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Abstract
Many quantumalgorithms, including recently proposed hybrid classical/quantum algorithms,make
use of restricted tomography of the quantum state thatmeasures the reduced densitymatrices, or
marginals, of the full state. Themost straightforward approach to this algorithmic step estimates each
component of themarginal independently withoutmaking use of the algebraic and geometric
structure of themarginals.Within thefield of quantum chemistry, this structure is termed the
fermionic n-representability conditions, and is supported by a vast amount of literature on both
theoretical and practical results related to their approximations. In this work, we introduce these
conditions in the language of quantum computation, and utilize them to develop several techniques to
accelerate and improve practical applications for quantum chemistry on quantum computers. As a
general result, we demonstrate how thesemarginals concentrate to diagonal quantities when
measured on randomquantum states.We also show that one can use fermionic n-representability
conditions to reduce the total number ofmeasurements required bymore than an order ofmagnitude
formedium sized systems in chemistry. As a practical demonstration, we simulate an efficient
restoration of the physicality of energy curves for the dilation of a four qubit diatomic hydrogen system
in the presence of three distinct one qubit error channels, providing evidence these techniques are
useful for pre-fault tolerant quantum chemistry experiments.

1. Introduction

Quantumcomputers are expected to provide an exponential speedup in the solution of the electronic structure
problem [1–6] in some cases. This could potentially revolutionize research in chemistry andmaterial science by
allowing a newmechanism for designing newmaterials, drugs, and catalysts. Accordingly, there is now a
significant body of literature dedicated to developing new algorithms [7–20], tighter bounds and better
implementation strategies [21–28], more desirableHamiltonian representations [29–39], and experimental
demonstrations [40–43] for this problem.

The rapid development of quantumhardware in recent years has spurred interest in the development of
practical algorithms that do not require fault tolerant quantum computers. It has been conjectured that the
leading candidates forfirst demonstrations of practical algorithms on a pre-threshold device are so-called
quantum/classical hybrid algorithms, such as the variational quantum eigensolver (VQE) for chemistry [44–52]
and the quantum approximate optimization algorithm (QAOA) for optimization problems [53]. Recent
experimental results [50]have shown that the quantum–classical feedback does provide robustness against noise
in the device, and simple extensions are possible that allowone to further damp the noise through additional
measurements [54, 55].

A common step in almost all near-term implementations of these algorithms is the determination of an
operatorʼs expected value through a formof partial tomography of the quantum state. The statistical criteria
relating the number ofmeasurements from the distribution and the accuracy of the expected value are relatively
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straightfoward to determine [23, 46, 52].When studying chemical systems, the general benchmark for accuracy
is á ñ H Hartreewhere ò=1.6×10−3 is known as chemical accuracy and  expresses a standard
confidence interval. This stringent absolute accuracy is required formatching experimentally determined
thermochemical properties such as heats of formation or ionization potentials [56]. Naturally, this accuracy
requirement on the estimator for theHamiltonianmay require a large number of independent preparations of a
state andmeasurements using current strategies.

Some routes to reduce the number of experiments by collectingHamiltonian terms into commuting groups
and droppingHamiltonian termswith small coefficients have already been proposed [23, 46, 51, 57].Wecker
et al [48], estimated that for simulating the energy of ferrodoxin using this approachwould require 1019 total
measurements. Though this estimate wasmadewith pessimistic assumptions, the sheer number of
measurementsmotivates one to pursue techniques to accelerate the operator averaging step of VQE and other
hybrid algorithms.

The strategy we adopt in order to ameliorate the burden of excessivemeasurements is to leverage known
structure in themarginals of the fermionic densitymatrices which have not yet been taken advantage of within
thefield of quantum computation. The set of necessary conditions onmarginals of densitymatrices are known
as n-representability conditions andwere originally developed to use the reduced densitymatrices (RDMs) of
fermionic and bosonic systems as themain computational variable instead of thewavefunction [58–61].While
in this workwe focus on fermionic systemswith atmost pair-wise interactions and thus use constraints on the
2-marginal D2 , these ideas aremore generally applicable to problemswith localHamiltonian objectives, such as
many instances ofQAOA.Measuring themarginals of a state ρ, specifically the fermionic two-particle reduced-
density-matrix (2-RDM), provides a powerful extension toVQE. These quantities are useful for connecting
VQE to other quantum chemical techniques such asmulticonfigurational self-consistentfield, embedding
procedures such as densitymatrix embedding theory, and augmenting the accuracy of electronic structure
methodswith perturbation theory, which is thought to be required to apply thesemethods to complex systems
larger than onemay fit in the quantum computer alone.

In this workwe explore the utility ofmeasuringmarginals instead of directlymeasuring theHamiltonian,
and how the n-representability constraints on themarginals provide (i) a program for reducing the normof the
Hamiltonian directly leading to fewermeasurements and (ii) using the set of necessary, but not sufficient
constraints, on the fermionicmarginals, known as p-positivity constraints, to propose two computational
procedures for projectingmeasuredmarginals into the set of allowedmarginals. The variance reduction that is
developed is examined for linear hydrogen chains and generally shows an order ofmagnitude reduction in the
required number ofmeasurements.

We also introduce a series of polynomial time post-processing techniques for certifying and projecting
measuredmarginals. This computational procedure is similar tomaximum likelihood tomography except on a
RDMspace, thusmaking it efficient. Similar techniques have been applied to corrupted process tomography
[62] and reduced state tomography on the RDMs of the system [63].We compare four projection techniques
that balance enforcing n-representability with computational efficiency. Thefirst two techniques are based on
positive projection of the 2-RDMmatrix—which should be positive semidefinite—but does not include any
constraints beyond positivity of the 2-RDMand fixing the trace. The third and fourth techniques add
approximate n-representability constraints implemented through amore expensive iterative procedure and
semidefinite program (SDP).

The paper is structured as follows: sections 2 and 3 describe fermionicmarginals and the n-representability
conditions used in this work, sections 4 and 7 review the utility ofmarginals as they pertain to perturbation
theory and a concentration bound for 2-RDMs that suggests a structured ansatz is requiredwhen
parameterizing the space for hybrid quantum–classical algorithms, section 5 discusses the optimal bound on the
number of samples required tomeasure the expected value of aHamiltonian and variance reduction from
equality n-representability constraints, section 6 discusses the 2-RDMprojection procedures and how they can
reduce the number ofmeasurements required tomeasure tofixed accuracy ò and also restore physicality after
state corruption by common error channels.We closewith an outlook as to how n-representability techniques
can further improve hybrid algorithms.

2.Marginals of the density operator

Herewe introduce our terminology and set notationwith respect to RDMs, ormarginals of the full density, in
both the qubit and fermionic setting. Generally speaking, amarginal of amultivariable probability distribution is
the partial trace, or integration, of a subset of the variables leaving a distribution on a smaller set of variables.
Given a general quantum state ρ on n qubits
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år y y= ñá∣ ∣ ( )w , 1
i

i i i

where y ñ∣ i are pure states of n qubits andå =w 1i i , the set of p-qubit RDMs, or p-marginals, of the state are
determined by integrating out q-qubits (such that n−q=p) of the joint distribution as

r r= [ ] ( )Tr 2p
m m n n n,..., , ,...,p q1 1 2

resulting in ( )n

p
differentmarginals each of dimension ´2 2p p. The coefficients n1, ..., nq on the trace operator

indicate which qubits are integrated out of ρ and coefficientsm1, ...,mp label the subsystemmarginal. The result
ofmarginalization is a distribution on the state space of p-qubits.Wewill interchangeably refer to these objects
asmarginals andRDMs alluding to the fact that like the vonNeumann densitymatrix themarginals can be
expressed as a sum

år f f= ñá∣ ∣ ( )w , 3p
m m

j
j j j,..., p1

where f ñ∣ j is a pure state on the subsystemof qubits that has not been traced out.

It is well known that this ( )n

p
set ofmarginals is sufficient for calculating the expected value of a p-local

Hamiltonian or other observable [64, 65]. A p-localHamiltonian is onewhere any term in theHamiltonian
involves nomore than p-qubits interacting. Naturally, such a description of a quantum system is an attractive
polynomial size representation. However, in order to use the set ofmarginals as computational objects (e.g.
minimize energy with respect to them) rather than simplymeasuring them, the RDMsmust satisfy certain
constraints to ensure physicality. These constraints are termed ‘consistency’ and are the requirement that all
marginals satisfy equation (2) for the same initial state ρ. Despite the considerable structure on rp m m,..., p1

,

confirming a set ofmarginals are consistent was demonstrated to beQMA-complete [64]. Naturally, onemay
ask if there is some alternative formof consistency, or approximation, thatmakesworkingwithmarginal
distributions a computationally attractive approach.

Analogous to the case of qubits, the requirement for calculating expected values of k-local operators
describing interactions of indistinguishable particles, such as fermions or bosons, is that only the k-marginal is
needed.Note that as a point of clarification, while p-local qubit operators refer to operators acting on atmost p
qubits, k-local fermionic operators refer to interactions that derive from k-body interactions, and generically act
on 2k fermionicmodes. This does not complicate themethods to be discussed, but is a commonpoint of
confusionwhenworking between chemistry and quantum computation. As an example, in chemical systems
the energy is a functional of the 1- and 2-local fermionic operators and the 2-marginal of the system [59, 66–68].
Consider a Fock space constructedwith a single particle basis associatedwith aHilbert space of sizem.We can
represent a general state on this space

åyñ = ñ
=

¼ - -∣ ( ) ( ) ( ) ∣ ( )† † †c a a a... vac , 4
i i

i i m
i

m
i i

,..., 0

1

, , 1 1

m

m
m m

1

1
1 1

where each fermionic creation operator { }†am is associatedwith a single particle basis state f ñ∣ m and ñ∣vac is the
vacuum.Wemay consider a stateψwithfixed particle number n enforced by restricting the coefficients im in
equation (4) to satisfyå =i nm m . As noted in [69], once an ordering of fermions is selected the Fock space states

can bemapped to aHilbert space ofm-distinguishable spin- 1

2
particles.Marginals of the fermionic n-particle

densitymatrix

y y= ñá = ñá¼  ∣ ∣ ∣ ∣ ( )D D i i j j 5n n
j j
i i

n n,...,
, ,

1 1n

n

1

1

involve integrating out particles by a trace operation. For example, the 2-RDM D2 is obtained from Dn by
integrating out particles 3 to n.

= [ ] ( )D DTr . 6n
n2

3 ...

By convention, in the quantum chemistry community the normalization constant for Dp is typically scaled to

( )n

p
when i1<i2<...<ip or n!/(n−p)! when ik is allowed to be range over all values in [1,m] [59, 61, 70]. In

this workwe choose the later of the normalizations for ease of computation.
From the study of n-representability theory, a number of efficiently implementable and necessary

constraints on the one- and two-particlemarginals ( D1 and D2 ) are known. Specifically, defining

å= ñá∣ ∣ ( )D D i j , 7
ij

j
i1 1
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å= ñá∣ ∣ ( )D D pq rs , 8
pq rs

rs
pq2

,

2

where

y y= = á ñ[ ] ∣ ∣ ( )† †D a a D a aTr , 9j
i

i j
N

i j
1

y y= = á ñ[ ] ∣ ∣ ( )† † † †D a a a a D a a a aTr 10rs
pq

p q s r
N

p q s r
2

the simplest of these constraintsmay be enumerated as:

1.Hermiticity of the densitymatrices

*= ( ) ( )D D , 11i
j

j
i1 1

*= ( ) ( )D D . 12rs
pq

pq
rs2 2

2. Antisymmetry of the 2-particlemarginal

= - = - = ( )D D D D . 13rs
pq

sr
pq

rs
qp

sr
qp2 2 2 2

3. The (p−1)-marginal is related to the p-marginal by contraction—e.g. the 2-marginal can be contracted to
the 1-marginal

å=
-

( )D
n

D
1

1
. 14j

i

k
jk
ik1 2

4. The trace of eachmarginal isfixed by the number of particles in the system

=[ ] ( )D nTr , 151

= -[ ] ( ) ( )D n nTr 1 . 162

5. Themarginals are proportional to densitymatrices and are thus positive semidefinite

{ } ( )D D, 0. 171 2

Additional constraints based on the quantumnumbers of S2 and S z operators can be derived for eachmarginal
[71]. A short description of the formof the linear constraints inspired byfixed particle number á ñn ,fixed total
angularmomentum á ñS2 , andfixed projected total angularmomentum á ñSz are described in appendix B.

3. Then-representability problem

In the previous sectionwe provided a brief introduction to the notation and setup of problems formulated
through theirmarginal distributions.Here, we review a concise and elegant theoretical framework that allows
one to derive the full set of representability conditions for fermionic systems, fromwhich onemay select a subset
to form efficient approximations. The polynomial size of the p-marginalsmakes them attractive candidates for
use as the representation of quantum systems. This was originally noticed byCoulson andColeman [72, 73] in
the context of quantum chemicalHamiltonians where the energy operator is 2-local and thus a linear functional
of the 2-RDM.The characterization and structure of valid 2-marginals arising from the integration of a
fermionic densitymatrix led to the field of n-representability [59, 73].

A significant amount of progress has beenmade in tackling the n-representability problem;most notably,
the original works by Erdahl [74], Percus andGarrod [75, 76], andMazziotti [67, 77–79] formalize the
n-representability problemby specification of an approximate set of constraints by parameterizing the polar
cone of the set of 2-RDMs. Recently,Mazziotti formalized the complete structure of the ensemble
n-representability constraints [79] and gave the structure of pure-state constraints for states withfixed particle
number [78]. n-Representability has also been greatly influenced by quantum information: Liu [64]
demonstrated that the n-representability problem isQMA-complete and Bravyi [65] andKlyacho [80]
enumerated n-representability constraints formarginals of a pure-state.

4
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3.1.n-Representability by characterizing the polar cone
Webeginwith a geometric picture of the constraints within the space of fermionic densitymatrices. The formal
characterization of the n-representable set of 2D operators relies on characterizing the polar cone of the
2-marginals [59, 60, 68]. Consider the convex set of 2-marginals 2 acting on the antisymmetric two-fermion
space 2 , whichmay be defined in terms of its basis vectors  = Ä - Ä{ }a b a b b a for Îa b, . The
polar cone is defined as the subset ofHermitian operators that satisfy the positive projection condition,

  = Î  á ñ " Î˜ { ∣ ∣ } ( )B B D D0 . 182 2 2 2 2 2 2

Operators of the polar cone Î ˜B2 2 are positive operators with respect to the 2-RDM,which implies their non-
negativity with respect to all fermionic densitymatrices NDwhen lifted to the n-particle space. In quantum
information this lifting procedures is accomplished by taking the tensor product of the operatorwith identities.
For fermions, the lifting procedure involves the tensor product with the appropriate antisymmeterization
operations.

The bipolar theorem states that elements of 2 are completely characterized by the polar cone ̃2

  = Î  á ñ " Î{ ∣ ∣ ˜ } ( )D B D B0 . 192 2 2 2 2 2 2

Though specification of inequalities with elements of the polar cone provides a characterization of 2 , it has the
major drawbacks that (a) there are infinitelymany possible B2 operators to check and (b) checking B2 requires
checking if an exponentially large operator is positive [81].

The key approximationwithin n-representability is constructing a polynomial size approximation to the
polar cone ̃a

2 and deriving conditions on the 2-marginal through equation (18). This is achieved by selecting a
kth-order (where k<n) operator basis for ̃a

2 . Given that the  Ì˜ ˜
a

2 2 any representability conditions
derived from ̃a

2 will be an approximate set of representability conditions. By duality, the polar of ̃a
2 implies

 Ì a
2 2 . This naturally explains why variational calculations using the RDMand approximate n-
representability constraints are strictly a lower bound to the true energy [70, 77, 82–87].

In the n-representability literature related to simulating fermions, fermionic operators up to a particular
order—e.g. { }† † †a a a a a a, , , , ...i i i j i j —are used as the operator basis for the approximate polar cone. Given a

rank-k operator basis for the polar cone, we can define a real linear space ofHermitian operators †O Ok k where

å =
= = Î

ˆ ( )
{ †}

O c a 20k
k

N

j o

k

k k
o

1 1, 1,
j j

that when constrained to be non-negative (implied by equation (18)) form a necessary set of conditions on the
p-marginals of the vonNeumann densitymatrix.

As an example, wewill derive the famous 2-positivity conditions by restricting the rank of themonomials in
the operator basis to rank less than 2 as

å å å å å å= + + + + +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† † † † †O c a c a c a a c a a c a a c a a , 21
i

i
a

i
i

i
b

i
ij

ij
c

i j
ij

ij
d

i j
ij

ij
e

i j
ij

ij
f

i j2

setting

= ( )†M O O , 222 2 2

and requiring that M 02 . The {c} coefficients in equation (21) specify an arbitrary element of the approximate
polar cone ̃a

2 in a similar fashion to how a sum-of-squares polynomial can be expressed as a quadratic form
c TAcwhere elements ofA represent various products ofmonomials. Considering symmetries of the system,
such asfixed particle number, reduces the largematrixM2 to a block diagonalmatrix [82]. In this workwe
consider spinless fermionicHamiltonians that commutewith the number operator of our system and thuswe
can decomposeM2 into blocks wheremonomials correspond to number preserving operators—i.e.
{ }† †a a a a, , ...i j j i . Restricting the operatorM2 to be non-negative against the 1-RDMand 2-RDM for all values of c
yields the following inequalities

* å y yá ñ∣ ∣ ( )†c c a a 0, 23
ij

i j j i

* å y yá ñ∣ ∣ ( )†c c a a 0, 24
ij

i j j i

* å y yá ñ∣ ∣ ( )† †c c a a a a 0, 25
ij kl

ij kl i j l k
,

* å y yá ñ∣ ∣ ( )† †c c a a a a 0, 26
ij kl

ij kl i j l k
,
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* å y yá ñ∣ ∣ ( )† †c c a a a a 0, 27
ij kl

ij kl i j l k
,

whereψ is an arbitrary state. These conditions imply that the followingmatrices are positive semidefinite

y y= á ñ∣ ∣ ( )†D a a 0, 28j i
1

y y= á ñ∣ ∣ ( )†Q a a 0, 29j i
1

y y= á ñ∣ ∣ ( )† †D a a a a 0, 30i j l k
2

y y= á ñ∣ ∣ ( )† †Q a a a a 0, 31i j l k
2

y y= á ñ∣ ∣ ( )† †G a a a a 0. 32i j l k
2

The positivity of thesematrices canonically known as { }D Q D Q G, , , ,1 1 2 2 2 form a set of necessary conditions
that the 2-marginalmust obey. Clearly, as the 2-marginal is included in our set, the positivity of this operator
naturally appears when building constraints starting from a polar cone picture. Though these constraints are
formulatedwith pure states it is simple to show these conditions hold formixed states as well.

The positivity of the operators on–{ }D Q,1 1 —and 2 –{ }D Q G, ,2 2 2 —are constrained to live in the
space defined by equalities obtained by rearranging the fermionic ladder operators according to their
anticommutation rules. A full enumeration of the equality constraints is contained in appendix C. In this work
we use the positivity constraints and the linear constraints from the anticommutation relationships as a set of
constraints that 2-RDMsmeasured from a quantum resourcemust satisfy. This enables us to enhance the
accuracy of estimation of quantities through employing basic physical relations.

4. Concentration ofmeasure in p-RDMS

Hybrid quantum–classical schemes depend both on the ability to perform the partial tomography that has been
discussed as well as some parameterization of the quantum state space. Recent experimental proposals have
considered the use of quantum states that are constructed fromunitaries that are uniformly randomwith respect
to theHaarmeasure acted upon awell defined initial state in order to demonstrate so-called ‘quantum
supremacy’ over classical devices [88]. A natural question is to askwhether these states can be harnessed as a
resourcewithin hybrid schemes.However, while these states are highly entangled, they demonstrate a number of
surprising properties related to results on concentration ofmeasure in high dimensional spaces. From the
discussion above, we know it is sufficient to characterize a local fermionic systemby its reducedmarginals, sowe
investigate these states in that setting. In a colloquial sense, concentration results for randomquantum states
show that formany local observables, typicalmeasurement results will yield the average valuewith
overwhelming probability. Here, specifically we investigate the implications of this for p-particle RDMs.

A key result wewill leverage from the theory ofmeasure concentration is Levyʼs lemma [89], which relates to
the concentration of Lipshitz-continuous functions. Levyʼs lemma is as follows: consider a Lipschitz continuous
function -( )f S: n2 1 with Lipschitz constantC, i.e. - < -∣ ( ) ( )∣ ∣∣ ∣∣f x f y C x y for all Î -( )x y S, n2 1

where ∣∣ ∣∣. is the Euclidean norm in the surrounding space É -( )Sn n2 2 1 , and S(2n−1) is the unit sphere in n2

whichwould correspond to a quantum state of log2 (n) qubits. Drawing a point Î -( )x S n2 1 at randomwith
respect to the uniformmeasure on the sphere yields


 

p
- á ñ -

⎛
⎝⎜

⎞
⎠⎟[∣ ( ) ∣ ] ( )f x f

n

C
Prob 2 exp

9
. 33

2

3 2

Wewill leverage this lemma togetherwith the fact that the expectation value on a normalized quantum state of
anyHermitian operatorAwith bounded spectrum is Lipschitz continuous, with a Lipschitz constant thatmay be
bounded by the normof the operator.

Consider first the case of 1-RDMs on a space consisting of any number of particles between 0 andM inM
spin-orbitals.We are interested in the average value of amatrix element y y= á ñ[ ] ∣ ∣†D a aij i j

1 where yñ∣ is a
randomly selected pure state. These statesmay be represented by the densitymatrix of all possible equally likely
occupations,

r = ( )I

d
, 34

where I is the identitymatrix on the space of 2M possible occupations and d is the dimension of thismatrix,
d=2n. To evaluate a trace in this case, it suffices to choose the basis of all determinants ranging from0 toM
occupied spin-orbitals, created in a standardized ordering yñ =  ñÎ∣ ∣†aS k S k where ñ∣ is the standard fermi
vacuum state. To compute the average value of this operator, we thus need to evaluate

6
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rá ñ = [ ] ( )† †a a a aTr . 35i j i j

On expanding this trace in the determinant basis, one realizes that the terms vanish unless i=j, unless this index
appears in thewavefunction, and there is at least 1 particle in thewavefunction. The trace is given by

å

å

d

d

d

d

á ñ = -
-

=

=

=

=

=

-

( )
( )

( )

( )

†a a M
n

n

M
M
n

M
M

2
1
1

2

2
2

2
. 36

i j
ij

M
n

M

ij

M
n

M

ij

M
M

ij

0

0

1

Thus the average 1-RDM is a diagonalmatrix with entries 1/2, corresponding to a systemwith an average
number of particle ofM/2.Note that for the operator †a ai j, the Lipschitz constant can be safely bounded by 1, as
independent of the distance in space, this expectation value can differ by atmost 1 due to the spectrumof the
operator. As a result, Levyʼs lemma informs us how large we expect typical deviations to be from this average
matrix element as


 y y
p

á ñ - á ñ -
⎛
⎝⎜

⎞
⎠⎟[∣ ∣ ∣ ∣ ] ( )† †a a a aProb 2 exp

2

9
. 37i j i j

M 2

3

Examining the case of 2-RDMs nowusing the same techniques, wefind that

å

å

d d d d d d

d d d d d d

d d d d d d

d d d d d d

= á ñ = - - - -
-

=
-

- - - -

=
-

- - - + -

= - - -

+
=

+
=

+
- -

( )
( )

[ ] ( )( )( )

( )
( )( )( ) ( )

( )
( )( )( )(( ) )

( )( )( ) ( )

† †D a a a a M
n

M M
n n M

n

M M
M M M

1

2

1

2
1 1 2

2

1

2 1
1 1

1

2 1
1 1 2 2

1

8
1 1 . 38

kl
ij
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From this, we see that the 2-RDMaverage also represents a generalization of a diagonalmatrix to a 4-tensor with
signs reflecting the antisymmetry properties of the electrons.Moreover, it is easy to see from the operator

† †a a a ai j l k
1

2
that the same concentration results hold for each individualmatrix element as in the 1-RDMcase,

except that the Lipzschitz constant ismodified by the normalization factor 1/2.Using the same process, onemay
derive similar results for higher particle RDMs, and conclude that all higher RDMs concentrate towards diagonal
matrices at a similar rate, withmodified Lipschitz constants due to normalization.

Nowwe consider the case where one restricts to random states within an n-particle subspace. Such a state
can be represented by a densitymatrix of the form

r = ( )I

d
, 39R

R

R

where IR is the identity operator on the full space of 2
M spin-orbitals subject to the restrictionR to the space of n

particles, and d is the dimension of that space. To evaluate this trace, we consider the basis of n-particle
determinants. Using the samemachinery as above, but restricting the sum to the case of only n particles, we find

d

d

á ñ = -
-

= -
-

=

-

( )
( )( )

( )

†a a
d

M
n

M
n

M
n

n

M

1
1

1
1

. 40

i j R
ij

R

ij

1

Thus the average 1-RDM in a space of randomly generated n-particle states inM orbitals is the diagonalmatrix
with equally probable occupations on all sites. The exact convergence results of Levyʼs lemmadepend on the
spherical geometry of states, so direct application of the concentration results would require amodification of
the lemma.However, wemay embed the allowable quantum states into the space of ⎡⎢ ⎤⎥( )dlog R2 qubits and
leveraging the fact that the normof the operator of interest, and thus Lipschitz constantwill remain the same. If
one generates randomquantum states within this embedded space, we can see that the concentration result

holds with the same Lipschitz constant butmodified dimension ( )M
n .
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A consequence of these results is that randomquantum states generate p-particlemarginals that are
effectively trivial, concentrating exponentially quickly to their average value as a function of system size. This
wouldmean that one can evaluate the expectation value to specified precision of any p-particle observable
(where p is heldfixed as system size grows) efficiently on a classical computer for a randomquantum state. Thus,
we concludemeaningful explorations of the space of quantum statesmust be structured, whether it be in the
path of time evolution or the design of a variational ansatz. If an ansatz andmethod used for hybrid quantum–

classicalmethods cannot easily exit the space ofHaar random states, the above analysis dictates it is doomed to
give trivial observables for fermionic systems at relatively small system sizes.

5. Reducing operator sample variance using n-representability constraints

5.1.Optimal operator averaging
Any L-sparseHermitian operator onHilbert space can be expressed as

å= Î =
=

-

( )
ℓ

ℓ ℓ ℓ ℓH w H w Hs.t. , 41
L

0

1
2

wherewℓ are real scalars andHℓ are 1-sparse self-inverse operators which act on qubits. In second quantized
formulations of electronic structure, theHℓ are typically a special case of 1-sparse operators that have particularly
convenient properties formeasurement, namely they are strings of Pauli operators. Very often one is interested
in estimating á ñH bymakingmeasurements onM independent copies of a state yñ∣ . For instance, the typical
procedure in variational algorithms is to estimate the energy á ñH by repeatedly preparing a state and performing
projectivemeasurements onto the eigenstates of Pauli operators á ñℓH . Since theHℓ are self-inverse, the intrinsic
variance of these projectivemeasurements is computed as

s = á ñ - á ñ = - á ñ ( )ℓ ℓ ℓ ℓH H H1 1. 422 2 2 2

As sample variance is due to statistical fluctuationswhich are uncorrelated from sample to sample, the total
variance of á ñH scales as

 å å
s

= =
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2

The real question is how to choose the number of samples for each term in theHamiltonianMℓ in order to
minimize ò for the fewest overallmeasurements = åℓ ℓM M .

In [48], it is suggested that one choose µ ∣ ∣ℓ ℓM w with no guarantee of optimality. Herewe prove that this
choice is optimal by application of the Lagrange conditions (no proof was provided in [48]).We start with the
Lagrangian

 å ål
s

= + -
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M
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L L

0

1

0

1 2 2
2

where the constantλ is the Lagrangianmultiplier. Our goal will be to solve the following expression forMℓ,

 =
l

( )
ℓ ℓ

Mmin max min . 45
M M

Accordingly, we take the derivative of with respect toMℓ tofind,
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Plugging this back into equation (43), wefind exactly that
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Therefore,
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If we insist on getting an asymptotic bound thenwe assume s = ( )ℓ 1 and this leads us to confirm the
optimality of the suggestion of [48].

8

New J. Phys. 20 (2018) 053020 NCRubin et al



5.2. Reducing variance usingn-representability
Aftermapping RDMelements to Paulimatrices (e.g. by using fermionic transforms such as the Jordan–Wigner
or Bravyi–Kitaev transformation), one can express all equality n-representability constraints in the notation of
equation (41). Assuming a list ofK equality constraints, wewill express the kth constraintCk as

å= á ñ = Î
=

-

( )
ℓ

ℓ ℓ ℓC c H c0 , 49k

L

k k
0

1

, ,

wherewe can always choose to have a constant term in the set (e.g. =H0 ) so that the equality sums to zero3.
These constraints provide extra information about the relationships between expectation values which, in
principle, should allow us tomake fewermeasurements. One very straightforwardway to exploit this
information in order tomake fewermeasurements is to add these constraints to the operator of interest in order
tominimize the associatedΛ from equation (48). Specifically, we have that

å å åb b b= + = + á ñ = á ñ " Î~ ~

=
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=
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1
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,

where the relation á ñ = á ñ~
H H follows from the observation thatCk=0 for n-representable states due to the

definition ofCk in equation (49).Whenwe do this, from equations (48) and (50)we can see that the number of
measurements required is expected to scale as
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In order tominimizemeasurements then, the strategy is to compute

* *å åb b b= + = L
~

b b=

-

=
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⎝
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⎞
⎠
⎟⎟ ( ) ( )
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k k
0

1

0
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,

depending onwhether or not one has anymeaningful prior on the expectation values á ñℓH (whichwould provide
ameaningful prior onσℓ via equation (42)).

We can easily recast this optimization problem in a form amenable to efficient solution by common
numericalmethods. To do this, we think of the originalHamiltonianH as being expressed as a vector vHwhere
each element of a vector represents a different fermionic operator; for example, we couldmap term †a ap q to

vector element 1+p+q N andmap † †a a a ap q r s to 1+N2+p+q N+r N2+s N3. The coefficients of the
vector correspond to the coefficients of the term. Likewise, we can represent all of the constraints in amatrixC of
dimensionK×Lwhere each constraintCk is a row of thematrix vectorized in the sameway as vH. Then, we see
that the optimization task at hand can be expressed as

* b b= -
b

  ( )v Cargmin 53H 1

whereβ is a vector of dimensionK.We can see now that this is a convex L1minimization. Suchminimizations
can be solved efficiently using simplexmethods.We can cast L1minimization as the linear program:

  b- - ( )q q v C qminimize subject to , 54H

where q is an auxiliary vector variable.We provide freely available source code that generates the equality
constraints and performs this optimization in the open source project OpenFermion [90]. Our code usesGLPK
(GNULinear ProgrammingKit) for the linear programming component via a Pythonwrapper known as
CVXOPT.We show results of several numerical experimentswhich demonstrate the effectiveness of ourmethod
infigure 1. These numerical experiments involved linear n-representability constraints coming from the 1-RDM
trace, 1-RDMHermiticity, 2-RDM trace, 2-RDMHermiticity, 2-RDM to 1-RDMcontraction, and the
mappings between the 2-RDMand the othermarginals in the 2-positive set. The set ofmappings are described in
appendix C. These techniques often reduce the requiredmeasurements by an order ofmagnitude ormore.

Note that themethod discussed here is actually quite a bitmore general than presented. In particular, we
have found an interestingmethod for transforming theHamiltonian in away that leaves its spectrum invariant
in thefixed particle number sector. Onemight postulate that thismethod could also be used to optimize other
simulationmetrics, for instance, to reduce Trotter errors which arewell known to be related to the normof the
Hamiltonian.Note that all constraintsCkwill be eitherHermitian or anti-Hermitian operators. In particular, the
Hermiticity constraints take the formof constraining anti-Hermitian components of the densitymatrix to be
zero (thus thoseCk are themselves anti-Hermitian operators). So after applying the procedure here, onemay end

3
Throughout this section, theHℓ should be the full set of terms thatmap to qubits from the 2-RDM.Terms that do not appear in the

operator of interest (for instance, 2-RDMelements that are not in theHamiltonian) simply have a coefficient of zero.
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upwith a
~
H that is notHermitian. Fortunately, one can restoreHermiticity without changing the value of L

~
by

creating a newHamiltonian,  = +~ ~( )†
H H H 2. H will be isospectral toH in the n-electronmanifold andwill

have the same L
~
as
~
H .

It remains an open question if this variance reduction technique can be applied to other hybrid algorithms
such asQAOAor quantum spinHamiltonians. In theQAOAcase, spin-marginals with significantly less
structure than fermionicmarginalsmust be considered. Linear constraints outside of the consistency of the
marginals with overlapping support are generally unknown for an arbitraryHamiltonian encoding a
combinatorial optimization problem as is done inQAOA. For spinHamiltonians constraints generated by fixed
values of á ñS2 can also be considered. Further investigation of the consistency constraints and eigenvalue
constraints in the formof pure-state constraintsmay provide additional variance reduction for problems
described by fermionic and spinHamiltonians.

6.n-Representability informed projection of 2-RDMs

In this sectionwe discuss the possibility of using n-representability conditions to improve 2-RDMs sampled
froma quantumdevice. Errors in the 2-RDMmeasured from a quantum state can appear inmultiple ways: (1)
stochastic errors associatedwith the operator averaging techniques used tomeasure expected values and (2)
device errors such as unexpectedmeasurement correlations.We explored the utility of 2-marginal
reconstruction schemes using n-representability rules to remove stochastic errors associatedwith sampling and
state errors corresponding to noise of the device corrupting the intended state.

Figure 1.A series of plots showing values ofΛ2 and L
~2

as defined in equations (48) and (51). In all plots, the blue circles correspond to
the value ofΛ2 prior to applying the techniques of this section and the orange crosses correspond to the value of L

~2
after applying the

techniques of this section. In (a)wedemonstrate our technique on single atom calculations in theminimal basis.We see a consistent
improvement of about one order ofmagnitudewith a jump in values between the second and third rows of the periodic table. In (b)we
show a progression of hydrogen rings in theminimal basis of increased sizewhere the distance between adjacent hydrogen atoms is
fixed at theH2 bond length of 0.7414 Å. In (c)we showhow geometry affects these techniques by studying a squareH4 ring in the
minimal basis as the spacing between hydrogens in the square is changed from0.1 to 1.8 Å. Finally, in (d)we examine how these
techniques are effected as one increases the active space of anH4 ringwith atom spacing of 0.7414 Åfrom four spin-orbitals to twenty
spin-orbitals with calculations performed in a double zeta (cc-pVDZ) basis.
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The general strategy is to design a process that projects a 2-RDMback into the set of n-representable
2-RDMswhile balancing data-collection time and classical post-processing time. In this sectionwe first discuss
two simple purification procedures: positive-semidefinite projection of themeasured 2-RDMwith andwithout
fixed-trace. These simple projection techniques are compared against procedures involving projections with
knowledge of representability constraints.

6.1. Positive-semidefinite projection and positive-semidefinite projectionwithfixed trace
The simplest of the n-representability rules enforce the 2-RDM to beHermitian and non-negative with fixed
trace. Given ameasured 2-RDMwe can define a computational procedure that determines the closest positive-
semidefinitematrix

-∣∣ ∣∣ ( )D Dmin 552 2
measured 2

 = -[ ] ( ) ( )D D n ns.t. 0 Tr 1 . 562 2

The normalization isfixed by the particle number of the system.Without the trace condition the 2-RDM that
minimizes the objective in equation (55) is themarginal constructed from the non-negative eigenvalues and
eigenvectors of D2

measured [91]. The procedure forfinding afixed-trace positive-semidefinite projection have
appeared in contexts such as tomography [92], iterative purification of 2-RDMs from response theory [93], and
finding positive-semidefinite correlationmatrices [91, 94]. This projection procedure benefits from computa-
tional simplicity but suffers from the lack of information about representability conditions. Therefore, given a
sufficiently corrupted D2

measured, physicality is not guaranteed after projection.

6.2. RDMreconstructionwith approximate representability constraints
In order improve the projection criteria we add additional n-representability constraints to theminimization
procedure outlined in equation (55). Given a collection of 2-RDMelements at some unknown precision, or
possiblymissing crucial elements, our reconstruction scheme seeks tominimize the Frobenius normof the
difference between the reconstructed 2-RDMand the set of knownmeasurements subject to approximate n-
representability constraints. Denoting E to be the difference between the reconstructed 2-RDMand D2

measured

theminimization procedure can be formulated as the following non-convex optimization problem:

∣∣ ∣∣ ( )Emin 57F
2


= -
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( ) ( ) ( )
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D Q D Q G
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,
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2

1 1 2 2 2

1
1 1

2
2 1

3
2 2

4
2 1

whereAi is themap fromonemarginal to another required by the fermionic ladder operator algebra. The details
of thesemappings can be found in appendix A. The squared Frobenius normof the error ∣∣ ∣∣E F is quadratic in
2-RDM.The optimization problem specified in equation (57) can be relaxed to a SDP by taking the Schur
complement in the identity block of the largematrixM

= ⎜ ⎟⎛
⎝

⎞
⎠ ( )†M

I E
E F

0 59

constrained to be positive-semidefinite. InM, I is the identitymatrix, F is amatrix of free variables, and E is the
error between the reconstructed D2 and the D2

measured. Taking the Schur complement in the identity block ofM
gives

- ( )†F E E 0 60

or

 ( )†F E E. 61

Noting that the Frobenius normof amatrixA, ∣∣ ∣∣A F , is given as [ ]†A ATr , taking the trace of equation (61)
gives the semidefinite relaxation ofminimizing the Frobenius norm

[ ] [ ] ( )†F E ETr Tr , 62

=∣∣ ∣∣ [ ] ( )†E E ETr . 63F
2

Wecannow formulate the non-convex RDMreconstruction scheme in equation (57) in terms of a SDP:

[ ] ( )Fmin Tr 64
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whereAi are the linearmaps between 2D and the othermatrices { }D Q D Q G M, , , , ,1 1 2 2 2 alongwith the trace
constraint and antisymmetry constraint on 2D. Thesemaps are described explicitly in appendix C and are used
in the section 6.4 for the SDP reconstruction program.

6.3. Iterative procedure for projecting noisy 2-RDMs into the approximate n-representable subspace
Although the SDPprojection procedure can be extended to include better approximate n-representability
conditions, it suffers from the requirement of solving a SDP.Despite the fact that an SDP can be solved in
polynomial timewith respect to the total number of variables and constraints, the high-order polynomial scaling
of SDP algorithmsmakes the SDP-based projectmethod infeasible for on-the-fly or online projections. An
alternative to the SDPprojection combines the faster projection techniques based onfixed-trace positive
projectionwith augmented n-representability conditions. The projection technique is an iterative procedure
thatwas originally developed to enforce approximate n-representability on 2-RDMs obtained through a
response formalism [93]. The algorithm involves sequentiallymapping 2D to 2Q to 2G and enforcing the
positivity and trace constraints at each of the operators. The algorithmʼsmain drawback is that any representable
2-RDM is a validfixed point. As a result, linear constraints on the 2-RDMpreserving projected spin and total
spin expectation values are not enforced and there is no guarantee that the D2 obtained from the iterative
procedure is any closer to the true 2-RDM.Therefore, it is likely required that the input 2-RDMmeasured from
the quantum resources is sufficiently close to the true 2-RDM for this procedure to bemost successful.

The algorithm starts by enforcingHermiticity of the given 2-RDMmatrix by averaging

= +( ) ( )†D D D
1

2
, 66s2 2

meas
2

meas

followed by a positive projectionwithfixed trace according to the procedure in [94]. A detailed description of the
algorithm forfixed-trace positive projection can also be found in the appendix of [93]. Given a systemwith r spin
orbitals, n particles, and η=r−nholes, the iterative projection algorithm is as follows:

1. EnforceHermiticity of 2D and project to positive set with trace n (n−1).

2.Map 2D to the Q.2

3. EnforceHermiticity of 2Q and project to positive set with trace η (η−1)where η is the number of holes.

4.Map 2Q to G.2

5. EnforceHermiticity of 2G and project to the positive set with trace n (η+1).

6. Check the stopping condition associated with fixed trace for 2D, 2Q, and 2G and positivity of their
eigenvalues.

The iterative procedure is considered convergedwhen the largest negative eigenvalue of anymarginal in the
2-positive set is below a set threshold. The total algorithm is depicted infigure 2.

6.4. Reconstruction results
6.4.1. Reconstruction of small systems
Toprobe the utility of the n-representability inspired reconstruction schemes, we examined the accuracy of the
energy and chemical properties obtained from2-RDMswith simulated sampling noise for diatomic hydrogen
and a linear four-hydrogen chain. All experiments involved corrupting the elements of a pure-state 2-RDMwith
Gaussian noise proportional to the amount of samples used in operator averaging, followed by reconstructing
the corruptedmarginal with the four projection procedures outline above. The accuracy and precision of the
reconstructed energies, particle-number, projected spin expectation á ñSz , and total spin á ñS2 are compared to
provide the noise tolerance and precision of the various reconstruction schemes.

We obtained theHamiltonian and ground state wavefunction for diatomic hydrogen and a linear four-
hydrogen chainwith a bond length of 0.75Å describedwith an STO-3G basis using theOpenFermion [90] and
theOpenFermion-Psi4 plugin [95]. One hundred different corrupted RDMswere constructed by applying zero-
meanGaussian noise with variance ò2

12

New J. Phys. 20 (2018) 053020 NCRubin et al



= + ( ) ( )D D 0, . 67rs
pq

rs
pq2 2 2measured

This errormodel is bias-free because the energy is linearly proportional to the 2-RDMand has variance
proportional to the error added to the 2-RDMelements. For each of the one hundred corrupted densitymatrices
we solve for a projected 2-RDMwith the positive projection, positive projectionwithfixed-trace, SDP n-
representability reconstruction, and iterative n-representability projection techniques. For eachmethodwefind
themean-square-error (MSE) of the aforementioned observables over the projected 2-RDMs as a function of the
noise parameter ò.

Figure 3 contains a plot of theMSE of the energy estimator forH2 decomposed into its variance and bias
components, and a plot of the average trace distance of the reconstructed 2-RDMs from the true 2-RDMofH4.
The solid bars in theMSEplot are the squared bias component of theMSEwhile the transparent bars are the
variance component. In general, the n-representability inspired projection techniques decrease the variance of
the energy estimator but introduce a bias. SimilarMSE plots (figures 5 and 6) are shown for á ñS2 , á ñSz , and á ñn in
appendix E. The expected value for Sz, S

2, and n shows zeroMSE for the SDP-based projection technique
because these values are added as constraints to the SDP.We refer to the correction of the three aforementioned
expected values as restoration of physicality—i.e. the particle number expectation is what is expected for an
isolated system. The reduced trace distance for the SDPprojected 2-RDMs forH4 indicates that the physicality
constraints are important for removing errors from2-RDMsmeasured froma quantum resource.

6.4.2. Reconstruction ofmarginals from the variational channel statemodel
One appealing application of projection techniques based on n-representability is purification of states
corrupted by an error channel. The SDP n-representability reconstruction procedure ensures physicality of the
states by ensuring known symmetries are preserved by formulating the projection as a constrained optimization.
To verify this we used the SDP n-representabilitymethod in conjunctionwith the variational channel state error
models presented in [54] to demonstrate the restoration of physicality. The variational channel statemodel is
implemented by corrupting a pure state yñ∣ with a channel described inKraus operator form.We consider
uniformuncorrelated single-qubit error channels associatedwith dephasing, amplitude damping and

Figure 2.The iterative procedure for 2-positive approximate n-representability constraints. Startingwith a noisy 2-RDM the flow
diagram is followed until the largest non-negative eigenvalue falls below a set threshold. Eigenvalues are considered convergedwhen
the absolute value of the largest negative eigenvalue is less than ´ -1.0 10 7. This stopping criteria was used for all numerical
experiments with the 2-positive iterative scheme.

Figure 3. (left)Themean-squared-error (MSE) in the energy estimator for one-hundred samples.MSE is decomposed into variance
and bias squared in order to demonstrate how the projection techniques reduce the variance on the distribution of the estimators at
the cost of inducing a bias. The distribution of estimators without projection (labeled asmeasured) showno bias as expected based on
theGaussian errormodel and the fact the energy is a linear functional of the 2-RDM. (Right)Trace distance of the 2-RDM—measured
or purified—from the true 2-RDM.
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dephasing, and depolarizing noise. The dephasing and amplitude damping channels are parameterizedwith the
assumption that 5%of the coherence time has elapsedwith respect toT1 andT2. For the depolarizing channel,
the Kraus operators are constructed assuming 5%of the dephasing timeT2 has elapsed. For each point along the
binding curve of diatomic hydrogen the action of the channel on the pure-state is calculated as

år r=
=

( )†K K . 68
i

M

i ichannel
1

pure

Each ensemble 2-RDM is then reconstructed with 2-positive n-representability conditions using the SDP
projection techniquewhere the errormatrices are set as the spin-adapted components of the 2-RDMassociated
with ρchannel. Spin adapting eliminates the need to explicitly enforce the antisymmetry of the 2-RDMelements
and thus reduces the total number of constraints in the SDP.

The energy of the theH2 systemunder the action of each separate channel is plotted infigure 4 alongwith the
energy computed as a functional of the reconstructed 2-RDM.The kinks in the dephasing and amplitude+
dephasing curves are associatedwith a spin-symmetry breaking, where the channels produced amixed state
dominated by a triplet state. The discontinuity in the depolarizing channel curve is associatedwith the channel
state switching to be amixed statewith a large component of singlet character. Themarkers without a line in
figure 4 are the reconstructed 2-RDMwith á ñ =S 0z and á ñ =S 02 imposed by linear constraints on the 2-RDM
associatedwith S-representability [96]. Naturally the binding curves are now smooth as a function of bond
distance. Though physicality is recovered by projecting onto the closestmarginal withfixed symmetries, the
energy increases at distances greater than 1.5Å for each errormodel and the potential energyminimum is
shifted by−0.03Å for the dephasing channel, 0.062Å for the dephasing and relaxation channel, and 0.186Å for
the depolarizing channel. The energy increase is due to constraining the projected 2-RDM to have the correct
spin-symmetrywhen the the error channel, applied through the variational channel statemodel, has switched
the ground state symmetry from a singlet to a triplet [54]. The increase of energy upon restoration of a symmetry
is awell known effect in chemical systems and condensedmatter systems.However, the qualitative
improvement in the nuclear potential energy surface and the implications for forces derived from such a surface
aremore important than the energy increase that is incurred. The relative error between corrected 2-RDMand
the uncorrected 2-RDMat themaximumbond distance considered in this work (3.0Å) is 18% for the dephasing
channel, 8.7% for the dephasing and relaxation channel, and 9.9% for the depolarizing channel.

7.Use cases of RDMs in augmenting energy expectation through perturbation theory

In this section, we brieflymention some of the additional use cases within chemistry for correcting theRDMs
beyond simple estimation of the energy, and review techniques that allowone to utilize themwith only the
2-RDM. In traditional approaches to electronic structure on classical computers, the solution of the electronic
structure problemwithin an active space often lacks the contributions from so-called dynamical correlation.

Figure 4.Energy curves formolecular hydrogen after action of three error channels. The uniformuncorrelated single qubit error
channels applied in the variational channel statemodel assume the entire circuit is executedwithin 5%of the total coherence time.
The solid lines are the curves without n-representability reconstructionwhile themarkers of the same color indicate the
reconstruction under exact n-representability conditions. The black curve, depicted by exact is the true ground state energy curve. The
label amp refers to the single-qubit amplitude damping channel associatedwithT1 time, phase refers to the single-qubit dephasing
channel associatedwithT2 time, and depolarizing is the associatedwith the single-qubit depolarizing channel.
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This part of the correlation stems largely from the electronic cusp contributions and represents a low-rank
interaction inmany high-lying orbitals.Multi-reference perturbation theory techniques have been found to
offer a good balance between cost and accuracy for including these contributions, andmany approaches have
been developed in this regard including complete active space second order perturbation theory (CASPT2)
[97–99], multi-referenceMoller–Plesset theory [100], n-electron valence perturbation theory (NEVPT2)
[101–103], canonical transformation theory (CT) [104–106], perturbative explicitly correlated corrections
([2]R12) [107, 108], and correctedmulti-reference CI (MRCI+Q) [109, 110].

In understanding how these techniquesmay be utilizedwithin the quantumdomain, one ismost interested
in those that are compatible with themeasurements one expects to be able to feasiblemake on a quantum
computer. Thismeans that explicit knowledge of the determinant decomposition of a wavefunction cannot be
required, and instead one prefersmethods that require only the k-RDMof the electronic system,where
hopefully k is small. Of those discussed, NEVPT2, [2]R12, andCT can be applied in this way.

For example, inNEVPT2, the effective equationsmay be derived entirely with the use of the 4-RDM, and it
does not require knowledge of determinant decomposition or full electronicwavefunction.However the
4-RDM is a relatively expensive quantity to estimate, and thus cumulant based approximations to the 4-RDM
have been developed such that only the 2-RDM is required to correct the energy perturbatively [106, 111].

The cumulant expansions decompose the RDMs into their non-separable (connected) components and
separable unconnected components, and are quite useful for both developing approximations and enhancing
understanding. A convenient notation for expressing these expansions is given by theGrassmannwedge product
defined generally by

 å p s p s = Ä
p s

⎜ ⎟⎛
⎝

⎞
⎠!

( ) ( ) ( )a b
N

a b
1

, 69
2

,

whereπ andσ are permutations on the upper and lower indices of the tensor Äa b and ò denotes the parity of
each permutation. As an example onemight consider thewedge product of a cumulantmatrix with itself
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With this notation, the RDMsup to k=4may be expressed in terms of the cumulant expansions:

= D ( )D , 711 1

= D + D  D ( )D , 722 2 1 1

= D + D  D + D  D  D ( )D 3 , 733 3 2 1 1 1 1

= D + D  D + D  D
+ D  D  D + D  D  D  D ( )

D 4 3

6 . 74

4 4 3 1 2 2

2 1 1 1 1 1 1

Thesemethods that neglect contributions from the 3- and 4-cumulant dramatically reduce the number of
samples thatwould be required to estimate the energy, however the approximations introduce some error in the
corrections. An additional factor is the consideration of the impact ofmeasurement noise on the RDM in these
numerical procedures.While the purification techniques suggested in this draft are expected tomitigate some
problems in this regard, the effect on an iterative proceduremay be dramatic. For this reason,NEVPT2 and its
approximationsmay be the preferredmethod for usewith quantum computers. The strongly contracted
equations that explicitly define the corrections to the energy are given in appendix A of [102], and cumulant
reconstructionmethodsmay be used directly to form approximations as dictated in [111]. The above equations
can be used to derive cumulant based approximations for up to the 4-RDM fromusing only the 2-RDMby
setting the irreducible three- and four-particle componentsΔ3 andΔ4 to 0. Alternatively,more sophisticated
approximation schemes have been developed in the context of RDM theorywithin traditional quantum
chemistry [112, 113].

8. Conclusion

Reducing the number of experiments required in the partial tomography step of VQE and other hybrid
algorithms is necessary for hybrid classical/quantumalgorithms to become useful simulation tools. In this work
we proposed using representability conditions on fermionicmarginals as a route towards reducing the number
ofmeasurements required in aVQEoperator averaging step. Directlymeasuring themarginals provides the
information required to integrate the results fromhybrid quantumalgorithmswith classical quantum
simulationmethods.

Fermionic representability conditionswere used in twomajors ways: (1) re-expressing the Pauli sum
Hamiltonian in a formwhere the total variance isminimized given afixed state and (2) designing projection
techniques based on necessary conditions on 2-marginals. Both techniques have shown significant promise
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towardminimizing the total number ofmeasurements and reducing stochastic noise seen from sampling the
quantum resources.

The SDPprojection techniques are especially attractive because they are constructed to return physical
states.We have observed the restoration of physicality when a pure-state is corrupted by single-qubit error
channels.More significant representability conditions based on positivity of elements of the 3-RDMmay
providemore accurate reconstruction under noise. Another area that is especially exciting is the application of
pure state constraints in the reconstruction procedure. The conditions discussed in this work do not constrain
themarginal to be integrated from a pure state. As a result, the positivity constraints likely do little for the
preservation of physicality as compared to the equality representability constraints, such as fixed number
operator and constrained total spin. Pure-states could potentially further reduce systematic errors associated
with gates.

We fully expect that further investigation of representability conditionswith realistic systems,more realistic
errormodels, and performant numerical implementations will demonstrate the utility ofmeasuringmarginals
for quantum simulation using hybrid classical/quantum algorithms.
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AppendixA. Structure of RDMs

The SDP for reconstructing a noisy 2-RDMhas significant block diagonal structure for chemical problems. The
block structure of the 2-RDMreflects the symmetries of theHamiltonian. Therefore, the 2-RDMcan be blocked

according to á ñŜz , á ñS2 , á ñn , and any spatial symmetry groups. For example, time-reversal symmetry implies spin-
adapted 1-RDMwhen a position space basis is used and provides additional constraints whenmomentum is a
good quantumnumber. ForGaussian basis sets commonly used in quantum chemistry the time-reversal
invariant spin-free quantum chemicalHamiltonian implies the following block structure: the total 1-RDMand
1-Hole-RDMcan be blocked intoα andβ spin blocks
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while the two particlematrices can be blocked as follows
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, , b b
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, and b a

b aD2
,
, have linear sizes of rs

2. In practice we can reduce the size of the

a a
a aD2
,
, and b b

b bD2
,
, blocks by noting that these tensors are spanned by (rs choose2) basis antisymmetric functions

instead of rs
2 symmetric functions. The b a

b aD2
,
, block is removed as it can bemapped in a one-to-one fashion to

the a b
a bD2
,
, block rendering it redundant. The corresponding blocks in theHamiltonian correspond to the

antisymmeterized integrals. The 2Qmatrix has the same block structure. The 2Gmatrix has slightly less block
structure
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where the block sizes are r2 s
2, rs

2, and rs
2 respectively.

Appendix B.Observables from the 2-RDMand 1-RDM

In this workwemake use of the fact that a number of important observables are linear functionals of the 2-RDM
and 1-RDM. In this sectionwe enumerate these relationships for clarity.

The energy can of a chemical Hamiltonian can be expressed as a linear function of the 1-RDMand 2-RDM.
Consider a general chemicalHamiltonian in second quantization

å å= + ( )† † †H h a a V a a a a
1

2
, B1

ij
ij i j

pqrs
pqrs p q s r

where hij andVpqrs are the one- and two-electron integral tensors.When evaluating the expected value of the
Hamiltonian á ñH the dependence on the 1- and 2-RDMnaturally emerges

å å

å å

á ñ= á ñ + á ñ
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For the calculations depicted infigure 4 the total angularmomentum S2, projected angularmomentum Sz,
and the particle number n operators are used as linear constraints in the SDP. Just like the energy, these operators
are linear functionals of the 1- and 2-RDMs. To see this we express each component of the aforementioned
operators as sums of fermionic operators resulting in polynomials of rank-4 and rank-2

å=
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m is the total number of spin orbitals, andα (β) denotes the two eigenfunctions of the z-angularmomentum
operator for a single fermion. The expected value of each operator can be determined by summing over the
indicated elements of the 2-RDMand 1-RDM.

AppendixC.Mapping conditions and trace conditions

The linear constraints in the SDP-projection SDP include a trace constraint on the 2-RDM,mappings between
the 1-RDM, 1-hole-RDM, 2-RDMand 2-hole-RDM, and the 2-RDM to the 2-particle-hole-RDM. These
mappings between themarginals can be derived by rearranging the fermionic ladder operators resulting in the
followingmatrix element equalities:
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The contraction relation between the elements of the 2-RDMand 1-RDM

å = -( ) ( )D n D1 C4
i

r i
p i

r
p2

,
, 1

is included in the set of linear constraints.

AppendixD. Computational implementation of the reconstruction problem

The reconstruction problemoutlined in section 6.2 is formulated as a SDP.Unique to this program is the
sparsity of each constraint relative to the total number of variables in the program. A class of SDP solvers using
the augmented Lagrangian technique have been shown to efficiently solve SDPs of this form in quantum
chemistry and condensedmatter [82, 85, 87, 114–117]. The primal SDP ismathematically stated as

á ñ ( )C Xmin , D1

á ñ = ( )A X b Xs.t , ; 0, D2

whereC is in the space of symmetricmatrices ( ÎC n),X is in the space of positive semidefinitematrices
( Î +X n ), á ñ· ·, is defined as the trace inner product Tr[C·X], b is a vector inm, andA is thematrix of
constraints. The conjugate dual of the primal

( )b ymax D3T

= - ( )S C y A Ss.t ; 0 D4T

thematrixX is the primal variable and the pair (y, S) are the dual variables. In this workwe use the boundary
pointmethod to solve the augmented Lagrangian dual to the SDP [117]. The total boundary point algorithm is as
follows

Repeat until δouter<òouter

Repeat until δinner<òinner

solve for y k: = + + -
s s

( ) ( )A A y A Z C X bT k k1 1

Positive projection step: = - -
s

W A y C X ;T k k1 = +Z Wk ; = -V Wk

d = á ñ -∣∣ ∣∣A V b, k
inner

=+X Vk k1

k=k+1; d = - +∣∣ ∣∣S A y Ck T k
outer

updateσ.

Here the positive and negative projectionsW+ andW− are determined by theminimization

= -+ ∣∣ ∣∣ ( )W W Uargmin D5U 0

which corresponds to generating theW+ by an eigenvalue decomposition and selecting positive eigenvalues
alongwith their associated eigenvectors to generate the positive projection

å ål f f l f f= ñá = ñá+
+

-
-∣ ∣ ∣ ∣ ( )W W . D6

i
i i i

j
j j j

The computationally expensive task is the determination of y in the innerminimization problem. AsAAT does
not change its Cholesky decomposition, it can be formed prior to the calculation and then used to backsolve for
y k. Using the backsolvemethod for the inner loop requires only one step. For larger problems, we can solve the
inner loopwith the conjugate gradientmethod and thusmust set the inner stopping òinner condition significantly
below the outer stopping condition òouter. For all SDPs, we use the L2-normof the primal error á ñ -∣∣ ∣ ∣∣A X b 2 as
δouter. All SDPswere stoppedwhen δouter fell below 1.0×10−8 or the number of outer iterations reachedfive-
thousand.

Appendix E. Constrained observables

To further examine the effects of the four projection techniques proposedwe examined theMSE as a function of
noise in theGaussian errormodel and type of projection procedure used. TheGaussian errormodel does not
preclude a positive semidefinite 2-RDMand thus restoration of physical symmetries such as positive-
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Figure 5.Themean-squared-error (MSE) in the estimators for energy á ñH , total spin á ñS2 , projected spin á ñSz , and particle number
á ñn forH2 over one-hundred samples.MSE is decomposed into variance (clear bars) and bias (solid bars).

Figure 6.Themean-squared-error (MSE) in the estimators for energy á ñH , total spin á ñS2 , projected spin á ñSz , and particle number
á ñn forH4 over one-hundred samples.MSE is decomposed into variance (clear bars) and bias (solid bars).
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semidefinite-ness, constrained spin-, and particle-numbers are expected to increase the observed energy of the
2-RDMwith respect to the uncorrected noisy 2-RDM.
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