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Abstract
A2DHeisenberg ferromagnet with exchange J and randommagnetic anisotropy of strength D JR 
has been studied. Analytical theory for the dependence of the average size of a pinned skyrmion on the
magneticfieldH, and for stability of such skyrmions on a lattice, has been developed. It has been
complemented by numerical studies of 2D lattices containing up to 40million spins. At lowfields the
average size of the skyrmion,λ, is determined by the average size of Imry–Madomains. On increasing
thefield the skyrmions first shrink, with D HRl µ , and then collapse atfields distributed around

H Dc R
4 3µ . The concentration of the skyrmions goes downwith thefield as H Hexp c

1

2
3 2-[ ( ) ].

1. Introduction

Studies of systemswith quenched randomness go back to the seminal paper of Imry andMa (IM) [1]who
observed that static disorder, nomatter howweak, destroys the long-range order in a systemwith any
continuous-symmetry order parameter in less than four dimensions. The resulting state has received the name
of IMdomains. The IM argument has beenwidely used in condensedmatter in application to randommagnets
[2], arrays ofmagnetic bubbles [3], magnetic flux lattices in superconductors [4], superfluidHe-3 [5],
superconductor–insulator transition [6], etc. Later analytical studies based upon renormalization group and
replica-symmetry breakingmethods [7–9] suggested that the ordering can bemore robust against static
randomness, leading to a vortex-free Bragg glass state with an algebraic decay of correlations. Numerical work
on systemswith quenched randomness [10–12], from early on, uncovered strong non-equilibrium effects.

More recently it was found [13] that onset of the irreversible (or glassy) behavior in the presence of a static
randomfield is determined by topology. It depends on the absence or presence of topological defects in the
model, as well as onwhether the defects are singular or not. The latter is determined by the relation between the
dimensionality of space d and the number n of the components of the order parameter, e.g., a fixed-length spin
field S r( ). At n d 1> + , when topological defects are absent, the behavior is reversible and is characterized by
the exponential decay of correlations in accordance with the IMargument. At n d the presence of topological
defects leads to strongmetastability and glassy behavior. At n=d+1, when topological defects are non-
singular, the systempossesses weakmetastability and exhibits a narrowhysteresis loop. This is the case of a two-
dimensional ferromagnet inwhich topological defects are skyrmions.

Magnetic skyrmions have been subject of intensive recent theoretical and experimental research [14–16] due
to their promise for developing topologically protected data storage.Mathematically they emerge as solutions
[17–19] of the continuous-fieldHeisenberg exchangemodel in two dimensions with the energy
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that takes values Q 0, 1, 2=   , and so on. They describe topologically different non-singularmappings of the
unit-radius sphere in the spin space onto the (x, y) geometrical space. Q 1=  correspond to skyrmions and
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antiskyrmions, while greater Q∣ ∣describemore complex topological objects. In a pure exchangemodel on a
lattice, skyrmions collapse due to violation of the scale invariance by the lattice [20]. Anisotropy, dipole–dipole
interaction (DDI), andmagnetic field can stabilize significantly largemagnetic bubbles with skyrmion topology
[21–23], while stability of small skyrmions requires other thanHeisenberg exchange coupling or a non-
centrosymmetric systemwith largeDzyaloshinskii–Moriya interaction [24–28]. It was shown that quantum
fluctuations help stabilize skyrmions as well [29].

In this paperwe show that weak quenched randomness provides stabilization of skyrmions in a generic 2D
Heisenbergmodel on a lattice. Tomake ourmodel closer to reality we consider randomanisotropy (RA) rather
than randomfield. In afilm geometry theDDI effectively provides an easy-plane anisotropy. To elucidate the
effect of the RAwe shall assume that the RA energy andZeeman interaction of spins with the external field
applied perpendicular to thefilm are large compared to theDDI. In this case the effect of theDDI can be
neglected. The physicalmechanism of the stabilization of skyrmions in such amodel is this. Fluctuations of the
RA create randomly oscillating energy landscape of the average depth that scales as the square root of the number
of spins, N 2lµ , on a spatial scaleλ. Consequently a skyrmion of sizeλfinds a potentialminimumof depth
proportional toλ. The Zeeman energy of the skyrmion in the field opposite to itsmagnetization scales asλ2. This
provides theminimumof the energy onλ. Discreteness of the crystal lattice adds negative exchange energy
proportional to 1/λ2 [20]. Thismakes the skyrmions eventually collapse on increasing the field.We beginwith
the analytical approach and then confirmour picture by numerical studies of spin lattices containing up to
4×107 spins. Properties of the skyrmion glass that we observe in the numerical experiment agree well with our
analyticalfindings.

2. Analytical theory

Weconsider a constant-length spin field S(r)with the energy
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wheren(r) is a unit vector of the RA andH is themagnetic field applied in the z-direction. Parameters S,α, and
βR are related to the parameters of the latticemodel with the energy
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via S=s/a2,α=Ja4, and D a2R R
2b = , where a is the lattice spacing. AtH=0 the systembreaks into IM

domains [1]which corresponds to afinite ferromagnetic correlation length [2, 19], R a J Df Rµ . The argument
goes like this. If a significant rotation of themagnetizationwere to occur on a scaleR, the density of the exchange
energywould be of order J/R2, whilefluctuations of the RA energy density, that provide the coherent anisotropy,
would be of order D R R a D aRR R

2 2 1 2- = -( )[( ) ] ( ).Minimization of the sumof the two energies onR yields
the above scaling ofRf.

This argument should bemodified in the presence of topological defects. Such defects in the isotropic 2D
exchangemodel are Belavin–Polyakov (BP) skyrmions. In a continuous spin-field approximation, their energy,
due to the scale invariance, does not depend on the skyrmion sizeλ. Notice that any interaction that breaks the
scale invariance, including theRA, destroys the BP solution [30]. However, when aweak interaction is turned
on, the skyrmionmay still be considered an approximate solution. It will begin to expand or collapse towards the
value ofλ that corresponds to the energyminimum. Thismust apply to theRA andZeeman energies that are
typically small compared to the exchange interaction.

The z-component of the spin-field of the skyrmion located at the origin in the background of spins looking
up is given by [19] S S x y x yz

2 2 2 2 2 2l l= + - + +( ) ( ). In the presence of thefield HzH = ˆ it generates
Zeeman energy

E rH S S SH Ld 4 ln , 4Z z
2 2ò p l l= - - =( ) ( ) ( )

wherewe assumedλ= L.WritingEZ asHSπR
2(λ) one can define themagnetic radius of the skyrmion,

R L2 ln1 2l l l=( ) ( ). In the presence of the RA the system size L should be replaced by the length of orderRf or
Ja/(sH), whichever is smaller. Inwhat followswewill approximate themagnetic size of the skyrmion and its
Zeeman energy by

R l E lHS lsH a2 , 4 4 , 5Z
2 2l l p l p l= = =( ) ( ) ( )

where l is a logarithmic factor that we shall treat as a constant.
Statistical fluctuations of the RA result in a coherentmagnetic anisotropy on the scaleR(λ). Aswe shall see its

strength is proportional to the square root of the number of spins on that scale, which is linear onR(λ). The
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corresponding pinning energy is given by the statistical dispersion of the anisotropy energy in the region of size
rd2ò matching the skyrmion sizeR(λ),

E r rn S n S
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To calculate this, it is convenient to switch from thefixed-length anisotropy vectorn to aGaussian distributed
vector h r n rµ( ) ( ) of the average strength h 2Rb= , having

h h h ar r r r
1

3
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withΓ(0)=1 and ar ra 0 dG  ¢ -  [( ) ]defined as a nascent delta function.Writing h h h há ¢ ¢  ñ =a b d g

h h h h h h h h h h h há ¢ ¢ñá  ñ + á ¢ ñá ¢ ñ + á ¢ ñá ¢ ña b d g a d b g a g b d , where h h r h h r,¢ = ¢  = ( ) ( ), one obtains from
equation (6) E aS rdA R

1

3
2 2òb= - for the average fluctuation of the RA in the area of size rd2ò .We use the fact

that S(r) in a skyrmion changes on a scaleR(λ) that ismuch greater than the scale, a, of the RA change, which
decouples the averaging overh(r) from S(r). Replacing rd2ò withπR2(λ), we have
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in accordancewith our expectation that fluctuation of the RA energy is linear on the skyrmion size.
The discreteness of the lattice breaks the scale invariance of the exchange interaction. The corresponding

energy,

E Js a2 3 , 9l
2 2p l= -( )( ) ( )

has been computed in [20].
Introducing
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it is convenient towrite the total energy in the form
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Figure 1.Dependence of energy (12) on the skyrmion size atH<Hc (green),H=Hc (blue), andH>Hc (red).
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where H H Hc=¯ , cl l l=¯ , and
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Equation (12) describes three competing effects. Thefirst term is a positive Zeeman energy that tends to shrink
the skyrmion because itsmagneticmoment is opposite to the field. The second term is a negative pinning energy
due to thefluctuations of RA. It tends to expand the skyrmion. The third term is a negative lattice energy that
tends to collapse the skyrmion. The dependence of the total energy onλ is shown infigure 1. It has amaximum
and aminimumat H 1<¯ , and an inflection point at H 1=¯ when 1l =¯ . At H 1¯ theminimum is dominated
by thefirst two terms in equation (12), leading to

H a l
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Note that the skyrmion size given by this equation is bound by the length of orderRf at smallH. The energy
minimumdisappears atH=Hc, which corresponds to skyrmion collapse atH>Hc andλ<λc.

Equation (8) defines the average pinning energy for a skyrmion of sizeλ that we can denote as EAá ñ. In fact,
this pinning energy isfluctuating. It can be shown that in ourmodel the distribution ofEA is Gaussian, described
by the function

Figure 2. Skyrmion forest in the 2DRAmagnet withDR/J=0.03 and 32002 spins, obtained by applying a negativefieldH, in small
steps, to a random initial spin state atH=0.Upper panel: weakfield, H J 0.0002=∣ ∣ , many large skyrmions, 21lá ñ ~ . Lower panel:
stronger field, H J 0.000 82=∣ ∣ , most of the skyrmions have already collapsed, the survivors shrank, 6.8lá ñ ~ . Images show the
z-component of themagnetization.
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Introducing p E EA Aº - á ñ, one canwrite the normalized distribution for the fluctuating factor p as
F p p2 exp 2p

1 2 2p= --( ) ( ) ( ).With account offluctuations, the skyrmion-collapse fieldHc given by
equation (10) acquires thefluctuating factor p4/3 for p>0, whereasHc=0 (no pinning) for p<0. That is,
Hc=p4/3H0, whereH0 is the oldHc given by equation (10).We shall see thatH0 differs from Hcá ñby a numerical
factor. The normalized distribution for H H pc 0

4 3z º = with p>0 can bewritten as
F F p pd dpz z z z=z ( ) ( ( ))( ( ) ).With p=ζ3/4 and pd d 3 4 1 4z z= -( ) one obtains
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From this formula 2 7 6 0.8312 3z pá ñ = G ( ) , i.e., H H0.831c 0á ñ  .
When themagnetic fieldH increases, skyrmionswithHc<H collapse. If atH= 0 the concentration of

skyrmions is fS(0), then their concentration at nonzerofield is given by

DR  = 0.03,  H = -0.0002,  mZ = -0.0840049,  Q = -4.99968,  fS  = 0.000015

500

400

300

200

100

0
0

0

0

0

0

0

0
8

0 100 200 300 400 500

100 200 300 400 500

Figure 3.Correlation betweenmagnetizationmaxima (upper panel) and density of the topological charge (lower panel). Red (positive)
corresponds to skyrmions, while blue (negative) corresponds to antiskyrmions. The charge density beyond the plotting range is shown
by uniform color. Adding charges of four skyrmions and nine antiskyrmions (that include two biskyrmions), one arrives toQ=−5
in accordancewith the displayed value ofQ=−4.999 68 obtained numerically by integration over thewhole area.
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where H HH 0z º . For strongfields, ζH?1, equation (17) simplifies to
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Notice that fS(H) depends on fS(0), that is, it depends on the initial conditions.
These results, including theDR/H scaling of the average skyrmion size at intermediate fields, equation (14),

are supported by the numerical experiment on spin lattices, see below. In comparing our theory with numerical
results we are after functional dependences of physical quantities on the strength of quenched disorder.Wefind
good agreement between theory and numerical experiment, thus confirming our picturewith a high degree of
confidence.

3.Methods

Weminimize the energy of the spin systemnumerically in the presence of the exchange, the RAwhich direction
is chosen randomly at each lattice site, and the externalfield on 2D lattices of size L?Rf. Our numerical

Figure 4.Evolution of the average skyrmion size and the average distance between the skyrmions on changing thefield.

Figure 5.Dependence of the average skyrmion size on D HR ∣ ∣.
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method combines sequential rotations of spins towards the direction of the local effectivefield, JH si i ij j,eff = å +
h Hj + , with energy-conserving spinflips: Hs s H H s2i i i i i i,eff ,eff ,eff

2 -( · ) , appliedwithprobabilitiesγ and
1 g- respectively;γplaying the role of the relaxation constant.High efficiency of thismethod for glassy systems
under the condition 1g  has beendemonstrated byus in the past, see, e.g., [13]. The software usedwasWolfram
Mathematica that allows compilation (including usage of an external C compiler that doubles the speed) and
parallelization. Themainoperating computerwas a 20-coreDell PrecisionT7610Workstation. The largest-scale
computation, that lasted a fewdays, has beendone ona square lattice containing 6400×6400 spins. Skyrmions
have been countedbydetecting spotswheremz reaches the value 1 andby computing topological charge around
such spots.

4.Numerical results

Webegin atH= 0 and apply the field in the negative direction, in small steps, each timeminimizing the
energy of the system. Topological charge,Q, computed on the lattice by using discretized formof equation (1),
is very close to the integer. It is typically small and is due to the statistical difference between the numbers of
skyrmions and antiskyrmions. In counting themwe do not distinguished between the two. The total number
of skyrmions and antiskyrmions is found by looking at themaxima of the z-component of themagnetization,
mz. AtH=0 skyrmions are comparable in size to the IMdomains and are difficult to identify.When the field
is applied, the well-separated compact skyrmions with themagnetization opposite to the background emerge,
see figure 2.Most of the observed topological defects are simple skyrmions and antiskyrmions withQ=±1,
while a small fraction are biskyrmions. At small fields concentration of skyrmions is high. As the absolute
value of the field increases, skyrmions shrink and begin to collapse. Correlation between themagnetization
maxima and the density of the topological charge, confirming that we are dealing with skyrmions, is illustrated
in figure 3.

The average skyrmion size in aweakfield is independent ofH, see figure 4, in accordance with our
expectation that it is determined byRf ∼ (J/DR)a atH=0. As thefield continues to increase in the negative
z-direction, the skyrmions go down in size and become less abundant. The average skyrmion separation d shown
infigure 4 is defined as f1 S , where fS is concentration of skyrmions, that is, their number per spin. On

decreasing the field back to zero no new skyrmions are formed but the existing skyrmions grow in size to adjust
to the pinning potential. The sizes of skyrmions in the numerically obtained skyrmion forest were evaluated by
computing second derivatives ofmz at themaxima and comparing it with the knownprofile of the BP skyrmion.

The dependence of the average skyrmion size on D HR ∣ ∣on increasing thefield is shown infigure 5. In
accordancewith analytical results, it is close to linear in the intermediate field range, saturates at smallfields, and
shows collapse of the smallest skyrmions at highfields. Linear part of the graph allows one to extract the
parameter l. In accordance with expectation, it has aweak (apparently logarithmic) dependence onDR.
Comparing the slope infigure 5with equation (14) one obtains l 0.4» . Note that at very smallD/J (largeRf) the
finite size of the systembegins to affect numerical results.

Figure 6.Concentration of skyrmions as function of themagneticfield andRA strength.
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Figure 6 shows concentration of skyrmions, fS, as function ofH andDR. The proportionality of the fitting
exponent to H DR

3 2 2∣ ∣ is in a remarkable agreementwith the distribution given by equation (18), where
H H l H D16 2H R

1

2
3 2 1

2 0
3 2 3 2 2z p= =(∣ ∣ ) ∣ ∣ . Substituting here l= 0.4 one obtains l16 2 50p » . The error in

our evaluation of the numerical factorB in thefitting exponent infigure 6 corresponds to a difference by a factor
0.8 betweenH0 of equation (10) derivedwithin continuous theory andH0 that follows from the numerical
experiment on a lattice.

5. Conclusion

Wehave studied properties of a skyrmion glass created by RA and themagnetic field in a two-dimensional
Heisenberg ferromagnet. Good understanding of the field dependence of the concentration of skyrmions and
their average size has been developed by analytical and numericalmethods that agreewith each other.Our
findings suggest that a significant concentration of stable skyrmions can be achieved in 2D ferromagnets with
quenched randomness. They can be tested in experiments onweakly disorderedmagnetic films.
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