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Abstract
Althoughnonequilibriumworkandfluctuation relationshavebeen studied indetailwithinclassical statistical
physics, extending these results toopenquantumsystemshasproven tobe conceptuallydifficult. For systems
thatundergodecoherencebutnotdissipation,weargue that it isnatural todefinequantumworkexactly as
for isolatedquantumsystems,using the two-pointmeasurementprotocol.Complementingprevious
theoretical analysis usingquantumchannels,we showthat thenonequilibriumwork relation remainsvalid in
this situation, andwe test this assertionexperimentallyusinga systemengineered froma trapped ion, adding
externalnoise toproduce theeffects ofdecoherence.Ourexperimental results reveal thework relationʼs
validityover a varietyofdriving speeds, decoherence rates, andeffective temperatures and represent thefirst
confirmationof thework relation for evolutiondescribedbyanon-unitarymaster equation.

1. Introduction

Statements of the second law of thermodynamics are generally expressed as inequalities. For instance thework
performed on a systemduring an isothermal processmust not exceed the net change in its free energy:  DW F .
When statistical fluctuations are appropriately included these inequalities can be reformulated as equalities,
such as the nonequilibriumwork relation [1]

á ñ =b b- - D ( )e e , 1W F

whereβ is an inverse temperature and angular brackets denote an average over repetitions of the process. For classical
systems, this prediction and relatedfluctuation theoremshave been extensively studiedboth theoretically [2] and
experimentally [3–10], andhavebeen applied to thenumerical estimationof free energy differences [11, 12].

The last decade has seen growing interest in extending these results to quantum systems [13]. This pursuit is
made challenging both by the fact that classical work is defined in terms of trajectories—a notion that is typically
absent in the quantum setting—and by the lack of a quantum ‘work operator’ [14]. To avoid these difficulties,
many studies have focused on closed quantum systems, which evolve unitarily. In the absence of a heat bath
there is no heat transfer to or from the system and thefirst law of thermodynamics reads,

= D º - ( )W U E E . 2f i

Here the classical work depends only on a systemʼs initial andfinal configuration and can be determined from
twomeasurements. This idea is easily lifted to the quantum regime through the two-pointmeasurement (TPM)
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protocol [15–17], according towhich thework performed during a single experimental run is the difference
between energy valuesEi andEf resulting from initial and final projectivemeasurements.

If a system is prepared in equilibrium at inverse temperatureβwith initial Hamiltonian = å ñáˆ ( ) ∣ ∣H n n0 n ,

then evolves unitarily as theHamiltonian is varied from Ĥ (0) at t=0 to t = å ñáˆ ( ) ¯ ∣ ¯ ¯ ∣H m mm at t=t , the
TPMwork distribution is given by

 å d= - -( ) [ ( ¯ )] ( )¯ ∣p W p p W . 3
nm

n m n m n

Here = b- -p Z en 0
1 n is the probability to obtain the value =Ei n during the initial energymeasurement, ¯ ∣pm n is

the conditional probability to obtain the final energy value = ¯Ef m, given the initial value n, andZ0 is the
partition function for the initial equilibrium state. To date, both proposed [18–21] and implemented [22–25]
experimental tests of the quantumwork relation (1) have focused on evaluating equation (3) for a closed system.

Subtle conceptual issues arise if the systemʼs initial state contains coherences in the energy basis, since such
states are disturbed by the initialmeasurement [26, 27]. Even in this situation equation (1) remains valid under
the TPMscheme, provided the diagonal elements of the initial densitymatrix are given by Boltzmann factors
[28]. These issues will not affect our analysis, as wewill always assume our systembegins in equilibrium, and is
thus described by a diagonal (in the energy basis) densitymatrix.

A number of authors have proposed definitions of work and derived fluctuation theorems for quantum
systems in contact with general thermal environments [29–35]. Ourmore focused aim in this paper is to
consider a quantum system in contact with a thermal environment that produces decoherence but no
dissipation. From a theoretical viewpoint, we argue that the TPMprotocol provides a natural definition of
quantumwork in this situation, andwe give an elementary, physicallymotivated derivation of equation (1) that
agrees withmore general results obtained by previous authors [36–40].We then describe an experimental
implementation constructed from trapped ions thatmakes use of noise to achieve the effects of a bathwhich
causes decoherence but no dissipation. From the datawe verify the validity of the quantumwork relation,
providing the first experimental confirmation of equation (1) for a systemundergoing decoherence.

2. Theoretical development

When a quantum system is coupled to a thermal environment, there arise two distinct departures fromunitary
dynamics: dissipation, that is the exchange of energy, and decoherence, the leakage of the systemʼs quantum
coherences into the environment [41].Wewill consider situations inwhich dissipation is negligible over
experimentally relevant time scales, but decoherence is substantial. Under such conditions the environment is a
decohering (or dephasing) environment: it suppresses coherences but does not exchange energy.

Consider a system in contact with a decohering environment. At t=0, following a projective energy
measurement, the systembegins in an energy eigenstate  ñ∣ n , then it evolves as itsHamiltonian is variedwith
time. At t=t its energy is againmeasured, yielding ̄m. By assumption, no energy is exchangedwith the
environment, therefore we claim that it is natural to identify work to be the difference between the initial and
final energies,  = -¯W m n, just as for a closed quantum system (see equation (2)). If we accept this as a
plausible definition of work in the presence of a decohering environment, then does equation (1) remain valid in
this situation? This question can be answered affirmatively within the general framework of quantum channels
[37, 38, 40].We now take a phenomenological approach to arrive at the same answer.

We begin bymodeling the dynamics of the system. In the energy representation, a decohering environment
does not affect the diagonal elements (populations) of the systemʼs densitymatrix r̂ ( )t , butmay cause off-
diagonalmatrix elements (coherences) to decay.We capture these features with the equation


år

r g r r= - - ñá º
¹

ˆ [ ˆ ( ) ˆ ] ∣ ∣ ˆ ( )
t

H t i j
d

d

i
, , 4

j
ij ij

i

which describes both unitary evolution under ˆ ( )H t and the decohering effects of the environment. Here g 0ij

are phenomenological decay rates for the coherences r rº á ñ∣ ˆ∣i jij , in the instantaneous eigenbasis of ˆ ( )H t .
Althoughwe havemotivated equation (4) heuristically, it can also be obtained from the perspective of

quantumdetailed balancemaster equations (QDBME) [42]. These equations are a special type of Lindblad
master equation and are of physical relevance as they rigorously describe a quantum system coupled to an
infinite, thermal quantum reservoir under appropriate assumptions of weak interaction and separation of time
scales [43–45].

For anN-level quantum systemwith no degenerate energy gaps as shown in appendix A.1, theQDBME
governing the evolution of the density operator can bewritten in the form

2

New J. Phys. 20 (2018) 013008 A Smith et al







å å

å

r
r

r r

g r

g

=- + ñá + G ñá

º -

G º + - <

º -

¹

ˆ [ ˆ ˆ ] ∣ ∣ ∣ ∣

( )

( ) ( )

t
H J i i i j

J R R

R R

d O O

d

d

i
, ,

,

0,

0, 5

ij
ij

i j
ij

ij ij jj ji ii

ij ii jj ij ij

ij
k

k ki kj
2

where theRijʼs form a stochastic ratematrix [46] satisfying detailed balance, theOijʼs form a real orthogonal
matrix, and >d 0k for all k. The three terms on the right side of equation (5) respectively describe unitary
evolution, dissipation, and decoherence. The dissipative term evolves the diagonal elements of r̂ (populations)
according to a classicalMarkov process described by the ratematrixR, whereas the decohering term causes the
decay of off-diagonal elements (coherences). Tomodel a decohering environment we set all =R 0ij , thereby
suppressing thermally induced transitions between energy eigenstates. This leads immediately to equation (4).

Earlier, we hadmotivated our definition of work in the presence of a decohering environment,
 = -¯W m n, heuristically.With equation (4) this argument can be strengthened using a simplemicroscopic

model, as we describe appendix A.2.
Note that evolution under equation (4) preserves the identity,  =Î 0, hence this evolution is unital, and

equation (1) follows as an immediate consequence of a general result derived byRastegin [37]. To keep our
presentation self-contained, we nowderive equation (1) assuming only a linearmaster equation that preserves
the identity.

Let r rL t tˆ ˆ: 0 denote the quantum evolution thatmaps an initial densitymatrix to afinal densitymatrix,
under the dynamics of equation (4). After initial equilibration, an energymeasurement at time t=0 yields an
energy eigenvalue n with probability = b- -p Z en 0

1 n, and ‘collapses’ the system into a pure state r = ñáˆ ∣ ∣n n0 .
This state then evolves under equation (4) to r r= Lt tˆ ( ˆ )0 and afinal energymeasurement at t=t yields a value
̄m with probability r= á ñt¯ ∣ ˆ ∣ ¯¯ ∣p m mm n . Summing over all possiblemeasurement outcomes, and using the

linearity and identity preservation of Lt , we have [37]

 
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
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3. Experimental verification

To test equation (1) experimentally, we employ a two state system engineered froma +Yb171 ionʼs orbital
degrees of freedom, using the energy levels = = ñ º ñ∣ ∣F m0, 0F and = = - ñ º ñ∣ ∣F m1, 1F belonging to
the ground-statemanifold of 2S 1 2 [47]. By applyingmicrowave pulses resonant to our states’ energy difference
w w wº - Z0 HF , where w p= ( )2 12.642 821 GHzHF and w p= ( )2 13.586 MHzZ , the system can be driven
according to theHamiltonian


s f s f=

W
+ˆ ( ) ( ) [ ˆ ( ) ˆ ( )] ( )H t

t
t t

2
cos sin . 6x y

Here ŝx y, are the standard Paulimatrices in the ñ ñ{∣ ∣ }, basis whileΩ andf are parameters controlled through
the amplitude and phase of themicrowave pulses. In our experiment, we use the driving protocols

t
f

p
t

W = W - =⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )t

t
t

t
1

2
;

2
, 70

where τ is the duration of the process. Together equations (6) and (7) represent theHamiltonian portion of our
systemʼs dynamics. The decohering termof equation (4) is realized by the addition of noise in themicrowave
pulse sequence. In our setup this adds a stochastic term xW ( )t0 to the protocol W( )t where x ( )t is gaussianwhite
noise characterized by zeromean xá ñ =( )t 0 and variance x x t a d táD + ñ =( ) ( ) ( )t t 2 . Averaging over all

realizations of the noise x ( )t produces an equation ofmotion identical to equation (4)with g g a= = Wij
1

2
2

0
2

[48–51] (see also appendix A.3).
Given this setup, the procedure formeasuring thework applied during a single experimental trial involves

four steps: ( )i thermal state preparation, ( )ii initial energymeasurement, ( )iii application of the driving protocol,
and ( )iv final energymeasurement, as shown infigure 1(a).

3
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OurHamiltonian has the form s=ˆ ( ) ( ) · ˆH t tB , where the field ( )tB undergoes rotation by 90° in the xy-
plane (see equation (6)). For technical reasons the initial thermalization and bothmeasurements are performed
in the ŝz basis. Therefore after the initial thermalization andmeasurement we rotate the system from the z-axis
into the xy-plane, thenwe implement the driving as per equation (6), andfinally we rotate the systemback to the
z-axis to perform thefinalmeasurement. These rotations do not affect thework distribution. The rotations are
achievedwith adiabatic shortcuts [52–54], which produce transformations equivalent to adiabatically switching

Figure 1. (a)–(c) respectively show conceptual and actual experimental schematics of the TMPprotocol in our setup. (b) Indicates that
in the true experiment thermal state preparation and initial energymeasurement occur in the ŝz eigenbasis before being transfered to
the basis of ŝx with the aid of an adiabatic shortcut. (c) Indicates how the system is again rotated—this time from the ŝy to ŝz basis—
proceeding the second fluorescencemeasurement. Note that the level splitting in the ŝz basis is set byD0 which is the frequency
difference between the laser beat-note and w0.

4
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the systemʼsHamiltonian, but in a finite time (see appendix A.6). Figures 1(b) and (c) showdetailed schematics
of themeasurement protocols, including these shortcuts.

(i) Thermal state preparation—Wecreate the initial thermal state using the following procedure. First we
prepare the pure state yñ = ñ + ñ ∣ ∣ ∣c c using a standard optical pumping sequence followed by the
application of resonantmicrowaves over a proper duration. After waitingmore than 10 times the coherence
time (see appendix A.4), the state becomes amixed-state described by the density operator
r = ñá  + ñá  ˆ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣c cini

2 2 , which is identical to thermal equilibrium state -( ˆ ( ) )H k Texp 0 B with an
effective temperature


=

W

 (∣ ∣ ∣ ∣ )
( )T

k c cln
. 80

B
2 2

For our experiment, pW = ´2 50 kHz0 while ∣ ∣c 2 took values of 0.605±0.041 and 0.804±0.034,
corresponding to effective initial state temperatures of =T 5.631 mK and =T 1.702 mK, respectively.

(ii) Initial energymeasurement—Following initial state preparation, the energy of the system ismeasured
using a standard state-sensitive fluorescence detection sequence. In this procedure, fluorescence or the absence
offluorescence during the detection sequence indicate ameasurement of the ñ∣ or ñ∣ state respectively.When
the ground state ñ∣ (dark state) ismeasured, we continue to the next step of the experiment. If the excited state
ñ∣ (bright state) is detected, we re-prepare the ñ∣ state before continuing (see appendix A.5). As noted above, the
actualmeasurements are performedwith respect to theHamiltonian  sW ˆ 2z0 which is then switched to
 sW ˆ 2x0 using an adiabatic shortcut (see appendix A.6).

(iii) Application of driving with dephasing—At this point noisymicrowave pulses are applied to the system
resulting in evolution according to theHamiltonian (6)with the protocols (7) and decoherence. For our trials, τ
took values 50, 10, and m5 s representing near adiabatic, intermediate, and fast driving speeds. The decoherence
rate γ in equation (4)was set to 0, 448, or 1340 kHzwhich correspond to the cases of no, intermediate, or large
dephasing strength respectively.

(iv) The final energymeasurement—Prior to the final energymeasurement, another adiabatic shortcut is used
to switch the systemʼsHamiltonian—this time from  sW ˆ 4y0 to  sW ˆ 4z0 . Following this transfer, the energy of
the system is once againmeasured using a state-sensitive fluorescence detection sequence. By calculating the
difference between the initial and final energymeasurements, a work value for the experimental trial is obtained.

Figure 2 shows thework distributions resulting from experiments conductedwith twelve different
combinations of effective temperatureT, driving time τ, and decoherence rate γ. From the data, it is clear that
decoherence non-trivially affects thework distribution for a given process—for instance compare (d)–(f) in
figure 2. Amore careful inspection reveals that the qualitative behavior of thework distribution is governed by a
competition between driving speed and decoherence. For near-adiabatic driving, thework distribution is
peaked at values  = -¯W i i corresponding to themeasurement of two energies with the same quantum
number. Increasing driving speed (decreasing τ) tends to induce transitions among energy states with different
quantumnumbers, thereby broadening thework distribution. This effect is exemplified infigure 2 by
distributions (a), (b), and (d). In contrast, decoherence in the eigenbasis of ˆ ( )H t suppresses these transitions
bringing thework distribution closer to its adiabatic form. This can be seen by comparing the near adiabatic
distribution (a)with the fast driving cases (d)–(f)which have varying degrees of decoherence. Interpreting this
decoherence as environmentalmeasurement of the systemʼs energy, one can see that the system is forced to
follow the adiabatic trajectory due towave function collapse.When the collapse rate γ becomes large, the system
becomes trapped in an eigenstate of the instantaneousHamiltonian—a scenario analogous to the quantum
Zeno effect.

Figure 2.Thework distributions (a)–(f) correspond to an initial temperature of =T 5.631 μKwhile (g)–(l)have =T 1.702 μK.The
driving times t m= 50 s, t m= 10 s, and t m= 5 s represent near adiabatic (a), (g), moderate (a), (c), (h), (i), and fast (d)–(f), (j), (k),
(i) driving regimes. The dephasing rate γ took values of 0, 448, and 1340 kHz for the cases of no (a), (b) (d), (g), (h), (j), intermediate
(e), (k), large (c), (f), (i), (l) dephasing respectively.
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With these distributions, thework relation can be tested for each choice of the experimental parametersT, τ,
and γ by direct comparison of the left- and right-hand sides of equation (1). Note that the quantity á ñb-e W is
calculated using thework distributionwhile b- De F follows straightforwardly fromknowledge of the energy
levels of ˆ ( )H 0 and tˆ ( )H . The results of these calculations, shown infigure 3, agree towithin the error of the
experiment and hence validate thework relation.

4.Multiple interpretations

While our theoretical development focuses on environment-induced decoherence, the dephasingmaster
equation (4) can be interpreted in variousways. For instance, (a) the samemaster equation describes—at the
ensemble level—a system that evolves unitarily but is interrupted at randomby projectivemeasurements.More
precisely if our experimentermakesmeasurements in the instantaneous eigenbasis of ˆ ( )H t at times dictated by a
Poisson process with rate γ, then the density operator resulting fromaveraging over allmeasurement
realizations obeys equation (4), with g g=ij . Yet another interpretation of the dephasingmaster equation arises

when (b) one averages over noise that is introduced by adding an appropriately designed, randomly fluctuating
term to the bare systemHamiltonian ˆ ( )H t [48, 49]. The validity of equation (1) in case (a) has been noted
explicitly byCampisi et al [55, 56], and in case (b) byCampisi, Pekola and Fazio [57].More generally, both
interpretations, (a) and (b), support afluctuation theorembecause the system evolves according to a unital
channel during each realization, and the average of any number of unitalmaps is again unital, hence Rasteginʼs
general analysis [37] applies.

Thus the non-unitary dephasing term appearing in equation (4) can arise either due toweak coupling to a
bath, as described earlier, or due to externally imposed randomness, as described in the previous paragraph. In
this paper we focus on the former interpretation because itmost closely resembles the canonical setup for
fluctuation theorems, namely a small system coupled to a bath in thermal equilibrium. As outlined in the
experimental section of thismanuscript, we simulate the effects of a decohering bath by the addition of noise to
produce dephasing. Of course, our experiments can equally well serve as a direct verification of the above-
mentioned prediction of [57].

5.Discussion and conclusions

Throughout thismanuscript we have considered systems that experience only decoherence, but significant
theoretical progress has beenmade in understanding quantum fluctuation theorems in situationswhere
dissipation is also important.We outline some of these advances as they give context for our results and provide
direction for future experimental work.

Perhaps themost conceptually appealing framework that addresses general thermal environments is based
on considering the system and environment jointly as a closed composite system [33–35, 58]. Here the TPM
scheme can be employed as thework is simply the change in energy of the joint system. (In theweak coupling
limit, work can also be defined asD -U Q where the energy changeDU and the heatQ are obtained by
applying the TPMprotocol separately to the system and environment.)Despite defining awork distribution that
satisfies equation (1), this approach suffers from the need tomeasure bath degrees of freedom,which is difficult
to realize in practice.

Figure 3.Comparison of the exponential average of work for distributions (a)–(l) in figure 2 to the exponential of the free energy
difference calculated from the initial and final energy levels of ˆ ( )H t .

6
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Other studies of thework relation overcome this issue by definingwork at the system level without
referencing an environment. In this vein there are several equivalent formalisms for treatingQDBME [59–65] of
whichwe focus on the quantum jump trajectorymethod [40, 61, 62, 66–69]. Originally developed in the field of
quantumoptics [70], this approach treats a systemʼs density operator as an average over pure states evolving
according to stochastic trajectories. The construction of these trajectories is called an unraveling and is generally
not unique.When this unraveling is chosen properly, a consistent trajectory-based thermodynamics can be
defined in amanner similar to classical stochastic thermodynamics, and thework relation remains valid
[40, 61, 62, 66–69].When applied to the decoheringmaster equation (4), the quantum trajectory approach
agrees with the theoretical development section of this paper.

Various approachesmight be taken in future experimental tests of quantum fluctuation theorems. For
instance, rather than producing decoherence through the addition of noise, the results of thismanuscript could
be complimentedwith an experiment using a true decohering bath engineered froman interaction commuting
(at all times)with the bareHamiltonians of the system and environment. For systemswith dissipation, the
quantumwork relation could be tested for general thermal environments using the TPMprotocol and a
continuous environmentalmeasurement technique [71–74] such as single photon detection in a cavityQED
experiment. Alternatively using only the TPMprotocol on a dissipative system, one could test the energy change
fluctuation theoremwhich is amodified version of equation (1) devised by Pekola and co-workers [75]. For non-
unital dynamics, Goold et al [76]have obtainedfluctuationlike relations for heat, in the context of the quantum
Landauer Principle. It remains an open, interesting questionwhether the quite general approach of [76] can be
used to obtain an experimentally testable version of the nonequilibriumwork relation (1)when both
decoherence and dissipation are present. Alternative frameworks for defining heat andwork present yet another
direction for potential experimental tests of quantumfluctuation theorems. For example, in Elouard et al
[77–79], energy changes are expressed in terms of three contributions—work, classical heat, and quantumheat.
In the interpretation developed in [77], work is defined differently than in the presentmanuscript, and the
energy changesmeasured in our experiment include contributions fromquantumheat. Using a definition of
work similar to that of [77], Deffner et al [80]have derived amodified version of equation (1) that accounts for
the thermodynamic cost of projectivemeasurements.

In summary, we have studied the quantumwork relation for a system in contact with a decohering bath.We
obtained equation (1)within a simple, phenomenologicalmodel that complements themore general
approaches of unital quantum channels and quantum trajectories. Using a system constructed from trapped
ions subjected to noisy dynamics, we conducted an experiment that demonstrated thework relationʼs validity
for a dephasing process and represents the first test of equation (1) beyond the regime of closed quantum
systems. These results demonstrate the applicability offluctuation theorems to open quantum systems, at least
for the special case of a decohering heat bath, andmay spur additional tests of thework relation for systemswith
dissipation.

While thismanuscript was under review, we learned thatNaghiloo et al [24], also under review, describes
experimental work verifying equation (1) for an open quantum system inwhich feedback control is used to
compensate for the heat exchangedwith the environment.
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Appendix

A.1. Detailed balancemaster equation
Consider aQDBMEwith aHamiltonian = å ñáˆ ∣ ∣H i ii and an equilibrium state r̂eq satisfying the standard
thermal relation
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r =
b

b

-

-
ˆ

[ ]
( )

ˆ

ˆ
e

Tr e
. 9

H

H

eq

Additionally assume that the gaps  -i j in the spectrumof Ĥ are non-degenerate. Under these conditions,
Alicki showed [42] that themaster equationmay bewritten in the form


år

r r r= - + +
=

ˆ [ ˆ ˆ ] {[ ˆ ˆ ˆ ] [ ˆ ˆ ˆ ]} ( )† †

t
H D X X X X

d

d

i
, , , , 10

j

N

ij ij ij ij ij
i, 1

whereN is the dimension of the systemʼsHilbert space and the real numbersDij and operators X̂ij satisfy the
conditions

  =b b- - ( )D D De e ; 0, 11ij ji ij
j i

 = -[ ˆ ˆ ] ( ) ˆ ( )H X X, , 12ij i j ij

d d=[ ˆ ˆ ] ( )†
X XTr , 13ij kl ik jl

=ˆ ˆ ( )†
X X . 14ij ji

Inwhat follows, wewill use the non-degenerate gaps of Ĥ alongwith conditions (11)–(14) to gain insight into
the constantsDij and operators X̂ij. This in turnwill allow for equation (10) to bewritten in a formwhere the
processes of relaxation and decoherence aremanifest.

Constants Dij—The constantsDij can largely be interpretedwithin the framework of a classical continuous
timeMarkov process [46]. Assuming discrete states indexed by i, such processes describe the evolution of a
probability distribution pi according to

å= ( )
p

t
r p

d

d
, 15i

j
ij j

where rij is a transition ratematrix with the properties

 ¹
= -å =¹

⎧⎨⎩
( )
( ) ( )r
i j

r i j

0; ,

.
16ij

k i ki

Furthermore thematrix rij is said to satisfy detailed balancewith respect to an equilibriumprobability
distribution pi

eq when

- = ( )r p r p 0. 17ij j ji i
eq eq

Given these definitions, one immediately recognizes from condition (11) that the off diagonal elements ofDij

coincidewith the elements of a transition ratematrix satisfying the detailed balance condition (17)with
bµ -( )p expi i

eq . Inwhat follows, wewillfind that the energy populations r r= á ñ∣ ˆ∣i iii relax thermally
according to

å å

å

r
r r

r r

= + -

= +

¹ ¹

¹

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( )

t
D D

r r

d

d
2 2

. 18

ii

j i
ij jj

j i
ji ii

j i
ij jj ii ii

Hence for ¹i j wewill interpretDij as half the thermally induced transition rate from energy state j to state i.
Note that rii is defined according to equation (16) and ¹D r 2ii ii . Condition (11) only constrains the constants
Dii to be positive. These numbers will later be interpreted in terms of decoherence rates. Anticipating these
connections, the elements ofDijwill be redefined according to

=
¹
=

⎧⎨⎩
( )
( )

( )D
r i j

d i j

2 ,

.
19ij

ij

i

Operators X̂ij—Before finding the explicit formof the operators X̂ij, it is instructive to recast conditions (12)
and (13) in the language of linear algebra. Specifically note that condition (12) dictates that X̂ij is an eigen-

operator of the super-operator [ ˆ ·]H , with eigenvalue  -i j while condition (13) asserts that the operators X̂ij

form an orthonormal set with respect to thematrix inner product á ñ =ˆ ˆ [ ˆ ˆ]†
A B A B, Tr .

First consider the operators X̂ij for which ¹i j. In this case, each eigenvalue  -i j of equation (12) is non-
degenerate (due to the gap structure of Ĥ ) and hence the corresponding eigen-operator X̂ij is confined to a one-
dimensional eigenspace. By inspection this eigenspace is determined to be a añá Î{ ∣ ∣ }i j : . The
normalization condition (13) further gives the constraint that a =∣ ∣ 12 .Without loss of generality, it is now
possible to set
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= ñá ¹ˆ ∣ ∣ ( ) ( )X i j i j 20ij

due to the fact that themaster equation (10) is independent of the phase ofα since X̂ij and ˆ †
Xij appear in

conjugate pairs.
For the case where i=j, the eigenvalue in equation (12) vanishes and corresponds to theN dimensional

eigenspace å ñá Î{ ∣ ∣ }O k k O:k ik ik . Application of conditions (13) and (14) gives

 å dÎ = ( )O O O; 21ik
k

ik jk ij

which is exactly the condition that thematrixOik belong to the set of real orthogonalmatrices ( )O N . In
conclusion

å= ñá Îˆ ∣ ∣ ( ) ( )X O k k O O N; . 22ii
k

ik ik

The formof the detailed balancemaster equation in themain body of thismanuscript can nowbe deduced.
Following substitution of equations (19), (20), and (22) into themaster equation (10) and somemanipulation,
the result is given by






å å

å

r
r

r r

g r
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=- + ñá + G ñá

º -

G º + -

º -
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2 0,
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i j
ij
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ij ii jj ij ij

ij
k

k ki kj
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As stated earlier, the virtue of writing themaster equation in the above form is that the processes of relaxation
and decoherence are clearly displayed—they are the second and third terms on the right-hand side of
equation (23) respectively. The relaxation is seen to shuffle the diagonal elements of the density operator
according to aMarkov process while the decoherence term causes exponential decay of off-diagonal elements.

A.2. The decoheringmaster equation fromaHamiltonianmodel
In ourmain theoretical development, we argued that it is plausible no heating occurs during a decohering
process and hence it is reasonable to determinework values using the TPMprotocol. Here we strengthen this
argument by presenting a specificmicroscopicmodel where our intuition can be verified according to the
definitions of heat andwork presented byCampisi et al [58].

Specifically, we consider a simple repeated interactionmodel where the bath is represented by a streamof
identical auxiliary systemswhichwewill refer to as units. Each unit begins in a thermal state ŵ and interacts with
the systemof interest for a time dt . Over every interaction interval, the totalHamiltonian (systemplus units) is
fixed but the systemʼsHamiltonian and the interactionmay change suddenly between intervals.Wewill denote
the totalHamiltonian during the nth interval by

l= Ä + Ä +ˆ ˆ ˆ ˆ ˆ ˆ ( )( ) ( ) ( ) ( )H H I I H V , 24n n
S U S U

n

where ˆ ( )
Hn

S
is the systemʼsHamiltonian, ˆ ( )

H
U

is theHamiltonian of the non-interacting units which each have

individualHamiltonians ˆ( )
h

U
,λ is the interaction strength, and V̂n is an interaction that acts only on the system

and nth unit. Furthermore to assure the process only produces dephasing in the systemof interest, we assume
that the interaction is of the form

= Äˆ ˆ ˆ ( )V A B, 25n n

where Ân acts on the system and commutes with ˆ ( )
Hn

S
while B̂ acts on the nth unit and commutes with ˆ( )

h
U
. In

the following, we outline two important properties of thismodel: (1) the existence of a regimewhere the systemʼs
dynamics are described by a decoheringmaster equation and (2) the absence of heat transfer between the system
and units.

In order to show (1), we take

d=ˆ ˆ ( ) ( )( ) ( )H H n t , 26n
S S

d=ˆ ˆ ( ) ( )A A n t , 27n

where ˆ ( )( )
H t

S
and ˆ ( )A t are operators that vary continuously with time andmake the standard assumption [73]

that w =[ ˆ ˆ]BTr 0. Taking the limit d t 0while simultaneously letting the interaction strength grow according
to l d= -k t 1 2 where k is a positive real constant, it can be shown [81] that
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


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r r r

w

=- - -

=

⎡
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S
S S S S2

2

2

Since ˆ ( )H t and ˆ ( )A t commute at all times, they share a common eigenbasis ñ{∣ ( ) }i t . Rewriting the dissipator
(second termon the rhs of equation (29)) in in this basis, themaster equation becomes





år
r g r

g
w

=- - ñá ñá

= -

¹

[ ˆ ( ) ] ∣ ( ) ( )∣ ∣ ( ) ( )∣

[ ˆ ˆ ] ( ) ( )

( ) ( ) ( ) ( )
t

H t i t i t j t j t

B
a a

d

d

i
, ,

Tr
, 29

S
S S

i j
ij

S

ij i j

2

2
2

where ai are the eigenvalues of Â.
We now showproperty (2) holds according to the definitions of heat andwork proposed in [58]. In this

setup, work is determined (for initially thermal states) by applying the two pointmeasurement protocol to the
joint system and environment. Assuming that the system is decoupled from the units at the beginning and end of
the process, thework performed during a single realization is given by    = + - -( ) ( ) ( ) ( )W m

S
k
U

n
S

l
U where

 +( ) ( )
m
S

k
U and  +( ) ( )

n
S

l
U respectively are the initial andfinal energymeasurements. Since the total

Hamiltonian of the system and units commutes with ˆ ( )
H

U
at all times, it follows that  =( ) ( )

k
U

l
U which implies

that thework is fully determined by localmeasurements on the systemof interest as claimed in themain text of
thismanuscript.

A.3. Stochastic noise anddecoherence rate
In our experiment, decoherence is induced by the introduction of noise. The system is driven by the total
Hamiltonian

 x
s=

W + W ˆ ( ) [ ( ) ( )] ˆ ( ) ( )H t
t t

t
2

, 30n
0

where s s f s f= +ˆ ( ) ˆ ( ) ˆ ( )t t tcos sinn x y and x ( )t is Gaussianwhite noise characterized by xá ñ =( )t 0 and

x x t a d tá + ñ =( ) ( ) ( )t t 2 . ˆ ( )H t can be decomposed into a control part  s= W ˆ ( ) ( ) ˆ ( )H t t t 2c n and stochastic
part  x s= W ˆ ( ) ( ) ˆ ( )H t t t 2s n0 .

Taking the ensemble average over all noise realizations, the evolution of the system is described by the
Lindbladmaster equation[46, 48, 82]



r
r g r r= - - ñá  + ñá  

ˆ [ ˆ ( ) ˆ ] ( ∣ ∣ ∣ ∣) ( )
t

H t
d

d

i
, , 31c

where ñ ñ∣ ∣, are the instantaneous eigenvectors of ˆ ( )H tc and γ is the decoherence ratewhich satisfies

g
a

=
W( ) ( )
2

. 320
2

In practice we applied discrete noise with a sampling rate of Rs instead of ideal continuous-Gaussianwhite
noise.When -R 2s

1 ismuch less than the duration of the operation, the digital noise can be approximated as
Gaussianwhite noise, with auto-correlation function x x t s d tá + ñ = -( ) ( ) ( )t t R2

s
1 . Figure 4 gives an example

of power spectral density of discreteGaussianwhite noise, which hasfinite bandwidth.Hence equation (32)
should be revised as

g
s

=
W( ) ( )
R2

. 330
2

s

In our experiment, the systems decoheres for durations of 5, 10 and m50 s and the noise sampling rate is set
to1 MHz. Hence the decoherence rate is given by g s= W( ) 2 MHzexp 0

2 when W0 ismeasured in MHz. And
figure 5 clearly shows this linear relation between decoherence rate and effective auto-correlation amplitude of
applied discrete Gaussianwhite noise.

A.4. Thermal state preparation
Weuse themagneticfield sensitive states = = - ñ º ñ∣ ∣S F m, 1, 1F

2
1 2 and = = ñ º ñ∣ ∣S F m, 0, 0F

2
1 2 to

create an effective two state systemwith a typical coherence time of 0.14ms. After preparing a superposition state
with the desired populations, wewait 1.5ms for the system to decohere.We confirm that the state is effectively
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thermal using state-tomography [47]. As shown infigure 6, the off-diagonal components of the densitymatrix
are negligible for both effective temperatures used in our setup.

A.5. Energymeasurements
Thefirst and the second energymeasurements are performed in the ŝz basis using standard fluorescence
detection as shown infigure 7.Depending onwhether the system is in the excited state ñ∣ or ground state ñ∣ ,
fluorescence or nofluorescence respectively occurs during the detection sequence.When the ground state ñ∣
(dark state) ismeasured, the system remains unchanged during the detection sequence andwe simply continue
to the next step of the experiment. If the excited state ñ∣ (bright state) is detected, the system is left in amixture of
the three levels of F=1 in 2S 1 2 manifold. Therefore, we re-prepare the ñ∣ state using standard optical
pumping and aπ-pulse ofmicrowaves before continuing the experiment. Afluorescence detection sequence is
also used for thefinalmeasurement which constitutes the end of an experimental run.

A.6. Adiabatic rotation
For our setup, the initial and thefinal energymeasurements are performed in the ŝz basis. Between the
measurement sequences and the driving protocol, the state of the systemmust be transferred between the z-axis
and x–y plane of the Bloch sphere. To accomplish this task, we use adiabatic shortcuts—a protocol that has the
same effect as an adiabatic switching of theHamiltonian but occurs infinite time [52–54]. Specifically we apply
an additional counterdiabatic term to ourHamiltonian during the switching process to achieve the shortcut.

After thermal state preparation and the first energymeasurement, our system collapses into the ñ∣ or ñ∣
state. In principle, we have to adiabatically rotate the ñ∣ or ñ∣ state to the corresponding state in the x-y plane of
the Bloch sphere. In our experiment, the coherence time of a superposition of the ñ∣ and ñ∣ states is short and

Figure 4.Power spectral density of discreteGaussianwhite noisewith standard deviation s = 5 and sampling rate 1 MHz.

Figure 5.Experiment results of decoherence rate γ relationwith sW -( ) R0
2

s
1. Here sampling rate is set as 1 MHz.
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hencewould introduce an error in the rotation if it were carried out in a truly adiabatic fashion. Therefore, we
apply an adiabatic shortcut to reduce the time for the rotation. In this scheme, we change theHamiltonian of the
system according to

s w s w s=
D

+
W

+ˆ ( ) ˆ ( ) ( ˆ ( ) ˆ ) ( )H t t t
2

cos
2

sin , 34z x y1
0

1
0

1

where w p= W = D = ( )2 50 kHz1 0 0 and t varies from t=0 to p w m= =t 2 5 s1 . The termproportional to
ŝy is the counterdiabatic which suppresses the excitations. Note that true adiabatic rotation requires at least
hundreds ofμs, which ismuch longer than transfer time using the adiabatic shortcut.

After the driving sequence, we rotate the systemʼs state back to the z-axis of the Bloch sphere using the
Hamiltonian

Figure 6.Densitymatrices after preparing effective thermal states, which are equivalent to (a) m=T 5.63 K1
eq and (b) m=T 1.70 K2

eq .

Figure 7.Energy levels of our +Yb171 ion system. The two level systemused in our experiment is composed from the states ñ∣ and
ñ∣ . Transitions between these states are driven using resonantmicrowaves.
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s w s s w=
W

+ +
Dˆ ( ) ( ˆ ( ) ˆ ) ˆ ( ) ( )H t t t

4
cos

4
sin , 35y x z2

0
2

0
2

where w p= W = D = ( )2 2 2 25 kHz2 0 0 and t varies from t=0 to p w m= =t 2 10 s2 . This time the
courterdiabatic term is proportional to ŝx .
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