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Abstract

We describe a compact, robust and versatile system for studying the macroscopic spin dynamics in a
spinor Bose-Einstein condensate. Condensates of 8’Rb are produced by all-optical evaporation in a
1560 nm optical dipole trap, using a non-standard loading sequence that employs an ancillary

1529 nm beam for partial compensation of the strong differential light-shift induced by the dipole trap
itself. We use near-resonant Faraday rotation probing to non-destructively track the condensate
magnetization, and demonstrate few-Larmor-cycle tracking with no detectable degradation of the
spin polarization. In the ferromagnetic F = 1 ground state, we observe the spin orientation between
atoms in the condensate is preserved, such that they precess all together like one large spin in the
presence of a magnetic field. We characterize this dynamics in terms of the single-shot magnetic
coherence times 77 and 7 3, and observe them to be of several seconds, limited only by the residence
time of the atoms in the trap. At the densities used, this residence is restricted only by one-body losses
set by the vacuum conditions.

1. Introduction

Spinor Bose—Einstein condensates (SBECs) are rich systems exhibiting coherent matter-wave behavior together
with spin physics. When spatially extended, SBECs can show topological and kinematic features including
vortices [1], skyrmions [2], Dirac monopoles [3] and magnon quasiparticles [4]. Much work has been dedicated
to the emergence and dynamics of spin structures, including spontaneous symmetry breaking [5, 6], domain
formation [7, 8] and spin texture development [9]. Less studied is spin dynamics in the so-called ‘single-mode’
(SM) regime, in which low density and tight confinement make spin structure energetically costly. In this regime
all spin states share the same spatial mode and the single-mode approximation (SMA) is adopted to simplify the
description of the system [10—12].

Prior work with SM SBECs has focused on condensates with zero mean spin polarization. For example,
initial states with mp = 0 give rise to twin Fock states [13], spin squeezing and entanglement [14—16], all relevant
for quantum information and metrology. Studies with polarized SBECs in two-dimensional [17] and one-
dimensional [18] traps show coherence times that increase as the geometry approaches the SM scenario. Indeed,
one may surmise that for a polarized ferromagnetic SM SBEC only one magnetic domain is held and the
magnetic coherence, or the expected value of the macroscopic spin, is degraded only by atom losses, this is, no
depolarization mechanism will remain in the single domain SBEC (SD SBEC). This removes an important
limitation of neutral atoms, which otherwise suffer from decoherence resulting from coupling of their internal
and external degrees of freedom [19]. Decoherence is the most significant obstacle for applications in quantum
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information science [20—22] and therefore demonstrating long coherence and scalability of the quantum system,
make the SD SBEC interesting for long-lived entanglement [23-25], spin-squeezing [14, 26], and studies of
quantum non-locality [27]. Additionally, one can profit from the small size of the condensate for applications
like high-resolution magnetic sensing [28, 29].

Here we confirm the SD SBEC shows multi-second magnetic coherence, observing undetectably small
polarization relaxation in a ferromagnetic SBEC. We create spinor condensates with 4 x 10* atomsin the F = 1
ferromagnetic manifold of 8Rb which occupy a single spatial spin domain. Using non-destructive Faraday
rotation probing we observe spin dynamics where the quadratic Zeeman effect modulates the Larmor
precession. This dynamics occurs without dephasing, in contrast to similar experiments where the system breaks
into different domains causing decoherence [18]. In our system only atom losses degrade the macroscopic spin
polarization, giving a spin coherence time equal to the trap lifetime. At the used densities, the lifetime is set only
by one-body losses. The trap lifetime time ~8 s can in principle be extended with better vacuum conditions up to
the three-body loss time /70 s.

This work is organized as follows: section 2 describes our experimental approach to form a spinor
condensate in a polarized state. It is comprised of a minimalist design of the apparatus an all-optical evaporation
in an optical dipole trap (ODT). We also briefly describe our loading technique, which allows us to use the full
available power of the ODT while also exploiting the large differential light-shift produced by the ODT to create
an effective dark MOT.

In section 3 we give evidence the system is well described by the SMA. In section 4 we describe the Zeeman
dynamics of an atomic ensemble in the presence of a magnetic field. In section 5 we describe the non-destructive
Faraday rotation measurement implementation and characterization, which we employ to read out the spin
state of the atoms. Finally in section 6 we show the spinor condensate is immune to most decoherence
mechanisms which allows the spin state to remain coherent on the scale of seconds.

2. Apparatus and state preparation

As shown in figure 1, the vacuum system consists of an all-glass, 9-window enclosure (Octagonal BEC Cell 4,
Precision Glassblowing) in which an ultimate pressure of 10~'" Torr can be maintained with a single pumping
element (TiTan 25SVW, Gamma Vacuum). The glass cell is AR coated for 780 nm and 1560 nm to reach single-
window transmission of 97% and 99% respectively. The ion pump is shielded with a high-permeability
enclosure which reduces the magnetic field produced by its magnets by a factor of ~400, such that the field
around the glass cell is mainly due to the earth’s magnetic field. #’Rb is deposited in the chamber by sublimating
rubidium from dispensers mounted inside (Alvasource-3-Rb87-C, Alvatec). Following activation of the
dispensers the pressure rises to 2 x 10~ '° Torr, which is the typical pressure of the experiment.

The laser system is built up around a single ‘master laser’—a low noise, narrow linewidth laser that serves as a
frequency reference for offset locking of the other lasers. The master laser is a 1560 nm fiber laser (Koheras
Adjustik, NKT Photonics) amplified by an erbium-doped fiber amplifier to a maximum power of 3 W (Boostik,
NKT Photonics), it is frequency-doubled in a periodically poled LINbO; (PPLN) crystal of 50 mm length. The
output at 780 nm has a maximum power of 170 mW and Voigt linewidth of about 4.75(6) kHz. The master
laser is locked 80 MHz to the blue side of the |[F = 2) — |F’ = 3) cooling transition (see figure 2) using
modulation transfer spectroscopy [31]. The cooling and repumper lasers (‘slave lasers’) are extended-cavity
diode lasers (Toptica) which are offset locked to the master laser using an optical phase-locked loop, as described
in [32], where the ultrafast photodiode is a PIN receiver (PT10GC, Bookham) and the digital phase-frequency-
discriminator chip is an ADF4110 (Analog Devices) in the case of the cooler and an ADF41020 for the repumper.
The chips are interfaced with a micro-controller that allows us to re-program the loops during the experiment,
thereby tuning the frequency of the slave laser.

In the glass cell, a 3D magneto-optical trap (MOT) is formed with a gradient field of 11.2 G cm ™, generated
by anti-Helmholtz coils mounted around the cell along the z axis. The bias field is compensated with three pairs
of Helmholtz coils in each axis. The six, circularly polarized beams of the MOT have waists of 1 cm (propagating
along +x and £z directions) or 0.5 cm (propagating along the £y direction). Each beam contains both cooling
and re-pumping light with maximum intensities of 14 mW ¢cm ™ and 0.3 mW cm 2, respectively. The cooler
beam is 15 MHz red detuned from the |F = 2) — |F’ = 3) cooling transition and the repumper is resonant
withthe|F = 1) — |F’ = 2) transition. The steady state number of atoms in the MOT is 10® atoms at 200 K.

7 The linewidth was estimated from the measurement of the linewidth of the 1560 nm laser ina self-heterodyne interferometer with a 0.5 ms
delay line. The analysis assumes the model proposed in [30] where the noise is modeled by white noise plus a 1/f component, which is due to
thermal fluctuations. The first source of noise gives a Lorentzian character to the linewidth whereas the second one is Gaussian to good
approximation. The convolution of both contributions results in a Voigt profile.
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Figure 1. Experimental setup. (Above) General setup of the experiment to form a spinor condensate: from 8’Rb in a glass cell at room
temperature we form a 3D MOT and transfer to and ODT where we perform all-optical evaporation. (below) Detailed setup to
polarize the atoms and perform Faraday rotation measurements of the spin state. Continuous green lines represent the Faraday beam

and dashed blue lines the optical pumping beam.
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Figure 2. Energy levels. (Left) Relevant energy levels of #Rb in free space. (right) Illustration of differential light-shift as a function of
the position in the optical dipole trap. Detuning of the laser is defined as 27 A = wypger — (wp — wg) thus positive values of A indicate
blue detunings from the transition. Gray line indicates the detuning of the cooling beam. Dashed lines indicate the light-shift at full
power of ODT1 with no compensation beam present, whereas continuous lines indicate the light-shift when the trap is partially

compensated with the 1529.22 nm beam.
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From the 3D MOT, the atoms are transferred to an ODT, formed at different stages of the experiment by up
to three ODT beams. Each beam is linearly polarized, with wavelength 1560 nm and Gaussian spatial profile.
ODT1 is focused to a waist of 45 um at the center of the MOT, with maximum power of 11 W and is vertically
polarized. ODT2 and ODT3 have waists 65 ysm and horizontal polarization with maximum powers 10 W and
7 W respectively. ODT1 and ODT2 propagate along the diagonals in the y—z plane, with ODT3 ata 6° angle
relative to ODT1 (figure 1). Acousto-optic modulators are used to shift ODT2 (ODT3) by —40 MHz (+40 MHz)
relative to ODT1, to avoid spatial interference, as well as for power stabilization which is critical for proper
evaporation control. In addition, a ‘compensation’ beam at 1529.22 nm with up to 6 mW of power, mode-
matched to ODT1 but of orthogonal linear polarization, can be introduced.

Because the wavelength of the ODT is close to the 5P5 ,,—4D transitions of 8’Rb (1529 nm), the ac-Stark shift
of the excited state 5P5 , is much stronger than that of the ground state 55, /,, as first reported by [33—35]. The
ratio of these light-shifts is about 47, corresponding to the ratio of the scalar polarizabilities of the excited state
and ground state. As a result, an intensity-dependent differential light-shift is induced on the D, line within the
ODT, giving the cooler and repumper lasers spatially dependent detunings (see figure 2). We exploit this fact to
form an effective dark MOT similar to that described in [33, 34, 36—38]: the atoms at the bottom of the potential
are very unlikely to be re-pumped back into the F = 2 manifold, and thus they accumulate in F = 1, avoiding
light-assisted collisions and radiation trapping.

ODT1 at maximum power creates a differential light-shift of 312 MHz at beam center, which is larger than
the unperturbed hyperfine splitting between the |F’ = 2) and |F’ = 3) states. As aresult, itis not possible to
simultaneously address the cooling transition with red detuning in all spatial regions of the MOT, as shown in
figure 2. This constraint was also reported in [34], where it was accommodated by limiting the ODT power.
Here, in contrast, we compensate the excess differential light-shift with a 1529.22 nm beam, which is blue
detuned from the 5P ,,—4D transitions. The trap-center light-shift induced by the compensating beam in the
5P;,, manifold ranges from 95 MHz to 109 MHz for the different |F’ = 3, my) sublevels, computed by Floquet
theoryasin [39]. In the presence of both 1560 nm and the 1529.22 nm beams, the differential light-shift at the
bottom of the trap is reduced to 210 MHz. With this conditions, we are able to load ODT1 at full power and
simultaneously exploit the dark MOT technique.

In the partially compensated dipole trap a molasses phase is started: the magnetic field gradient is suddenly
switched off, the cooling laser is further detuned to 255 MHz to the red of the unshifted |F = 2) — |F/ = 3)
transition, and thus 45 MHz red-detuned at the bottom of the trap. The power of the repumper is lowered by a
factor of 2.5 without changing the frequency. This phase lasts 500 ms, limited by the lifetime of the cold-atom
reservoir. This strategy allows us toload upto 7 x 10° atomsin |[F = 1)at 50 zK into the dipole trap. Using the
compensation beam therefore improves the maximum number of atoms loaded by a factor of three respect to
the non-compensating strategy of the ODT1 at full power, and by a factor of two loading ODT1 at a lower power
for which the differential light-shift does not exceed the excited-state hyperfine splitting.

After the ODT isloaded, the cooler and repumper beams are switched off and the power of the
compensation beam adiabatically lowered. At the same time, a magnetic field of magnitude B, = 1 Gisapplied
along the zaxis. At this field, the atoms are optically pumped into the |F = 1, mp = +1) state using abeam (OP)
resonant with the |F = 1) — |F’ = 1) transition and propagating along the z axis with o polarization. We
achieve 90% efficiency of pumping as confirmed by Stern—Gerlach imaging along the quantization axis defined
by the magnetic field. To avoid the effects of the spatially dependent differential light-shift on the atoms
distributed in the trap, the optical pumping is done with three 20 115 OP pulses during which the ODT1 is
switched off. The pulses are separated by 10 ms intervals to allow the atoms to redistribute in the trap and avoid
shadowing effects.

Following optical pumping the atoms are allowed to thermalize for 500 ms, after which the cloud is
compressed in the longitudinal direction of ODT1 using ODT3. ODT3 boosts the collision rate without
reducing the large collection volume. Forced all-optical evaporation in this two-beam trap is possible and
efficient down to 2 K. At that point the longitudinal frequency becomes insufficient to reach higher phase space
densities. We employ an extra beam, ODT2, to provide extra compression at the end of the evaporation.

The evaporation sequence is as follows: starting with all the three beams at full power, we perform forced all-
optical evaporation for 4 s, after which the system crosses the critical temperature T, with about 10° atoms. The
power of ODT2 is then increased for an additional 800 ms to compress the atoms, resulting in the formation of a
pure condensate with typically4 x 10* atoms. The relative populations do not change during the evaporation,
as discussed in section 6 below. Our experimental approach is similar to that recently described in [38].
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Figure 3. Condensed fraction as a function of T/C. The condensed fraction cr = N/ Nyo can be fitted by the model
= max{1l — [T/ (CzIJ[)]3 , 0}, where the temperature T = 54 nKis constant and Cis a function of the number of atoms Ny, (see
text). In this measurement only Ny, varies and therefore @y is the only free parameter, yieldingto @ = 27 - 50(5) Hz.

3. Single spin domain

A natural measure of the spatial extent of the condensate is the Thomas—Fermi radius. The mean can be
expressed in terms of fundamental constants, the number of condensed atoms N and the geometric mean
oscillation frequency of the harmonic trap @:

_ 15Na, /2 )/
Ryp = (Twz) (1)
wherea, = 5.38 x 10~ mis the scatteringlengthand M = 1.44 x 10~ *° kg the mass of one ¥Rb atom. The
number of atoms is measured with time-of-flight absorption imaging for dense clouds [40].

The relative low atom number prevented direct measurement of the trap frequencies by parametric
excitation. Instead we estimate @ from the observable condensate fraction as follows: for N condensed atoms of
atotal Ny, atoms, the condensed fraction ¢ = N/N, for non-interacting bosons obeys the relation:
¢ = max[1 — (T/T.)?, 0], where the critical temperature in a harmonic trap is [41]:

_ 1/3
.= @[N] @
kg | C(3)

kg is the Boltzmann constant and {(3) = 1.202. Time-of-flight absorption imaging and a bi-modal fit give direct
access to Ny, N (and thus cg), as well as to T, which is found from the width of the thermal component. For fixed
beam geometry and power, the trap frequencies are constant. The temperature is set by the potential depth at

T = 54(13) nK, independent of N,,. We can thus vary the critical temperature by changing only the number of

atoms, through the duration of the ODT loading step. Figure 3 shows the condensed fraction as a function of T/

C,where C = T, /. We fit the expected scaling of cp where @ is the only free parameter, to

find @ = 27 - 50(5) Hz.

The mean Thomas—Fermi radius as given by equation (1) with N = 4 x 10*atoms s then:

Rrr = 7.0(5) pm. From the geometry and power of the ODT beams the shape of the condensate is expected to
be a spheroid, and thus large errors in what follows are not expected.

To gain some intuition about the expected spin variations in space the Ryg radius is compared to the spin
healing length, which is defined as {, = ﬁ/\ [2M|c|n [42,43], where ¢, = —2.39 x 10> J m’ characterizes
the spin-dependent contact interaction [44], and n is the density. In our experimental conditions,

n =27 x 10” cm *and & = 7.7 um. With this parameters the density healing length is

&, = 7 /\2Mcon = 0.5 pm for the spin-independent contact interaction parameter ¢, ~ 216|¢|. Since

R > ¢, the quantum pressure becomes relevant only near the boundary and therefore can be ignored, which
implies the Thomas—Fermi approximation is reasonable. The spin healing length nevertheless, is such that

&, ~ Rrp, and the system is in an intermediate regime in regard to spin variations. Nonetheless, we observe no
spin structure in TOF absorption images in the time scales of the condensate lifetime at the reported densities,
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suggesting no domain formation occurs. In addition, we have observed long coherence times of the
magnetization (section 6), which provides stronger evidence for this conclusion.

4. Excitation of spin oscillation and free oscillation

Within the SMA the order parameter can be written as U(r) = p(r) W, where (r) defines the spatial mode
which is common between all the spin states. We write the spinoras W = (91, 0y, 11)", where @Zmp are the
complex amplitudes describing the magnetic sublevels [11]. Single mode SBECs have been extensively used to
study spin-mixing physics, in which collisional interactions produce interesting quantum dynamics and spin
correlations [7, 8, 45-49]. These works study condensates with zero mean magnetic polarization, in a regime in
which collisional and quadratic Zeeman energies compete [18, 46, 50]. In contrast, here we study the magnetic
coherence properties of alow-density condensate, precisely to minimize the effect of collisional interactions.
A single atom exposed to a magnetic field B,(f) along the x direction experiences the spin Hamiltonian

g Hs G 2
2 27 3

4 Bxfx + 16AEhf Bx fx + O(Bx)

=/ f. + hwof. + O(BY), 3)

I:I:

where f; denotes the spin-1 operator for component « € {x, y, z} [51], up is the Bohr magneton, g; ~ 2 is the
Land g-factor and A Ep = 2wk X 6.83 GHz is the hyperfine splitting [44]. We note that B, and thus w;, wg may

. 22 .. . .o P
be time-dependent. Due to the f term the dynamics induced by the Hamiltonian involves both the vector ‘spin

. . > ~ ~ 7~ < . . >
orientation’ components f_, fy, f,»and the rank-two tensor ‘spin-alignment’ components:

jzx = zJx + xfz’ (4)
jocy =Jxly T yJxr ®)
We find the single-atom equations of motion
£ 0 0 0 0 0 fx
4 f, 0 0 —w —wg O0||f,
E | = 0 wr 0 0 wQ fz (6)
jzx 0 wqQ 0 0 wr jzx
; 0 0 —wgq —wr O :
]xy ]X}'

which describe a pair oscillators, f, — f,and j,, — j,» each with oscillation frequency w;, and mutual coupling
frequency w,.

In particular, according to equation (6) the z projection of the spin evolves as f, (t) = cos(wy t)cos(wqt).
That is, the quadratic Zeeman shift manifests as a modulation of the Larmor precession.

The collective spin of N condensed atoms is F = - £, where the superscript indicates the nth atom.
The dynamics of the collective spin then obeys

Fi(t) = N(Of.(t) ?)

which describes the coherent oscillation of a macroscopic spin, and its decay caused by the loss of atoms.

We observe this dynamics by first preparing the condensate in the initial state (1,0,0)" (quantization axis
along the B-field direction z), i.e. all the atoms in mp = +1. We then ramp up the field component B,, then ramp
to zero B,, leaving the field along x. This is done slowly compared to the Larmor frequency defined by the field
amplitude, and the spins adiabatically follow the field and the quantization axis is always along the B-field. To
rotate the spins to the y—z plane and form the state %(1, V2, 1T (quantization axis along x), a /2-RF pulse
along yis applied. This starts the precession dynamics around the x axis. The spin polarization is tracked by
performing non-destructive Faraday rotation measurements as described below.

5. Non-destructive probing of the spin polarization

We perform non-destructive Faraday rotation measurements of the spin state of the atoms, exploiting the spin-
dependent interaction of a linearly polarized off-resonant beam with the vectorial component of the atomic
polarizability, as described and shown in [52-55]. The interaction with the atoms causes the linear polarization
of this beam to rotate and therefore to acquire a diagonal component, which is detected using a shot-noise
limited polarimeter based on the differential photodetector (DFD) described in [56]. We have demonstrated the

6
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Figure 4. Noise characterization of differential photodetector. Variance of the output signal of the differential photodetector as a function
of total input number of photons (N} ). The fit assumes the form var(ANyi¢) = V, + N, the electronic noise floor corresponds to
V, = 2.6(5) x 10° photons, and the linear region 2 x 10” to 10” photons is the shot-noise limited range.

0.015 Data
Sinusoidal fit
0.01
— 0.005
i)
o
© 04
-0.005
-0.01
T T T T ]
0 2 4 6 8 10
Time (us)

Figure 5. Example of Faraday rotation signal. We show the optical signal ¢(t) of a continuous pulse containing 5 x 10° photons
interacting with a fully polarized sample of atoms precessing around a magnetic field with Larmor frequency w; = 27 - 300 kHz. This
signal is proportional to the projection of the atomic spin along the probing direction z, with proportionality constant

G, = 107 rad/spin such that ¢(f) = G,F.(¢) (green line). We added a sinusoidal fit to the spin precession (blue line).

DFD is shot-noise limited for yis pulses with 2 x 10> to 107 photons, having an electronic noise floor equivalent
to the shot noise of a pulse with 2.6(5) x 10> photons, as shown in figure 4.

The Faraday beam is red detuned 276 MHz from the |F = 1) — |F’ = 0) transition and has linear
polarization of 54.7° with respect to the bias field along x. At this ‘magic angle’ the tensorial ac-Stark shift
averages to zero over one precession cycle [57], enabling continuous probing without conversion of spin
alignment to spin orientation.

We perform continuous Faraday measurements that allow us to resolve a few Larmor cycles in a single pulse.
This is typically performed using 7, = 10-20 s pulses containing N;, = 5 x 10 photons. To compensate
probe power fluctuations, Ny is measured by splitting a fraction of the power to an auxiliary PD and
transimpedance amplifier before entering the chamber. An example of the Faraday rotation signal is shown in
figure 5. The polarization rotation angle in the Poincaré sphere ¢ = G;F, is proportional to the collective spin
component F,, and with a coupling G, that depends on the overlap of the beam and the atomic cloud. For this
reason, the probing beam is focused at the atoms position with a waist of 18 pm. For the pure condensate, we
observe G; = 10~ rad/spin, by measuring the rotation angle caused by a fully polarized cloud with a known
number of spins calibrated with absorption imaging.

7
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The known shot-noise scaling of the optical angle allows us to estimate for one pulse with
N, = 5 x 10° photons an optical angle noise of dp = 1/,/N; = 0.4 mrad, which corresponds to an inferred
noise in the spin state (y/var(E) Jopt = (Gy \/ﬁL )~! =~ 4 x 10% spins. The noise is larger than the projection
noise inherent to the atomic state, which is given by (\/var(E) )ss = VN = 2 x 102 spins. The interaction with
each pulse does not cause atoms to be lost from the trap, but it kicks atoms out from the condensate reducing the
condensed fraction by 25%. Reaching projection noise limited measurements requires improvement to the
coupling factor G or the use of more photons iflow damage is not required.

6. Magnetic coherence properties of the spinor BEC

To characterize the coherence properties of the macroscopic spin (F(t)) of the single-domain SBEC, we use
standard nomenclature [58] which identifies various relaxation times for different spin components, relaxation
mechanisms, and scope of averaging. For a single-shot experiment with many spins (condensed or otherwise),
the spin component along the field direction (x), experiences the longitudinal’ relaxation time 73, defined by
(E,) o exp[—t/7]. Similarly, the transverse components, i.e., those orthogonal to the field direction, relax
according to (E)pom o< cos[Op(t)]exp[—t/T5]or (E)an o< cos[Or(t)]exp[—t/7 3] (and similar for E, — F,,
cos — sin), where O (t) = fo ' w (t")dt’ is the accumulated precession angle. The averages (-)nom and (- )1
indicate, respectively, averaging over only homogeneous’ effects, i.e., irreversible randomizations affecting all
spins in the same way, and averaging over both homogeneous effects and ‘inhomogeneous’ effects, i.e., apparent
randomization due to reversible effects such as differences in the local field [59]. As concerns these single-shot
relaxation times, the single-domain SBEC is expected to have 735 = 7, = 7;: In the SM approximation a single
spin state \il(t) describes the entire condensate, leaving no room for individual randomizations. There is in fact
only one relaxation mechanism, loss of atoms, and this affects both F, and F,, ,in the same way, is truly
irreversible, and affects all atoms in the same way. We assign the rate 1/7 to this loss of

atoms: Ny (t) o< exp[—t/7].

Beyond these single-shot coherences, we must also account for the coherence of shot-to-shot averages. A
change in the magnetic field between repetitions of the experiment generates F,, (¢) with a different phase ©,
each time, and the average shows a relaxation-like behavior (E) o< { cos[Of(t)])s exp[—t/7 3]. In our system,
as in most cold-atom experiments, B,(#) exhibits large variations implying large phase slips and a rapidly
decayingaverage ( cos[O (t)])s. This decaying is only weakly related to the processes described by 7 5, and
should be considered a characterization of the environment rather than of the SBEC itself.

Atom losses: Atom losses are caused by collisions with the background gas and by three-body collisions. The
former knock condensate atoms out of the trap, or less frequently into the thermal cloud. The latter are strongly
exothermic and result in loss of all three atoms. The atom number in the condensate evolves as

N = N K; fdsx n3(x, t), (8)
T

where the first term describes loss from background collisions and the second from three-body losses [60, 61].

For condensed atoms of ’Rb, K5 ~ 6 X 107 cm® s 7! so that at our densities of n =~ 3 x 10> cm >, the

three-body loss rate is of order ~N/70 s. In contrast, the observed number decay, measured by absorption

imaging, is much faster, and well described by one-body losses with 7o = 7 = 7.7(4) s. The three-body loss can

thus be neglected in these conditions.

Longitudinal spin relaxation: In the SD-SBEC the longitudinal macroscopic magnetization is conserved.
Under the Hamiltonian of equation (3) above, both f, and the magnetic quantum number mp (in the x-basis) are
constants of the motion, even for fluctuating B,(f). We confirm (F, (¢)) is also constant using Stern—Gerlach
imaging to measure the population in the different magnetic sublevels as a function of hold time: a condensate is
prepared in a stretched state (1, 0, 0)T or (0, 0, 1)T (quantization axes along x) and held in the dipole trap
during a time t,, after which the atoms are released from the trap. During the time of flight a gradient field of
~20 G cm ™ 'isapplied for 10 ms to spatially separate the different spin components, before performing
absorption imaging. The relative populations of the different spin states remain unchanged as a function of z,, to
within measurement precision, and therefore we identify 77 = 7.

We note that orthogonal ac magnetic fields at a frequency close to wy could resonantly excite transitions
among mrlevels. The influence of such fields has limited the observation of spin dynamics in other experiments
[45]. In our experiment this effect becomes evident only at bias fields below 100 mG.

Transverse spin relaxation: Shot-to-shot fluctuations of the field environment B, (t) induce shot-to-shot
decoherence on (E, (1)) over different preparations. We characterize B.,,,(¢) in our experiment as follows: using
athree-axis fluxgate sensor (Mag-03 MCUP, Bartington) placed close to the vacuum cell, we measured the
spectrum of environmental magnetic noise, which is dominated by the earth field (at dc), the mains frequency
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Table 1. Measurement results of the magnetic field
environment . The measurements were performed
with a fluxgate sensor located 20 cm away from the
atoms.

Mean amplitude (mG) Standard deviation (1G)

By = 451.5 Oge = 200
Bsy = 4.39 050 = 50
Biso = 2.09 o150 = 20

(at Viains = 50 Hz), and its third harmonic (at 37,1, = 150 Hz), and is well approximated by the form:
Benv(t) = Byc + By cOSQmUmainst) + Bz 08(3 - 27Umainst). To estimate the fluctuations in the magnetic field
environment in typical conditions, we measure the magnetic field at the cycle rate of the experiment (every 40 s),
always after synchronizing with the mains cycle. The observations are summarized in table 1.

We then compute the average (F, (¢))s by Monte-Carlo simulation of 200 traces using equation (6) with B,,
given by B.,,(#) where B; and B, drawn from normal distributions with the measured mean and standard
deviation. By, is taken to be normally distributed with the measured standard deviation and a mean 0f 0.29 G,
due to an applied offset field. This normal random noise defines a shot-to-shot decay rate 1,/75, such that
{cos[O(H)])ss ~ cos[O(t)]exp[— t2/T,%], where ©; = (O (t))ss- The amplitude of the (E, (t))ss oscillation
decays with 7, ~ 1.5 ms.

In a similar way we have estimated the magnetic field stability needed to have a stable phase O over different
repetitions. 7, scales inversely with the field fluctuations and thus to increase it to the 1 s scale the field
fluctuations must be reduced by a factor of ~1000, i.e., to the few pT level. While this is comparable to the noise
of the fluxgate, small-volume atomic magnetometers [62] can have noise levels orders of magnitude below this,
which may enable active cancellation to this level. Passive shielding of the chamber with a high-permeability
enclosure can also provide such low-noise conditions [63].

To accurately measure the relevant property 7 3 of our spin system in the described magnetic environment,
we take advantage of the non-destructive nature of the Faraday rotation probing, which allows us to probe
several Larmor cycles of F,(t) during a single run and extract the amplitude via a sinusoidal fit. Because the
amplitude does not depend on ©, this allows meaningful averaging in spite of the shot-to-shot fluctuations.
The quadratic phase O also varies shot-to-shot, but on a time-scale about four orders of magnitude longer than
does O, implying that the average amplitude will show effects of dephasing on the 10 s time scale.

We prepare the state %(1, V2, DT and allow the atoms precess around the bias field B, = 0.29 G for time t,,
before F,(t) is measured for 10 us allowing several Larmor cycles to be resolved by fitting a sinusoidal function as
in figure 5. We perform measurements at different values of f, ranging from 0 to 1 s, each one on anew
preparation of the state. The Larmor frequency is always (w; = 27 - 200 kHz). To separate the relaxation and
decoherence signature from the atomic losses, we normalized the signal by the number of atoms measured by
absorption imaging at the end of each repetition.

In figure 6 we plot the mean square amplitude of the sinusoidal fits for different repetitions, as a function of
t,. To these data we fit a function A cos®(wqt)exp(—2t/7T), from which we findwq = 27 - 5.95(1) Hz as
expected. As can be appreciated in the figure, the full visibility is always recovered and therefore 7 >> 1 s, much
longer than the observation time.

To directly demonstrate the persistence of macroscopic spin precession, and thus of the magnetic coherence

of the SD SBEC on longer timescales, we prepare an initial state 1, 0)! byapplying two MW pulses to the

1
=,
initial state (1,0,0)” (quantization axis along the magnetic field along x): a m/2 pulse resonant to the

|F =1, mg = 1) — |F = 2, mp = 0) transition followed by a w-pulse resonant to

|F =2, mp=0) — |F =1, mp = 0). We allow this state to precess before measuring its F, polarization by
Faraday rotation probing as described above. This state, in contrast to the fully polarized state

(1/2,1/2, 1/2)T, does not produce a modulation due to wq, because only the 1, 0 coherence is non-zero. Asa
1

vz

show the amplitude of the Faraday signal and the number of atoms (measured by absorption imaging) as a

function of the evolution time (#,) up to 10 s. The decay of the amplitude is measured to be the same as the decay
of the number of atoms, to within experimental uncertainty, thisis 75 = 7. In the insets we plot examples of
the Faraday signal normalized by the number of atoms ¢ (¢) /N (t,)  (E (t))an /N (£.). In these we observe the
normalized amplitude is constant although the signal to noise decreases due to the loss of atoms.

result, the single-atom polarization executes a pure oscillation f, (t) = cos(wq + wr)t. Infigure 7 we
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Figure 6. 7 5 measurement using a fully polarized state. Average over different repetitions of the squared of the magnitude of the z-
component of the macroscopic spin (F,) normalized by the number of atoms as a function of evolution time. Each repetition is
obtained from the Faraday rotation measurements of a fully polarized condensate and the calibrated G;. The spins rotate around x at
Larmor precession frequency wy = 27 - 200 kHz. The amplitude modulation due to the quadratic component oscillates at

wq = 27 - 5.95(1) Hz. We observe no measurable decay of the normalized magnetization, which implies 7% >> 1 s.
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Figure 7. 7% measurement using an initial state ¢)(0) = (1, 1, 0)7/~/2 (quantization axis along x). Amplitude of the Faraday signal
(green circles, left axis) and number of atoms (blue squares, right axis) are shown versus evolution time (#,). Green line shows best
exponential fit to the amplitude data, with time constant 8.1(4) s (green line). A similar fit (not shown) to the number of atoms finds
time constant 7.7(4) s, equal to within experimental uncertainty. Insets show examples of the Faraday signal, normalized by the
number of atoms. These normalized amplitudes are equal over the 10 s observation time, showing no observable decoherence of the
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Our results are consistent with the expectation of spin relaxation due solely to atom losses, which in our
typical vacuum conditions is limited by one-body losses 7% ~ 7, ~ T, ~ T, = 7.7(4) s.

7. Conclusions

We have described a system capable of creating SBECs of 8Rb atoms in the ferromagnetic F = 1 hyperfine state.
The experiment employs all-optical evaporation in a deep 1560 nm dipole trap, which we load by partially
compensating the large induced differential light-shift using a 1529 nm laser. This allows us to benefit from both
ahigh trap depth and a light-shift-induced dark MOT. We demonstrate non-destructive tracking of the
macroscopic spin state using Faraday rotation probing.
Based on measurements of the spatial size, densities and coherence, we demonstrate the spinor condensate is
created in a single spin domain. This SD spinor condensate behaves as a single large spin precessing around the
magnetic field. We have observed collective spin precession with a single-shot coherence time of several seconds,
limited only by the lifetime of the condensate, which is set by the vacuum conditions. Such extreme coherence
properties are interesting for studies of atomic entanglement [23], macroscopic quantum states [24, 25], and
non-locality in many-body systems [27]. Noting also the small size, the magnetic SM spinor condensate is

10
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attractive for high-resolution field sensing [28, 29], with the possibility to attain sensitivities beyond the standard
quantum limit [64, 65].
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