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Abstract

We investigate the effects of cooperativity between contagion processes that spread and persistin a
host population. We propose and analyze a dynamical model in which individuals that are affected by
one transmissible agent A exhibit a higher than baseline propensity of being affected by a second agent
Band vice versa. The model is a natural extension of the traditional susceptible-infected-susceptible
model used for modeling single contagion processes. We show that cooperativity changes the
dynamics of the system considerably when cooperativity is strong. The system exhibits discontinuous
phase transitions not observed in single agent contagion, multi-stability, a separation of the traditional
epidemic threshold into different thresholds for inception and extinction as well as hysteresis. These
properties are robust and are corroborated by stochastic simulations on lattices and generic network
topologies. Finally, we investigate wave propagation and transients in a spatially extended version of
the model and show that especially for intermediate values of baseline reproduction ratios the system
is characterized by various types of wave-front speeds. The system can exhibit spatially heterogeneous
stationary states for some parameters and negative front speeds (receding wave fronts). The two agent
model can be employed as a starting point for more complex contagion processes, involving several
interacting agents, a model framework particularly suitable for modeling the spread and dynamics of
microbiological ecosystems in host populations.

1. Introduction

Contagion processes abound in nature, ranging from the spread of infectious diseases in host populations [1],
the spread of information in social networks [2], the adaptation of technology and norms [3, 4], to activation
patterns in neural tissue [5, 6], and escape mechanisms from predators in schooling fish [7]. Dynamical
computational models are an essential tool for understanding phenomena in all of these contexts. Their
application to the spread of infectious diseases has flourished in recent years [8—11], primarily because of the
relevance to human health and the spread of human infectious diseases. Dynamical models cover a broad scope
in terms of complexity, ranging from qualitative models that focus on universal features of the observed
phenomenon [12, 13], network models that account for population structure or host mobility patterns [ 14-20],
to sophisticated, large-scale agent-based models [21, 22] that incorporate high resolution data on multi-scale
transportation, demographics, epidemiological factors, and behavioral response rules. State-of-the-art
computational models have become remarkably successful in reproducing observed patterns and predicting the
trend of ongoing epidemics.

Most epidemic models focus on the transmission dynamics of single, symptomatic pathogenic bacteria or
viruses because in most applications it can reasonably be assumed that the phenomena are dominated by host-
pathogen interactions. A variety of infectious diseases exist, however, that interact either directly or indirectly
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e.g. by altering the susceptibility of the host with respect to infection with another pathogen. Furthermore,
transmissions of bacterial microorganism between host individuals is not restricted to species that cause disease.
The transmission and spread of commensal or mutualistic bacteria as part of the host’s microbiome is generic, in
fact also often required to sustain a healthy, host specific microbiome. Especially the transmission of bacterial
species of the human microbiome has attracted much attention in very recent studies [23, 24]. Microbiotic
species are part of a complex microbiological ecosystem of a host, with a densely connected set of metabolic
connections [25]. Itis reasonable to assume that these interactions, and the presence of particular speciesin a
host’s microbiome impacts the propensity of colonization with another. In social science, the adoption of a
certain behavioral patterns may impact the propensity to adopt another pattern if exposed to it. Therefore, it is
important to understand the basic mechanisms and effects that are generated by interactions of contagion
processes in general.

Early network theoretic work focused on competitive coinfection [26—33] with important applications to
infection dynamics of virus strains that induce cross immunity. In these systems different pathogens suppress
each other, yielding either single pathogen dominance or coexistance solutions. Multiplex network approaches
have been applied in this context [34, 35], for situations when contagion processes unfold along different modes
of transmission within the same population [26-28, 36]. In [36] a very general framework for describing two
concurrent diseases is introduced, relevant factors such as infection type, impact of the underlying networks,
positive and negative interactions are analyzed and discussed.

Only recently, cooperative contagion in which infection with one transmissible agent facilitates infection
with another was investigated [36—47]. These studies mainly focused on transient dynamics of the generic
susceptible-infected-recovery (SIR) model in which individuals acquire immunity after infection. In [39], a
simple SIR coinfection model was investigated within the framework of cooperative bond percolation. This
model exhibits avalanche-like outbreak scenarios, depending on the level of cooperation and the structure of the
underlying transmission network. Analytical insights [44] have been obtained that explain the role of network
topology in cooperative bond percolation systems, in multiplex systems [45], power-law networks [43], as well
as sequential coinfection on Poisson networks [37]. Furthermore, it has been found that highly clustered
structures in population aid the proliferation of coinfections, contrary to the effect observed in single disease
dynamics [41]. Two asymmetrically interacting SIR contagion processes were investigated in [47] and backwards
bifurcations, i.e. first order phase-transitions, were identified.

Because most of these models focus on transient SIR dynamics they cannot capture situations in which a
steady supply of susceptibles permits the existence of a stable endemic state, such as the susceptible-infected-
susceptible (SIS) or SIRs or SIR model with vital processes. An exception is [41] where coinfection of two SIS type
processes was investigated using pairwise level approximation. Despite of this, co-contagion systems remain
poorly understood and some fundamental issues remain: what basic dynamical features can we expect in
cooperative contagion processes? To what extent does cooperativity change the classic outbreak scenario, what is
the nature of transitions to endemic states? Can we expect multi-stability and multiple thresholds? How does
cooperativity impact spatial propagation?

Here we introduce and investigate a model for the dynamics of two transmissible, interacting agents (labeled
A and B). The model is based on the well-known SIS model in which host individuals are either susceptible (S) or
infected (I). Susceptibles can be infected with either agent. When infected with say A they can transmit A to other
susceptibles. Infecteds remain in the infectious state for a typical period after which they recover and susceptible
again. The transmission dynamics of agents A and B are governed by agent specific baseline reproduction
numbers R4 and R, respectively that describe the dynamics of an agent in the absence of the other. We
incorporate cooperativity by two additional parameters, the cooperativity coefficients £, and £ that capture
influence of an infection with A on the subsequent infection with B and vice versa.

Based on this model, we show that cooperativity between contagion processes generates a variety of
interesting properties that are absent in single agent dynamics. For sufficiently strong cooperativity, increasing
the baseline reproduction number of one or both agents yields abrupt, discontinuous outbreak transitions and
multi-stability (i.e. the coexistence of different stable asymptotic states). Furthermore, cooperativity exhibits
dynamical hysteresis, a consequence of the split of the ordinary epidemic threshold into two separate thresholds
(an inception and extinction threshold). We derive these features analytically in a deterministic well-mixed
model. Their robustness is corroborated by numerical simulations of analogous stochastic dynamical processes
on both lattices and generic network systems. Finally we investigate cooperative contagion in spatially extended
systems. We show that the interplay of different thresholds and hysteresis yields a rich set of wavefront dynamics
and invasion dynamics, e.g. accelerated propagation in certain parameter regimes, stable heterogeneous patterns
as well as negative wavefront speeds (receding wavefronts).
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Figure 1. Cooperativity of two contagion processes. Two agents, A and B, spread in a host population. We classify the state of a host
individual by letters S (white), A (blue), B (red), and AB (gray) corresponding to being susceptible, infected only by A, infected only by
B, and infected by both A and B, respectively. The state of the population can be defined by the subsets S, A", B*, A*N B+
corresponding to the sets of susceptibles, infected by A (interior of blue dashed circle), infected by B (interior of red dashed circle), and
infected by both (gray area), respectively. Note that the sets A" and B+ include individuals in state AB. The relative size (fraction of
individuals) of A", B, A" N BT and S isdenotedbyu,v,w,and 1 — u — v + w, respectively. Contagion dynamics is determined
by 12 reactions depicted on the right. Susceptibles S acquire A by interacting with individuals from set A" (A or ABindividuals) at rate
ay. Likewise, susceptibles Sacquire B by interacting with individuals in set B (B or AB individuals) at rate cg. Cooperativity means
that individuals in state A (B) acquire agent B (A) at higher rates interacting with individuals in set B+ (A") symbolized by the thicker
interaction lines in the reaction scheme. Dashed lines symbolize recovery events.

2. Cooperative contagion

Our model is an extension of the generic SIS compartmental model: host individuals are either susceptible (S) or
infected (I) and change state by two reactions, the transmission of the infection S + I — 2I and recovery I — S
atrates o and [3, respectively. In a well mixed, large, and conserved population the fraction of infected
individuals u(f) can be described by 1t = au(l — u) — fu. The basic reproduction ratio is defined by

R = a/f.For R < 1thetrivial state u = 01is globally stable. If R is increased beyond the critical threshold

R, = 1the system exhibits a transcritical bifurcation, # = 0 becomes unstableand u = 1 — R~!is the stable
endemic state in which transmission and recovery events balance. The SIS system thus exhibits a continuous
transition as R crosses the critical threshold R, = 1. Analogous stochastic lattice models in which lattice sites can
transmit to neighboring sites and recover exhibit the same type of threshold behavior and a continuous phase
transition. Here, we consider a generalization of the SIS model that captures the dynamics of two interacting
transmissible agents: A and B. A host can be in one of four states S, A, B, and AB, corresponding to susceptible,
infected with A but not B, infected with Bbut not A, and infected with both A and B, respectively, see figure 1.
Transmissions in this system occur by interactions of host individuals in these four different states and can be
summarized as follows:

AV AB+S—% AV AB + A4,

BV AB + S —% BV AB + B,

AV AB+ B AV AB + AB,

BV AB+ A 5 BV AB + AB, (1)

wheree.g. A V AB represents an individual that is either in state A or in state AB such that e.g. the first reaction
represents the transmission of agent A to a susceptible individual. The system is defined by four different
transmission rates oy, (g, (iga, and ;g that correspond to transmission of A to a susceptible, of Bto a
susceptible, of A to an individual carrying B, of B to an individual carrying A, respectively. For simplicity we
assume uniform recovery rates:

ABLAavB,  avBZls @)
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Figure 2. Bifurcation analysis of cooperative contagion processes. (a) For various values of the cooperativity coefficient £ the stationary
states of the symmetric system equation (6) are depicted. When & is greater than the critical cooperativity £, = 2 aregime

R, < R < R, exists in which the system exhibits three stationary states, the stable trivial state # = v = 0 (gray line), another stable
endemic state (upper branch, solid red lines) and an unstable intermediate state (dashed red line), see equation (7). In this regime small
perturbation to the u, v = 0 state will not cause a transition to the endemic branch. Only if perturbations are sufficiently large
(crossing the unstable fixed point branch) the system will approach the endemic state. This behavior implies that when subjected to
sporadic small perturbations while increasing R, the system will remain near the stable contagion free state until the upper critical
point R, = 1iscrossed at which point the system will generate a discontinuous jump, similar to a first order phase transition. The
vertical dashed lines illustrate the hysteresis loop. (b) Phase diagram of the system in parameter space, separating three asymptotic
states: contagion free, endemic, and bistable, with discontinuous (dashed line) and continuous (solid line) transitions at the interfaces.
The circle denotes the tri-critical pointat (R, = 1, §. = 2), which separates the continuous and discontinuous outbreak transitions.

Because we focus on cooperative contagion we restrict the transmission rates:
aps = §paua = Qp, asp = ap > ag, 3)

cooperativity thus implies that £, £ > 1. For example, a value {, = 5 means that transmission of Bto an
individual already carrying A is 5-fold the transmission compared to the baseline transmission to an S individual.
Based on the above reactions one can obtain a set of ordinary differential equations for the fraction of individuals
in each state. The reactions above, however, suggest a more suitable set of compartments S, A", B+ and

AB = A" N BT with the corresponding dynamical variables s, u, v, and w: the fractions of susceptibles,
individuals infected with A (including those that are also infected with B), individuals infected with B (including
those that are infected with A), and individuals infected with both A and B, respectively, see figure 1. In the limit
of alarge, well-mixed host population the dynamics is described by

= Rysu+ EERa(v — w)u — u,
v=Rpsv + £, Rg(u — w)v — v,
w=E,Rp(u — w)v + EERA(v — w)u — 2w, 4)

s=1—u—v+w, (5)

where Ry = a4 /8, Rg = ag/3 and time is measured in units of 3. For cooperativity coefficients
&, = & = 1theabove system describes two independent contagion processes: if R4, Rz > 1 the stable endemic
stateisgivenby u* = 1 — Ry, v =1 — Ry, w* = (1 — Ry)(1 — Rz"),and s* = (R4yRp) .

We now consider the effect of cooperativity. In the following and in analogy to the labels used to identify the
state of an individual in the population, it is useful to assign the same labels S, A, B, and AB to the potential
asymptotic states of the entire host population. We say, e.g., that the system is in state A if only agent A is present
in the population, the contagion free state is S, etc. We begin with a symmetric system in which §, = £, = £ and
identical baseline reproduction ratios R4 = Rz = R. In this case the above system reduces to:

tt=Rsu 4+ ER(v — w)u — u,
v=Rsv + ER(u — w)v — v,
W =ER[2uv — (u + v)w] — 2w. 6)

Figure 2 illustrates the bifurcation analysis of the system. When 1 < £ < 2 the system exhibits a behavior
similar to independent contagion processes: at R = 1 we observe a transcritical bifurcation yielding a stable
endemic population state AB for R > 1. This means that even when cooperativity amplifies transmission rates
by up to a factor of two, we see no qualitative dynamical difference.

However, when cooperativity exceeds a critical magnitude, i.e. for £ > £ = 2, a different bifurcation
behavior emerges. As R is increased and before the conventional critical point R, = 1isreached, a saddle-node
bifurcation emergesat R, = 2,/{ — 1 / ¢ < 1.When R, < R < R,,inaddition to the trivial stable state S, two
AB stationary states exist:
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Figure 3. Phase diagram of generic cooperative contagion for fixed cooperativity coefficient £ = 5. In the parameter space spanned by
the baseline reproduction ratio R, and R we observe four phases in which only a single stable state exists: S (regionI), A (region II), B
(region III), and AB (region IV). When baseline reproduction is near unity the system exhibits additional regimes characterized by
coexisting stable states (bounded by the black dashed lines): coexistence of Sand AB (region I+1V), of A and AB (region II+1V), Band
AB (region III4+IV). Regimes are separated by different types of bifurcations. Solid lines represents the ordinary transcritical
bifurcation, dashed lines represent discontinuous transitions. The black circles denote tri-critical points where bifurcation types
merge. The two horizontal dashed lines correspond to the panels depicted in figure 4.
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one of which (u}, v}, w{)is stable, the other unstable. Thus, when R, < R < R, sufficiently small perturbations
to the S state will have no effect as Sis stable. However, when perturbations are sufficiently large, the system will
approach the endemic AB state with 1 = v, w; . Furthermore, when R is increased beyond the critical value
R, = 1, state Sloses stability and any arbitrarily small perturbation will yield a discontinuous jump to the
endemic state, reminiscent of a first order phase-transition. For example when R = R, + e with 0 < € < 1the
stable endemic stateis u = vi ~ (§ — 2) /&, wi ~ (§ — 2)?/€(§ — 1).Soifsay & = 10 this yields an endemic
state in which 71% of the population is in state AB, immediately after R, is crossed. Cooperative contagion also
exhibits hysteresis: starting with R > R, and state AB, decreasing R across the critical value R, from above will
not result in immediate extinction. A high endemic state is maintained until the eradication threshold R, is
reached, which can be substantially smaller than the ordinary epidemic threshold R.. Decreasing R below R, will
then yield a sudden collapse of ABinto S. These newly observed dynamics is also termed as backward bifurcation,
and its ocurrence mathematically could come from quite different aspects [47-50]. It is also worth to note that
complex contagions through reinforced infection via different neighboring nodes but of single agent can also
generate a similar phase transitions [51, 52].

Equation (6) capture the symmetric special case of the more general system defined by equation (4), the latter
of which has four parameters, Ry, Rp, £,,and &,. Figure 3 illustrates the phase diagram for a more general choice
of these parameters. Fixing the cooperativity coefficients to §, = & = 5 we investigated the phases of the system
as a function of baseline reproduction ratios R4 and Rp. Apart from the expected stable states we observe arich
variety of bistable states in the region in which baseline reproduction is near unity, as is illustrated in figure 4. For
example, when Rg = 1.1and startingwith R4 ~ 0 the system is initially in state B. Increasing R4 furthera
saddle-node bifurcation occurs and the system enters a regime in which B and AB are both stable. When Rp < 1
,e.g. Rg = 0.57,increasing Ry first yields an ordinary transcritical bifurcation to the A state, followed by a
second bifurcation into a regime in which A and AB are stable, and finally, a third bifurcation to into the regime
in which only AB s stable, see also figure 3. A key property of the system is that the complexity of transitions is
only observed for baseline reproduction ratios near unity. If one baseline reproduction is too low or two high,
only a single ordinary transitions and no state coexistence is observed. This is an interesting property from an
evolutionary point of view. When new strains of transmissible agents emerge, typically they are not adapted to
the host and possess baseline reproduction not significantly larger than unity, or even smaller. Cooperativity
with other transmissible agents and coexistence of stable endemic states may present an opportunity for
developing a species rich system with higher evolvability. This type of complexity is expected to increase
dramatically when more than two transmissible agents are involved, yielding a potentially rich space of stable
states and an increasing complexity in phase separation manifolds in parameter space.
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Figure 4. Bifurcations in asymmetric cooperative contagion. The asymptotic prevalence u* and v* of agent A and B, respectively, as a
function of baseline reproduction ratio Ry for fixed Rp and cooperativity coefficient { = 5, asindicated in figure 3. (a) For R = 1.1,
ahysteresis structure emerges for agent A between u* = 0 and the AB state branch, while for infection B the hysteresis structure spans
endemic state (v* = 1 — 1/Rp)and the coinfection AB branch. (b) For subcritical baseline Ry = 0.57, prevalence of A exhibits two
outbreak transitions: (i) the classical transcritical bifurcation at R4, = 1, (ii) a saddle node bifurcation with a hysteresis formed
between an endemic (u* = 1 — 1/R, ;) and the coinfected branch within Ry, < R < Ry, . Note that the second, discontinuous
jump in u when Ry isincreased beyond Ry, is caused because the state v* = 0 loses stability at this point.
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Figure 5. Phase transitions of prevalence (either A or B) in stochastic network models. Cooperative contagion on (a) 2D square lattices
(with size 100 x 100) and (b) ER networks (with network size N = 10 000 and average degree (k) = 4). The reproduction ratio is
definedas R = (k) /3 where o is the transmission rate across a link. To investigate the extinction threshold, the simulations (with
Gillespie algorithm) are initiated with complete prevalence. The transitions is obtained by decreasing R. Outbreak transitions are only
possible when R is close to the threshold of single infection if the population starts with tiny infected fraction, e.g. two remote infected
nodes with A, Brespectively. The thresholds of single infection R, are around 1.64 and 1 respectively in (a) and (b), while a smaller
eradication threshold is expected in strong cooperative cases as shown, therefore a hysteresis structure is formed in line with the above
mean field theory.

The deterministic model discussed above cannot account for fluctuations or population heterogeneities. An
important question is therefore whether the observed phenomena prevail in a more complex scenario in which
transmissions and recovery events are stochastic, the host population is finite and not every host interacts with
every other host at equal rates. Typically, stochastic effects in a well-mixed system are modeled by birth-death
type stochastic processes equivalent to the reactions depicted in figure 1 and generating solutions to the
corresponding master-equation for a fixed but finite population size N. Population heterogeneities are typically
addressed by modeling these processes on fixed network topologies or lattices in which host individuals only
interact with the neighbors defined by the network links. In order to address the robustness of effects and
properties derived for the deterministic system of equation (4) we investigated cooperative contagion dynamics
in a stochastic 2d-lattice system and and Erdds-Rényi (ER) network with equal mean degree and number of
nodes. The results are compiled in figure 5. In both cases, we observe hysteresis, and a separation of extinction
and outbreak thresholds for large cooperativity coefficients &. Interestingly, the extinction transition is
continuous in the lattice, a consequence of the local coupling of the system. The ER network exhibits
discontinuous transitions, as predicted by the above mean field treatment. This is not surprising as the ER
network is topologically more similar to the well-mixed scenario, and lattice of low dimension like 2D is

6
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physically far from that. Based on these observations, we believe that the key features of cooperative contagion
can be expected also in more realistic, structured populations’.

3. Wave propagation in spatially extended systems

An important aspect of contagion processes is their spatial propagation. When simple contagion processes with
R > lareseeded in a spatially homogeneous susceptible host population and contagion dynamics is combined
with diffusive dispersal of the host these systems typically exhibit propagating wavefronts that travel at constant
speeds. The endemic state invades the unstable S domain. The generic SIS contagion process, e.g., can be
described by:

Ot = R — wu — u + DI%u, (8)

where u = u(x, t) is the density of infected individuals at location x at time ¢. The combination of local initial
exponential growth (for R > 1) and diffusion yields a front-speed depending on the basic reproduction ratio
and diffusion coefficient D: ¢ = 2,/(R — 1)D. Thisis a generic feature of processes that exhibit pulled fronts
[53]. Given the more complex nature of cooperative coinfection, especially the dynamical bistability for
intermediate baseline reproduction ratio R, < R < R, and large cooperativity coefficient &, we can expecta
richer set of phenomena when cooperative contagion processes expand in space. To account for a diffusing host
we extend equation (4) and consider the corresponding reaction—diffusion system:

O = f,(u, v, w) + DO2u,
o =f,(u, v, w) + D@iv,
ow = f,(u, v, w) + DO2w, ©)

where D in last terms is the diffusion coefficient and the functions f,,, f,, and f,, are the same as on the rhs of
equation (6). The dynamical variables are function of time ¢t and space X, e.g. u = u(x, t). We assume that the
diffusion coefficient is constant and independent of the state of a host individual primarily focusing on contagion
processes that do not affect the host’s dispersal behavior. We also consider a constant overall density which
impliesthats = 1 — u — v + w atevery position X. As before we use labels S, A, Band AB to refer to region
that are contagion free, only affected by A, only affected by B, and both A and B, respectively.

The system defined by equation (9) exhibits a range of front velocities, each one corresponding to different
states invading regions in a different state. For example a localized A-patch invades an S-region at a different
speed than a uniform B-region (turning the latter into an AB-region). A localized AB-patch invades an S-region
differently than an A-region. To understand the asymptotics and transients of the system we first consider a
uniform population in state S, with the exception of two localized patches, each being in state A and B
respectively and separated by some distance, see figure 6. When R > R, cooperative contagion plays no role at
the beginning, each patch will expand at a constant front speed of ¢y < /(R — 1) D. Once these growing
patches touch, cooperativity kicks in at the A—B interface. The emerging AB-nucleus has interfaces to the A and B
regions as well as to the Sregion. For £ > 1 the invasion of ABinto the S-region is faster ata speed ¢yp_.5 > cpas
expected. Interestingly, the invasion of the AB-region into A-region (and B-region) occurs at an even higher
speeds cag_a,5 > cap—s. Usinga propagating wave ansatz u = u(x — ct) fora 1-d spatial support (analogously
for variables v and w) one can compute alower bound c4p_4 5 ~ JER — 1)D = \/E ¢o. Because
CAB—A,B > Cap—s the system will eventually converge to a uniform AB-region that spreads at speed ¢45 5.
Regions affected only by one agent will not persist. This effect of enhanced wave-front speed might be
particularly relevant in situations in which a covert, unknown and commensal agent is endemic in some region
and a known process with known baseline reproduction ratio expands somewhere else in the system at a speed
that is computed based on its baseline reproduction ratio. If this front enters the region in which the unknown
but highly cooperative covert agent prevails, a sudden but potentially unexpected boost in the proliferation of
the initial spreading process could occur.

In the bistable region R, < R < R, isolated islands of A nor B cannot persist. If we initialize the system with
A and B patches that share a small overlapping region in the AB state cooperativity can yield the survival of the
AB state while the homogeneous A and B states fade. The remaining AB patch then proliferates at speed ¢4, s.
Interestingly, we observe negative propagation speed in this regime, ¢4 .5 < 0, which implies a receding AB-
region. This behavior is caused by the dispersal of A or B affected individuals into the S-region in which the S-
state is also stable. Once individuals enter this state, they have a higher likelihood of becoming susceptible than
being colonized by both agents. The wavefront acts as a drain for infected agents and a competition exists
between the supply of new agents of type A or B and the diffusive dilution of their concentration. For a critical

6 An online interactive d; webpage is available for playing at http:/ /rocs.hu-berlin.de/D3 /cosis/.
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Figure 6. Spatial dynamics of cooperative contagion processes. Left: when R > R, initially separated region of only A or B affected
regions grow with a front speed equivalent to single SIS dynamics, ¢y o /(R — 1)D (black arrows). When the wave fronts touch, a
region of coinfection emerges (gray). This region touches the regions of susceptible (white background) and on each side region that
are dominated by either A or Byielding two new front speeds associated with ABinvading A or B (blue arrow) and AB invading S (red
arrow). Invasion of ABinto the susceptible region occurs ataspeed cup—.s > co the blue/red regions occurs at a speed

CAB—A/B > CaB—s. In this transient phase, the patterns is shaped by three front speeds of different magnitude. This implies that the
intermittent AB invasion will take over the entire pattern and eventually only the AB region will propagate into the susceptible region.
When R < R, initially separated A and B regions cannot be sustained and will relax to the contagion free state. However, if initially a
small overlap exists (a nucleation of AB) the pattern will eventually converge to AB invading S as well despite the fact that R < R..
Right: comparison of the three wave front speeds (cap—.s red circled line, ca/p—.s = ¢o black dashed, cap—.4,p bluecircledline) asa
function of R in 1d space, together with alower analytic bound for cap_a/5 = \J§(R — 1)D = \/Z ¢o (blue solid line). The inset
shows that in the invasion of AB into the susceptible region, the speed ¢, s is positive for R > Ry, and negative for R, < R < Ry,
with Ry = 0.622 18(4) and R, = 0.6. Parameters: £ = 10,D = 1.

choice of parameters, e.g. the baseline reproduction ratio we observe a stationary heterogeneous solution, an
immobile front, that separates S from AB regions. Figure 7 illustrating the three typical propagation modes in 2d
space are depicted (see also the movies in the supplemental materials’, available online at: stacks.iop.org/NJP/
19/103041/mmedia).

The emergence of new front wave propagation modes is dynamically rooted in the multi-stability of
coinfection dynamics. The next step would be an analytical derivation e.g. of the dependence of R on system
parameters and physical quantities. This remains an open question, and some previous studies offer a good
starting point [54-57]. For example, [55] studied a cooperative reaction—diffusion system analytically, in which
one species diffuses while the other is immobile.

4. Discussion

We present a reaction kinetic model for the dynamics of cooperative contagion of the SIS class. The most
prominent property of the model is the existence of discontinuous transitions to an endemic state when the
traditional outbreak threshold is crossed and a separation of outbreak and extinction thresholds, the magnitude
of which depends on the degree of cooperativity. Although we derive the key properties analytically and
numerically in a deterministic model suitable for large, well-mixed populations, we observe the key features of
discontinuous transitions also in a stochastic network variant of the model. The system of two cooperating
agents that proliferate in a host population exhibits diverse properties when spatial diffusion is incorporated
yielding different types of transients and spreading speeds.

The proposed model and presented results can be employed and adapted to understand realistic systems, e.g.
pneumonia in which with bacterium like Streptococcus pneumoniae interacts with viral respiratory infections
(e.g. influenza viruses), where one pathogen increases the susceptibility towards the other up to 100-fold
[58, 59]. Another prominent example are human immunodeficiency virus (HIV) syndemics [60], where the
suppressed immune system of the hosts greatly increases the susceptibility towards secondary infections:
hepatitis, malaria, syphilis, herpes virus and tuberculosis. In the latter case, the cooperative interactions are
mutual, as hosts with tuberculosis are found also more likely to acquire HIV [61, 62]. These new complexities
uncovered in our study suggest that we may need to devise new containment strategies, e.g. by vaccination
programs [63], to combat the epidemic spreading in some more realistic circumstances.

7 L1 Lo . .
See supplemental material in the attached files for movies illustrating the three wave propagation modes.
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Figure 7. Three typical contagion propagation modes in 2D space. Top panels (a) forward propagation (R = 0.65). Middle panels (b)
standing front (R = Ry = 0.626 71(4)). Bottom panels (c) backward propagation (R = 0.61). The infected fraction 1 — s is color
coded. The sequence (from left to right) of panels depicts the time course of the infected regions at time t = 0, 100, 200, 300,
respectively. Here Ry is slightly different from the value in 1D space, up to the dimension correction. Initial conditions start from
some randomly infected round regions with random radius as shown in the first column. Other parameters: D = 1, £ = 10, where
R, = 0.6.

Although we discussed the model predominantly in the context of the spread of transmissible diseases, the
model is sufficiently generic to be applied to other transmissible contagion processes that influence each other
cooperatively, e.g. the adoption of one technology may increase the infection of a user with another type of
technology which may then occur explosively or at different speeds than expected. While in the context of
epidemic spreading, the implication of our results is bad news for the infection and is detrimental, but in the
majority of other contexts such as social contagions, where a high prevalence is usually desired, our results are
good news indeed.

Considering a model for only two interacting agents is a foundation that can easily be generalized to a larger
number, potentially a network, of interacting agents. If the baseline reproduction of a family of transmissible
agents is in the critical regime, we expect in such a system a diverse set of stable configurations and we believe that
the model presented here is a helpful starting point for investigating these more general systems.
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