands

A complementary physical picture of the optomechanical coupling between an atomand cavity can be gained by
considering not a coherent external drive, but single incident photons. From equation (6), the effective non-
HermitianHamiltonian associatedwith an undriven system is

w
k

= - D +⎜ ⎟⎛
⎝

⎞
⎠( ) ( )† †H b b x a ai

2
, 19m ceff

where w wD = -( ) ( )x xc L c is the position-dependent detuning between photon frequencyωL and cavity
frequency w w= -( ) ( )x g u xc c om

2 . To be specific, wewill consider single-photons incident through the left
mirror (see figure 1), which has a decay rate back into the reflection channel ofκr. The rightmirror is coupled to
the controlled transmission channel withκt. The total cavity linewidth is thusκ=κr+κt. For simplicity we
ignore here an intrinsic loss rate, although it is straightforward to include later on.

A connection can bemade between the eigenstates ofHeff and the properties of single-photon scattering via
the S-matrix formalism. Formally, the S-matrix describes a coherent evolutionmapping an input state
( = -¥t ) to an output state ( = +¥t ):

w wY ñ = Y ñ∣ ( ) ∣ ( ) ( )S . 20L Lout in

Here, we assume a singlemonochromatic photonwith frequencyωL incident on the left cavitymirror

w wY ñ = ñ∣ ( ) ∣( ) ( ), 0 , 21L Lin left

whereas the optomechanical system initially is in its ground state represented by the second entry in the ket state.
Generically the output state will consist of a superposition of n phonons in themechanical state, whichwere
excited by the incoming photon, and an outgoing photon of energyωL−nωm in either the reflection port (r) or
transmission port (t):

å åw w w w w w wY ñ = - ñ + - ñ∣ ( ) ( )∣( ) ( )∣( ) ( )S n n S n n, , . 22L
n

r n L L m r
n

t n L L m tout , ,

Due to a connection between the scatteringmatrix and theHeisenberg input–output operators [37] one can
express the S-matrix elements in terms of the eigenvalues lb and eigenstates bñ∣ of the effectiveHamiltonianHeff

[38].We provide a detailed derivation of the S-matrix elements in appendix B. In reflection, the output consists
of a superposition between a non-interacting propagating photon (δn,0) and photon emission from the excited

Figure 2.Quantum and classicalmechanical potential arising from a coherently driven cavitymode real part [ ( )]V xRe (blue) and
imaginary part [ ( )]V xIm (red) of the quantumpotential equation (17) as a function of position. Also plotted is the classical potential
U(x) (dahsed, green) derived by integrating the expectation value of the force acting on the atom.One can observe that the real part of
the quantumpotential is significantly different from the classical expectation value. Here, we choose a laser frequencyωL such that the
resonant position kc xr=π/4, and Jaynes–Cummings parameters of g0/κ∼20 and d = - g20 0 (yielding an effective optomechanical
coupling strength of gom∼10κ). The potentials are plotted in units of  k k( )Er 0

2.
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optomechanical system:

åw d k b
l

b= + á ñ á ñ
b b

( ) ∣ ∣ ( )S ni 1 ,
1

1 , 0 . 23r n L n r c c, ,0

Here, bá ñ∣n1 ,c is the projection of the eigenstates bñ∣ onto the basis states á ∣n1 ,c with 1c referring to a single-
photon inside the cavitymode. Similarly, thematrix elements for photon transmission are given by

åw k k b
l

b= á ñ á ñ
b b

( ) ∣ ∣ ( )S ni 1 ,
1

1 , 0 . 24t n L t r c c,

Thematrix element for photon transmission lacks the contribution from the non-interacting propagating
photon as the input channel on the transmitting side of the cavity is in the vacuum state. To proceed further, we
assume in the following that a detector cannot effectively resolve the frequency of the outgoing photon. Then, we
can effectively write the outgoing state as

w w wY ñ = Y ñ + Y ñ∣ ( ) ( ) ( )∣ ( ) ( )∣ ( )S x x S x x, 1 , 1 , 25L r L r t L tout 0 0

where ñ∣1r t indicates an outgoing reflected/transmitted photon, respectively, andΨ0(x) is the initialmotional
wave function of the atom. The entanglement between the photon frequency and themotional state has been
suppressed, as we have assumed that any projectivemeasurement of a photon in either port is not frequency-
resolving. Furthermore, we now assume that we operate in the sideband-unresolved limitκ?ωm. The
HamiltonianHeff is approximately diagonal in the position basis, as the optomechanical interaction dominates
over the freeHamilontian w †b bm inHeff (equation (19)). Thus, the eigenvalues ofHeff are approximately
l » -D - k( )x ic 2

and the scatteringmatrix elements can be simplywritten as

w
k

= -
D + k( )

( )
( )S x

x
, 1

i

i
26r L

r

c 2

and

w
k k

= -
D + k( )

( )
( )S x

x
,

i

i
. 27t L

t r

c 2

As the shape of themechanical wave function after the decay of a single-photon into one specific channel is the
product between the corresponding S-matrix element and the initial wave functionΨ0(x), we observe that the
shape of themechanical wave function after one such scattering event is strongly entangledwithwhether the
decaying photon is reflected or transmitted.

Motivated by the observation that the scatteringmatrices St and Sr of equations (26) and (27) are very similar
to the jump operators J (equation (14)), we express themaster equation (12) in away that its jump operators
correspond to the single-photon scatteringmatrices:

r r r r r= - - + +˙ ( ) ( ) ( )† † †H H E S S S Si 28s s r r t t0
2

with theHamiltonian

w= - ( )†H b b E
i

2
. 29s m 0

2

Written in this form the connection between scattering theory and jump formalismbecomes clear. The non-
Hermitian term inHs describes the rate that quantum jumps are applied to themotional wave function, which
corresponds to the rate E0

2 of incident photons on the cavity. The jumpoperators themselves, =J E Sr t r t0 ,
with ( + =† †J J J J Er r t t 0

2), are proportional to the single-photon scatteringmatrix elements in reflection and
transmission, encoding the two processes bywhich the original wave function can change by becoming
entangledwith a scattered photon. Interestingly, the coherent part of the potential, [ ( )]V xRe in equation (17), is
seen to arise from the term r †S Sr r in equation (28), and specifically from the interference between the incident
and scattered components (first and second terms on the right of equation (26), respectively).

3.Quantum effects due to zero-pointmotion

Wehave already seen that the scattering of a single-photon on a cavity containing an atom leads to an entangled
output state (25). This output state describes the coexistence of the possibilities of photon reflection and photon
transmission and how thewave function of the atomgetsmodified for each of those events.We nowproceed to
describe some of the relevant observational consequences.

We can expand the position-dependent cavity detuning around a resonant position xr (defined by
D =( )x 0c r ) until linear order:

6
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dD » + - -( ) ( ) ( ) ( ) ( )x g u x g k x k x xsin 2 . 30c c r c r c rom
2

om

This is a good approximation in the Lamb-Dicke regime ηLD=1. In order to predict observables, linearizing
displacement is also a good approximation for gom?κ, even if ηLD∼1, since then the cavity frequency shifts
out of resonance for displacements d k x 1c . The term ( )k xsin 2 c r indicates that the cavity frequency ismost
sensitive to displacements if p= k x 4c r , halfway between a cavity node and anti-node. Then it can be seen
that if the atomicwave function is centered around p= =k x k x 4c c r0 , the cavity frequency shifts by a
linewidthκ, if the atommoves a distance of k=k R gc om. As the transmission/reflection of a single, near-
resonant photon changes significantly as its frequency varies over a cavity linewidth,R can be viewed as the
spatial resolution over which the single-photon ‘learns’ about the atomic position via its scattering direction.We
will nowdefine the zero-point resolution

kº =( ) ( ) ( )r x R g2 2 , 31mzp zp

with h=g gm om LD being the single-photon, single-phonon coupling strength as defined in section 1.1. The
zero-point resolution tells us howmuch finer the resolution of an incident photon is compared to thewidth of
the atomicwave function. It distinguishes two regimes: unresolved zero-pointmotion rzp=1, which
corresponds to the usual regime ofweak optomechanical interactions, and the resolved zero-pointmotion
regime rzp?1, where the resolution of the systembecomes smaller then the zero-pointmotion, which is until
nowunexplored andwhich gives rise to novel effects as wewill demonstrate in the following.

3.1. Influence of the zero-pointmotion on the reflection spectrum
Here, we assume the atom to be initially in itsmotional ground state Y µ - -( ) ( )x e x x x

0
1
4 0

2
zp
2
with a trap

equilibrium kc x0=π/4 andκr=κ/2 (critical coupling). The spectrumof reflection, as a function of the
incident photon frequencyωL, is then given by

òw w= Y( ) ∣ ( )∣ ∣ ( )∣ ( )p x S x xd , . 32r L r L
2

0
2

Figure 3(a) shows pr as a function of cavity detuning δc=ωL−ωc for rzp=1 (unresolved zero-pointmotion).
The green dashed line is the reflection spectrumof an empty cavity with decay rateκ. The blue solid line is
calculatedwith equation (32) for rzp=0.02, where w» ∣ ( )∣p S x,r r L 0

2. One can see that it exhibits the same
Lorentzian response as an empty cavity, butwith a resonance frequency shifted by- ( )g u xom

2
0 . Figure 3(b)

shows the reflection spectrum pr for resolved zero-pointmotion rzp=2.We observe that the probability of
reflection is strongly increased for d = - ( )g u xc om

2
0 , compared to the case of small rzp. This behavior can be

understood from equation (30). In particular, the resonance frequency of the coupled atom-cavity system
depends on the position of the atom, and d = - ( )g u xc om

2
0 corresponds to the resonance of themost likely

atomic position.However, the large spread of the atomicwave function results in a large uncertainty of the
resonance frequency, which increases the reflection probability. Conversely, an incident photonwith frequency
far from d = - ( )g u xc om

2
0 sees a decreased reflection probability (thus the broadening of the spectrum), as there

is some chance that the spread in atomic position allows the coupled system to be on resonancewith the photon.
This is illustrated infigure 4(a), wherewe plot the atomic probability density Y∣ ( )∣x0

2 (blue) and the absolute
value of the reflection S-matrix ∣ ( )∣S xr

2 (red dashed) (equation (26)) as a function of position x and for rzp=2.
One can see, that thewidth of the atomicwave function∼2xzp exceeds the spatial resolutionR, withinwhich the

Figure 3.Reflection spectrum pr as a function of laser frequencyωL. Here, we take critical coupling (κr=κ/2) and a trap equilibrium
position of kc x0=π/4.We assume the initial atomicwave function is in themotional ground state. (a) If the zero-pointmotion is
unresolved, the reflection spectrum (blue) just behaves like the reflection spectrumof an empty cavity (green, dashed) but is shifted to
a new resonance w ( )xc 0 . Here we choose gom=κ and ηLD=0.01, implying rzp=0.02. (b) If the zero-pointmotion is resolved, the
reflection spectrum is broadened by roughly gm and becomes shallower. Herewe choose gom=5κ and ηLD=0.2, implying rzp=2.
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cavity is resonant. For completeness, we also provide a plot of the absolute value of the transmission S-matrix
∣ ( )∣S xt

2 (red dashed) infigure 4(b). Figure 4(c) shows the probability of reflection and transmission for
d = - ( )g u xc om

2
0 as a function of rzp. For rzp=1 the probability of reflection vanishes and the transmission

approaches unity as it would for an empty resonant cavity. However, with increasing rzp it becomes less likely to
find the atomwithin the spatial resolutionRwithinwhich the cavity is resonant, leading to an increase of pr.
Finally, the reflection probability pr approaches unity for rzp?1.

Most of this plot is already experimentally accessible with current technology. For example a neutral atom
trapped in its ground state inside photonic crystal cavities can reach rzp∼10 (appendixD.1)whereas a current
fiber cavity experiment reaches rzp∼1 (appendixD.2).Whilemeasuring pr, the zero-point resolution rzp can
then be gradually decreased by increasing the atom-cavity detuningω0−ωc, increasing trap frequencyωm or by
moving the trap equilibrium x0 away from the position ofmaximal optomechanical coupling kc x0=±π/4.
This procedure would experimentally reproduce parts offigure 4(c).

3.2. Entanglement and conditional projection of the atomicwave function
Having previously investigated the unconditional reflection spectrumof an incident photon, we now study
more carefully the correlations that build up between the atomicmotion and photon reflection or transmission
for the casewhen the trap equilibrium falls at the resonant position (x0=xr). As the atom is in a coherent
superposition of beingwithin the spatial resolutionR and not, and an incoming photon gets transmitted if the
atom iswithin that spatial resolution and reflected if otherwise, the resulting state (equation (25)) is entangled.
Given that the photon has been transmitted, the normalized conditional wave function is given by

Y = Y-( ) ( ) ( ) ( )x p S x x . 33t t t
1 2

0

Its probability density is propotional to the product of Y∣ ( )∣x0
2 and ∣ ( )∣S xt

2 as individually drawn infigure 4(b).
Thus, for r 1zp , the transmission of a photon projects the atom into a narrow spatial regionΔ x∼1/R
around the resonant position, which is consistent with the photon having seen a resonant cavity response.

In contrast, the reflection of a photon projects the atom away from that same spatial region, which results in
a hole around xrwithwidthΔ x∼1/R. This is consistent with the photon having seen an off-resonant cavity.
The normalized conditional wave function after a photon reflection is then given by

Y = Y-( ) ( ) ( ) ( )x p S x x . 34r r r
1 2

0

As individually drawn infigure 4(a), its probability density is propotional to the product of Y∣ ( )∣x0
2 and ∣ ( )∣S xr

2.
Figure 5(a) shows an illustration of the unentangled input state. The atom (black) is in itsmotional ground state,
centered around x0=xr, while a single-photon (green) is incident and resonant with the atom-cavity system for
this position. Infigure 5(b)we illustrate the entangled output state for rzp=2.We illustrate how the
transmission or reflection of a photon are entangledwith atomicwave functionsΨt(x) orΨr(x) consistent with
the respective scattering process, for the same parameters as infigures 3(a) and (b).

Interestingly, in the unresolved zero-pointmotion regime rzp=1 the scatteringmatrix for reflection is
proportional to x: » -( )S x x R2ir . This leads to a final conditional wave function Y µ Y( ) ( )x x xr 0 which
corresponds to a single-phonon Fock state. This represents the high-fidelity generation of a single-phonon Fock
state, which is heralded on detection of a reflected photon (the probability of a single-photon being reflected

Figure 4.Resolution beyond zero-point uncertainty. (a) For rzp=2, the spatial width∼2xzp of the atomic probability density Y∣ ( )∣x0
2

(blue) exceeds the spatial resolutionR, which corresponds to thewidth of the absolute value of the scatteringmatrix ∣ ( )∣S xr
2 (red

dashed). As the cavity is only resonant with an incoming photon if the atom is locatedwithinR, there is a large probability that the
cavity is off-resonant, even though w w= ( )xL c 0 . The probability of reflection is calculated by the overlap of both plotted functions. (b)
Same as (a), but the absolute value of the S-matrix for transmission (red, dashed). (c)Probability of photon reflection pr (red) and
transmission pt (green) as a function of zero-point resolution rzp, for an incident photon that is resonantwith the cavity in the limit
that atomicmotion fluctuations are ignored (i.e., d = - ( ))g u xc om

2
0 . One sees that for large rzp, the probability of transmission

becomes negligible, because the probability offinding the atomwithinR (whichwould imply a resonant system and consequent
transmission) approaches zero for rzp?1.
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itself is quite low, »p rr zp
2 ). This approach is distinct fromprevious proposals for heralded generation, involving

the detection of a Stokes-scattered photon in the sideband resolved regime [39].
Thewave function after a transmission/reflection event adjusts in away that it increases the probability of a

subsequent transmission/reflection. To demonstrate this, we calculate the conditional probability of photon
transmission given that a photon has just been transmitted:

ò w= Y( ∣ ) ∣ ( )∣ ∣ ( )∣ ( )p t t
p

x S x x
1

d , . 35
t

t L
4

0
2

Figure 6(a) shows ( ∣ )p t t (green) as a function of cavity detuning δc for a fixed trapping position kc x0=π/4.We
plot the corresponding probability of transmission pt (blue) as well, which is seen to be lower than the
conditional probability.We use parameters of an existingfiber cavityQED experiment with trapped +Ca40 -ions
(appendixD.2(ii)).We chose w p= ´2 50 kHzm and w w- = g4c0 0. The asymmetry of ( ∣ ))p t t is due to the
nonnegligible dependence of gom (equation (11)) andκ(x0) (equation (10)) on the laser frequencyωL (and thus
δc) for those parameters. For d k k= - » -( ) ( )g u x2 2 1.2c om

2
0 (which implies xr=x0) a zero-point

resolution of rzp≈0.89 is obtained, which needs to be calculatedwith equation (C.8) as here spontaneous

Figure 5. Illustration of a single-photon scattering event for resolved zero-pointmotion. (a) Input state: an incident photon (green)
with a frequency ensuring x0=xr isflying towards a cavity containing a trapped atomwith probabilitiy density Y∣ ( )∣x0

2 (black). Due
to its zero-point uncertainty, the system is in an effective superposition of resonance frequencies. This input state is given by
equation (21). (b)Output state: illustration of the entangled output state given by equation (25), which is a superposition of the photon
being reflected, which implies an off-resonant system and a photon being transmitted, which implies a resonant system. The plotted
probability densities Y∣ ( )∣xr t

2 are the normalized product of Y∣ ( )∣x0
2 and the respective scatteringmatrix ∣ ( )∣S xr t

2 offigures 3(a) and
(b), where rzp=2. For this value, the probability of reflection is pr≈0.56.

Figure 6.Photon statistics due towave function projection for afixed trapping position kc x0=π/4. (a)Probability of photon
transmission pt (blue) as a function of cavity detuning δc and the conditional probability of transmission, given that a photon just has
been transmitted ( ∣ )p t t (green).We observe that a transmitted photon increases the probability of transmitting again. (b)The second-
order correlation function ( )( )g 0tt

2 of the transmitted field as a function of δc shows bunching due to the increased likelihood of

detecting a transmitted photon after the transmission of afirst photon. (c)The second-order cross-correlations ( )( )g 0tr
2 between the

transmitted and the reflected field as a function of δc shows anti-bunching. Herewe use parameters of an existingfiber cavityQED
experiment with trapped +Ca40 -ionswith recoil frequencyωrec=2π×6.8 kHz, see appendixD.2 (i). The parameters are
g0=2π×41 MHz, γ=2π×11.2 MHz,κ=2π×8 MHz.We choseωm=2π×50 kHz andω0−ωc=4g0. These values
correspond to a zero-point resolution of rzp≈0.89 for 2δc/κ≈−1.2 (calulatedwith equation (C.8)).

9

New J. Phys. 20 (2018) 083004 LNeumeier andDEChang



emission cannot be neglected. As one consequence of the higher likelihood of conditional transmission, the
second-order correlation function ò w= Y( ) ∣ ( )∣ ∣ ( )∣( )g x S x x0 d ,

tt p t L
2 1 4

0
2

t
2 of the transmitted field, given aweak

coherent input state, would exhibit bunching, as shown in figure 6(b). Likewise, as reflection of afirst photon
suppresses the probability of transmitting a second photon (and vice versa), second-order cross-correlations

ò w w= Y( ) ∣ ( )∣ ∣ ( )∣ ∣ ( )∣( )g x S x S x x0 d , ,
rt p p t L r L

2 1 2 2
0

2

t r

between the reflected and transmitted fieldwould exhibit

anti-bunching (figure 6(c)).

3.3.Motional heating induced by entanglement
Each projection of the atomicwave function is associatedwith an increase in energy.Wewill now show that this
energy can vastly exceed the energy added in free space or in a trap. In free space a recoilmomentum ÿkL results
in a kinetic energy change ofωrec (typically a few kHz). In a stiff trap (ωrec=ωm) it is unlikely that a phonon can
be excited due to the insufficient energy associatedwith the recoil. In that case, it is well-known [40, 41] that the
probability of exciting a phonon due to single-photon scattering is suppressed as w w h=mrec LD

2 . However, here
we show that for atoms trapped inside cavities, and in the regime of strong optomechanical coupling, it is
possible for a single scattered photon to produce amuch larger heating effect, evenwhen the atom is trapped
tightly within the Lamb-Dicke limit (ηLD=1). The origin of this effect can already be inferred from figure 5(b),
where the post-scattering atomicwave function is seen to be far from the original ground state wave function
due to the narrow spatial features induced by scattering.

Infigure 7(a)weplot the conditional expectation values = áY Y ñ¯ ∣ ∣†n b br t r t r t of created phonons as a
function of rzp aftermeasuring a reflected/transmitted photon, respectively. For these plots we assume the atom
to be initially in its ground state and that the resonance positionmatches with the trap equilibrium (xr=x0).We
find that »n̄ 1r for rzp=1, which reflects the fact that the resulting conditional wave function in this regime is
a single-phonon Fock state, as explained in section 3.2. For rzp?1we observe a scaling of µn̄ rr zp, whereas

µn̄ rt zp
2 for all values of rzp.We nowwant to give the intuition behind these scalings. Generally, the number of

created phonons is the energy increase normalizedwith trap frequency: =
w
Dn̄ E

m
. Themain contribution of

added energy comes from the increase inmomentumuncertainty, due to the narrow spatial features associated
with the conditional wave functions after photon scattering (see figure 5(b)). Thus, the added energy after one
scattering event is approximatelyD » áY Yñ∣ ∣

E .
p

m2

2

Transmitting a photon localizes the atomicwave function

around the resonant position xrup to an uncertainty of D ~ D ~x p r1 zp, which yields a kinetic energy

increase corresponding to µn̄ rt zp
2 . The scaling µn̄ rr zp for rzp?1 is best understood for the caseκt=0 (but

the argument holds generally). There, the photon experiences a phase shift
F = » - - -( ) [ ( )] [( ( ) ) ( ( ) )]x S x x x R R x xarg arctan 2r r r

2 2 which depends on the atomic position.Φ(x)
only varies significantly for displacements smaller than d µx R r1 zp and its slope reaches amaximumvalue
of F¢ µ( )x rr zp. The phase shift dominates the contribution to the added kinetic energy,

ò òµ áY Yñ µ Y F¢ µ F¢ µ =¯ ∣ ∣ ∣ ( )∣ ( ( )) ( ( ))n p x x x x x r r rd dr
2

0
2 2 2

zp
2

zp zp as for rzp?1, F¢( ( ))x 2 peaks over a

regionmuch smaller than thewidth of thewave function, and has awidthµ r1 zp and amaximumvalue ofµrzp
2 .

Infigure 7(b)we plot the unconditional number of added phonons per photon n̄ (the photon is not
measured after the interaction). As it is given by = +¯ ¯ ¯n p n p nt t r r , it can be understood as a combination of

Figure 7.Added phonons per photon.We assume critical coupling, the atom to be initially trapped in its ground state and that the
resonance positionmatcheswith the trap equilibrium (xr=x0). (a)Conditional expectation values of created phonons after scattering
a single-photon n̄r t .Wefind the scalings »n̄ 1r for rzp=1 and µn̄ rr zp for rzp?1 and µn̄ rt zp

2 for all values of rzp, leading to a
very large number of added phonons for resolved zero-pointmotion in the case of ameasured transmitted photon. (b)Total
expectation value n̄ (unconditional) of added phonons per photon as a function of rzp. The scalings µn̄ rzp

2 for rzp=1 and µn̄ rzp

for rzp?1 originate from the combination of a and figure 4(c), as = +¯ ¯ ¯n p n p nt t r r .
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figures 7(a) and 4(c). Thus, the scaling of n̄t dominates for rzp=1, whereas the scaling of n̄r dominates for
rzp?1.

3.4. Conclusion
Wehave presented the theory of strong optomechanical coupling in nano/micro-cavities, where naturally the
mechanical sidebands are unresolved. Possible candidate platforms are trapped atoms or ions in photonic crystal
cavities orfiber cavities.We show that these platforms already reach a regimewhere the atomic zero-point
motion is resolved by incident photons, leading to strong entanglement between the photon and the atomic
motion. Signatures of this entanglement can bemeasured in the reflection spectrum, the second-order photon
correlation functions, or in the number of added phonons per photon. Furthermore, we showed that one can
create non-Gaussianmotional states fromGaussian states by reflecting a single-photon, even for unresolved
zero-pointmotion. Generally wewant to emphasize that the presented theory of this work is relevant to any
experiment where atoms are strongly coupled to cavities with smallmode volumes.
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AppendixA. From the Jaynes–Cummingsmodel includingmotion to an effectivemodel
ofmotion only

Equation (1) of themain text describes the fullmaster equation of amoving two-level atom interactingwith a
cavity, in the presence of cavity losses and atomic spontaneous emission. In the limit where the cavity is driven
near resonantly and the atom is far detuned, the atomic excited state can be eliminated to yield an effective
optomechanical system involving just the atomicmotion and the cavitymode. One can go a step further and
eliminate the cavitymode, to yield the reduced dynamics of just the atomicmotion. The procedure bywhich a
certain degree of freedom can be eliminated from an open system is known as theNakajima–Zwanzig projection
operator formalism [27, 30, 31], whichwe nowdescribe here.

A.1. Projecting out the atomic excited state
Wefirst want to eliminate the atomic excited state from the full dynamics of equation (1). It is convenient to
define a set of operators P,Q, which project the entire systemdensitymatrix

r r r r r= ñá + ñá + ñá + ñá∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )g g g e e g e e , A.1gg ge eg ee

into the subspace spanned by ñá∣ ∣g g (whichwewant to project the dynamics into), and its orthogonal  - ñá∣ ∣g g .
Here r r= á ñ∣ ∣i jij are the reduced densitymatrices for the reducedHilbert space, which still contain all other
existing degrees of freedom. Thus, we define a projection operator P:

r r= ñá∣ ∣ ( )P g g A.2gg

and its complementary

r r r r= ñá + ñá + ñá∣ ∣ ∣ ∣ ∣ ∣ ( )Q g e e g e e . A.3ge eg ee

It is straightforward to show = = = + =P P Q Q QP P Q, , 0,2 2 . Infigure A1we draw a simple picture of
the fullHilbert space of the internal degrees of freedomof the atom in order to visualize the part of theHilbert
spacewe are interested in (described by Pρ) and the part we are not (described byQρ).Wewill nowdivide the
super-operator L up in parts according to theway they act on theHilbert space describing the internal degrees of
freedomof the atom:

= + + + ( )L L L L J. A.4o a I

Here, Lo=Lm+Lc is composed of terms that do not act on the internal degrees of freedom,with Lm and Lc
describing respectively the trapped atomicmotion and the bare dynamics of the driven cavitymode:

r w r= - [ ] ( )†L b bi , , A.5m m
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r d r k r
k

r r r= - + - + -[ ] [( ) ] ( ) ( )† † † † †L a a E a a a a a a a ai , i ,
2

2 . A.6c c r 0

The super-operator

r d s r
g

s r= -[ ] { } ( )L i ,
2

, A.7a ee ee

acts on ñá ñá ñá∣ ∣ ∣ ∣ ∣ ∣e g g e e e, , (the subspace spanned byQ) and justmultiplies those terms by a c-number. It
describes evolution and damping of the excited internal state of the atom.

r s s r= - +[ ( )( ) ] ( )†L g x a ai , A.8I eg ge

acts on all the states and all Hilbert spaces, describing the interaction of the atomwith the cavityfield and

r gs r s= - ( )J e e A.9k x k x
ge

i i
eg

c c

describes the spontaneous jump of the excited state of the atom into its ground state accompanied by a
momentum recoil. Infigure A2we draw arrows showing how these super-operators act on different parts of the
Hilbert space of atomic internal degrees of freedom.We are interested in the dynamics of the subspacePρ, while
accounting forfluctuations intoQρ. Thus, only closed loopswhich start and end inPρ contribute to the
evolution of the reduced densitymatrix Pρ. To see how this works, we define v=Pρ andw=Qρ and insert

+ =P Q into equation (1):

r r r r= = = +˙ ˙ ( )v P PL PLP PLQ . A.10

Let usfirst look atPLP:

r r= + + +( ) ( )PLP P L L L J P . A.11o a I

Figure A1.The completeHilbert space of the internal degrees of freedomof the atom.Pρ is the part we are interested in and the
remainder is characterized by the projection operatorQ.

Figure A2.TheHilbert space of the internal degrees of freedomof the atom. The notation is as follows: the label of an arrow
corresponds to a Liouvillian, while the direction of the arrow indicates the possible beginning and ending subspaces of the Liouvillian.
For example, the red arrow indicates that the Liouvillian J acting on the subspace ñá∣ ∣e e takes this subspace to ñá∣ ∣g g . Since we assume
δ0 or γ to bemuch larger thanκ andωm, we can neglect the action of Lo=Lm+Lc during a fluctuation out ofPρ, whichwe indicate
by crossing themout in the right-top corner and neglecting them in equation (A.13).
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To quickly identify vanishing termswe take advantage of figure A2 by following the path the super-operators
take us through theHilbert space applying them from the right to the left. Here are some examples:

(i) The term PLIP: P projects into the subspace ñá∣ ∣g g , while LImaps a state from P toQ. Thus, acting again with
P causes this term to vanish.

(ii) PLaP:P projects into ñá∣ ∣g g andwe immediately see that Ladoes not act on it, so this term vanishes.

(iii) PJP=0 because Jdoes not act on ñá∣ ∣g g .

After identifying all vanishing terms, we obtain:

= + +˙ ( ) ( )v L v P J L w A.12o I

and

= + + +˙ ( ) ( )w QL v Q L L L w. A.13I o a I

Note thatw describes the evolution of the fluctuations out of the subspace of interest. As the timescale of these
fluctuations is set by δ0 and γ andwe assume that either δ0 or γ ismuch larger than bothωm andκ, we can neglect
the free evolution of the cavity ormotion during one of thesefluctuations and approximate Low≈0 in
equation (A.13), as also indicated infigure A2. Then the general solution to this equation reads:

ò òt t t t= +t t+ - + -( ) ( ) ( ) ( )( )( ) ( )( )w t QL w QL vd e d e , A.14
t

Q L L t
I

t
Q L L t

I
0 0

o a o a

wherewe setw(0)=0 as the initial condition.Nowwe plug this equation twice into equation (A.12) (iteratively)
in order to catch a termof the order JLI

2:

ò

ò ò

t t

t t t

= + +

+ + ¢ ¢

t

t
t

t

+ -

+ - + - ¢

˙ ( ) ( ) ( )

( ) ( ) ( )

( )( )

( )( ) ( )( )

v t L v P J L QL v

P J L QL QL v

d e

d e d e . A.15

o I

t
Q L L t

I

I

t
Q L L t

I
Q L L t

I

0

0 0

o a

o a o a

Herewe neglected the termproportional to t¢( )w since it produces only termsµLI
3 or higher. Again by

following the path of how these super-operators act withfigure A2, we can quickly identify which terms vanish
since all contributing terms need to have closed loops starting and ending in ñá∣ ∣g g . Sowe are left with:

ò

ò ò

t t

t t t

= +

+ ¢ ¢

t

t
t

t

+ -

+ - + - ¢

˙ ( ) ( )

( ) ( )

( )( )

( )( ) ( )( )

v t L v PL L v

PJ L L v

d e

d e d e . A.16

o I

t
L L t

I

t
L L t

I
L L t

I

0

0 0

o a

o a o a

After extending the lower integral borders to-¥ (Markov approximation), we obtain equation (6) of the
main text.

A.2. Projecting out the cavityfield
The next step is tofind amaster equation only containingmotional degrees of freedom (p and x) of the atomas
operators. In order tofind this equationwe need to use theNakajima–Zwanzig technique to project out the

cavitymode from equation (6). For the sake of simplicity we assume δ0?γ (and thus »
d d+ g

g g0
2

0
2

2

4

0
2

0
2 ) andκ?γ

in the following, sowe can ignore the atomic decay channel for this derivation by approximating Lom≈Lκ. For
weak driving, we can restrict ourselves to the photon subspace defined by ñ∣0 , ñ∣1 . Subsequently, we can adopt
our projection operator formalism from above andwrite the density operator as follows:

r r r r r= ñá + ñá + ñá + ñá∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )0 0 0 1 1 0 1 1 A.1700 01 10 11

with r r= á ñ∣ ∣i jij being the reduced densitymatrix describing atomicmotion. Aswe are interested in the

subspace spanned by ñá∣ ∣0 0 we define an projection operator P:

r r= ñá∣ ∣ ( )P 0 0 A.1800

and

r r r r= ñá + ñá + ñá∣ ∣ ∣ ∣ ∣ ∣ ( )Q 0 1 1 0 1 1 . A.1901 10 11

Weagain decompose the total Liouvillian in parts according to theway they act:

= + + + ( )L L L L J A.20m Dca
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with Lm defined in equation (A.5)

r
k

r» - -D -[ ( ) ] { } ( )† †L x a a a ai ,
2

, A.21ca

and r k r= - +[ ]†L E a ai ,D r 0 , which describes the interaction of the cavitymodewith an external coherent
laser drive. r k r= †J a a describes the spontaneous decay of the cavitymode.Nowwe draw infigure A3 a picture
of theHilbert space of the degrees of freedomof the cavity, including the arrowswhich illustrate how these
defined super-operators act. A similar prodecure as in appendix A.1 leads to the quantummaster equation (12)
of themain text describing atomicmotion.

Appendix B. Single-photon scattering theory

Herewe provide details of the derivation of equations (23) and (24) in themain text. Inserting equations (21) and
(22) into equation (20) andmultiplyingwith wá ¢( ) ∣m,r t from the left gives us an equation for the S-matrix
elements:

w d w w w w w- ¢ - = á ¢ ñ( ) ( ) ( ) ∣ ∣( ) ( )S n n S, , 0 , B.1r t n L L m r t L, left

where w¢ refers to the frequency of the reflected or transmitted photon. In the following, wewill establish a
connection between the S-matrix elements, and the standard input–output formalismof cavityQED [38].
Conveniently, this connection enables one to calculate S-matrix elements based upon knowledge of the
eigenvalues and eigenstates of the systemHamiltonianHeff. The input–output equation states that the output
field in each decay channel (reflection/transmission) is the sumof the inputfield and thefield emitted by the
scattering center. For example the input–output equation for photon reflection is given by

k= -( ) ( ) ( ) ( )a t a t a ti , B.2rout in

where for notational convenience we leave out the subscript ‘r’ in the input and output ports. The scattering
operators ain/out(ω) are connected to the input–outputHeisenberg–Langevin operators ain/out(t) by a simple
Fourier transform [37]

òw
p

= w( ) ( ) ( )a t a t
1

2
d e . B.3t

in out
i

in out

Nowwe focus on the S-matrix for the process of photon reflection

w d w w w w w- ¢ - = á ¢ ñ( ) ( ) ∣ ( ) ( )∣ ( )†S n n a a0 , 0 , 0 , B.4r n L L m c L c, out in

wherewe expressed the S-matrix in terms of scattering operators w( )†a Lin and w¢( )aout which create in- and
outgoingmonochromatic scattering states [42]. Using the input–output equation, one can re-write aout in terms
of the cavityfield and inputfield, yielding

w d w w w d w w d k w w- ¢ - = - ¢ - á ¢ ñ( ) ( ) ( ) ∣ ( ) ( )∣ ( )†S n n a ai 0 , 0 , 0 . B.5r n L L m L n r c L c, ,0 in

Nowwe replace the scattering operators with the Fourier transformof the corresponding input–output
operators. Thematrix element á ¢ ñ∣ ( ) ( )∣†n a t a t0 , 0 , 0c L cin vanishes for > ¢t tL since ¢ =[ ( ) ( )]†a t a t, 0Lin for
> ¢t tL and á =∣ ( )†a t0 0c Lin . Thus, we introduce the time ordering operatorTmaking sure that ¢ >t tL. Thenwe

have

Figure A3.TheHilbert space of the single-excitation subspace of the cavity. The label of an arrow corresponds to a Liouvillian, while
the direction of the arrow indicates the possible beginning and ending subspaces of the Liouvillian. For example, the red arrow
indicates that the Liouvillian J acting on the subspace ñá∣ ∣1 1 takes this subspace to ñá∣ ∣0 0 . Aswe assumeκ?ωm, we can neglect the
time evolution due to the super-operator Lm during a fluctuation out of Pρ.
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ká ¢ ñ = - á ¢ ñ∣ [ ( ) ( )]∣ ∣ [ ( ) ( )]∣ ( )† †n T a t a t n T a t a t0 , 0 , 0 i 0 , 0 , 0 , B.6c L c r c L cin

wherewe replaced ( )a tLin with ( )a tL using the input–output equation. The term containing the output operator
vanishes as ¢ =[ ( ) ( )]†a t a t, 0Lout for ¢ >t tL (which is already ensured byT) and á =∣ ( )†a t0 0c Lout . Finally, we
arrive at

w d w w w d w w d k t w- ¢ - = - ¢ -( ) ( ) ( ) ( ) ( )S n B.7r n L L m L n r n L, ,0

with

òt w
p

= ¢ á ¢ ñw w¢ ¢-( ) ∣ ( ) ( )∣ ( )( ) †t t n Ta t a t
1

2
d d e 0 , 0 , 0 . B.8n L L

t t
c L c

i L L

For the S-matrix describing the process of photon transmissionwe obtain

w d w w w k k t w- ¢ - = -( ) ( ) ( ) ( )S n . B.9t n L L m r t n L,

Note that the S-matrix of reflection Sr includes the term d w w d- ¢( )L n,0 describing interaction-free reflection of
photons. In contrast, in the S-matrix of transmission St there is no such term, since the input field on the
transmitting side of the cavity is in the vacuum state and thus the transmitted field is built exclusively from the
emission of photons by the scattering center.We canwrite

rá ¢ ñ = ¢-( ) ( ) [ ( )] ( )† ( ) †a t a t a aTr e 0 , B.10L
L t ts L

where r = ñá( ) ∣ ∣0 0 , 0 0 , 0c c and r r k r= - +[ ] †L H a ai ,s eff withHeff described by equation (19) from the
main text. Since the term k r †a a reduces the number of photons, its contribution vanishes as the correlator
conserves the number of photons. Thus, the evolution of a(t) is governed byHeff alone and for evaluating the S-
matrix we can effectively use

= -( ) ( )a t ae e . B.11H t H ti ieff eff

We further express

á ¢ ñ = Q - ¢ á ñw - - ¢∣ ( ) ( )∣ ( ) ∣ ∣ ( )† ( )n Ta t a t t t n0 , 0 , 0 e 1 , e 1 , 0 , B.12c L c L
nt

c
H t t

c
i in L Leff

where we nti n L counts the energy of the created phonons during the scattering process and the step function
Q - ¢( )t tL which vanishes for < ¢t tL ensures time ordering. In order to express the S-matrix fully in terms of
eigenvaluesλβ and eigenstates bñ∣ ofHeff with b l bñ = ñb∣ ∣Heff we insert a unity operator b b= å ñáb∣ ∣1 right
before ñ∣1 , 0c . Therefore wewrite

å b bá ñ = á ñ á ñ
b

l- - ¢ - - ¢b∣ ∣ ∣ ∣ ( )( ) ( )n n1 , e 1 , 0 1 , e 1 , 0 , B.13c
H t t

c c
t t

c
i iL Leff

where bá ñ∣n1 ,c is the projection of the eigenstates bñ∣ into the basis states á ∣n1 ,c . After evaluating the Fourier
transform in equation (B.8)we are left with

åt w d w w w b
l

b= - - ¢ - á ñ á ñ
b b

( ) ( ) ∣ ∣ ( )n ni 1 ,
1

1 , 0 , B.14n L L m c c

which togetherwith equations (B.7) and (B.9) reproduces equations (23) and (24) in themain text.

AppendixC. The full effective theory and its validity

Herewe begin by generalizing our effective theory presented in themain text (sections 1 and 2) by including
spontaneous emission into themaster equation (12) and the single-photon scattering output state (25). Thenwe
define the parameter space forwhich our theory is valid.We do this by comparing results of our effective theory
with a numerical simulation of the full Jaynes–Cummingsmodel includingmotion (1)where the only
assumption is the Lamb-Dicke regime ηLD=1which allows for the linearization of themode profile u(x). This
approximation is only done for numerical purposes andwe note that our effective theory does not depend on the
Lamb-Dicke parameter.

For systemswhereκ?γ is not true, we need to include the atomic decay channel. Doing so, the single-
photon scattering output state now generalizes to:

w w w w w wY ñ = Y ñ + Y ñ + Y ñ∣ ( ) ( )∣( ) ( ) ( )∣( ) ( ) ( )∣( ) ( )S x x S x x S x x, , , , C.1r L L r t L L t L Lout 0 0 at 0 at

where the scatteringmatrices for reflection, transmission and the scatteringmatrix for spontaneous emission are
respectively given by:

w
k

= -
D + k( )

( )
( )( )S x

x
, 1

i

i
, C.2r L

r

c
x

2
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w
k k

= -
D + k( )

( )
( )( )S x

x
,

i

i
, C.3t L

t r

c
x

2

w
d

gk
=

+ D +g k( )
( )

( ) ( )( )S x
g

x
u x,

i

i
e . C.4L

r

c
x

k x
at

0
2

0
2

4 2

i c
2

The scatteringmatrices conserve probability and obey w w w+ + =∣ ( )∣ ∣ ( )∣ ∣ ( )∣S x S x S x, , , 1r L t L L
2 2

at
2 for all

values ofωL and x . Note thatwe treat here for simplicity only one direction of spontaneous emissionwhich has a
one dimensional decay channel described by w ñ∣( )L at . The resultingmomentumkick qualitatively reproduces
themain effect that would occur in a full three-dimensional treatment of spontaneous emission.We also did not
exclusively account for intrinsic cavity losses at a possible rateκin, however including this process would simply
result in an additional term in the output state equation (C.1)with a corresponding S-matrix that looks like St,
but withκt replaced byκin. The total effective linewidth of the cavity is increased by the effective rate of
spontaneous emission

k k k g
d

= + +
+ g

( ) ( ) ( )x
g

u x , C.5r t
0
2

0
2

4

2
2

which depends on the position of the atom.As explained in themain text, we can express the jumpoperators in
terms of the scatteringmatrices such that they describe intuitive physical decay processes. The corresponding
master equation describing a coherent drive is then given by:

r r r r r r= - - + + +˙ ( ) ( ) ( )† † † †H H E S S S S S Si C.6e e r r t t0
2

at at

with theHamiltonian

w= - ( )†H b b E
i

2
. C.7e m 0

2

Note that by including spontaneous emission into themodel the zero-point resolution reads in good
approximation

h
d

k d
»

+ g

∣ ∣

( )( )
( )r

g

x

2
. C.8zp LD

0
2

0

0 0
2

4

2

Wehave averaged the position-dependent effective decay rate k k» áY Y ñ( ) ∣ ( )∣x x0 0 0 with the atomicwave
functionΨ0(x).

In order to derive the single-photon output state (C.1) and themaster equation (C.6)wemade two
assumptions:

(i) Large atom/laser detuning δ0?g0, which allowed us to effectively eliminate the excited state of the atom
leading to an effective optomechanicalmaster equation (6). Note that a large spontaneous emission rate
γ?g0 would allow this elimination aswell. However, here we are interested in strongly coupled systems,
where g0γ.

(ii) Unresolved vibrational sidebands κ?ωmwhich allowed us to derive the output state (C.1) and effectively
eliminate the cavitymode in order to derive themaster equation (C.6).

Nowwewill check the limits of these assumptions by numerically simulating a single-photon scattering event
with the fullmodel (equation (1)). The numerical simulation is done by diagonalizing theHamiltonian

w d
g

s d
k

h s= - + - + + + + +⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( ( ) ( ))( ) ( )† † † †H b b a a g u x g b b ai

2
i
2

h.c. , C.9D m c0 ee 0 0 0 LD ge

in the single-photon subspace and using the eigenvalues and eigenstates in the exact scatteringmatrices for
reflection, transmittion and atomic decay constructed according to equations (23) and (24)which is described in
appendix B.One has to take care that the unity operator as inserted in equation (B.13), is here  *b b= å ñáb∣ ∣,
with the eigenvectors normalized as *b bá ñ =∣ 1, since theHamiltonianHD is complex symmetric due to losses
rather thanHermitian.

C.1. Limits of the assumption d ∣ ∣ g0 0

Webeginwith the question of how large
d∣ ∣
g0

0
can be, such that all approximations previouslymade are still valid.

This is important to know, as the previously studied regime of resolved zero-pointmotion rzp?1 requires a
large effective optomechanical coupling µ µ

d~ ∣ ∣
r g

g
zp om

0

0
. Thus, to reach this regime, it is beneficial to choose
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d∣ ∣
g0

0
as large as possible. However, increasing this fraction, wewill eventually leave the parameter space inwhich

our effective theory correctly predicts results. To understandwhen this happenswewill now compare our
effective theorywith a numerical simulation of the fullmaster equation (C.9) as a function of d∣ ∣g0 0 (and later as
a function ofωm/κ for similar reasons).Wewill assume in the following that the atom is trapped in itsmotional
ground state at a locationwithmaximum intra-cavity intensity slope kc x0=π/4 and, if not stated otherwise,
that the single incident photon is on resonancewith the atom-cavity systemΔc(x0)=0, which implies xr=x0.
Figure C1(a) shows the probability of photon reflection pr (red), photon transmission (orange) and spontaneous
emission pat (green) as a function of d∣ ∣g0 0 calculatedwith the effective theory:

òw w= Y( ) ∣ ( )∣ ∣ ( )∣ ( )p x S x xd , . C.10r t L r t Lat at
2

0
2

Weuse for w∣ ( )∣S x,r t Lat
2, equations (C.2), (C.3) and (C.4), respectively.We also use parameters from a recent

fiber cavity experiment (appendixD.2), where γ>κ and thus, one needs to account for spontaneous emission.
The blue dots correspond to the full numerical simulation of the Jaynes–Cummingsmodel includingmotion
(equation (C.9)).We observe a greatmatch for d <∣ ∣g 1 20 0 . Figure C1(b) shows the conditional phonon
expectation value = áY Yñ¯ ∣ ∣†n b br r r given a reflected photon as a function of d∣ ∣g0 0 for the same parameters as
(a).Ψr(x) is given by equation (34) in themain text.We observe a greatmatch for d <∣ ∣g 10 0 .

C.2. Limits of the assumptionκ?ωm

Herewewant to check the validity of the effective theory once sideband resolution is approached.We plot the
created phonon expectation value n̄r after reflecting a single-photon infigureC2 as a function of

w
k
m . Here, we

take the vacuumRabi splitting g0=2π×10 GHz corresponding to a possible photonic crystal cavity
(appendixD.1), an atom-cavity detuning of w w- = g100c0 0, and againwe consider a resonant photon for an
atom trapped at kc x0=π/4. For illustrative purposes, we take an artificially low value ofκ=2π×20MHz,
which is distributed only between reflection and transmission ports (withκr=4κt), and allowωm to vary.We
observe a reasonablematch between the exact numerical simulation and our effectivemodel forω/κ<1/4.

AppendixD. Experimental canditate systems for resolving zero-pointmotion

D.1. Photonic crystal cavities
The coupling of atoms to themode of a photonic crystal cavity can be as large as g0∼2π×10 GHz [43] for
Rubidium atoms. Rubidium atoms have a natural linewidth of γ∼2π×6MHz and a recoil frequency of
ωrec≈2π×3.8 kHz for a resonant photonwavelength aroundλc≈780 nm.At the same time quality factors
ofmore thanQ∼106 are feasible inside photonic crystal nano-cavities [44], associatedwith a decay rate of
rouglyκ∼2π×0.25 GHz. Since γ=κ, spontaneous emission can be ignored and experiments are verywell
described by the effectivemaster equation (equation (12)) and the effective output state (equation (25)). The
achievable zero-point resolution in photonic crystal cavities is rzp∼10 by taking ηLD=0.25 (calculatedwith
equation (C.8)).

FigureC1. Effective theory versus numerical simulation.We assume the atom to be initially in itsmotional ground state and that the
incident photon is on resonancewith the atom-cavity system. (a)Probability of photon reflection pr (red), photon transmission pt
(orange) and spontaneous emission pat (green) as a function of d∣ ∣

g0

0
and calculatedwith the effective theory. Blue smaller dots: exact

numerical simulation.Here, we have used parameters from a recente fiber cavity experimentwith trapped +Ca40 -ions (see
appendixD.2, parameter set II). Here we choose k p= ´2 0.8 MHzt ,κr=2π×2.8 MHz, h w w= = 0.2mLD rec ,
ωm=2π×0.2 MHz. (b)Conditional phonon expectation value n̄r given that a photon is reflected from the cavity for the same
parameters as (a). The effective theory (red)matches very well with the numerical simulation (blue).
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D.2. Fiber cavities
Herewe discuss afiber cavityQED experiment with trapped +Ca40 -ions (ωrec≈2π×6.8 kHz,
γ=2π×11.2 MHz) byTracyNorthup in Innbruck [45]. They are able to realize different sets of g0 andκ by
changing the cavity length.Here we give two examples:

(i) Parameter set I is given by: g0=2π×41MHz ,κ=2π×8MHz.

(ii) Parameter set II is given by: g0=2π×21MHz andκ=2π×3.6 MHz.

FigureD1(a) shows the zero-point resolution rzp as a function of cavity-atomdetuningω0−ωc for
parameter set I (red) and set II (blue, dashed) calculatedwith equation (C.8).We chooseωm=2π×0.1 MHz,
kc x0=π/4. δc is chosen in away that the conditionD =( )x 0c r is satisfied, which implies xr=x0.We observe
that by choosing w w- = g2c0 0 one achieves rzp≈1.05with parameters set I and rzp≈1.03with parameter set
II.We also demonstrate how to choose δc in order to obtain p= =k x k x 4c r c 0 infigureD1(b), which shows δc
as a function ofω0−ωc for parameter set I (red) and set II (blue, dashed).

Note that because the spontaneous emission rate γ is comparable toκ, the process of spontaneous emission
cannot be neglected and themaster equation (C.6) and single-photon scattering output state (C.1)need to be
applied in order to predict outcomes of this experiment.

FigureC2. Effective theory (blue) versus numerical simulation (red dots) approaching sideband resolution.We assume the atom to be
initially in itsmotional ground state and that the incident photon is on resonance with the atom-cavity system.We plot the phonon
expectation value n̄r after reflecting a photon as a function ofωm/κ. Parameters are chosen for an atom trapped inside a photonic
crystal cavity as presented in appendixD.1.We choose an atom-cavity detuning of w w- = g100c0 0 and an artificial value of
κ=2π×20 MHz (withκr=4κt) aswe onlywant to check the validity of the effective theory once sideband resolution is
approached.

FigureD1. (a)Zero-point resolution rzp as a function of cavity-atomdetuningω0−ωc for parameter set I (red) and set II (blue,
dashed) of a tunablefiber cavity experimentwith trapped ions. For parameters see appendixD.2. Here, we choose
ωm=2π×0.1 MHz, kc x0=π/4 and δc such that xr=x0 (see (b)). (b)Herewe showhow to choose δc in order to ensure

p= =k x k x 4c r c 0 . Plotted is the cavity-laser detuning δc as a function ofω0−ωc for parameter set I (red) and set II (blue, dashed)
satisfying the conditionD =( )x 0c r .
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