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Abstract

A 2D Heisenberg ferromagnet with exchange J and random magnetic anisotropy of strength Dy < J
has been studied. Analytical theory for the dependence of the average size of a pinned skyrmion on the
magnetic field H, and for stability of such skyrmions on alattice, has been developed. It has been
complemented by numerical studies of 2D lattices containing up to 40 million spins. Atlow fields the
average size of the skyrmion, ), is determined by the average size of Imry—Ma domains. On increasing
the field the skyrmions first shrink, with A o< Dy /H, and then collapse at fields distributed around

H,. x D{é/ 3. The concentration of the skyrmions goes down with the field as exp[ — % (H/H,)*/.

1. Introduction

Studies of systems with quenched randomness go back to the seminal paper of Imry and Ma (IM) [1] who
observed that static disorder, no matter how weak, destroys the long-range order in a system with any
continuous-symmetry order parameter in less than four dimensions. The resulting state has received the name
of IM domains. The IM argument has been widely used in condensed matter in application to random magnets
[2], arrays of magnetic bubbles [3], magnetic flux lattices in superconductors [4], superfluid He-3 [5],
superconductor—insulator transition [6], etc. Later analytical studies based upon renormalization group and
replica-symmetry breaking methods [7-9] suggested that the ordering can be more robust against static
randomness, leading to a vortex-free Bragg glass state with an algebraic decay of correlations. Numerical work
on systems with quenched randomness [10—12], from early on, uncovered strong non-equilibrium effects.

More recently it was found [13] that onset of the irreversible (or glassy) behavior in the presence of a static
random field is determined by topology. It depends on the absence or presence of topological defects in the
model, as well as on whether the defects are singular or not. The latter is determined by the relation between the
dimensionality of space d and the number 7 of the components of the order parameter, e.g., a fixed-length spin
field S(r). Atn > d + 1, when topological defects are absent, the behavior is reversible and is characterized by
the exponential decay of correlations in accordance with the IM argument. At n < d the presence of topological
defects leads to strong metastability and glassy behavior. Atn = d + 1, when topological defects are non-
singular, the system possesses weak metastability and exhibits a narrow hysteresis loop. This is the case of a two-
dimensional ferromagnet in which topological defects are skyrmions.

Magnetic skyrmions have been subject of intensive recent theoretical and experimental research [14—16] due
to their promise for developing topologically protected data storage. Mathematically they emerge as solutions
[17-19] of the continuous-field Heisenberg exchange model in two dimensions with the energy
% f d?r (8s/dr,)?, where s is a three-component spin field of unit length and r,, = x, . An arbitrary spin-field
configuration, s(r), is characterized by the topological charge,

_dr Osp Os. [ dxdy Os  Os
Q= fgfaﬂsafabca_ma_m = f i s a_x X 3_}/ (D

that takes values Q = 0, £1, £2, and so on. They describe topologically different non-singular mappings of the
unit-radius sphere in the spin space onto the (x, ) geometrical space. Q = £ 1 correspond to skyrmions and
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antiskyrmions, while greater | Q| describe more complex topological objects. In a pure exchange model on a
lattice, skyrmions collapse due to violation of the scale invariance by the lattice [20]. Anisotropy, dipole—dipole
interaction (DDI), and magnetic field can stabilize significantly large magnetic bubbles with skyrmion topology
[21-23], while stability of small skyrmions requires other than Heisenberg exchange coupling or a non-
centrosymmetric system with large Dzyaloshinskii—-Moriya interaction [24-28]. It was shown that quantum
fluctuations help stabilize skyrmions as well [29].

In this paper we show that weak quenched randomness provides stabilization of skyrmions in a generic 2D
Heisenberg model on alattice. To make our model closer to reality we consider random anisotropy (RA) rather
than random field. In a film geometry the DDI effectively provides an easy-plane anisotropy. To elucidate the
effect of the RA we shall assume that the RA energy and Zeeman interaction of spins with the external field
applied perpendicular to the film are large compared to the DDI. In this case the effect of the DDI can be
neglected. The physical mechanism of the stabilization of skyrmions in such a model is this. Fluctuations of the
RA create randomly oscillating energy landscape of the average depth that scales as the square root of the number
of spins, N oc X, on a spatial scale \. Consequently a skyrmion of size A finds a potential minimum of depth
proportional to \. The Zeeman energy of the skyrmion in the field opposite to its magnetization scales as A*. This
provides the minimum of the energy on \. Discreteness of the crystal lattice adds negative exchange energy
proportional to 1/A* [20]. This makes the skyrmions eventually collapse on increasing the field. We begin with
the analytical approach and then confirm our picture by numerical studies of spin lattices containing up to
4 x 10 spins. Properties of the skyrmion glass that we observe in the numerical experiment agree well with our
analytical findings.

2. Analytical theory

We consider a constant-length spin field S(r) with the energy

2
— 2| & ) _ Brey . _H.
H = f d r[z (aﬂS) CORE-L s) H s], ©)
where n(r) is a unit vector of the RA and H is the magnetic field applied in the z-direction. Parameters S, o, and
Or are related to the parameters of the lattice model with the energy

H1=—ézsi'sj—%Z(ni'si)z—H'ZSi 3)
i i i

viaS = s/a’,a = Ja*,and Bz = 2Dga?, where ais the lattice spacing. At H = 0 the system breaks into IM
domains [1] which corresponds to a finite ferromagnetic correlation length [2, 19], Ry /a oc J /Dg. The argument
goes like this. If a significant rotation of the magnetization were to occur on a scale R, the density of the exchange
energy would be of order J/R?, while fluctuations of the RA energy density, that provide the coherent anisotropy,
would be of order —(Dg/R*)[(R/a)*]'/> = —Dg/(aR). Minimization of the sum of the two energies on R yields
the above scaling of Ry.

This argument should be modified in the presence of topological defects. Such defects in the isotropic 2D
exchange model are Belavin—Polyakov (BP) skyrmions. In a continuous spin-field approximation, their energy,
due to the scale invariance, does not depend on the skyrmion size \. Notice that any interaction that breaks the
scale invariance, including the RA, destroys the BP solution [30]. However, when a weak interaction is turned
on, the skyrmion may still be considered an approximate solution. It will begin to expand or collapse towards the
value of A that corresponds to the energy minimum. This must apply to the RA and Zeeman energies that are
typically small compared to the exchange interaction.

The z-component of the spin-field of the skyrmion located at the origin in the background of spins looking
upisgivenby[19] S, /S = (x? + y2 — X) /(x> + y> + M?).In the presence of the field H = HZ it generates
Zeeman energy

E, = — f d2rH (S, — S) = 4xSHX In(L/\), 4

where we assumed A < L. Writing Ez as HSmR?()\) one can define the magnetic radius of the skyrmion,

R(\) = 2X In'/2(L/\). In the presence of the RA the system size L should be replaced by the length of order Ror
Ja/(sH), whichever is smaller. In what follows we will approximate the magnetic size of the skyrmion and its
Zeeman energy by

R\ = 2\I, Ez = 4xlHSX = 4nlsH(\/a)?, 5)

where lis alogarithmic factor that we shall treat as a constant.
Statistical fluctuations of the RA result in a coherent magnetic anisotropy on the scale R(\). As we shall see its
strength is proportional to the square root of the number of spins on that scale, which is linear on R(X). The

2
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Figure 1. Dependence of energy (12) on the skyrmion size at H < H,(green), H = H, (blue),and H > H,(red).

corresponding pinning energy is given by the statistical dispersion of the anisotropy energy in the region of size
f d?r matching the skyrmion size R()\),

Ey = —%\K[fd%(n : 3)2]2> - <fd2r(n : S)2>2. )

To calculate this, it is convenient to switch from the fixed-length anisotropy vector n to a Gaussian distributed
vector h(r) o< n(r) of the average strength h = |/ Bz /2, having

(o)) = $Heas L’ = 11/a) @)
withT'(0) = 1and I, o — §[(r' — r")/a] defined as a nascent delta function. Writing (b, hsh h!/) =
(hihg) (hi'Bl) + (hohd) (h5h!) + (hih!) (h3hg'), where i = h(r'), " = h(x"), one obtains from
equation (6) By = — % BraS?,/ f d?r for the average fluctuation of the RA in the area of size f d?r. We use the fact

that S(r) in a skyrmion changes on a scale R(\) that is much greater than the scale, g, of the RA change, which
decouples the averaging over h(r) from S(r). Replacing f d2r with 7 R*(\), we have

E = —gmﬁRszaA _ —ngRszi, ®
a

in accordance with our expectation that fluctuation of the RA energy is linear on the skyrmion size.
The discreteness of the lattice breaks the scale invariance of the exchange interaction. The corresponding
energy,

E = —(Q2nJs?/3)(a/ N, ©)
has been computed in [20].
Introducing
4/3
Ho——F [Dr) (10)
8(4m)/2\ ]
1/6 1/3
Ak
R
itis convenient to write the total energy in the form
E= ER(%HY —ax - &) (12)
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Dg = 0.03, H=-0.0002, m, =-0.790098, Q = 15.0114, A = 21.1432, fs = 1.96289e-5

Dg = 0.03, H=-0.00082, m, =-0.974215, Q =1.00183, A = 6.75831, fs = 2.05078e-6

Figure 2. Skyrmion forest in the 2D RA magnet with Dg/J = 0.03 and 32007 spins, obtained by applying a negative field H, in small
steps, to a random initial spin state at H = 0. Upper panel: weak field, |H|/J = 0.0002, many large skyrmions, (\) ~ 21.Lower panel:
stronger field, |H| /] = 0.000 82, most of the skyrmions have already collapsed, the survivors shrank, (A) ~ 6.8. Images show the
z-component of the magnetization.

where H = H/H,, A = A/, and

1/3 2/3
e () (3

Equation (12) describes three competing effects. The first term is a positive Zeeman energy that tends to shrink
the skyrmion because its magnetic moment is opposite to the field. The second term is a negative pinning energy
due to the fluctuations of RA. It tends to expand the skyrmion. The third term is a negative lattice energy that
tends to collapse the skyrmion. The dependence of the total energy on A is shown in figure 1. It has a maximum
andaminimumat H < 1,and an inflection pointat H = 1when X = 1. At H < 1 the minimum is dominated
by the first two terms in equation (12), leading to

< 4 A 1 SDR)
)\ = —, —_ = —1 —. 14
3H a 6wl ( H 1

Note that the skyrmion size given by this equation is bound by the length of order Ry at small H. The energy
minimum disappears at H = H,, which corresponds to skyrmion collapseat H > H.and A < A.

Equation (8) defines the average pinning energy for a skyrmion of size A that we can denote as (E, ). In fact,
this pinning energy is fluctuating. It can be shown that in our model the distribution of E is Gaussian, described
by the function




10P Publishing

New J. Phys. 20 (2018) 033006 E M Chudnovsky and D A Garanin

Dp =0.03, H=-0.0002, m,=-0.0840049, Q =-4.99968, fs =0.000015

Figure 3. Correlation between magnetization maxima (upper panel) and density of the topological charge (lower panel). Red (positive)
corresponds to skyrmions, while blue (negative) corresponds to antiskyrmions. The charge density beyond the plotting range is shown
by uniform color. Adding charges of four skyrmions and nine antiskyrmions (that include two biskyrmions), one arrivesto Q = —5
in accordance with the displayed value of Q = —4.999 68 obtained numerically by integration over the whole area.

FEA(EA) = ;CXP(— Eg ) (15)
27 (Ey)? 2(E)?

Introducing p = —E, /(E), one can write the normalized distribution for the fluctuating factor p as

E,(p) = (27)~ /2 exp(—p?/2). With account of fluctuations, the skyrmion-collapse field H, given by

equation (10) acquires the fluctuating factor p**forp > 0, whereas H, = 0 (no pinning) for p < 0. Thatis,

H, = p*/*Hy, where Hyis the old H, given by equation (10). We shall see that H, differs from (H,) by a numerical
factor. The normalized distribution for { = H, /H, = p*/* withp > 0 can be written as

F:(¢) = E,(p(O))(dp({) /d¢). With p = ¢**and dp/d¢ = (3/4)¢~'/* one obtains

_ 23 _en
FC(C)_\/;4C1/4eXp( 5 ), ¢>0. (16)

From this formula (¢) = 2*/°I'(7/6) /<7 ~ 0.831,i.e., (H.) ~ 0.831H,.
When the magnetic field H increases, skyrmions with H, < H collapse. Ifat H = 0 the concentration of
skyrmions is f5(0), then their concentration at nonzero field is given by
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Figure 4. Evolution of the average skyrmion size and the average distance between the skyrmions on changing the field.

30 Hysteresis in 2D random-anisdtropy model '
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Figure 5. Dependence of the average skyrmion size on Dy /|H]|.
f(H) G %0 i
—1- f F(O) = f F-(¢) = Erfe| 22|, (17)
£5(0 0 i V2

where (;; = H/H,. For strong fields, (; >> 1, equation (17) simplifies to

H 3/2
fs () =~ \/Z%exp —CL . (18)
fs©@ ~ N ¢y 2

Notice that fo(H) depends on f5(0), that is, it depends on the initial conditions.

These results, including the Dr/H scaling of the average skyrmion size at intermediate fields, equation (14),
are supported by the numerical experiment on spin lattices, see below. In comparing our theory with numerical
results we are after functional dependences of physical quantities on the strength of quenched disorder. We find
good agreement between theory and numerical experiment, thus confirming our picture with a high degree of

confidence.

3. Methods

We minimize the energy of the spin system numerically in the presence of the exchange, the RA which direction
is chosen randomly at each lattice site, and the external field on 2D lattices of size L >> Ry Our numerical

6
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Figure 6. Concentration of skyrmions as function of the magnetic field and RA strength.

method combines sequential rotations of spins towards the direction of the local effective field, H; . = >, Jiis; +
h; + H, with energy-conserving spin flips: s; — 2(s; - H; eft) Hi ft / erff — s;, applied with probabilities yand

1 — ~y respectively; y playing the role of the relaxation constant. High efficiency of this method for glassy systems
under the condition ¥ < 1hasbeen demonstrated by us in the past, see, e.g., [13]. The software used was Wolfram
Mathematica that allows compilation (including usage of an external C compiler that doubles the speed) and
parallelization. The main operating computer was a 20-core Dell Precision T7610 Workstation. The largest-scale
computation, that lasted a few days, has been done on a square lattice containing 6400 x 6400 spins. Skyrmions
have been counted by detecting spots where 11, reaches the value 1 and by computing topological charge around
such spots.

4. Numerical results

Webegin at H = 0 and apply the field in the negative direction, in small steps, each time minimizing the
energy of the system. Topological charge, Q, computed on the lattice by using discretized form of equation (1),
is very close to the integer. It is typically small and is due to the statistical difference between the numbers of
skyrmions and antiskyrmions. In counting them we do not distinguished between the two. The total number
of skyrmions and antiskyrmions is found by looking at the maxima of the z-component of the magnetization,
m,. At H = 0 skyrmions are comparable in size to the IM domains and are difficult to identify. When the field
is applied, the well-separated compact skyrmions with the magnetization opposite to the background emerge,
see figure 2. Most of the observed topological defects are simple skyrmions and antiskyrmions with Q = +1,
while a small fraction are biskyrmions. At small fields concentration of skyrmions is high. As the absolute
value of the field increases, skyrmions shrink and begin to collapse. Correlation between the magnetization
maxima and the density of the topological charge, confirming that we are dealing with skyrmions, is illustrated
in figure 3.

The average skyrmion size in a weak field is independent of H, see figure 4, in accordance with our
expectation that it is determined by Ry~ (J/Dgr)aat H = 0. As the field continues to increase in the negative
z-direction, the skyrmions go down in size and become less abundant. The average skyrmion separation d shown
in figure 4 is defined as 1 / \/]?s , where fsis concentration of skyrmions, that is, their number per spin. On
decreasing the field back to zero no new skyrmions are formed but the existing skyrmions grow in size to adjust
to the pinning potential. The sizes of skyrmions in the numerically obtained skyrmion forest were evaluated by
computing second derivatives of m1, at the maxima and comparing it with the known profile of the BP skyrmion.

The dependence of the average skyrmion size on Dy /|H| on increasing the field is shown in figure 5. In
accordance with analytical results, it is close to linear in the intermediate field range, saturates at small fields, and
shows collapse of the smallest skyrmions at high fields. Linear part of the graph allows one to extract the
parameter . In accordance with expectation, it has a weak (apparently logarithmic) dependence on Dp.
Comparing the slope in figure 5 with equation (14) one obtains / ~ 0.4. Note that at very small D/J (large Ry) the
finite size of the system begins to affect numerical results.

7
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Figure 6 shows concentration of skyrmions, fs, as function of H and Dg. The proportionality of the fitting
exponent to |HP/2 / D} is in a remarkable agreement with the distribution given by equation (18), where

% i{z = §(|H|/H0)3/2 = 167r\/§|H|3/2/D,§.Substitutingherel: 0.4 one obtains 16m+/2] = 50. The error in

our evaluation of the numerical factor Bin the fitting exponent in figure 6 corresponds to a difference by a factor
0.8 between Hj of equation (10) derived within continuous theory and H,, that follows from the numerical
experiment on a lattice.

5. Conclusion

We have studied properties of a skyrmion glass created by RA and the magnetic field in a two-dimensional
Heisenberg ferromagnet. Good understanding of the field dependence of the concentration of skyrmions and
their average size has been developed by analytical and numerical methods that agree with each other. Our
findings suggest that a significant concentration of stable skyrmions can be achieved in 2D ferromagnets with
quenched randomness. They can be tested in experiments on weakly disordered magnetic films.
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