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Abstract

The Lorentz symmetry and the space and time translational symmetry are fundamental symmetries of
nature. Crystals are the manifestation of the continuous space translational symmetry being
spontaneously broken into a discrete one. We argue that, following the space translational symmetry,
the continuous Lorentz symmetry should also be broken into a discrete one, which further implies
that the continuous time translational symmetry is broken into a discrete one. We deduce all the
possible discrete Lorentz and discrete time translational symmetries in 1+ 1-dimensional spacetime,
and show how to build a field theory or a lattice field theory that has these symmetries.

1. Introduction

Symmetry plays an important role in modern physics. It imposes a constraint on the physical laws and then
reduces the number of candidate theories describing nature. Knowing the symmetry of a system is the
prerequisite for building a theory of it. For examples, the crystals are classified by the point group and the space
group according to their symmetry under rotation, translation and reflection [1], the Lorentz symmetry and its
generalization the Poincaré symmetry are the basic of the relativistic quantum field theory [2], the discovery of
the violation of parity symmetry [3, 4] improves our understanding of weak interaction, and the particle-hole,
the time reversal and the chiral symmetry are used to classify different topological insulators and topological
superconductors [5], to name just a few.

The symmetry can be spontaneously broken at low-energy states of a system. This mechanism has been used
to explain the ferromagnetic—paramagnetic phase transition, the existence of crystals, or the origin of mass.
While it is well known that some fundamental continuous symmetries like the space translational symmetry can
be spontaneously broken into a discrete one, whether the Lorentz symmetry has such property is unexplored.

It has been long believed that, the Lorentz symmetry which is essentially important in high-energy physics
does not play a role in solid-state physics, especially in the study of crystals, where the low-energy effective
theories completely break the Lorentz symmetry. In crystals the continuous space translational symmetry is
spontaneously broken into a discrete one [6]. A crystal does not look the same under an arbitrary spatial
translation of coordinates, but only if the translation is along some specific direction with the distance being an
integer times of the lattice constant. The continuous Poincaré group consists of spatial and temporal translations
of arbitrary distance and Lorentz transformations of arbitrary velocity [7], which is the symmetry group of a
relativistic field theory but not the symmetry group of crystals.

Disregarding the Lorentz symmetry leaves too much freedom in writing down a theory of crystals. One may
ask whether the crystals can have any if not all the Lorentz symmetry which helps people to constrain the theories
of them, in other words, whether something can be left after the Lorentz symmetry is spontaneously broken. In
this paper we study to which extent the Lorentz symmetry may exist in a crystal, and what is the consequence of
it. We argue that the continuous Lorentz symmetry contradicts the discrete space translational symmetry and
then cannot exist. But a discrete Lorentz symmetry may exist, under which the physical laws stay the same for
two observers who are moving at some specific velocities v relative to each other. v can only take a sequence of
universal discrete values. The corresponding Lorentz transformations make up a discrete subgroup of the
continuous Lorentz group. We suggest that the Lagrangian of an effective theory describing crystals should be
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invariant under these discrete Lorentz transformations, just as they are invariant under the discrete spatial
translations. Furthermore, the continuous time translational symmetry should also be spontaneously broken
into a discrete one to be compatible with the discrete Lorentz symmetry. The discrete Lorentz transformations
and the discrete temporal and spatial translations together make up a discrete Poincaré group. We discuss how
to build a field theory or a lattice field theory that has the discrete Poincaré symmetry.

In 2012, Wilczek et al [8, 9] proposed a theory about the spontaneous breaking of the continuous time
translational symmetry into a discrete one. The matter with such a broken symmetry is dubbed a ‘time crystal’.
Whether there exist ‘time crystals’ is still under debate up to now [10—17]. Our theory also predicts the breaking
of the continuous time translational symmetry. But it should be distinguished from the previous theories of
‘time crystals’. In our theory, the broken time translational symmetry is a result of the principle of relativity (the
Lorentz symmetry).

The discrete translational symmetry that we find can be represented by a rectangular or a centered
rectangular spacetime lattice, which keeps invariant under the discrete Lorentz transformations. This finding
could possibly be interesting in different contexts. Some approaches to quantum gravity assumes that the
spacetime is discretized instead of continuous, and how to maintain the Lorentz symmetry on a spacetime lattice
has then become an important problem [18-23]. In the causal set theory, the spacetime is discretized into a
random lattice by the Poisson process, which keeps invariant under continuous Lorentz transformations
statistically, in the sense that one realization of the lattice has no Lorentz symmetry but the ensemble of them has
[18, 19]. In the loop quantum gravity, the distance and the time interval are treated as quantum operators. The
spacetime is discretized in the sense that the corresponding operators have discrete eigenvalues. And the Lorentz
transformation becomes a unitary transformation acting on the operators, with the Lorentz symmetry being
explained as the invariance of the eigenvalues under unitary transformations [21]. In this paper, the Lorentz
symmetry on the spacetime lattice has a different meaning. On our spacetime lattice, the Lorentz symmetry is
explicit but not statistical. The cost is that only a discrete symmetry is left. And the spacetime is classical and
continuous with zero curvature (a Minkowski spacetime). We do not try to quantize the spacetime, nor consider
any theory of quantum gravity. What we want to discuss is the symmetry group of the Minkowski spacetime
after a spontaneous symmetry breaking.

The paper is organized as follows. Section 2 lists the basic hypotheses of our theory. Section 3 demonstrates
why the continuous Lorentz symmetry and the discrete space translational symmetry cannot coexist, and how
the latter puts restrictions on the velocity in the Lorentz transformation. In section 4, we deduce the discrete
Lorentz group that is compatible with the discrete space translational symmetry. In section 5, we construct the
discrete Poincaré group which includes both the translations and the Lorentz transformations. We then present
a corollary of our theory—the continuous time translational symmetry is broken into a discrete one. Section 6
continues to discuss the discrete spacetime translational symmetry, and shows how its representation (the
spacetime lattice) keeps invariance under discrete Lorentz transformations. We also discuss how to understand
the time dilation and space contraction on the lattice. Section 7 shows the causality between events on the
spacetime lattice. In section 8, we construct the field theory that has the discrete Poincaré symmetry. The
possible features and problems when quantizing this theory are discussed in section 9. Section 10 is the
conclusion and outlook.

2. Hypotheses of the theory

Let us recall the continuous Lorentz and Poincaré symmetry. According to the principle of relativity in special
relativity [24], the physical laws must stay the same for the observers in different reference frames which are
moving at a constant velocity relative to each other. The transformation connecting the space and time
coordinates of an event as measured in different frames is the Lorentz transformation, which can be derived
from the principle of relativity and the principle of invariant light speed. Again, the spacetime has translational
symmetry, that is the physical laws stay the same in the coordinate systems which are at rest relative to each other
but differ by a spatial or temporal translation of the origin. The continuous Lorentz and translational
transformations together make up the Poincaré group [7], which is the symmetry group of a relativistic quantum
field theory.

The crystals do not have the continuous space translational symmetry. The breaking of the continuous space
translational symmetry into a discrete one signals the freezing phase transition from liquids to crystals. We
imagine the whole spacetime being occupied by a perfect crystal which is infinitely large and has no boundary,
thereafter, the spacetime has a discrete space translational symmetry for the observers living inside. We propose
three hypotheses about such a spacetime.

The first hypothesis is a weaker version of the principle of relativity. It says that, for any observer in this
spacetime, there exists another observer moving at nonzero velocity relative to him and the physical laws stay the
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same for them. The principle of relativity states that all the inertial reference frames moving at arbitrary velocity
are equivalent to each other in describing the physical laws. Our first hypothesis is different from the principle of
relativity which is found to contradict the discrete space translational symmetry, as explained in section 3. We
only suppose that there exists at least one velocity v = 0 so that two reference frames are equivalent as one is
moving at v relative to the other.

In the second hypothesis, we suppose an invariant ‘light speed’ which is denoted by a constant cin this paper.
Note that cis not the speed of light in vacuum since the spacetime is occupied by a crystal. Instead, cis the
supremum limit of the propagation speed of information and matter in the crystal. Such a limit always exists,
even if it may differ from the speed of light in vacuum. We suppose that cis the same in any reference frames.

The third hypothesis is that the spacetime has a discrete space translational symmetry. For example, in the 3
+1-dimensional spacetime, there exist three spatial vectors a;, a, and a;. The physical laws keep invariant under
apure spatial translation of vector rifand onlyif r = n,a; + nya, + nsa; with ny, n, and n; being integers.
Here a pure spatial translation means that the two coordinate systems are at rest relative to each other and their
temporal coordinates keep the same. a;, a, and a5 are in fact the three primitive vectors of a crystal [ 1]. Note that
the third hypothesis not only says that the spatial translation of vector n;a; 4+ n,a, + n3a; is a symmetry
transformation, but also says that the other spatial translations are not.

3. Continuous Lorentz symmetry and discrete translational symmetry do not coexist

3.1.3+1 dimensions
Any n+1-dimensional spacetime can be equipped with the above three hypotheses. We will consider the 3+1-
dimensional spacetime in this subsection and then turn to 14 1-dimensional spacetime in next.

We consider two coordinate systems, namely Jun and Tao for convenience. Or one can imagine Jun and Tao
as two observers who are located at the origins of the corresponding coordinate systems, respectively. Tao is
moving at a constant velocity v relative to Jurn. And their origins differ by a four-vector r = (1% ', 7%, r*)". The
coordinate of an event measured by Tao is denoted by the four-vector y’ = (y'°, y'!, y’2, y'*)I and that by Jun
is denoted by y. Here the zeroth component of a four-vector denotes the time coordinate and the others denote
the space coordinates. The second hypothesis says that the ‘light speed’ is the same in any reference frames. As is
well known in special relativity [24], an invariant ‘light speed’, whatever its value is, leads to the Lorentz
transformation between the coordinates of an event measured in different reference frames. The relation
between y’ and yis expressed as

y' =Ly +r, e))

where L, is the 4-by-4 matrix of Lorentz transformation and r is the translation vector. Note that in the
expression of Ly, the speed of light in vacuum must be replaced by ¢, i.e. the speed limit of the propagation of
matter or information in crystals, since it is c that is invariant in our hypothesis. For example, if vis along the x-
axis with an amplitude v, the corresponding Lorentz matrix should be

2
1 v/c 00
\/l—vz/cz \/l—vz/cz
L, = v ! 0o} (@)
\/1—1/2/(:2 \/1—1/2/62
0 0 10
0 0 01

Equation (1) can be reexpressed in a compact formasy’ = A(L,, r) y where A(L,, ) denotes the combination
of a Lorentz boost and a translation. The operator A(L,, r) is not a matrix as r = 0. But one can still define the
multiplication of A. Let us suppose the third observer Pei who is moving at a velocity v’ relative to Tao and their
origins differ by 7. The coordinate of the event measured by Pei is denoted by y” which is
y" = ALy, )y’ = ALy, )A(Ly, r)y. Repeatedly applying equation (1) leads to
y" = (LyvLy)y + (Lyr + '), the multiplication of two A operators can then be expressed as

A(Lv’: r/)A(LV) r) = A(LV’LV) Lyr+ T/). 3)

It is straightforward to verify that the multiplication of A has the associative property.

Now let us consider the first hypothesis. According to it, the physical laws stay the same for two observers as
one is moving at some velocity v relative to the other. The value of v is not given in the first hypothesis which only
states that v exists. The corresponding Lorentz transformation A(Ly, 0) is an element of the symmetry group of
the spacetime. Note that the translation is absent in A(Ly, 0) because we do not yet know which translations keep
the physical laws invariant. Let us consider two coordinate systems K and K’, while K’ is moving at v relative to K.
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K’ and K are then equivalent for describing the physical laws. Since they are equivalent, K is not privileged over
K'.If K is equivalent to a coordinate system moving at v relative to itself, so must be K. Therefore, the coordinate
system K” that is moving at v relative to K’ must also be equivalent to K’ and then be equivalent to K, while the
coordinate transformation between K” and K is A*(Ly, 0). Furthermore, the equivalence relation is not only
transitive but also reflective. For K, its equivalent partner K is moving at the velocity —v relative to it, thereafter,
one coordinate system moving at —v relative to another must also be equivalent to it. The above statements can
be translated into the language of group. If A(Ly, 0) is an element of any symmetry group (not necessarily the
Poincaré group), then A*(Ly, 0) and A~ *(L,, 0) must also be the elements of the symmetry group, due to the
property of a group. In fact, A(L,, 0) for arbitrary integer j must be an element of the group. By using the product
rule equation (3), we obtain A*(Ly, 0) = A(LZ,0)and A" }(Ly, 0) = AL, %, 0) = A(L_y, 0).

The third hypothesis can also be expressed in the language of group. A pure translation between two
coordinate systems can be denoted as A(1, r) where 1 is the identity matrix which is the Lorentz transformation
between two coordinate systems being at rest relative to each other. We distinguish the temporal and spatial
components of the four-vector rby expressingitasr = (r°,r)” with r denoting a three-dimensional spatial
vector. A(1, r) with r = (0, r)” represents a pure spatial translation. The third hypothesis in fact says that A(1,7)
is an element of the symmetry group ifand only ifr = n; a; + n,a, + 13 a;. Since the product of two
translationsis A(1, A(1, ') = A(1,r + '), the spatial translations of vector n, a, + n,a, + 15 a; by themselves
make up a discrete group. It must be a subgroup of the overall symmetry group of the spacetime.

Up to now, we know that the symmetry group of the spacetime has an element A(Ly, 0) with v = 0, and its
subgroup for spatial translations contains only translations of vector n; a; + n,a, + 13 as. Surprisingly, one
can deduce from these properties that v cannot take continuous values! In detail, let us consider seven observers
(or seven coordinate systems), namely K, K5, -+, Kg and K. K, is moving at the velocity —vrelative to K;. K3
differs from K, by a spatial translation of vector a;. K, is moving at the velocity v relative to K. K5 is moving at
the velocity v relative to K,. Ky differs from K5 by a translation of vector a, . Finally, K; is moving at the velocity
—v relative to Kg. Obviously, due to the transitivity of equivalence relation, all these seven coordinate systems are
equivalent to each other. The coordinate of an event measured by K; and K7 is denoted by y; and y,, respectively.
And we use the notation a; = (0, a,). The transformation from y, to y, is then

Aﬁl(Lvr O)A(1> al)AZ(LV) O)A(ls al)Ail(Lva 0)
= A, Lya, + L, 'a). 4)

Obviously, A (1, Lya; + Ly ' a;) isa translation and it must be an element of the symmetry group. L, acting on
a; = (0,a;) usually generates a four-vector with nonzero temporal component. But this temporal component
exactly cancels the temporal component of L, ' a;, so that Lya, + Ly ' a, is in fact a four-vector with only spatial
components and then A (1, Lya; + Ly L4,) describes a pure spatial translation with the time coordinate keeping
invariant under this transformation. To see the cancellation between the temporal components of L, a; and L, !
aj, one can study the example of L, in equation (2). It is straightforward to verify that (L, + L_, ) a; hasno
temporal component for any vand a;.

The element A (1, Lya; + Ly ' a;) in the symmetry group is a pure spatial translation. But we already know
that for any spatial translation in the symmetry group the translation vector mustbe n; a; + n,a, + nsas.
Therefore, we establish an equation

Lyay + Ly ay = (0, may + may + nsas)’. (5

This equation puts strong restrictions on the velocity v. Since Ly a; + Ly ' a; changes continuously with v,
equation (5) indicates that v can only take some discrete values. The Lorentz transformation A(Ly/, 0) is notan
element of the symmetry group if v/ does not satisfy equation (5), otherwise, the third hypothesis would be
violated. If two observers are equivalent to each other, i.e., the physical laws stay the same for them, their relative
velocity must be a solution of equation (5). In equation (5), different integer arrays (n,, 1,, 113) give different v.
Since there are infinite number of choice for (1, 1, n13), the number of solutions of equation (5) is also infinite.

The continuous Lorentz symmetry with a continuously changing v contradicts the discrete space
translational symmetry (the third hypothesis). If there exists any Lorentz symmetry in the inhomogeneous
spacetime of a crystal, it must be a discrete symmetry.

3.2.1+1 dimensions

We have shown the contradiction between the continuous Lorentz symmetry and the discrete space
translational symmetry in 34 1-dimensional spacetime. In fact, this contradiction exists in arbitrary n+1-
dimensional spacetime. Next we focus on 14 1-dimensions in which the coordinate of an event is a two-vector
y=(t x)Twhere tand x denote the time and space coordinates, respectively. The reason that we choose 1 + 1
dimensions is due to its simplicity. Especially, the Wigner rotation [25] islack in 1 4 1 dimensions so that we can
easily construct the discrete Lorentz symmetry group. The presence of Wigner rotationin2 + 1 and 3 + 1
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dimensions makes the construction of the discrete Lorentz group more complicated. Also in experiments, a one-
dimensional (1D) crystal can be realized in quantum wires. Therefore, it is reasonable to first explore the 1 + 1-
dimensional spacetime. The construction of the discrete Lorentz symmetryin 2 + 1 and 3 + 1 dimensions is left
in future study.

Note that for 1D crystals a single real number a (the lattice constant) determines the discrete space
translational symmetry. The crystal looks the same after a spatial translation of distance ma with m being an
arbitrary integer. The generator of the spatial translation is A(1, @) where @ = (0, a)’. The third hypothesis in 1
+1-dimensional spacetime becomes that any pure spatial translation in the symmetry group can be expressed
as A(1, ma).

The speed limit cis another important constant in our theory, thereafter, it is natural to choose
a = ¢ = h = 1 asthe unit, which will be used throughout the left paper.

In 1 + 1 dimensions, the Lorentz matrix relating the coordinate of an event observed in different reference
frames becomes

1 —v

V= 1=

—v 1 ’
JI—v2 1 -2

where the relative velocity v is a signed real number satisfying |v| < 1 since we already set ¢ = 1 to the unit of
velocity. According to the first hypothesis, there exists v = 0 so that A (L,, 0) is an element of the symmetry
group, i.e., two observers are equivalent in describing the physical laws if one is moving at the velocity v relative
to the other.

A (L,,0)and A(1, a) are two elements of the symmetry group. As same as what we did in 34-1-dimensional
spacetime, we use A (L,, 0)and A(1, d) to construct a symmetry transformation A(1, L,a + L, 'a), which will
help us to obtain an equation of v. In detail, we suppose seven observers which are equivalent to each other. K, is
moving at the velocity —v relative to K;. K; differs from K, by a spatial translation of distance a. K, is moving at
the velocity v relative to K. K5 is moving at the velocity v relative to K. K, differs from K; by a translation of
distance a. And K is moving at the velocity —v relative to K. The relation between the coordinates of an event
observed by K;and thatby K, is y, = A(1, L,a + L, 'a)y,. The symmetry transformation A(1, L,a + L, 'a)
is a pure spatial translation, indicating that L, @ + L, '@ must be an integer times of @. We then obtain

L, (6)

- m(g) )

= m, (8)

which can be further simplified into

where m = 2, 3,4, --- isan integer larger than one. In a 1+1-dimensional spacetime that obeys our three
hypotheses, the physical laws stay the same for two observers only if the relative velocity between them is

y=4,1— % .m = 2 corresponds to v = 0, thatis two observers are at rest relative to each other. And |v|

increases monotonically with m. Since m has no supremum limit, v can take infinite number of values even if | v |
cannot exceed the speed limitc = 1. Let us list a few possible values of v, which are

v =0, £/5 /3, /3 /2, ....Recall that the unit of v is ¢, and then the smallest nonzero value of |v]is J5 /3c.
Two observers moving at a relative speed lower than /5 /3¢ are always not equivalent except that they are at rest
relative to each other. In next text, we call the relative velocity v at which two observers are equivalent the
equivalence velocity. An interesting observation is that the equivalence velocity is independent of a. It is the same
in 1D crystals with different lattice constants. Once if the continuous space translational symmetry is broken
into a discrete one, no matter how small a is, the equivalence velocity immediately loses its continuity.

4. Discrete Lorentz symmetry

As shown in above, the 1+1-dimensional spacetime with discrete space translational symmetry can only have a
discrete Lorentz symmetry if not none at all. Equation (8) gives the necessary condition for the equivalence
velocity vin the Lorentz transformation. But it is not the sufficient condition. In fact, it is impossible for the

observers moving at the relative velocity v (m) = +,/1 — % for arbitrary m to be equivalent to each other. In
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Table 1. The integer sequence 1;(g) generated by g = 3 (top)and g = 4
(bottom). The corresponding equivalence velocities v{(g) are displayed

below m1;(g).
o my (g) ) ms my ms me
2 3 7 18 47 123 322
Yo V1 V2 V3 it Vs Ve
0 5 375 85 215 555 1445
3 7 18 47 123 322
My my (8) my m3 My s Mg
2 4 14 52 194 724 2702
Vo V1 V2 V3 it Vs Ve
0 RE 13 1573 563 2093 7803
2 7 26 97 362 1351

other words, the symmetry group cannot contain all the Lorentz transformations A(L, (., 0) for m > 2, because
such aset of A(L,(,, 0) are not closed under multiplication! To see this point, let us suppose that A(L,(,,0) for
m = 3and m = 4 are both the elements of the symmetry group. This is to say that three observers Jun, Tao and
Pei are equivalent to each other if Tao is moving at the velocity v(3) = /5 /3 relative to Jun and Pei is moving at
v(4) = /3 /2 relative to Tao. The Lorentz transformation relating the coordinate observed by Jun to that by Pei
is L,4)L,3) = L,y where V' denotes the velocity of Pei relative to Jun. By using the velocity-addition formula in
special relativity which can also be derived from equation (6), we find that v/ = (v(3) + v(4)) /(1 + v(3)v(4)).
However, 2/ V1 — v'? isnotan integer, so that v/ cannot be an equivalence velocity because this violates the
third hypothesis. Therefore, the assumption of v(m = 3) and v(m = 4) being both the equivalence velocity
must be false.

A question then arises as to which Lorentz transformations A(L,, 0) with the velocity v = £,/1 — % canbe
in the symmetry group which must be closed under multiplication. The answer appears to be simple. First, the
identity transformation atv = 0 or m = 2 must be an element of the group. For the other elements, we strictly
prove that (see appendix A for the detail) only the transformations that are generated by a single integer ¢ > 2
can make up a group. All the Lorentz transformations in the group can be expressed as A(L,,(g), 0) with the

relative velocity being
. 4
vi(g) = sgn(j) 1 — ——, )
m;(g)

where sgn( ) denotes the sign of the integer j. And m1(g) is an integer sequence generated by g. Forj > 0, m, = 2
and m; = gare the first two integers in the sequence, and the left ones are iteratively generated according to

Mjp = gM; — M. (10)

Forj < 0, m;is obtained by using the property that it is an even function, i.e. m; = m_;. The Lorentz
transformations A(Ly,), 0) forj = 0, & 1, --- make up a cyclic group—the discrete Lorentz group which is
denoted as L. Lis uniquely determined by the integer g which is called the generator of the group. The closure of
the group under multiplication can be proved by using the relations A(Ly,(g), 0)A(Ly,), 0) = A(Ly,, (), 0) and
Af(Lvl(g), 0) = A(ij(g), 0). The velocity-addition formula reads v; j(g) = (vi(g) + vj(g))/(1 + vi(g)vj(g)).
Note that the Lorentz matrix in terms of 71; is expressed as

—sgn(j)
m; /2 T,/m]? —4
L, = . .
! —sgn(j)
?,/mj —4 m; /2

Table 1 enumerates the first few elements in the sequence 11;(g) generated by g = 3 org = 4. The
corresponding equivalence velocities are also displayed. m; increases exponentially with j, according to
equation (10). A more elegant expression of 71; can be found in appendix B.

The cyclic Lorentz groups appear to be the inevitable consequence of our three hypotheses. In a spacetime
where our three hypotheses stand, when an observer is writing down the equations of physical laws, he knows
that the only observers who are using the same equations as him must be those who are moving at the
equivalence velocity +,/1 — 4/m;(g)* relative to him. The other observers moving at different velocities have
different equations for the physical laws. And A(L,, ), 0) is the transformation relating the coordinate of an

€3))
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event observed by him to those by the other equivalent observers. It is worth emphasizing that each spacetime
(each crystal) has a unique generator g. But different spacetimes (different crystals) may have different
generators.

5. Discrete Poincaré symmetry

We derive equation (8) by studying the coordinate transformation between seven well-designed equivalent
coordinate systems, namely Kj, - --, Ks and K7. One may wonder whether it is possible to design some equivalent
coordinate systems that finally lead to a paradox and then falsifies our three hypotheses. The answer is no! In fact,
an overall symmetry group which includes the discrete Lorentz group and the discrete space translational group
as its subgroups does exist. Our three hypotheses are self-consistent. We will discuss this overall symmetry group
—the discrete Poincaré group in this section.

The physical laws stay the same for two observers if and only if the coordinate transformation between them
is an element of the symmetry group of the spacetime. Let us use P to denote the overall symmetry group of the
spacetime where our three hypotheses stand. According to the above discussions, the subgroup of P for pure
boost with no translation must be the discrete Lorentz group { A(L,, (), 0)}. And the subgroup of P for pure
spatial translation with no boost or temporal translation must be { A(1, ma)} with @ = (0, 1) and m beingan
integer (recall thata = 1 is the unit of length). In other words, two coordinate systems who have the same
origins are equivalent to each other in describing the physical laws if and only if they are moving at the velocity
vj(g) relative to each other. And two observers who are at rest relative to each other and use the same clock are
equivalent if and only if the spatial distance between them is an integer times ofa = 1.

We prove that (see appendix B for the detail) the group P exists and is determined by the generator g. The
elements of P can be generally expressed as A(L,,,), Y), where L, () is a Lorentz matrix of velocity vj(g) with
j =0, £1, 2, --- beingan arbitrary integer. And Y'is a discrete translation of spacetime. It is a combination of
spatial and temporal translations, being expressed as

—_ g2_4
Y*N(O>+N 2 (12)
- 1 1 2 1 >
Eg

where N;, N, = 0, £1, £2, --- are arbitrary integers. P can be written as
7) = {A(ij(g), YNlNz(g))ljJ Z\[], NZ = 0, :|:1, :|:2,} (13)

The group P is a discrete subgroup of the continuous Poincaré group.

It is easy to verify that the subgroup of ‘P for pure boost is the discrete Lorentz group L. Not only the Lorentz
boost but also the translation depends on g. The subgroup of P for pure translations includes the elements
A(1, Yy n,(g)) which are the translations of vector Yy, n,(g). We use Y to denote the translational group
{A(1, Ynn,(g))} which is closed under multiplication since A(1, Yy, n)A(L, Yayng) = A(L, Ynenynoeny)- Y
includes not only the pure spatial translation, but also the temporal translation and the combination of spatial
and temporal translations. The vectors Yy, n, (¢) form a lattice including the origin in 1+1-dimensional
spacetime, which is the characteristic lattice of Y. This characteristic lattice is generated by two primitive vectors:

T
0, 1)"and (% g> — 4, %g) . The first vector (0, l)Tcorresponds to a minimum spatial translation, while the

second one corresponds to a combination of spatial and temporal translations since %1 /g — 4 and % g areboth
nonzero. The subgroup of Y for pure spatial translations is { A(1, ma)}, as we expected.

Let us see the properties of the characteristic lattice for an odd g. Atg = 3, the two primitive vectors are (0,

T
1" and (%, %) . We plot the characteristic lattice of the translational symmetry for g = 3 in figure 1. Note that

the first component of the vector Yy, y, denotes the time t which is the label of the vertical axis, while the second
component denotes the space x which is the label of the horizontal axis. As gis an odd number, the characteristic
lattice is always a centered rectangular lattice (the red rectangular in figure 1 represents the unit cell). It includes
vectors that lie in the direction of ¢-axis. In other words, Y includes pure temporal translations.

The period of the characteristic lattice in temporal and spatial directions are incommensurate. Since the unit
of time is a/caccording to our choice, the period of the lattice in the temporal directionis T = J5a/cfor g=3.
The pure temporal translation of an integer times of /5 a/c is a symmetry transformation, but those of the other
periods are not. In other words, the physical laws stay the same for two observers who are at rest relative to each
other and located at the same spot ifand only if their clocks differ by an integer times of /5 a/c. Or equivalently,
for a specific observer, the physical laws change periodically with time and the periodis T = ~/5a/c. Fora
general odd generator g, the period of the characteristic lattice in the temporal directionis T = /g?> — 4a / c.

7
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Figure 1. The characteristic lattice of the translational group generated by g = 3. The red rectangular represents the unit cell of the
lattice.

5‘1"

Qle

Figure 2. The characteristic lattice of Y generated by g = 4. The red rectangular represents the unit cell.

Following the breaking of continuous space translational symmetry, the time translational symmetry must also
be broken into a discrete one. This is not a surprise, since the first hypothesis is a weaker version of the principle
of relativity, according to which the time cannot be separated from the space. According to Noether’s theorem
[2], the breaking of the continuous space (time) translational symmetry indicates that the momentum (energy) is
not conserved. In a spacetime where our three hypotheses stands, both the momentum and the energy are not
conserved quantities. But according to the Bloch theorem [26] or the Floquet theorem [27], there exist quasi-
momentum or quasi-energy which are conserved as the system has a discrete space or time translational
symmetry, respectively.

The characteristic lattice for an even g has a different shape. Figure 2 plots the characteristic lattice of the
translational group Y generated by ¢ = 4. For an even g, the characteristic lattice is always a rectangular lattice.
And its period in the temporal direction is ,/g? — 4a / 2c.

The lack of the continuous time translational symmetry and then the energy conservation law sound strange,
since it is generally believed that an isolated system should have conserved energy. But one should not forget that
our three hypotheses stand in a spacetime where the continuous space translational symmetry has already been
spontaneously broken into a discrete one. P is in fact the symmetry group of an effective theory that describes a
system living in such an inhomogeneous spacetime. Just as the electron cannot conserve its momentum when
moving within the periodic potential of crystals, but the whole crystal as an isolated system keeps its momentum
invariant. We should understand the lack of energy conservation in the similar way as we understand the lack of

8
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Figure 3. Invariance of the characteristic lattice under the Lorentz transformation. ¢ and x’ are the time and space axes of a frame K’
moving at the velocity v/3 /2¢ relatlve to K. The black and red numbers denote the spacetime coordinates of an event in the frames K

and K, respectively. The he green (OA ) and blue vectors (OB ) are the two primitive vectors of the lattice in K’. The dotted lines guides

the decomposition of OB into OA/ and OB’ The pink line is the world line of a particle that is static in K. Finally, the dashed lines
represent the light cone of O.

momentum conservation of an electron. The system that the effective theory describes is not a real isolated
system.

6. Invariance of the characteristic lattice under the discrete Lorentz transformation, time
dilation and length contraction

We already know from above that the discrete spacetime translational symmetry can be represented by the
characteristic lattice. In this section, we show that the characteristic lattice { Yy,n,} keeps invariant under a
discrete Lorentz transformation L,,even if each site is transformed into another one on the same lattice. This is
expected since the spacetime translational symmetry is independent of observers.

Let us consider an observer K. The physical laws for him are not the same everywhere in the continuous
spacetime, but change periodically. In next section, we will express the physical laws in terms of the Lagrangian
of afield theory. We can then understand the physical laws changing as that the coupling parameters in the
theory varies in the spacetime. Since the coupling parameters change periodically, the observer K can find a
group of spacetime points which form a lattice (the characteristic lattice), and on this lattice the coupling
parameters stay the same. In other words, the spacetime has a discrete translational symmetry represented by
this lattice. Now a second observer K’ is moving at the velocity v; relative to K. What does this spacetime lattice
look like in the eye of K'? The answer is: exactly the same! Under the transformation from K to K, a site Yy, n, on
the lattice is transformed into

YniN, = Ly YN, (14)
which is another site on the same lattice (the proof is given in appendix B where the relation between the integers
N/, Ny, N; and N, is presented).

Figure 3 explains why the characteristic lattice keeps invariant under the Lorentz transformation. We choose
aspacetime with ¢ = 4 asan example and set v; = V3 / 2 which is the lowest positive equivalence velocity in this
spacetime. The characteristic lattice of ¢ = 4 is a rectangular lattice which can be seen as created by two primitive
vectors (0, 1T and (+/3, 0)7,1.e., OBand OA in figure 3, respectively. Every lattice site can be expressed as

(n; OB + n, OA) with ny, n, being arbitrary integers. Notice that there are infinite ways of choosing primitive
vectors. For the observer K, the time and space axes are oriented in different directions, denoted by # and x/,
respectlvely Itis not an accident that #/ andx cross not only the origin but also some other points (A’ and B') on

the lattice. OA’ (the green vector) and OB’ (the blue vector) can be seen as a new pair of primitive vectors of the
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lattice, that is every lattice site can also be unlquely expressed as (n/ OB’ + n2 OA’ ) with two new integers 1,
and n,. For example web have OB =2 OB/ OA’ and OA =-3 OB’ +2 OA’ Andin the reference frame K,

the length of OB’ and OA’ is aand \/3 a/c, respectively, as same as the length of OB and OA in the K reference
frame, respectively. Therefore, in the eye of K’, the characteristic lattice is exactly the same rectangular lattice as
that in the eye of K.

Now let us discuss the time dilation and the length contraction. Imagine a clock staying at rest relative to K/,

i.e., moving on the # axis relative to K. The world line of this clock during one period is OA’ with tf"/ = J3a/c
being the period of the time translational symmetry. But for another clock staying at rest relative to K, the event
A’ happens at the time £, = 2+/3 a/c. This reflects the fact that the clock at rest runs twice as fast as the moving
clock. In spite of the time dilation, a time interval of integer periods keeps an interval of integer periods in any
equivalent reference frames.

On the other hand, the length contraction seems to contradict the discrete translational symmetry at the first
sight. Let us choose two static points in the reference frame K, say the points x = 0 and x = 4. Because ais the
proposed period of space translational symmetry, the coupling parameters of physical laws always keep the same
at these two points. But in the reference frame K, the distance between the two points contracts to a/2, which
seems to cause a paradox since a is set to the shortest distance for a symmetric space translation. There is in fact
no paradox. The world lines of the two points are shown in figure 3, which are the t axis and the pink line,
respectively. One must remember that the coupling parameters also change with time. Their changes are
synchronized in the reference frame K, but are not in K’. The coupling parameters at the spacetime points O and
Bare the same, but they are different from the parameters at the point C. When the distance is measured in K,
the concerned points are O and Cwhich are simultaneous in K’. The spatial distance between Oand C isa/2 in
K, but the coupling parameters at these two points are different. In previous literatures, researchers were used to
take it for granted that the Lorentz contraction forbids a spacetime lattice to have any Lorentz symmetry in the
traditional meaning. The above argument clarifies that the Lorentz contraction can coexist with the discrete
Lorentz symmetry on a proper spacetime lattice.

7. Causality

The characteristic lattice is constituted of spacetime points (events) arranged periodically. It is therefore
interesting to discuss the causality between different events. According to the causal set theory, the causal
structure of a spacetime lattice can be used to determine the geometry of the background manifold into which
the lattice is embedded [18].

We use the symbol < to denote the causal relation [19]. O and A are two events. O < Aifand onlyif Aisin
the futureof Oand A = O.Infigure 4, therelation O < A is represented by an arrow pointing from O to A. In
our units, the light cone of O is the 45° and 135° lines (the dashed lines). Therefore, an arrow is a relation if and
only if it is along the positive-t direction and the angle between it and the -axis is less than 45°. As is well known
in special relativity, the causal relation is invariant under the Lorentz transformation. Once if O < A stands, it
stands in any reference frames. There are infinite relations. One then defines the elementary relations—the links.
Therelation O < Aisalinkif there exists no intervening event X so that O < X < A. The causal structure of
the spacetime lattice is totally determined by the links. The links are represented by the red arrows in figure 4.

The blue arrow (OD) is a relation but not a link, because it can be decomposed into OA + AD which
means O < A < D.

The characteristic lattice has periodicity. All the sites on the lattice are equivalent to each other. Therefore, we
only need to find out the links starting from a specific point, e.g., the origin O. And the lattice has a mirror
symmetry with respect to the f axis. We then focus ont the links between the t-axis and the 45° line (in the

quadrant I). One can verify that OA, OC, OA’ and OC "are links. In fact, at x = na for each integer , there exists
at most one site that is the end point of the link from O. For example, OC is the link pointing to x = 4. And the
arrows pointing to all the other sites above Catx = a cannot be the links because they can be decomposed into

—

OC and an arrow parallel to the ¢-axis. Similarly, OA’ is the unique link pointing to x = 3a. And there is no link
pointingtox = 2aorx = 4a.

Among OA, OC, OA’ and OC ! OA and OC are obviously links. OA’ and OC’ are links because they can be
obtained by Lorentz transforming OA and OC respectively. Recall that OA’ is the primitive vector of the lattice
for the observer K’ (see ﬁgure 3) Under the Lorentz transformatron from Kto K, the prrmmve Vectors

transform as OA — OA’ and OB — OB’ and then OC OA + OB transforms into OC/ = OA’ + OB’ The
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Figure 4. The characteristic lattice of g = 4 asa causal set.

relation ‘link’ is invariant under the discrete Lorentz transformations. Therefore, OC’ and OA’ must also be
links.

Invariance of the relation ‘link’ can be proved by contradiction. Suppose that arelation OA is alink in the
frame Kbut not alink in K’. But OA is still a causal relation in K, because the causal relation is invariant under

arbitrary Lorentz transformation. We then suppose that OA can be decomposed into OX + XA w1th OX and

—

XA being the causal relations in K’. But OX and XA must also be causal relations in K. Therefore, OA isalso not
alink in K, which causes a paradox.
Wehave infinite discrete Lorentz transformations L, withj = 1,2, 3, --- that keep the lattice invariant. L,,

—

for arbitrary jacting on OA and OC produces a new pair of links. There are then infinite possible links starting
from O with their end points being just above the 45° line.

8. Field theory that has the discrete Poincaré symmetry

In this section, we discuss how to construct a field theory with the discrete Poincaré symmetry. Such a theory is
expected to be the effective theory describing a system in which the space translational symmetry is
spontaneously broken into a discrete one.

We will first discuss the continuous field theory in the section 8.1. The continuous field theory is defined in a
continuous spacetime, in which the time derivative and the space derivative of the field are present in the
Lagrangian density. In the section 8.2, we turn to the lattice field theory, which is defined on the characteristic
lattice of the discrete Poincaré group. In the lattice field theory, the coupling between different lattice sites take
the place of the derivative operators. Both field theories are invariant under the discrete Poincaré
transformations.

8.1. Field theory

Let us recall how to write down a relativistic field theory that has the continuous Poincaré symmetry. To
guarantee the Poincaré symmetry, the Lagrangian density £(y) must be a scalar (rank-0 tensor). It is made up of
constants, scalar fields, or the contraction of higher-rank tensors. For example, the Klein—-Gordon Lagrangian
density for spinless particles is expressed as [2]

L- %6”@5@@ - %mquz, (15)

where ¢ is a real scalar field, mis a constant, and 0, ¢ and 0" ¢ are the covariant and contravariant vectors (rank-
1 tensors), respectively. Here ;1 = 0, 1 denotes the temporal and spacial components, respectively. The metric
signature is chosen to (+, —). The contraction of a covariant and a contravariant vectors leaves a scalar.
Therefore, the Lagrangian density (15) is a scalar which keeps invariant under arbitrary Poincaré transforma-
tion. In other words, the Lagrangian density in two coordinate systems K and K satisfies L(y) = L'(y’).
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Let us see how to modify equation (15) to obtain a new Lagrangian density that loses the continuous Poincaré
symmetry but keeps only the discrete Poincaré symmetry P. In other words, we want to construct a Lagrangian
density that keeps invariant under a Poincaré transformation A ifand only if A is in P. There is only a single
tunable parameter in the Lagrangian density (15), which is the mass . Alternatively, one can treat M = m” as
the tunable parameter. To break the continuous Poincaré symmetry, we replace the constant M by a function M
(). The Lagrangian density in the coordinate system K becomes

L(y) = %aw(y)am(y) - %M(y)gbZ(y). (16)

To obtain the Lagrangian density in a different coordinate system K’, we need to replace y and ¢ by y’ and ¢/,
respectively. We obtain £L'(y") = %8”@5’(}/’) 0,0'(y") — éM (y")¢"*(y"). Note that ¢ and "0, ¢ are scalars
which keep invariant under an arbitrary Poincaré transformation, thatis ¢ (y) = ¢’(y’) and

0"¢(y) 0,0 (y) = 0¢'(y")0,¢'(y'). Therefore, L'(y") = L(y)ifand onlyif M (y) = M (y’). The Lagrangian
density (16) keeps invariant under a Poincaré transformation if and only if the function M(y) keeps invariant
under this transformation. In order that the Lagrangian density (16) has the symmetry P, we must choose a
function M that satisfies

M(y) = M(y'), (17)

wherey’= Ay forarbitrary A in P.But M (y) = M (Ay)if Ais notin the group P.
Let us see how to construct the function M(y). The detailed derivation is given in appendix C. Here we only
give the results. M(y) is a periodic function in the 1+1-dimensional spacetime and has the same periodicity as

the characteristic lattice of P. We define two reciprocal primitive vectors which are k}(f) = ( - 277) and

K® = ( am R 0). M must be expressed as the Fourier transformation
1 N p -
M(}’) — Z Mn]nzei(nlkL1)+nsz2))y/t) (18)
1y, =—00
where 1, and n, are integers, y* is the coordinate vector (y0 = tand y1 = x),and M,,,, is the coefficient of the
Fourier transformation. The Einstein summation convention has been used in equation (18). Furthermore, the
coefficients M, ,, should satisfy

Mn1n2 = Mnl'nz' (19)

for arbitrary integer pairs (11;, #,) and (1, n,) that have the relation

!/

ny = Zj+1i’l] — Zj?’lz

. . (20)
n, = Zjﬂl — Z]‘,ITZZ

Here z;is an integer sequence generated by g (see appendix B for a detailed discussion about z;). For j > 0, the
first two elements of the sequence are zy = 0 and z; = 1, and the left ones are generated according to

Zjv1 = &% — Zj-1. 21

Andz_; = —z;isan odd function of j. According to the properties of z;, all the integer pairs (1, 1,) which are
related to each other by equation (20) make up an equivalence class. All the coefficients M,, ,, with (1, 1,) being
in the same class must be the same. But if (1,, n,) and (1], n,) are in different classes, M, ,, and M,/ ,; arenot
necessarily the same. For example, as g = 3, (0, 0) is by itselfa class,and (1, 1), (2, 1), (1,2), (5, 2), (2,5), - -- arein
the same class, but (1, 3) is not in this class. Therefore, we have Mj ; = My} = My, = M5, = M5 = -+, but
My 0, M1 1 and M, ; may be different from each other. Equations (18)—(20) provide a method of constructing any
function M(y) thatis invariant under P. In order that M(y) is a real function, we need further require

M* =M_ m,—n,- A special example of M(y) can be obtained by setting M,, ,, = M to a constant, thatis M,, ,, in

My, 1y
different classes are all the same. The corresponding M(y) is

_Jgt—4
M(y) = MgT D78 — YN8 — YRn)s (22)
Ni,N,

11

where Y}\),1 N, and YII\,1 n, denote the temporal and the spatial components of the vector Yy, (see equation (12)),
respectively. M(y) is a Dirac-6 function centered at the sites of the characteristic lattice. In the derivation of
equation (22) we used the relation 3", €™ = 275", § 27N — x).

By using the above approach, we can change any relativistic field theory (e.g., the theory of vector fields and
spinor fields) into a theory that has the discrete Poincaré symmetry /P. We start from a theory that keeps
invariant under arbitrary continuous Poincaré transformations. We then replace the constants (e.g., the
coupling or the mass) in the theory into the functions like M(y). Since M(y) keeps invariant only under P, so is
the new Lagrangian density.
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The charge conjugation (C), the parity (P), and the time reversal (T) symmetries are frequently considered in
the study of field theories. The charge conjugation concerns the transformation in the internal space, therefore,
itisindependent of whether the theory has a continuous or a discrete Poincaré symmetry. The parity and the
time reversal symmetries concern the coordinate transformation, just like the Poincaré symmetry. If we need the
Lagrangian density (16) to have the PT symmetry, we need to impose a further constraint on the function M(y),
thatis M(y) = M(—y). According to equation (18), this can be realized by demanding M,, ,, = M_,, _,,. The
function (22) has this property. Because it is centered on the characteristic lattice, and the characteristic lattice
for arbitrary ghas the PT symmetry (see figures 1 and 2).

8.2. Lattice field theory
Sometimes we hope to simulate the field theory by using computers and then need to discretize the spacetime. It
is impossible to discretize a spacetime without breaking the continuous Poincaré symmetry. But one can
maintain the discrete Poincaré symmetry P of a theory when discretizing the spacetime into the characteristic
lattice of P. Because the characteristic lattice keeps invariant under the transformations in P. Next we discuss
how to build a lattice field theory [28] that has the symmetry P.

Let us write down a general noninteracting lattice model whose action is

S= > hprao X $pp X Do (23)
PPQIQ

where ¢, p, denotes the value of the field ¢ at the lattice site Yp, p,, and hp p, g, g, denotes the coupling between the
sites Yp, p, and Y, g, with P;, P, Q) and Q, beingall integers. The characteristic lattice by itself is invariant under
an arbitrary transformation A € P.But each lattice site changes into another one after the transformation.
Suppose that, under a transformation A, the sites Yp, p, and Y, o, change into Yy p; and Yo/ o), respectively, i.e.
Yppy = AYpp,and Yo/ q; = AYy, q,- Theaction Skeeps invariant under the transformation A ifand only if

hP1P2)Q1Q2 = hP{Pz/,Qsz/' (24)

For S being invariant under the group P, we need the coupling function / to be invariant under P. As proved in
appendix C, such a coupling function depends only upon the difference between the sites Yp, p, and Y, ,» 1.€.

hp.p,0,0, = h(P1 — Q1, P> — Qy). (25)

Furthermore, if we use the notation Yy, = Yp p, — Yy q, Orequivalently, Ny = P, — Qiand N, = P, — Q;,
the function h (N, N,) must satisfy

h(Ny, No) = h(N{, Ny) (26)
for arbitrary integer pairs (N, N,) and (N/, N;) that have the relation
N/ = Zj 1N + zj N,

Nzl = —Z]M — Z]‘,lNz‘ (27)
Here the integer sequence z;appears again. Similarly, all the integer pairs (N;, N;) which are related to each other
by equation (27) make up an equivalence class. And equation (26) in fact states that h(IN7, N>) in each class has a
unique value. One should notice the difference between equations (27) and (20). As (N}, N,) denotes a site on
the characteristic lattice, (11, n,) denotes a site on the reciprocal lattice.
Equations (25)—(27) give the conditions of the coupling function h. Equipped with a coupling function
satisfying these conditions, the lattice field theory must have the symmetry P.

9. Conservation of quasi-energy and quasi-momentum

We will not quantize the field theories in this paper, which is left for future study. But it is interesting to discuss
some possible features of the quantized theory. Equation (16) describes a physical system in a periodic potential
which varies both with time and space. The consequence of such a potential is well known to condensed matter
community. The electrons moving in a crystal feel a typical periodic potential varying with space. While the
electrons in an irradiated material are often treated as moving in the time-periodic electromagnetic potential.

The momentum and energy are not conserved in the presence of periodic potentials. They are not good
quantum numbers any more. But according to the Floquet theorem and the Bloch theorem, the quasi-energy
and the quasi-momentum are good quantum numbers instead, which are defined as the energy or the
momentum modulo 27/ /T or 2w/ /a, respectively, where T and a are the periods of the potential in the
temporal and spatial directions, respectively. Our analysis in section 5 has already established the relation
between T'and a.
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Due to the spatial periodic potential, the single-particle spectrum should include a series of Bloch bands. The
energy levels are distinguished by the quasi-momentum and the band label. If we further consider the potential
being temporally periodic, the solutions of the Schrodinger equation must be further distinguished by the quasi-
energy and the Floquet band label. The quasi-energy, the quasi-momentum, the Bloch band and the Floquet
band together determine a solution.

Recent study showed that an isolated generic Floquet system will be heated up until it reaches the infinite-
temperature state [29]. But we should not forget that our three hypotheses stand in a system where the
continuous translational symmetry has been spontaneously broken. The Lagrangian (16) is the effective theory
for the symmetry-breaking state, describing something like the electrons moving in a crystal. Therefore, the
system is in fact an open system, to which the argument in [29] does not apply.

10. Conclusions and outlook

In summary, we propose a theory about the Lorentz and Poincaré symmetries in a spacetime with discrete space
translational symmetry based on three hypotheses. In solid-state physics, the spacetime occupied by crystals is
expected to have these properties. We describe the whole symmetries of the spacetime which include the discrete
Lorentz, space translational and time translational symmetries, and show how to construct a Lagrangian or
action under these symmetries. It is worth emphasizing that our hypotheses and results are expected to stand in
the case of the continuous space translational symmetry being spontaneously broken but not being broken by
periodic external fields.

Itis worth mentioning the difference between our hypotheses and those hiding behind the effective models
of crystals (such as the Hubbard model [30]) that were frequently used up to now. In these effective models, the
kinetic energy is either expressed as p*/2m with p and m denoting the momentum and the mass, respectively, or
expressed as the hopping energy between neighbor sites on the crystal lattice. In the language of quantum field
theory, the kinetic part of the Hamiltonian looks like 1 (x)(— /%202 /2m)) (x) in a field theory or cl-"' ciyrina
lattice field theory where 1(x) and ¢; denote the field operators of particles (e.g. electrons) in the crystal. The
discrete space translational symmetry is considered, but the Lorentz symmetry is not under consideration in
these models whose Lagrangians or Hamiltonians always change as transformed from one reference frame to the
other moving at a different velocity. The complete loss of Lorentz symmetry can be viewed as a special case of our
theory as the generator of the spacetime is ¢ = 2 and then the discrete Lorentz group L contains only a single
element A (1, 0) (the identity element). On the other hand, the general version of our theory assumes ¢ > 2, and
then there exist infinite number of Lorentz transformations with nonzero velocities in the symmetry group. Our
theory involves more symmetries than the models in previous studies. According to our theory, the Lagrangian
of amodel can only take some specific form, which the previous models do not have.

Our theoryis built on three hypotheses. Recall that the first hypothesis is similar to but weaker than the
principle of relativity, while the second one states an invariant speed c which represents the speed limit of the
propagation of information or matter in crystals. These two hypotheses are not deduced from any known
principles. Whether they are true should be examined by experiments. We would like to point out some results
coming out from these hypotheses that could be checked by experiments. One is the breaking of the continuous
time translational symmetry. In a spacetime with an odd generator g, the time translational symmetry has a
period T = /g? — 4a / ¢, while in that with an even g the periodis T = /g — 4a / 2c¢. If the spacetime has a
discrete time translational symmetry, the local observables should change periodically with time, just as they
vary periodically within the space of the crystal lattice. Let us estimate the magnitude of the temporal period T
which depends on a/c. The lattice constant of a crystal is typically at the nanoscale. cis distinguished from the
light speed in vacuum but is expected to be at the same magnitude as it. We choosea = 1 nmand
c=3x 10*ms ',andfinda/c = 3.3 x 10 '®s. The temporal period is only a few attoseconds (too short),
which maybe explains why such a periodicity has not been observed up to now. An alternate way is to examine
the absorption spectrum of crystals. According to the Floquet theorem (see [27] for a recent review), the energy
of a time-periodic system is not conserved, and should be replaced by the quasi-energy which has a period of
7227/ T. Aresonance happens between the quasi-energy levels whose difference is an integer times of 72 27 /T,
which may cause a peak at the frequency 1/ T in the absorption spectrum of crystals. Note that 1/T ~ 10'® Hzis
in the frequency range of x-rays.

It is worth mentioning that the time-periodic oscillation of observables has been predicted in the theory of
‘time crystals’ [8]. But whether there exists a ‘time crystal’ is still under debate. It was argued that a time-periodic
oscillation of observables cannot happen in an equilibrium state described by the Gibbs ensemble [12]. On the
other hand, our theory indicates that the Lagrangian of a model for crystals should be time-periodic, in which
case the idea of describing the equilibrium states by Gibbs ensemble should be reexamined since it does not put
space and time on an equal footing.

14



10P Publishing

New J. Phys. 20 (2018) 023042 P Wang

Finally, we would like to mention the open problems that are expected to be solved in the future. These
include the construction of the discrete Lorentz symmetry in 2+ 1-dimensional and 3+1-dimensional
spacetimes, and the quantization of a field theory that has the discrete Poincaré symmetry.
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Appendix A. The discrete Lorentz group

We have proved in section 3.2 that the velocity of a Lorentz transformation in the symmetry group must be

v==1-— % .In other words, the symmetry group of pure Lorentz transformations is a subset of

V:{A(LV, 0|y =+ /1—i2, m=2, 3,4---}. (A1)
m

In this section, we prove that such a group must be a cyclic group generated by some integer g, as defined in
section 4. Recall thata group is closed with respect to multiplication and the Lorentz matrix is expressed as

1 —v

V= 1=

v 1

V=2 1 =2

L, (A2)

The multiplication between two Lorentz transformations is A(L,, 0)A(L,, 0) = A(L, L/, 0) where L, L, is the
product of two matrices.

The simplest group that is a subset of ) is the trivial group containing only the identity transformation at
v = 0orm = 2.Itisaspecial cyclic group. On the other hand, according to our first hypothesis, the symmetry
group should contain at least one Lorentz transformation with v == 0. Let us suppose that except for the identity

element the symmetry group contains an element A(L, ), 0) with v(g) = |1 — é for some integer g > 2.

Note that supposing 1(g) > 0 does not lose the generality since A(L, ), 0)and A™'(L, ), 0) = A(L_,(g), 0)
must be the elements of a group simultaneously. Once if A(L, (), 0) is an element, according to the property of a
group, N (Lyg» 0) = A(Lj @ 0) must be an element of the group for arbitrary integer j = 0, +1, £2,---. The
physical meaning of A/ (Ly(g) 0)is clear. We choose an observer Ky, and call who is moving at the velocity (g)
relative to K, the observer K. Similarly, the observer K;, , is moving at the velocity v(g) relative to K;. Therefore,
the coordinate transformation from Ky to Kjis A/(L, (), 0). Theset L = {A/(L, (), 0)|j = 0, £1, £2,---}
satisfies all the properties of a group. Itis a cyclic group. The set of observers {Kj| j = 0, +1, £2,---} areall
equivalent to each other in describing the physical laws.

Next we prove that Lisa subset of V, i.e., any element A/(L, ), 0) of Lisalsoin . Let us denote the velocity

of Kjrelative to Ky as v;. By definition, we have vo(g) = 0and vi(g) = v(g) = /1 — % , and the Lorentz matrix

relating Ko to Kis Ly, ) = L 31 (o - Similarly, the velocity of Kjrelative to K;is denoted as v;_; which satisfies
Ly o= Lv{?gj) , and the velocity of K; relative to Ky is v; satisfying L., ,) = le(g) . Note that le(g) is the ith power
of L, ;). We then have ijl(g) = Lvil(g) LJIZ;) or Ly (g) = Ly, Ly, ,q)- By using the expression of L, in
equation (A2), we obtain

. Vi(g) + Vj—i(g)

e = 1+ vi(g)vi—i(g)

(A3)

Equation (A3) is the velocity-addition formula which is as same as that in special relativity, because both are

derived from the Lorentz transformation. It is easy to verify that v;is an odd function of i, i.e., v_; = —v;,and
_ viEy . .
Visi = T3 o according to equation (A3).

Now we define m;(g) = 2 > for each velocity vj(g). One can easily see my = 2 and m,(g) = gfrom

VJ1-vig
vo=0and v (g) = |1 — %, respectively. By definition, m;(g) = m_;(g) is an even function ofj. To prove

that A/ (Ly(g)> 0) = A(Ly,g), 0)isanelementof V, we only need to prove that mj(g) is an integer. This is done by
finding an iterative formula for m(g). Expressing m;..; by using v;,;and then by v; and vj, we obtain
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Mitj + mj_; = m;m. (A4)
Choosingi = 1, we have

Mjyp1 = gMm; — mj_.. (A5)

Since we already know 11, and m,, equation (A5) can be used to calculate m; iteratively. For example, we find
my =g — 2, m3 =g — 3g . Thenumbers my, my, m,, --- make up an infinite sequence. And because
my = 2and m, = gareboth integers, m; for arbitrary j in the sequence must be an integer according to
equation (A5). Therefore, A/(L, ), 0) for arbitraryjand gis an element of V, and Lis asubset of V.

Up to now, we proved that the cyclic group L generated by an integer gis a subset of V. Next we prove that L
is the only possible group that is a subset of ). We will construct a proof by contradiction. We assume that there
exists a group G which is included in V but not a cyclic group. By definition, G must include at least two
elements A(L,), 0) and A(L,, 0) whereg, ¢’ > 2 are both integers and not in the same sequence m; generated
by an integer. Especially, gand ¢’ are not in the sequence generated by each other. Without loss of generality, we
suppose2 < g < ¢'.Remember that ¢’ is not in the sequence generated by g, i.e. g’ = m;(g) for arbitrary .
According to the property of group, A(L,r, 0) = A(L, ), 0)A (L, (g), 0) isan element of G. The velocity-
addition formulareads v’ = (v(g) — v(¢))/(1 — v(g)v(g")). We can deduce v" < v(g’) since v(g) > 0,and
also v" = v(g), otherwise, we have v(g’) = 2v(g) /(1 + v(g)?) and then g'= m,(g) which contradicts
g # m;(g) forarbitraryj. Since A(L,», 0)isin G, it mustbe also in V, thereafter, g” = 2/\J1 = v isan
integer satisfying ¢” = gand ¢” < ¢/, deduced from v" = v(g) and v" < v(g’). We can also deduce g" > 2,
since ¢” = 2 indicates v = 0 and then v(g) = v(g’) org = ¢ which contradicts our assumption. In
consequence, we constructed an integer g” which is different from both gand ¢’ and is less than the max of them.
In the same way, we can use ¢” and the smaller one of gand ¢(gin this case) to construct a new integer ¢” that is
different from gor ¢g” and less than the max of them. We can do this because g (g”) is not in the sequence m;
generated by g” (g), otherwise, we can deduce that ¢ is also in the sequence m; generated by g” () which
contradicts the assumption that gand g’ cannot be in the same sequence. The process of constructing new
integers can be repeated for infinite number of times. Every time we choose the smallest two in the integers that
we already obtained to construct a new one. The sequence of integers (g, g”, g”,--) that we obtain are all
different to each other and all less than ¢’ and larger than 2. But this is impossible, because there only exist finite
number of integers between 2 and ¢'. Our assumption must be false. The only possible groups included in V are
cyclic groups. This finishes the proof.

Appendix B. The discrete Poincaré group

Our hypotheses infer that the overall symmetry group of the spacetime should have next properties: its subgroup
for pure Lorentz transformationsis L = { A(L,,), 0)}, and its subgroup for pure spatial translations is

A = {A(1, ma)} withmanintegerand @ = (0, 1)”.In this section, we prove that the minimum group that has
these properties is

P = {ALv g YNn(@)N) Ni, N2 =0, £1, £2,---}, (BD)
where
l [o2 _ 4
YN, = N1((1)) + N, 2 1 > (B2)
Eg
and

m; 2 %(j),/m} — 4
sen(i :
%Jmf —4 m; /2

And any group that has these properties must contain P as the subgroup. The proofis divided into two steps.
First, we prove that P isa group, i.e., P is closed under multiplication, and P has the above-mentioned
properties. Second, we prove that a group that has these properties must contain P by proving that each element
in P can be expressed as a product of the elements in Land A.

Let us list some important properties of the integer sequence 11; which will be used in the proof. The iterative
formula (A5) can be reexpressed as

(B3)

v
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§— Vg’ —4

2

+ 2 4 _ 2 4
gt g4 [mj . Lm] 54

2

Mj1 = mj

from which we derive an expression of m;:

j j
e Vegt—4 g+ g —4
mj = + . (B5)
2 2
For convenience of presentation, we define a new sequence
A [ m
(B6)

= sgn(j) —— \/_
8

Itis straightforward to prove that zj can be expressed as

F[g 7 ] [g J_) -

The iterative formula of z;is as same as that of 12, being

Zjy1 = 8% = Zj-1. (B8)
The first two elements of zjare zy = 0and z; = 1 which are both integers, thereafter, z; must be also an integer
sequence just like 11;! z; for arbitrary jis an integer, and z; = —z_;is an odd function of j. The useful formulas
involving zjand m;are
g mj
Z: =2z 4+ 2
j+1 2 j 5
. (B9)
8 j
zi =2z — L
27 2

And a generalized iterative formula for z;is
Zitjr1 = Zi+1Zj+1 — ZiZ) (B10)

which can also be expressed in a matrix form as

Zit1 zZ; Zj+1 Zj %+t Zitj
(*Zi Zi—l)(_zj _Zjl) N (_Zi+j —Zitj-1) (BL1)
Especially, by taking i = —j we obtain
—Z]',1 —Z]‘ Z]ur] Zj .
(7 ) ) o

B.1. Pisagroup
According to equation (3), the product of arbitrary two elements in P is
ALy, Ypp)A(Ly, YNN,)
= ALy, Ly, Ypp, + Ly, Ynin,)
= A(Ly,.;» Ypp, + Ly YNN)» (B13)
where i, j, Ny, N,, Py and P, are all integers. To prove that P is closed with respect to multiplication, we need to
prove that A(L,,, Ypp, + Ly, Ynn,) isin P. Thisis equivalent to prove that L, Yy,n, = Yiyny isa vector in the

characteristic lattice for arbitrary L, and Yy,n, in the lattice. By using the expression of L,, (see equations (B3)
and (B9)), we obtain

{ NI/ = Zjt IM + Z]‘Nz (B14)

, .
N2 = *Z]M — Zj,1N2

Since z; for arbitrary jis an integer, N/ and N, must be integers. Therefore, Yy : is a vector in the characteristic
lattice, and then P is closed with respect to multiplication.
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In section 5, we already showed that L and A are the subgroups of P for pure Lorentz transformations and
pure spatial translations, respectively. We conclude that P is a group that satisfies the conditions of the overall

symmetry group.

B.2. The symmetry group cannot be smaller than P
In this subsection, we prove that each element in P can be expressed as a product of the elements in Land A.
Recall that the characteristic lattice { Yy, ,} has two primitive vectors: ¥; o = (0, 1)T and

T
Yo, = (% /g? — 4, %g) . By using the expression of L, | in terms of g (see equation (B3)), we express the second
primitive vectoras Yp; = L, , Y] o. We then obtain

A(l) YO,I) = A(Lv,p O)A(l) YI,O)A(Lvl) 0) (BIS)

A(1, Yi,p) denotes the minimum spatial translation which is an element of A, and A(L,, , 0) are the elements of
L. Therefore, A(1, Yy, n,) = A(L, Y10)MA(1, Y,1)™ can be expressed as a product of the elements in L and A for
arbitrary N and N,.

For the element A(L,, Yi/n;) in P, we can factorize it into

A(Lv]') YN{NZ/) = A(va O)A(1) YNINZ)> (B16)

where Yy = Ly, YN, or YN, = Ly YN/ N2 (N/, Ny)and (N, N,) satisfy the relation (B14). According to
equation (B12), this relation is invertible and its inverse is

{N1 = —z;_N| — zN;

. (B17)
N2 = Zlel + Z]'+1N2/

For arbitrary (Ny, N3), we can find integers N; and N, that satisfy equation (B16). This means that each element
in P can be expressed as the product of an elementin Land A(1, Yy, n,). But the latter has been proved to be a
product of the elements in Land A. Therefore, each element in P can be expressed as a product of the elements
inLand A.

Appendix C. Theories that has the discrete Poincaré symmetry P

C.1. The field theory
In this subsection, we explain how to construct the function M(y) which satisfies

M(y) = M(Ay) (C1)

forarbitrary A € P.In other words, M(y) is invariant under P. Each element of P can be factorized into
ALygy Yain) = AL, Yan)A(Ly ), 0) where A(1, Yyn,) and A(Ly, ), 0) arealso the elements of P.
Therefore, M(y) is invariant under P ifand only if M(y) is invariant under the transformations A(L,,(,), 0) and
A(1, Yy n,),i.e., M(p) is invariant under the discrete Lorentz group L and the discrete translational group Y.
Wenotice that A(1, Yyn,)y = y + Ynn,- Because M is invariant under Y, we obtain
M(y) = M(y + Yn,n,) for arbitrary Ny and N,. This means that M is a periodic function in the 1+1-
dimensional spacetime, and has the same periodicity as the characteristic lattice { Yy, 5, }. Such a periodic
function can be expressed as a Fourier transformation. The characteristic lattice has two primitive vectors: Y]
and Y, ;. For convenience of presentation, in this subsection we rename them as Y = (0, 1)" and

T
Y® = (; /g? — 4, %g) . Each vector in the characteristic lattice can be expressed as Yy, = Ny Y + N, Y@,

The reciprocal lattice has also two primitive vectors which are found to be k() = (_fﬁg 27r) and

>
g —4
k@ = ( \/% , 0). The inner product between the primitive vectors of the characteristic lattice and the
e

reciprocal lattice satisfies k@ - Y® = 278, , wherea, b = 1,2 and §,; is the Kronecker delta function. For the
momentum vector k = m k™ + n,k® with 1, and n, being integers, we have ek = elk(+Ynn) {eiky} at
different (1, n,) form a basis of the periodic functions on the characteristic lattice. Therefore, M must be
expressed as

M(y) = Z Mn]nzei(nlk(1)+nzk(2>)')/, (C2)
ny,ny
where M,, ,, is the coefficient of the Fourier transformation.

M(y) should also be invariant under L, which imposes a constraint on the coefficients M,,
equation (C2) into the condition M (y) = M (A(ij, 0)y), we obtain

Substituting

112

18



10P Publishing

New J. Phys. 20 (2018) 023042 P Wang

Z M, , elmkV+mk®) .y
112

ny, 13

i (1) (2) .
— Z Mnlnzel(nlk LV}.Jrnzk ij)y’ (C3)

m, 1y
where we used the properties of the inner product and LV? = L,. Wenotice that
mkML, + mk®L, = n/k® + nk®, (C4)
where

/
n = Zj+1111 — Zjﬂz

/ (C5)
n, = Zjnl — Z]‘,IT”IZ
Therefore, equation (C3) stands if and only if the coefficients M,, ,, satisfy
Mnlnz = Mn,’nz/ (Co)

for the integer pairs (;, 1,) and (1], n;) that are related to each other by equation (C5). The relation (C5)isin
factan equivalence relation which is reflexive, symmetric and transitive. The reflexivity, symmetry and
transitivity can be easily proved by using the properties of z; given in equations (B11) and (B12). The integer
pairs (n, 1) thatare related to each other by equation (C5) form an equivalence class. All the coefficients M,, ,,,
with (1, 1) being in the same class must be the same.

C.2. The lattice field theory
In this subsection, we explain how to construct the coupling function / in a lattice field theory that is invariant
under P. h must satisfy

hP1P2,Q1Q2 = hPl/PZ/)Ql/QZ/ (C€7)
with Yppy = AYp p,and Yoo = AYy,q, forarbitrary A € P.
Again, each element of P can be factorized into A(ij(g), Yan,) = AL, Yy, NZ)A(ij(g): 0). The coupling
function h is invariant under P if and only if it is invariant under the transformations A(1, Yy,,) and
A(Ly,g), 0). Since his invariant under A(1, Yyn,), wehave hp, p,q,Q, = hp+N,P,+N,, Qi+ N, @+, fOT arbitrary
integers N and N,. This means that fp,p, o, o, depends only upon the difference between (P;, P,)and (Q;, Q).
We can then reexpress the coupling function as

hpp0,0, = h(P1 — Q1 Py — Qo). (C8)

Let us use the notation Yy, n, = Yp,p, — Yp,0,, orequivalently, Ny = P, — Q;and N, = P, — Q,. The
coupling function hp, p, g, q, should be invariant under the Lorentz transformation A(L,,, 0), under which we
have Ypl’pz’ = A(LV]., 0) YP1P2 and YQI’QZ’ = A(Lv], 0) YQI Q- We then find YNI/NZ/ = Ypl’pz’ — YQl/Qz/ = ij YNlNz' The
integer pairs (N}, N>)and (N}, N;) have the next relation:

Nll = Zj+1N1 + Z]‘Nz

. (C9)
NZ/ = —Zjl\fl — Zj,1N2
Substituting equation (C8) into equation (C7), we obtain
h(Ny, Np) = h(Nj, Ny). (C10)

The coupling function must satisfy equation (C10) for being invariant under P. Again, the integer pairs that are
related to each other by equation (C9) form an equivalence class. Equation (C10) says that h(N;, N,) with (N,
N,) being in the same class must be the same.
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