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Abstract
Wepropose a bio-inspired, agent-based approach todescribe the natural phenomenonof group chasing
in both two and three dimensions.Using a set of local interaction ruleswe created a continuous-space
anddiscrete-timemodelwith timedelay, external noise and limited acceleration.We implemented a
unique collective chasing strategy, optimized its parameters and studied its propertieswhen chasing a
much faster, erratic escaper.We show that collective chasing strategies can significantly enhance the
chasers’ success rate.Our realistic approach handles group chasingwithin closed, soft boundaries—in
contrastwith the periodic ones inmost published literature—and resembles several properties of
pursuits observed in nature, such as emergent encircling or the escaper’s zigzagmotion.

1. Introduction

The animal kingdom is full of fascinating phenomena on every level. An essential part of this diverse biosphere is
the complex biological interaction network between different species andwithin the same species, inwhich
interactions are categorized based on the benefits and harms to the interacting partners. An important type of
driving force in these situations is the prey–predator interaction, which is also a very exciting example of
collective behaviour in nature [1].

Natural prey–predator systems have already been studiedmany times, including long-termobservations of
population dynamics and a large number offield studies about animals’ typical behaviour. One factor governing
these tendencies is the group hunting of large carnivores, such as lions of the Serengeti, wild chimpanzees in the
TaiNational Park, and coyotes in YellowstoneNational Park [2–4]. The results of these investigations revealed
many interesting behavioural patterns of the animals, e.g. special hunting tactics and the size of packs.

Prey–predator systems have also aroused the interest of theorists, who have constructedmodels to describe
the behaviour of competing populations since Lotka andVolterra. As thefield developed, the commonly used
model schemes shifted from continuous ones based on a differential equation towards discretemodels, due to
advances in computational technology [5–7]. In the past few years, agent-basedmodelling has also become
popular, using the concept of self-propelled particles in the spirit of themodel byVicsek et al [8].

In this workwe propose a bio-inspired, continuous-space and discrete-time agent-basedmodel of group
chasing for the rarely studied scenario inwhich the evader is significantly faster than the pursuers. This realistic
chasing approach overcomesmanyweaknesses of previously publishedmodels. It combinesmany
environmental factors such as time delay, finite acceleration (inertia), external noise and closed boundaries
(whilemostmodels in the literature still use periodic boundary conditions).Moreover, it includes special
collective chasing tactics, the chasers’ prediction of their target’s future position and erratic tactics of the escaper
aswell [9–14]. Significantly, ourmodel operates universally in both two and three dimensions.

1.1. Ethological background—chase and escape in nature
1.1.1. Chasing in nature
Group chasing is one of themost important forms of collective behaviour. Its significance arises from the fact
that cooperation among predators can notably increase their chances of catching even hard-to-catch prey, which

OPEN ACCESS

RECEIVED

5December 2016

REVISED

15 February 2017

ACCEPTED FOR PUBLICATION

29March 2017

PUBLISHED

9May 2017

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2017 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aa69e7
mailto:janosovm@gmail.com
mailto:viraghcs@hal.elte.hu
mailto:vasarhelyi@hal.elte.hu
mailto:vicsek@hal.elte.hu
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa69e7&domain=pdf&date_stamp=2017-05-09
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa69e7&domain=pdf&date_stamp=2017-05-09
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


makes these collaborative speciesmuchmore successful predators. Packs inwhich the cooperation ismore
efficient have better chances of survival. This puts evolutionary pressure on the animals to optimize their
strategies [15–18].

Previous field studies have reported approximately 50 different species inwhich increases in group size
above a certain point reduce their success rate per capita [15]. A biologically logical explanation is that the group
becomes too large and not all the predators were able to feed even if the huntwas successful; therefore the size of
chaser groups generally does not growpast a specific threshold [19].

The variety of predator–prey systems is extraordinarily richwithin birds,mammals,fish and even insects
[3, 17, 20–23]. A surprising finding is that even cheetahs, the fastest animals in theworld, show an affinity for
hunting in pairs [15, 22]. Additionally, wolves tend to hunt elks, while coyotes have been studied hunting for
pronghorns in, e.g.,migration corridors using landmarks as a strategic tool (reported in YellowstoneNational
Park). In both cases the prey is faster than the predator [17, 24].We can also conclude that evenwolves, one of
themost unwavering examples in the animal kingdom, give up their pursuit after roughly one or two kilometres
(which takes barely twominutes at their top speed).

Cooperation between hunters has different levels. For example, group huntingwithin bats just emerges
completely unintentionally from the similar huntingmethods of the individuals, while the study of large
carnivores led to thefinding that certain predators, while hazing their prey, tend to surround it collectively
[26, 27]. This so-called encircling was reportedmostly regardingwolves and lions, but even bottlenose dolphins
have been observed to encircle their prey [15, 20, 28].

Despite the limited available data, it is clear that formany predator species group hunting has proved to be
more beneficial than solitary hunting, even if not everymember of the group participates in the pursuit.
Evolution seems to have optimized the size of these hunting packs, because in themajority of cases, size of a
hunting pack falls within the range 3–10 (figure 1).

1.1.2. Natural escaping strategies
Fleeing is themost common response from animals to their chasers. First intuitionwould suggest that the only
possible strategy for escape is to rush away from the chaser(s) as fast as possible. However, in real biological
systems surprisingly different escaping strategies can occur. Based on a concept proposed byDomenici et alwe
can differentiate between direct escaping and erratic escaping as separate strategies, although other kinds of
strange actions such as freezing or retaliating can also occur [29–32].

Direct escapingmeans that the prey runs straight in the opposite direction from its chaser(s) and relies on its
speed and endurance to survive. In otherwords, under ideal conditions the escaper can outrun its chaser(s), but
the prey can be caught if it is slower, if it encounters unexpected obstacles or if the chasers’ strategies aremore
advanced.

When the escaping is erratic, the prey can use amixture of direct escaping and other, stochastic patterns of
motion. This can be zigzagging, a series of sudden changes in direction, or some evenmore advanced
movements such as spinning, looping andwhirling (figure 2) [29, 31]. For example, deers use a particular
distribution of escaping angles, which is also slightly dependent on the distance from their chaser (figure 3).
The effectiveness of these quick and unexpected changes in the escaper’s direction reliesmostly on the animals’
inertia (and the difference between inertia of the prey and the predator) and the different time delays within the

Figure 1.Theoverall probability of success for a certainhuntingpackofwolves encountering anelk, dependingon the size of thepack [25].
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animals’ sensory andmotor systems, even if their reaction timemay be very short (of the order ofmagnitude
of 50ms) in chase and escape situations [33].

In conclusion, we can say that evaders do not always escape directly from their chaser but are likely to
combine direct escapingwith some sort of randommotion in order to trick their chasers and prevent their
tactics (e.g. zigzagging) being learned. The directions of these random segments of their trajectory vary
significantly among different species. The prey have typical escaping distances of usually around a few hundred
metres and they take into account all the chasers within that rangewhen determining the direction and strategy
of the escape (table 1) [34, 35, 37].

1.2. Previousmodels of prey–predator systems
The latest paradigmof prey–predatormodelling is the agent-based approach, inwhich themain objective for
chasers is to locate and catch the escapers as quickly as possible, and for escapers it is toflee and avoid getting
caught. Thefirst agent-based theories were completely analytical, using the tools of different branches of
mathematics from game theory to geometry but lackingmany real-life, biologically relevant attributes
(e.g. noise) [38, 39].

Later on, researchers began to study the scenario ofmany chasers versus an escaper on a finite lattice with
periodic boundary conditions, random spatial distribution of the agents, different sight ranges and uniform
speed for all agents [40]. In the firstmodels therewas no interaction between the chasers and theywere
performing e.g. nearest-neighbour randomwalks tofind the prey.

The rarely studied case of a faster escaper appeared in the article of Jin andQu, inwhich theywere studying
how a group of pursuers can catch a faster evader in infinite open spacewhen thefinite sight range of the chasers

Figure 2.Examples of erratic escaping: combinations of looping, whirling, spinning and zigzagging [29].

Figure 3. (a)Typical parameters to describe theflight of a black-tailed deer with (b)measured escape angle as a function offlight
initiation distance and (c) frequency distribution ofescape angle [35, 36].

Table 1.The escaping
distance of several typical
prey animals of large
carnivores [34].

Species Escaping

distance(m)

Pronghorn 235

Mule deer 149–250

Elk 85–201

Bison 101
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is greater than that of the escaper [12]. They give geometric solutions to the question of how the chasers can catch
the prey by blocking its escape routes—a solution very sensitive to the initial spatial distribution.

An agent-based group chasingmodel withmany chasers and escapers was published byKamimura et al
[11, 41]. Here the group of chasers is pursuing the escapers on a two-dimensional lattice with periodic boundary
conditions. Because the chasers and the escapers have similar speed, the chasers can only catch an evader if they
encircle it, which depends on their initial positions. They also defined a cost function to quantify the pursuit,
withwhich they determined the optimal number of chasers for a given number of escapers.

Angelani’smodel has gone further thanmany previous ones because instead of a cell automaton he
constructed amodel based on self-propelled agents according to theVicsekmodel [8, 9]. The interactions
between agents are formulated as physical forces in this two-dimensional, continuousmodel with periodic
boundary conditions, where the groups have similar speed. The agents’ velocity vectors are calculated at each
time step according to an alignment rule, a short-range collision-avoidance force within the same groups, some
noise and the rules for chasing and escaping. This escaping tactics had only one parameter, which also had an
optimumwith regard to the escapers.

2.Model description

2.1. Simulation framework
For studying group chasingwe used a simulation framework developed in our research group, whichwas
designed tomodel real-life agents and study their collectivemotion [42, 43]. Because of their importance and
generality in various prey–predator systemswe added the following features of the framework to the group
chasingmodel:

• Inertia—A restrictedmanoeuvrability and finite acceleration (amax ) is a fundamental property of every
moving object offinite size andmass. Therefore, it is crucial to include it in themodel (note that the previously
published chasingmodels lacked this feature). In our framework it is assumed that the agents reach their
desired velocity exponentially with a characteristic time tCTRL.

• Timedelay—In both biological andmechanical systems various types of time delays 0 are an unavoidable
consequence of the limited speed of data transmission and processing (either via nerve cells and axons or via
electric wires and circuits). The simplest approach to describe this is to consider the value of a general time
delay to be constant (tdel).

• Noise—Natural systems are usually biased by some kind of noise. To test ourmodel’s tolerance against such
effects, a delta-correlated (Gaussian) external noise term h ( )t was addedwith standard deviationσ.

Therefore, the general parameter-set describing a realistic agent (withoutmodel-specific parameters) is

t s{ } ( )a t, , , . 1CTRL max del

Weare using velocity-based dynamic equations that are specified by the individualmodels. Such a velocity
term, the desired velocity vd of the ith agent, can be expressed in general by using the agent’s position ri and
velocity vi as follows:

h= = =( ) ({ } { } ( )) ( )t tv f r v, , . 2i i i j
N

j j
Nd

1 1

From this, the equation ofmotion is

h
t

= +
-
-

-⎧⎨⎩
⎫⎬⎭( ) ( ) ( )

∣ ( ) ( )∣
( ) ( ) ( )t

t

t

t
aa

f v

f v

f v...

...
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...
, , 3i
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i i

CTRL
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= - -¹ ¹( ) ({ ( )} ( ) { ( )} ( )) ( )t t t t t tf f r r v v... , , , . 4i i j j i i j j i idel del

Equation (3) describes the acceleration characteristics of the ith agent reaching its desired velocity, assuming
finite acceleration, inertia and external noise. Equation (4) incorporates the assumption that the information
fromagent j reaching agent i is delayed by the given time parameter tdel.

2.2. The realistic group chasingmodel
2.2.1. General properties of themodel
Agents. In ourmodel there are Nc chasers andNe escapers with different top speeds (vmax,c vmax,e) but a similar
top acceleration (amax ). Let r v,i ic, c, and r v,j je, e, be the positions and velocities of the ith chaser and jth escaper.
An actively escaping preywill become inactive (out of the game) if the distance between it and the nearest chaser
decreases below the catching distance (rcd); otherwise the agent remains active. In thismodel the agents are
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represented by a circular/spherical object of radius r 2cd . The experiment is terminatedwhen all of the escapers
are caught.

Arena.We aimed to build a bio-inspiredmodel, and therefore we study group chasingwithinfinite
boundaries, because pursuits in nature have boundaries in both space and time.However,many previously
publishedmodels use either periodic boundary conditions or infinite space. Although both can be very useful,
e.g. in statistical physics, in themodelling of group chasing they can lead to very strange and unrealistic situations
(for example, a prey ‘coming back’ from the other side of the cell ‘falling into the arms’ of chasers wandering at
the edge of the cell). For the sake of simplicity and to avoid edge-effects asmuch as possible, our simulation runs
within a circular arena of radius ra.We focus on the pursuit, and therefore we assume that each and every agent
can see all the other agents—wedonot examine (group) foragingmethods. In this constellation, the origin is the
center of the arena.

The arena is surrounded by a soft wall [44]. In this construction if any of the agents gets outside the arena, a
virtual agent starts to repulse it towards the center of the arena:

= + =
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )s r r r v

r
kv

r
v, , e, c , 5i i k

i

i
i

a
a wall max,
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p p
=

Î

- - - - Î +

- > +

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
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0 if 0, ,

1

2
sin

2

1

2
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1 if

6i

i

i i

i

a wall

a

wall
a a a wall

a wall

where rwall is thewidth of thewall and = ∣ ∣r ri i .
Collision avoidance.Between each pair of agents of the same type there is a short-range repulsive interaction

term to avoid collisions:

 å=
-

Q -
⎡
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= - =( ) ( )kd r r e, c , 8ij k i k j, ,

rcd is the catching distance, defined as twice the radius of the agents,Θ is theHeaviside step function, dij is the
displacement vector between the ith and jth agents, and the operator [ ]. normalizes its argument and returns it
as a dimensionless vector.

Viscous friction-like interaction. To simulate realisticmotion, we introduced viscous friction-like interaction
terms [45], parametrizedwith a specific friction coefficient Cf , with the general form

=
-

( { ∣ ∣})
( )C

r
v

v v

dmax ,
. 9ij

j i

ij
f

cd
2

Additionally, viscous friction-like damping is important because itminimizes unwanted oscillations in any
delayed system [42].

2.2.2. Chasers
Chasing rule. Each chaser chases the closest escaper (chasing term). The collective chasing strategy includes a soft
repulsion between the chasers and the prediction of their target’s position.

Chasing term.The chasing is represented by an attractive interaction between the ith chaser and its target
escaper toward the escaper and a viscous friction-like velocity alignment term in the followingway:

=
-
-

- ¢ -
-

⎡
⎣⎢

⎤
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( )v Cv
r r

r r

v v

r r
, 10i
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i

i

i
c,
ch

max,c
c, e

c, e
f

c, e

c, e
2

where ¢Cf is the coefficient of the velocity alignment term relative to the attraction.
Prediction. A part of the chasers’ strategy is the cognitive prediction of their prey’s future position. This

means that the chasers are heading to the point ¢r e (the estimated future position of the escaper) instead of the
escaper’s current position re (figure 4). Herewe use only a simple linear approximation to determine the value of
¢r e, which is the point at which the chaser could catch the escaper if the time needed for this is below a certain
threshold time (tpred); if this is not the case, then it is the point that the chaser can reach during time tpred.
Then the value of ¢r e is the numeric solution of the following equation:
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t¢ = +
¢ -⎡
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Interaction between chasers. Let us assume that a group of chasers is chasing the same escaper. If there is no
interaction between the chasers theywill eventually get too close to each other because their driving forces are
similar. This results in a tail of chasers behind the escaper. This is neither a logical predatory behaviour nor one
observable in nature.Whatwe can see in nature, though, is that chasers do not get too close to each other as they
pursue their prey, but the distance between themdecreases as they get closer to (andfinally catch) the escaper.
Wemodelled this with a repulsive interaction term that has a characteristic length rinter, amagnitude factor Cinter

and amagnitude C vinter max,c. Consequently, =C 0inter means that there is no interaction and =C 1inter means
that the repulsion between chasers is just as strong as their attraction towards the escaper. Themathematical
definition of this interaction is

 å=
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where Cf is the coefficient of the viscous friction-like term.
The driving force of the ith chaser is the sumof the previously introduced terms (interactionwith thewall of

the arena, collision-avoiding short-term repulsion, direct chasing force and the long-term repulsion between
chasers):

= + + + ( )f v v v v . 14i i i i ic,
a

c,
coll

c,
ch

c,
inter

2.2.3. Escapers
Escaping rule.The escapermoves in the free direction that is furthest away fromall the chasers within its
sensitivity range. At thewall, the escaper aligns its velocity to thewall. If the escaper can slip away between the
nearest two chasers, then it returns to thefield.We defined a panic parameter that depends on the distance
between the escaper and its nearest chaser and controls the erratic behaviour.

Direct escaping. An escaping agent takes into account every chaser within its range of sensitivity (rsens), while
it weights this effect by the distance of each chaser. This represents the biological observation that the prey is
concerned about all the chasers that are too close, and the closer a predator is, themore dangerous it is. This
interaction term for the ith escaper is

 å=
-

-
-

-
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Q - -

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∣ ∣

‴
∣ ∣

( ∣ ∣) ( )v C rv
r r

r r

v v

r r
r r , 15i

j

i j

i j

i j

i j
i je,

esc
max,e

e, c,

e, c,
2 f
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where ‴Cf is the coefficient of the velocity alignment term.
Erratic escaping. In naturemany species tend to use certain kinds of erratic escaping strategies inwhich they

combine direct escapingwith somemore advanced patterns ofmotion.Herewe implemented themost basic
one called zigzagging [29, 31]. During zigzagging, the escaper tries to trick its chaser(s)with a set of sudden and
unexpected changes in direction. For this we introduced a so-called panic parameter (ppanic), which is an
exponential function of the distance between the escaper and the nearest chaser ( )dmin , with the value of 0 if the

Figure 4.The chasers (blue) are chasing (a) the current position of the escaper (yellow) and (b) its position predicted according to (11).
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chaser is outside the escaper’s range of sensitivity and 1when the escaper gets caught:

=
-

-- +[ ] ( )p
e

1

1
e 1 . 16d r

panic
1min sens

The escaper starts zigzaggingwhen the panic parameter reaches a certain threshold (pthres) and it is not closer
to thewall than a certain distance (rzigzag):

< ( )p p , 17panic thres

< - ( )r r r , 18e a zigzag

where re is the absolute value of re. If these conditions are true, the escaper startsmoving in a certain direction for
a given amount of time. Afterwards, the prey zigzags in another direction for a period of time if the zigzag
conditions are still true, otherwise it continues to escape directly. The zigzagging gets interruptedwhen the
distance between the chaser and the escaper decreases below rzigzag.We determine the direction of a zigzag
segment in the followingway:
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where is a rotating operator that rotates its argument vector by an angle in two dimensions randomly chosen
from the interval p p-[ ], and by two random angles (one azimuth and one polar) in three dimensions from the
intervals p[ ]0, 2 and p[ ]0, . The duration of a zigzag segment is also a randomparameter, whichwe chose from a
power-law distributionwith an exponent of−2, a lower limit of r vzigzgag max,e, and an upper limit of r va max,e.

Behaviour at the wall. Confronting thewall would significantly decrease the escaper’s speed; therefore, the
escaper should avoid getting too close to thewall. This is ensured by cutting off the radial component of the
escaper’s velocity vector depending on how close to thewall the agent is:
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Applying thismethod exclusively wouldmean that once the escaper reaches thewall it is stuck there forever,
whichwould be unrealistic. Thus, we extended this rule: if the escaper is close to thewall ( >C 0.5wall ) and it can
slip through the gap between the two closest chasers, it does, and it returns to the central part of the arena. In
order to determinewhether or not jumping back to the arenameans a successful escape, the prey routinely
calculates how long it would take for itself and the two nearest chasers to reach certain points. These points are
the oneswe get whenwe project the difference vectors pointing from the prey to the chasers onto the line defined
by the sumof these two vectors (equation (22),figure 5):
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where =k 1, 2 are the indices of the two nearest chasers (see figure 5). If condition (26) is true, the escaper can
run back to the arenawithout getting caught; otherwise it stays at thewall where it will either be caught or chased.

The driving force of the ith escaperwill be the sumof the interactionwith thewall, collision-avoiding
repulsion and either the direct or the zigzagging escaping term,finally transformed by the Ŵ operator (20):

= + + ˆ ( ( )) ( )f W v v v v . 27i i i i ie,
a

e,
coll

e,
esc

e,
zigzag

7

New J. Phys. 19 (2017) 053003 M Janosov et al



2.2.4.Model parameters
Although in ourmodel the number of expressions and parameters is significantly larger than in the simplest
statisticalmechanicalmodels, these expressions and parameters are far from arbitrary; almost all of them are in a
direct relationwith the observed systems and originate from such trivial facts as the existence of time delays (e.g.
reaction time). The parameters are ‘freely’ tunable from the point of themodel, butmost of them are
experimentallymeasurable for an actual predator–prey system.

Theseparameters canbe separated into two sets: environmental and tactical parameters (table 2). Except for tdel, all
the environmental parameters hadfixedvaluesduring themeasurements: for instance, =a 6max ms–2, =ra 150m
and =r 5wall m.On theotherhand, all the tactical parameters except thefixed velocities ( =v 6max,c ms–1, =vmax,e

8ms–1) canbe adjusted at thebeginningof each run to create and studydifferent chasing and escaping tactics.We
studiedmost cases inboth2Dand3D.

3. Results and discussions

Weuse afinite andfixed simulation length (t = 600max s), which is comparable to the observed length of
pursuits in nature, and also practical for the simulations because of the limited computation time. Thismeans
thatwhen counting the average results of the runswe have to handle properly those cases in which the escaper
was not caught. Therefore we assume that the uncaught prey’s lifetimewas themaximum, so if the escaper’s
average lifetime is tesc out of n runswhen it was caught, the average time is

Figure 5. (a)The escaper (yellow) can slip through the gap (according to (26)) between the chasers (blue), therefore it escapes (green
arrow), but if it stayed at thewall it would get caught (red arrows). (b)The escaper cannot slip through the gap between the chasers but
it can escape by aligning to thewall. (c)The chasers are blocking all the possible escape directions.

Table 2.The environmental and tactical parameters of themodel.

Environmental parameters Typical range Dimension Definition

amax 6 m s–2 Maximumacceleration of the agent

σ 0.0–1.0 m2 s–3 Standard deviation of theGaussian noise

tCTRL 0.06 s Characteristic time of the acceleration

tdel 0–6 s Delay time
¢Cf 1.1 ms Friction coefficient in the direct chasing term

C f 1.1 m2 s Friction coefficient in the velocity alignment between chasers

‴Cf 1.1 s Friction coefficient in the direct escaping term

ra 150 m Radius of the arena

rcd 1 m Catching distance

rwall 5 m Width of thewall

Parameters of chasers’ tactics Typical range Dimension Definition

vmax,c 6 m s–1 Maximumvelocity of the chasers

tpred 0–6 s Upper limit of the chaser’s prediction

Cinter 0–1 1 Strength of interaction between chasers

rinter 0–300 m Interaction distance between chasers

Parameters of escapers’

tactics

Typical range Dimension Definition

vmax,e 8 m/s Maximumvelocity of the escapers

pthresh 0–1 1 Escaper’s panic threshold

rsens 0–120 m Escaper’s range of sensitivity

rzigzag 0–80 m Minimal length of a zigzag segment; the distance limit between an escaper

and a chaserwhen the escaper stops zigzagging
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t
t t

=
+ -( ) ( )n n n

n
. 28esc

esc tot max

tot

Wedefined the following effectiveness functions to quantify the pursuit with regard to the chasers:

t t
=

( )
( )n n

N
Effectiveness , 29c

tot

esc max c

whichmeans that the group of chasers ismost effective if it catches the escaper the greatest number of times out
of ntot similar runs, gets the prey as fast as possible, and needs the smallest number of chasers to do so. The
division by Nc refers to the observation that the greater the number of chasers that catch the same prey, the less
food per capita they get. On the other hand, we defined an effectiveness function for escapers aswell:

t
t

= ( )Effectiveness . 30e
esc

max

The escaper’s effectiveness is the ratio of the average lifetime to themaximum time allowed, and thosewho are
not caught are taken into account with Effectivenesse of 1.

3.1. A group of chasers versus a single escaper
3.1.1. Strength of the interaction and the number of chasers
Atfirst we studied the effect of the interaction between the chasers as a function of Nc with two different spatial
distributions of the agents and the interaction rangefixed (rinter = 300m). In thefirst distribution, all the agents
were spaced randomly on thefieldwith no regard to their type. In the second one, the escaper was placed
randomly in a circle with a radius of r 4a and a center with coordinates (r 2a , r 2a )while the chasers were put in
another circle of the same radius butwith a center of (0,- r3 4a ), where the center of the field is the origin
(figure 6). In 3D themethod is the same but using spheres. The completely random starting position is widely
used in the literature, but in reality it ismore common that the chasers are closer to each other when they start
the pursuit (it is also not logical for the prey towander into a placewhere the predators are scattered all around).

For the randomdistribution, the chasers sometimes happened to be initially around the escaper, which leads
to an immediate encircling and a very quick (and unrealistic) pursuit. However, with the pack distribution the
chasers have to build up their chasing formation to catch the prey, which produces awell-defined regime of the
parameter space inwhich the chasers are successful. Despite this, there is no big difference in themaximal
Effectivenessc values in these two cases, as figure 7 demonstrates. For the case of the pack distribution, the
chasers’ effectiveness can be seen infigure 7 as a function of the number of chasers and the interaction strength
between them. It is important to point out that these results are the solid proof of the fact that in these scenarios
(i.e. where the escaper is faster) a single chaser is not able to catch the prey andmultiple agents only have a chance
to do so if there is a strong tactical interaction between them. As an example, we took a closer look on certain
cross sections around the optimumoffigure 7, which are presented infigure 8. figure 8 illustrates that chasing in
three dimensions is a lot harder than in two dimensions, andwhile three chasers can form an optimal group for
2D,five ismore advantageous for 3D.

Figure 6. Initial pack distribution of the agents—while the origin is the center of thefield, the escaper (yellow)was placed randomly in
a circle (dashed line)with a radius of r 4a and a center with the coordinates of (r 2a , r 2a )while the chasers (blue)were put in
another circle of the same radius but with a center of (0,- r3 4a ).
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Onone hand, we can see that the effectiveness decreasesmonotonically above =N 6c , which happens
because of the division by Nc in (28); on the other hand, one and two chasers have no chance to ever catch the
faster prey. Between these two regimes the tendency is notmonotonic. This happens for geometric reasons
(symmetric arrangements), whichwill be averaged out for larger Nc values: an odd number of chasers have a

Figure 7.The effectiveness of the group of chasers in the case of an initial pack distribution in 2D as a function of the number of
chasers and the strength of the interaction between them. In the dark blue regime the chasers never catch the prey.

Figure 8.Cross sections offigure 8: the Effectivenessc as a function of (a) Nc when =C 0.9inter , (b) Cinter when =r 300inter mfor
various cases, (c) the pursuit’s duration and (d) the proportion of successful pursuits (which ended in catching the escaper).We can see
on the graphs that cooperative hunting is effective withwell-tuned interaction between the chasers, and optimal when =N 3c for 2D
or =N 5c for 3D. There are twowell-defined regimes in (b): one inwhich the chasers aresuccessful and one inwhich they are not.
The narrow boundaries between the regimes are the results of thefixed geometric assumptions. The quick breakdown at Cinter = 1
means that at that point the chasers align into a regular grid formation, which cannot be changed by a single (driver) escaper.
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much bigger chance to block all the escape directions, but it ismuch easier for a gap to remainwhen the number
of chasers is even (seefigure 5).

3.1.2. Prediction and delay
In this subsectionwe study a chaser’s cognitive prediction regarding the escaper’s path, how the time delay can
affect the outcome of the pursuit and how the prediction can compensate for the delay. As it was introduced in
section 2, the prediction has an upper time limit, themaximum time of prediction (tpred), which is studied in this
subsection. This quantity is proportional to how far ahead the chasers forecast their prey’s position. If we add the
prediction (figure 9) to the previously optimized chasers, their effectiveness increases a little (with amaximumat
t »pred 0.38 s), but after that it starts to decrease. This happens because the optimized chasers are already hunting
with a 100% success rate ( =n ntot in (29)), while a long prediction time extends the pursuit’s duration because
the chasers do not rush immediately towards to the escaper but extrapolate and chase the escaper’s future
position, which is always further away, and this longer duration leads to lower efficiency, while in 3D even the
efficiency of an optimized (with regard to the interaction between the chasers) group can be significantly
increased by the prediction.However, if we take a look at chasing packswith non-optimized interaction
parameters (in 2D), we can see that prediction improves their efficiency to near the level of the optimized group.

We tested the tolerance of the Effectivenessc against delay with different prediction times for different groups
of chasers (figure 10). These experiments led to the conclusion that if the prediction time is large enough in
comparison to the delay (but still of the same order ofmagnitude), predictionwill compensate for the delay and
the pursuit remains successful. However, a very large delay (e.g. 5 s)with a small prediction can completely
prevent the success of the pursuit. Based on these results, the optimal values of the chasers’ tactical parameters
can be found in table 3 if the systemhas a delay of 1 s.

3.1.3. The effect of external noise
Weexamined the effect of external, Gaussian noise within the range s = 0–2m2 s–3, where 0.2m2 s–3 is
equivalent to, e.g., thewind blowingwithmedium strength. The values of Effectivenessc proved to be quite
robust and stable against this perturbation, which just slightly increased the deviation of the statistical results.
The standard deviation of the noise amplitude–Effectivenessc dataset was about 2% in two dimensions, and
2.4% in three dimensions, and it stayed fairly constant.

3.1.4. Emergent phenomena in themodel
Despite ourmodel’s simplicity, while studying it in real timewe can observe very interesting, life-like patterns of
motion emerging. These can be categorized as follows:

Figure 9.The effectiveness of a previously optimized group of three chasers, a groupwithmedium-level efficiency (about half as
effective as the optimized one) and a groupwith low-level efficiency (less effective than 10%of the optimized one) as a function of the
maximumof the prediction time. These results show that if the prediction time is large enough, it significantly enhances the
effectiveness of the least effective group. On the other hand, in the case of the optimized group, a longer prediction time lengthens the
pursuit’s duration, which (because of the 100% success rate via optimization) decreases the group’s effectiveness.
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• The optimal group of chasers catches the prey very quickly: they rush towards the escaper on the right
trajectories to block all its possible escape routes. This can also happen (with a lower frequency) in three
dimensions. This sometimes results in line formation, too.

• If the chasing parameters aremoderately efficient, ‘on-the-field’ pursuit often happens: the agents cross the
field several times, the escapermoves along thewall, and hops back to the center of thefield several times.
In these situations the classical encircling (observed, e.g., in lions) can also happen completely emergently
(figure 11).With significantlymore chasers, this phenomenon (sometimes called as caging) can be observed
in three dimensions aswell.

3.1.5. Summary: chasers
In this sectionwe have demonstrated that those chasers that are unable to catch the prey alone can successfully
pursue it if there is a certain, well-parametrized interaction between them,which is their collective chasing
tactics. For this we studied and optimized the parameters of the group of chasers by scanning their parameter
space.We have found that even in three dimensions three chasers can efficiently catch the prey if the strength
and characteristic distance of the interaction are set properly.We have shown that the predictionmethod
enhances the capabilities of the chasers (even if their interaction parameters are sub-optimal), and that
prediction can suppress the negative effects of time delay.We pointed out that these optimal chasing tactics are
robust against external noise andwe have found interesting, emergent behaviour patterns, such as life-like
encircling. The data also implies that chasing in three dimensions is a lotmore difficult task than in two
dimensions, which is consistent with the fact that truly three-dimensional pursuits are very rare in nature.What
ismore common in three dimensions is to restrict the degrees of freedom in someway. Flying and swimming
animals frequently use the natural borders of their open 3D space (water–air or air–ground boundaries) to drive
their prey into a corner. It has also been reported for dolphins hunting in groups that certain individuals tend to
have different roles during the hunt, for example they create artificial blockades to restrict the possible escaping
routes of schools offish and catch themmore efficiently [47, 48]. Finally, certain species, such as fish-hunting
cone snails or all kinds of web spiders use various ‘sit-and-wait’ strategies—they hide, and attack abruptly only
when the prey is close enough [23, 46].

Figure 10.Effectiveness of chasers as a function ofmaximumprediction time and delay time for an optimized group of three chasers
in (a) two and (b) three dimensions.

Table 3.The optimal chasing parameters in two
and three dimensions with prediction and delay
(1 s).

Nc Cinter rinter tpred

2D 3 0.86 155 m 1.75 s

3D 3 0.9 135 m 2 s
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3.2. Erratic escaper
We study the panic threshold (pthresh), which is the parameter controlling the zigzag pattern ofmotion, and seek
the optimumof rzigzag and rsens. In this section =n 1000tot for each data point.

3.2.1. Zigzagmotion: the panic threshold
The panic parameter of the zigzagmotionwas defined in (16) as a real number between 0 and 1 that depends on
the distance between the escaper and its nearest chaser. If this value reaches the panic threshold, the escaper
begins a zigzagmotion. Atfirst we examined the Effectivenesse values as a function of pthresh to study the zigzag’s
effect on the pursuit’s outcome. The results are presented infigure 12with andwithout delay, in two and three
dimensions. These figures tell us that zigzagging can significantly improve the escaper’s efficiency in all the cases
studied;moreover, pthresh does have optimal values.

Figure 11.Nine chasers can quickly encircle the evader.

Figure 12.Effectivenesse as a function of pthresh in (a) two and (b) three dimensions with andwithout delay. This shows that the
escaper can optimize its tactics with awell-chosen panic threshold parameter, and therefore increase its lifespan.
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3.2.2. Zigzagmotion: not too close
The zigzagging has another parameter: rzigzag, which is the critical distance at which the escaper ceases zigzagging
and returns to direct escape to avoid dangerous situations due to the closeness of the chaser(s).figure 13 implies
that in 2D =r 20zigzag mis a universal optimum,while in 3D, if >r 20zigzag m, the chasers cannot catch the
escaper. In other words, (i) zigzagging too close to chasers is disadvantageous in both two and three dimensions,
(ii) in two dimensions there is an advantageous regimewith an optimal parameter for the zigzagging, and (iii) in
three dimensions the Effectivenesse gets saturated at =r rzigzag sens, whichmeans that the evader successfully
escapes evenwithout the zigzag tactics.

4. Conclusion

Based on the corresponding ethological literature we built up a bio-inspired realistic agent-based approach to
model collective chasing in continuous space and discrete timewithin closed boundaries for the case when the
escaper is significantly faster than the chasers—a situation inwhich the chasers have no chance to catch the prey
alone orwithout collaboration. Examining themodel, we have found the following:

• Anoptimal group of chasers, which can catch a faster prey, exists in both two and three dimensions when
there is a soft, repulsive interaction force between them. This would be impossible without the interaction
between the chasers. The optimal group size found here is also comparable to sizes observed in naturewhen
using realisticmodel parameters.

• Emergent behaviour occurs—with certain parameters the chasers have the chance to encircle (encage) their
prey. These patterns emerge directly from the implemented chasing rules and reflect similar phenomena
observed in real biological systems.

• If the chasers are using the predictionmethod to forecast their targets’ position, their effectiveness increases.

• Great delay can completely suppress the chasers’ success, butwith a long enough prediction time, this can be
overcome.

• Wedemonstrated that the zigzag pattern ofmotion of erratic escapers can be advantageous, especially when
there is delay in the system.

• Chasing in three dimensions is amuchmore difficult task for chasers, therefore the evader ismore likely to
survive.

• Both the chasers’ and the escaper’s optimal set of parameters seems to be robust against external noise.

5.Outlook

Even though ourmodel supersedes those previously proposed inmany respects (e.g. two and three dimensions,
delay, erratic escaper, prediction), it leavesmany directions of the topic to be studied and extended, such as:
(i)many chasers versusmany escapers is just as interesting, or evenmore escapers versus a small group of

Figure 13.Effectiveness e as the function of rzigzag in (a) two and (b) three dimensions with andwithout delay.
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chasers; (ii) applying evolutionary optimizationmethods to the species; (iii)finding real-life applications;
(iv) equipping agents withmachine learning or real-time adaptive algorithms.
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