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Abstract. We give a scheme for loss tolerantly building a linear optical quantum
memory which itself is tolerant to qubit loss. We use the encoding recently
introduced in Varnava et al 2006 Phys. Rev. Lett. 97 120501, and give a method
for efficiently achieving this. The entire approach resides within the ‘one-way’
model for quantum computing (Raussendorf and Briegel 2001 Phys. Rev. Lett.
86 5188–91; Raussendorf et al 2003 Phys. Rev. A 68 022312). Our results
suggest that it is possible to build a loss tolerant quantum memory, such that
if the requirement is to keep the data stored over arbitrarily long times then
this is possible with only polynomially increasing resources and logarithmically
increasing individual photon life-times.
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1. Introduction

Linear optics is a promising candidate for quantum computing. Photons make excellent qubits.
They are very versatile, mobile and have long decoherence times allowing for data to be
confidently stored in them. Logic gates for linear optical quantum computation (LOQC)
can be built using interferometric linear optical elements (e.g. phase shifters and polarizing
beamsplitters), photon detectors and photon sources in a scalable manner, as shown by [1].
Alternative approaches to LOQC using measurement-based computation [2]–[4] considerably
reduce the overhead (in extra modes, photon detectors and phase stable circuitry) necessary for
scalable computation. In measurement-based quantum computation, single-qubit measurements
alone on entangled multi-qubit states called cluster-states, or graph-states, implement the
computation. These schemes provided a recipe for efficiently generating cluster states of arbitrary
size using conditional linear optics and photo-detection. However, in their initial forms they only
succeed if all errors can be ignored.

A cluster state is a multi-qubit entangled state represented graphically by a graph, where
the n vertices of the graph correspond to qubits prepared in state |+〉, and the bonds denote the
application of a certain entangling logic gate between the connected qubits. If we denote by E(i)

the set of edges on this underlying graph connected to vertex i, we can compactly describe such
a state in terms of its ‘stabilizer generators’, a set of operators of the form:

Xi

∏
j∈E(i)

Zj, (1)

under which the state is invariant. An operational interpretation of the stabilizer operators is a
prediction of correlations in the measurement outcomes of certain sets of measurements.

An important property of cluster states is that the application of parity measurements between
qubits not connected on the graph implements a ‘fusion operation’ [4], whereby the resultant
state is a cluster state which has inherited the graph of the previous state except that the two nodes
representing the measured qubits have been ‘fused’ into a single vertex. The fusion operation
allows one to combine disjoint cluster states and, in particular, to construct large cluster states
from smaller ones. The fusion operation (and its linear optical realization) is the main tool which
will be utilized to build up the entangled states which will be employed in this paper.
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One of the major challenges for implementing LOQC is photon loss. Photons will only have
a finite lifetime, while for quantum computation, quantum information must remain coherent
over arbitrarily long times. Thus a scalable coherent quantum memory is an important step
on the way to developing scalable LOQC. Various proposals exist for single-photon memory
involving storing the photon in optical fibre loops [5] or in cold atomic clouds [6]. Our goal is to
show that given lossy, single-photon memory devices, inefficient detectors and inefficient single-
photon sources, a memory capable of storing a photonic state indefinitely can be constructed. The
individual photon memory storage times need only increase logarithmically with the total time
required to keep data qubits in memory. Furthermore, this can act as the basis for a gate-based
approach to LOQC, which would allow the adoption of fault-tolerant approaches to correct other
non-loss errors [7].

In [8] a protocol for loss-tolerant quantum computation was proposed. At the heart of this
scheme was the realization that tree-shaped cluster states can be used as an encoding, each ‘tree’
replacing a logical qubit in the un-encoded cluster state. With this encoding, single-qubit losses
of up to 50% can be efficiently suppressed to yield an effective loss rate for logical qubits which
is arbitrarily close to zero. In this paper, we describe a construction procedure for efficiently and
loss tolerantly creating the encoded logical cluster states used for both computation and memory
devices in a linear optical setting and give a full account of the resources required.

There are two key techniques at the heart the linear optical memory we propose. The first is
the use of specialized cluster states we term ‘hypertrees’. These states are formed from multiple
loss tolerant tree clusters [8] fused together. A nice property of such states is that they allow
(at the level of logical qubits) controlled-phase (CZ) gates to be implemented with arbitrary
success probability, something which is not possible via linear optics and measurement on un-
encoded photonic qubits; thus large encoded cluster states can be constructed, or logic gates can
be implemented directly [9]. We expect this technique to be of use and significance beyond its
particular application here.

The second technique is the fact that for the purposes of using continual teleportation
through cluster states to keep a photon alive, only Pauli measurements are required. This is
useful because it allows for a great amount of parallelization since Pauli measurements do not
need to be adapted based on the outcome of other measurements. The measurements can be
implemented simultaneously which helps to relax the requirements of the individual photon
memory, in terms of the amount of time individual photons need to be stored for. The loss
tolerant properties of the tree-structures employed allow us to attain a higher threshold than
other recent proposals for linear optical-based memory [10].

We point out that here we only address detected losses (erasures), since these form the
dominant errors we should expect within LOQC. Other work has addressed LOQC within
the context of undetected errors, see e.g. [11, 12]. Furthermore, the near-deterministic logic
gates this scheme allows on the level of encoded qubits could allow the implementation of
error-correction schemes for a wider variety of errors [7].

The paper is structured as follows: first we give a brief outline of the loss-tolerant approaches
in [8]. We then give a resource efficient strategy for creating the trees used in the encoding. After
this, we introduce a scheme for joining tree-encoded qubits in an asymptotically deterministic
way by employing ‘hypertree’ structures. Later on we will give an account of how one can build
the loss tolerant quantum memory with the properties claimed earlier. A full resource count will
be provided throughout to demonstrate that the scheme introduced is resource efficient.
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Level 0

Level 1

Level 2

Level 3

b0 = 2 

b1 = 2 

b2 = 2 

Figure 1. A tree-cluster state with branching parameters: {b0, b1 . . . bm} =
{2, 2, 2}.

2. A resource for loss-tolerant computation

In [8] a protocol is outlined in which cluster states with a tree-structure are used to encode qubits
to enable loss-tolerant measurement-based quantum computation. An example of a tree-cluster
state is shown in figure 1. Tree-cluster states are fully specified by their branching parameters,
{b0, b1 . . . bm}; for example bi equal to the number of branches coming down from each qubit
in level i. When each qubit of a logical cluster state is encoded by a tree-cluster state, then
a plethora of alternative measurement patterns become available for implementing the desired
logical operation; namely the measurement of the original single qubit in some arbitrary basis.

The key idea is that one can actively change this measurement pattern as one goes along
to adapt for lost qubits detected on the way. At instances where qubit measurements fail, then
the special quantum correlations present on the tree-cluster states can be exploited to allow the
outcome of measurements on the lost qubits to be inferred by measuring other qubits on the tree,
which due to the entanglement in the state will be correlated with the lost outcome. The logical
operation can thus proceed with an alternative measurement pattern which is still available.

In [8] we showed that provided the trees have sufficient branching, independent qubit loss
errors at rate ε can be tolerated for any ε < 0.5. More precisely, with only a polylogarithmic
scaling of the number of qubits, Q, required to be present on a tree, the effective loss rate, εeff ,
is exponentially rapidly reduced to zero. More recently [13] we showed that this threshold for ε

can be translated into an LOQC architecture with the requirement that the product of the detector
efficiency, ηD, and the single-photon source efficiency, ηS, has to be greater than 2/3.

3. Creating the tree-clusters efficiently

The special tree-cluster states introduced in [8] are fully specified by the branching parameters
b0 to bm as they are traversed from the top to the bottom levels. We review briefly in this section
an efficient strategy for building these trees using redundantly encoded ‘2-trees’ as the primitive
building block and fusing them together into larger cluster states using the type-II fusion gate.
type-II fusion is a variant of the fusion operation which can be employed when (at least) one
of the qubits acted upon is ‘redundantly encoded’. Redundant encoding is the simplest form of
coding one could imagine. The logical state |0〉 is represented by n-qubits in state |0〉, i.e. |0〉⊗n

and |1〉 is represented by |1〉⊗n. It is straight-forward to confirm that a Bell-state projection
between such a pair of qubits acts as a parity measurement [14]—realizing a fusion operation.
A type-II gate is a linear optical realization of such a Bell-measurement. It is effected by the
combination of a polarizing beam splitter oriented at 45◦, followed by number-resolving and
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Redundantly encoded qubit 

‘Node’ qubit 

Figure 2. A 2-tree is a 3-qubit cluster state with a centrally redundantly encoded
logical qubit which branches out to 2 ‘node’ qubits.

m nodes n nodes m+n nodes

Figure 3. Successfully type-II fusing an n-tree with an m-tree creates an n + m-
tree. The 2 photons used by the type-II gate are indicated by the green box.

polarization-resolving detectors on both output modes. Here we will use a slightly modified
version of the gate by inserting a 45◦ polarization rotator on each of the two spatial modes prior
to the beam splitter. For the case where two photons are detected at the same detector, the gate
fails and the effect is to measure the input qubits in the Z basis (instead of in the X basis as in
the original version of the gate proposed in [4]). The gate also fails when less than two photons
are detected in total by the gate (because of loss, detector inefficiencies etc). The gate is only
deemed ‘successful’ (i.e. the desired fusion operation is implemented) when one and only one
photon is detected in each output spatial mode.

In the ideal case, where we assume no qubit loss is present and perfect sources and detectors
are available, the success probability rate for the linear optical type-II gate acting on photons
(which are in a locally maximally mixed state—as is the case for cluster-state photons) is 50%. In
a more realistic scenario, however, the actual success rate, PII, for the type-II gate is compromised
by the detection efficiencies ηD of the two detectors and the independent loss probability ε of
the two photons present in the gate. Since both photons must be present and both detectors must
detect a photon then PII is reduced to (1 − ε)2 η2

D/2.
Generally we define an ‘n-tree’ as consisting of a central redundantly encoded qubit (in two

physical qubits with logical bases |00〉 and |11〉), to which n node qubits are connected on the
graph. The example of figure 2 shows a 2-tree. The strategy we follow is to build the trees from
bottom to top adding levels of qubits in the following way: first we fuse two-trees together to
form bm-trees. This is achieved through a series of post-selection steps. First we post-select upon
successful fusion attempts to create a resource of 4-trees from joining 2-trees together. Then
we fuse 4-trees together and create a resource of 8-trees subject to successful type-II fusions
and so on. Generally we fuse m-trees with n-trees and upon successful outcomes on the type-II
detectors we obtain (m + n)-trees (see figure 3). The expected number of 2l−1-trees required to
create a 2l-tree is equal to 2/PII. Thus the expected number of 2-trees required to build a single
2l-tree is [2/PII]l−1. Furthermore, it can readily be seen that in order to create a bm-tree such that
2l−1 � bm � 2l, then on average the number of 2-trees required is � [2/PII]log2(bm) = poly bm.
In this way we can efficiently create the lowest level of the desired trees with the branching
parameter needed to tolerate the given loss rate.
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(a) (b)

(c) (d)

Figure 4. Adding a new level requires two steps. (1) (a) → (b) First fuse a 2-tree
with two of the existing trees to add a new higher level. (2) (c)→ (d) Fuse states
created in (b) together to increase the branching at the added higher level.

There are two steps involved for each additional level we would like to add. First we use
two successful bm-trees created earlier and fuse them together with a 2-tree in the fashion shown
in figure 4(a) which uses two type-II gates. Upon successfully performing the gates the resulting
cluster state is the one shown on figure 4(b). This is now a tree with branching parameters
{b0, b1} = {2, bm}. The second step is to fuse these trees together as shown in figure 4(c) to
increase the top level branching from 2 to bm−1. We can now increase the branching parameter
on the top level from 2 to bm−1 by combining these tree-clusters together, much as we combined
the initial 2-trees. To complete the first step, the expected number of 2-trees required in order to
create a single tree with branching parameters {2, bm} is (2 poly(bm) + 1)[1/PII]2. To complete
the second step, the expected number of trees with branching parameters {2, bm} required in order
to create a single tree with branching parameters {bm−1, bm} is � [2/PII]log2(bm−1). Therefore the
overall expected cost in 2-trees required to create one such tree is � [1/PII]2 poly(bm−1) poly(bm).
This suggests that the extra added level with branching parameter bm−1 incurs an increasing factor
[1/PII]2 poly (bm−1) in the 2-trees overhead. Iterating the process in order to add all required
levels suggests that in order to create one tree-cluster state with the full branching parameter
profile {b0, b1 . . . bm} (as required in [8]) then the expected number of 2-trees required satisfies:

〈N2−trees〉 �
[

1

PII

]2m m∏
i=0

poly (bi) . (2)

The overall conclusion is that the expected number of qubits consumed in order to build a tree
containing Q qubits is polynomial in Q, since m � log2(Q).

4. From trees to ‘hypertrees’

In this section, we shall introduce a new cluster state structure which we call a ‘hypertree’. In
comparison to the tree-clusters introduced in [8], these have useful extra properties which we
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X

X

Tree-encoded qubit 

Node qubits

Trees attached to 
Node qubits

Figure 5. A hypertree consists of node, tree-encoded qubits (used in type-II
fusions for joining hypertrees) which are attached on a central (circled)
tree-encoded qubit intended for a logical cluster state.

shall describe below. An example of a hypertree can be seen in figure 5. Hypertrees are similar
to the original trees, the only differences being the addition of an extra higher level. We assume
that two of the qubits have been successfully measured in the X-basis. The hypertree state is
the state after these measurements have been performed. We retain them to simplify the states
description. In practice, one would generate the post-X-measurement hypertree state directly.

Each hypertree must be thought of as being a single, tree-encoded, logical qubit which
is directly linked to a number of node qubits. Each of these node qubits are the root of a
further tree structure. These node-qubits will be used as the input of type-II fusion gates to
join together logical tree-encoded qubits (directly linked with them within their hypertrees) into
larger computation-specific, tree-encoded cluster states. These node qubits serve the same role
as the leaf node qubits introduced by [12] however the trees attached to these node qubits allow
them to be measured indirectly and loss-tolerantly allowing one to recover from failures of the
fusion gate. An alternative description of the hypertree structures (as redundantly encoded qubits
which are further tree encoded) was presented in [13].

As we shall see later, the node qubits provide a number of different alternatives whereby
one can attempt to join two logical qubits together. At most one and only one type-II gate is
required to succeed between the node qubits of any two distinct hypertrees in order for the
logical tree-encoded qubits to be successfully joined together. This entire process is analogous
to a logical CZ gate performed between the logical qubits. This is an essential step in creating
the computation-specific, tree-encoded cluster state to be used by a computation. Further on we
will see that the reason for going through the intermediate steps of first building hypertrees and
then type-II fusing their node qubits together in order to build computation-specific cluster states
is that it allows us to join logical tree-encoded qubits together in a near-deterministic fashion by
using the probabilistic type-II fusion gates; and that this is possible with just polynomial resource
overheads.

In figure 6 we show how two hypertrees can be linked together using type-II gates. To see
why it is we only require one type-II gate to succeed we need to closely examine all the possible
outcomes a type-II gate can give and explain how they can be dealt with. A type-II gate has three
distinct sets of outcomes: either (a) only one or no photons will be detected (because of loss or
detector inefficiency) or (b) both photons will be detected at the same detector or (c) both photons
will be detected, one at each separate detector. From these possibilities only (c) is accepted as
the correct outcome. The outcomes (a) and (b) would be catastrophic if encoded qubits are not
used. However, the fact that here there is a tree joined on every node photon means that we can
execute specific measurement patterns on those trees to rectify any of the possible outcomes with
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X

X

X

X

XX

XX

Figure 6. Two hypertrees can be joined together by type-II fusing together their
node qubits. Only one type-II is required to succeed. The overall effect is to create
a CZ bond between the 2-tree-encoded qubits present in the original hypertrees
if indeed at least one of the type-II gates succeeds.

arbitrary success probability. In particular, if outcome (a) occurs and the measured qubits are
lost, then they can be indirectly and loss tolerantly measured in the Z-basis by measuring qubits
in their attached tree as was discussed in considerable detail in [8].

If outcome (b) occurs then this has the effect of measuring the node qubits in the Z basis.
This is the least damaging result for an unsuccessful outcome, as it simply removes the node
qubits from the two hypertrees. This is precisely the reason for using the modified version of
the type-II gate mentioned earlier, as in cluster state computation the effect of Z measurements
is to remove the measured qubits from the cluster state. Note that measuring the remainder of
the connected tree can be advantageous since the extra measurements can provide additional
information as to what the Z measurement outcome on the node qubits should be. Obtaining
many such ‘votes’ for a given outcome and applying a majority voting over these results can
greatly suppress logical errors such as depolarization [15, 16] although a full discussion of this
effect is beyond the scope of this paper.

Finally, if outcome (c) occurs then we know that the gate has been successfully implemented.
Figure 7 shows explicitly an example of a successful type-II gate. Once the successful outcome
is received then there are a number of new bonds created between the two hypertrees as shown
in figure 7(b). Of all these new bonds, only the direct bond between the two logical qubits is
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(a) (b) (c)

Z

Z

Z

Z

Z Z

Figure 7. (a) A type-II gate is implemented between two node photons of two
distinct hypertrees. (b) The resulting state after the successful type-II outcome.
(c) Resulting state after measuring the undesired qubits in the Z-basis. This is
now a state whereby the two logical qubits are successfully linked by a CZ bond.

required. Any of the other bonds emerging from the qubits, that used to be in the first level of the
trees attached on to the original node qubits from either hypertree, must now be removed. This
can be achieved by measuring all these qubits in the Z basis. Note that these Z measurements
can again be implemented with a success probability arbitrarily close to unity, because they can
also be effected indirectly. Remember that these measurements are effected on qubits each of
which was at the top level of a tree. Thus the Z measurements can also be effected indirectly
by following measurement patterns on the lower levels of these trees in the fashion explained
by [8].

It is clear, therefore, that regardless of which type-II fusion outcome occurs there is a specific
measurement pattern that can be followed to deal with it. The purpose of these hypertrees is to
(asymptotically) deterministically join tree-encoded qubits together using lossy and probabilistic
type-II gates. At least one type-II gate must succeed in order to be able to join two logical qubits
together. As such it is expected that the higher the number of node qubits present in hypertrees,
the higher the effective probability for at least one type-II fusion gate to succeed. We now analyse
in a little more detail the requirements for resource efficiency.

The computation-specific cluster states, used in the one way model for quantum computing
[17], can be thought of as being created in two steps. First the qubits are initiated in the |+〉 state
and then the bonds present in the cluster state are formed by effecting CZ gates between pairs
of qubits. Suppose we would like to build a computation-specific cluster state formed by tree-
encoded logical qubits. Such a cluster state can be built with arbitrary success probability by first
initiating hypertrees and then fusing those together. Recall that hypertrees consist of tree-encoded
logical qubits attached to node photons (which in turn have a tree attached on them). We showed
above that type-II fusing node qubits of two distinct hypertrees has the effect of forming a direct
CZ bond between the tree-encoded logical qubits present in these hypertrees. More importantly
is that the probability with which this bond is effected can be increased dramatically, simply by
allowing for a large number of node qubits to be available on each of the hypertrees containing
the logical qubits. This is because that would allow for the possibility of a large number of type-II
attempts to be implemented between the node qubits of the two hypertrees. Since the requirement
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is just one of those fusion attempts needs to succeed, the effective success probability for joining
the logical hypertrees together is increased.

Assume w.l.o.g. that any logical qubit in the above computational cluster state must be
bonded to n other logical qubits. Further assume that for any such bond we would like to allow
for a maximum of k type-II fusion attempts to be performed. This suggests that we would want to
use hypertrees which have kn node photons. To build such hypertrees would require an expected
number of [1/PII]2poly(kn). To see this remember that hypertrees are in effect identical to the
regular trees with an additional higher level with branching factor kn.

On the other hand, the probability for successfully joining two tree-encoded logical qubits
together (using their hypertrees) is given by:

PCZ = [
1 − (1 − PII)

k
]
P2k

tree. (3)

Here Ptree is the probability for successfully implementing the necessary measurement pattern
on the tree attached to a node photon as soon as the result of the type-II fusion gate involving
the node photon becomes available. There are 2k such node photons involved with every attempt
to fuse two hypertrees together and the P2k

tree factor is present in the expression for PCZ above
because all measurement patterns that have to be followed on the trees attached on these 2k node
photons must succeed in order for the successful fusion of the hypertrees.

The objective is to check whether PCZ can approach unity with efficient resource scaling.
Consider first the factor [1 − (1 − PII)

k] in the expression for PCZ. The success probability for
performing a type-II gate, PII is a fixed, physical parameter of the experimental set-up; thus
one can choose a value for k to compensate for any value of PII efficiently. Here what we
mean by efficiently is that even with a very modest linear increase of the value of k the factor
[1 − (1 − PII)

k] increases and approaches unity exponentially fast no matter how small PII is.
However, this linear increase in the value of k will have a noticeable effect on the second

factor in the expression for PCZ given by P2k
tree. In [8] we showed with numerical analysis that

Ptree is related to Q, the number of physical qubits present in a tree-encoded logical qubit, by the
expression:

log(Q) = c log log

(
1

1 − Ptree

)
, where c ≈ 4.5. (4)

Rearranging gives: Ptree = 1 − exp
(−Q1/c

)
thus:

P2k
tree � 1 − 2k exp

(−Q1/c
)
, (5)

is a good approximation since 1 � exp(−Q1/c) even for very modest values of Q.
From this we can deduce that P2k

tree is linearly decreasing with k, but the effect can be over-
compensated by the choice of Q since P2k

tree is exponentially dependent on Q1/c. By linearly
increasing Q1/c, one can over-compensate the effect of the previously chosen value for k and
still have P2k

tree approaching unity exponentially fast.
We conclude therefore, that PCZ can approach unity exponentially fast with just linearly

increasing k and polynomially increasing Q with respect to PCZ. This is an efficient resource
scaling as the number of qubits present on a hypertree with say nk node qubits, contains nk(Q + 1)
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X X

Figure 8. The quantum memory proposed works in a teleportation approach.
First the tree-encoded data qubit (red) which is in an arbitrary state α |0〉 + β |1〉
is joined on a tree-encoded linear cluster. By performing logical X measurements
on the data qubit and the next on its right teleports the state on the qubit furthest
to the right.

physical qubits in total. Hence the overall resource scaling is polynomial with highest degree
equal to c + 1 with respect to PCZ.

5. A loss tolerant quantum memory

Using the hypertrees introduced above one can create linear clusters of tree-encoded qubits.
Such linear clusters and measurements in the X basis can then be used as a loss tolerant quantum
memory for the one-way model for quantum computing. The memory we propose works in a
teleportation-type approach. As can be seen in figure 8, the main idea is to join a data qubit with
a linear cluster of 2-qubits. Subject to successfully achieving this, one can proceed by measuring
the original data qubit and the first qubit of the former 2-qubit linear cluster in the X basis.
Subject to successfully implementing these steps, the state of the original data qubit has now
been teleported to the last qubit (formerly the second qubit of the 2-qubit linear cluster). One can
of course iterate this process for as long as necessary to store the data qubit. This in fact is exactly
analogous to joining a longer linear cluster in the first place and performing an even number of X

measurements (see figure 9); the effect is to teleport the data qubit through a longer cluster, but
equally it can be argued that the effect is to store the data qubit for a longer period of time. One
can deduce that the method proposed here is a resource efficient way for constructing a quantum
memory. In the previous section, we showed that with just polynomially increasing resources, one
can perform logical CZ-gates between tree-encoded qubits with exponentially increasing success
probability, PCZ. In addition, the results of [8] indicate that the effective success probability, Ptree,
for performing a measurement on a tree-encoded qubit, can be exponentially increased towards
unity by polynomially increasing Q. These two are the operations required for the proposed
memory.
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X X X

Figure 9. Teleporting a data qubit through a longer tree-encoded linear cluster.

Suppose we wish to create a memory that stores qubits for a time τmem with an overall
success probability Pmem. The method we will actively create and use to operate the memory
would be as follows.

1. Create a new hypertree.

2. Perform a logical CZ-gate between the data qubit and the new hypertree.

3. Measure original data qubit in the X-basis.

4. Label the remaining logical qubit as the new data qubit and repeat from 1.

Suppose also that the time it takes for one cycle (steps 1–4 to complete) is τq. Note that the
overall success probability for performing one cycle is given by PCZPtree. In other words it is
the probability of successfully joining the newly created hypertree to the data qubit followed by
successfully measuring the original data qubit in the X-basis. This would suggest that:

Pmem = (PCZPtree)
τmem/τq, (6)

as we would need to repeat the cycle τmem
τq

times in order to store a data qubit for a period of τmem.
(Incidentally the number of cycles has to be even in order to perform the identity gate which is
what in effect the memory gate actually is in this setting, however this feature does not affect the
resource scaling calculations that follow.)

By substituting equation (3) for PCZ the expression for the memory success probability
becomes:

Pmem ≈
[
1 −

(
τmem

τq

)
(1 − PII)

k

] [
1 − (2k + 1)

(
τmem

τq

)
exp(−Q1/c)

]
. (7)

With a bit of thought one can see that k and Q1/c scale logarithmically with τmem. To see this
suppose we need to find k′ such that:(

τmem

τq

)
(1 − PII)

k′ = (1 − PII)
k. (8)

Taking logarithms on both sides gives:

k′ = k − log
[
τmem/τq

]
log [1 − PII]

. (9)
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Similarly, suppose we wish to find Q′ such that:(
τmem

τq

)
exp

(
−Q′1/c

)
= exp

(−Q1/c
)
. (10)

Taking logarithms on both sides gives:

Q′1/c = Q1/c + log

[
τmem

τq

]
. (11)

Clearly by logarithmically increasing both k and Q1/c with respect to the memory time, τmem,
has the effect of increasing the memory success probability to:

Pmem = (PCZPtree)
τmem/τq → PCZPtree. (12)

Such a memory will require τmem/τq hypertrees in order to store a data qubit for a time

τmem. Thus overall, resources scale proportionally to
(

τmem
τq

) [
log

(
τmem
τq

)]2
. The resource scaling

here, is with regards to the total time τmem with which the qubit is required to be stored. With
regards to the success probability rate, Pmem, by which the data stored is stored over τmem , the
results of the previous section for the resource scaling with respect to PCZ imply that Pmem can
increase exponentially fast towards unity with similar polynomially increasing resources. Pmem

differs from PCZ by a mere factor of Ptree (after considering the resource scaling with respect to
the τmem) suggesting that the resource scaling with respect to Pmem would be polynomial with
degree c + 1 which is very similar to the resource scaling with respect to PCZ discussed in the
previous section.

As we now explain, the fidelity of the quantum memory we are proposing can be defined
as the success probability of the memory. This of course is only true under the assumptions
we made throughout this paper namely that the only source of error is loss due to imperfect
detectors, imperfect single-photon sources and lossy components. We also assume that no dark
counts occur at the detectors and that the single-photon sources do never emit 2-photon states.
Under this model, the type-II gates filter out all possible outcomes by discarding any input states
that gave rise to an erroneous outcome as soon as such outcomes become known. Conversely
this suggests that whenever a hypertree is postselected subject to successful outcomes on all the
type-II gates involved in its preparation then such a state may be regarded as being prepared
perfectly.

The (yet) unmeasured qubits of the hypertree may not all have been present during the
preparation of the state, and thus may not have acquired the relevant entangling bonds intended
by the type-II gates. Such lost qubits would inevitably fail to be detected when their measurement
is attempted and the protocol proposed in [8] can deal with such instances. However the important
point to note is that the type-II gates have the property of taking imperfect source states at the
input (i.e. states with lost photons prior to the input of the type-II gate, but no loss from the pair
of photons operating the gate) and producing output states (supposing the correct type-II gate
outcome) which are identical to states that are produced by perfect input states which undergo
loss of the same qubits only after the action of the type-II gate. In other words if we were to
model loss by a beam-splitter of reflectivity η placed at each input spatial mode of a type-II gate,
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we find that we can commute the two beam-splitters to the two output spatial modes of the gate
prior to the detectors. This is specifically true whenever the type-II gate is operated by at most
one photon in each of the input modes which is indeed always the case in the construction of
the memory. The property of the type-II gate just described implies that the fidelity of the states
created using this approach are only affected by loss. Thus the probability by which a memory
can succeed also gives the fidelity of the physical quantum state constituting the memory.

6. For how long do the memory photons need to be stored?

We will give an estimate on the maximum time, τmax, individual photons in the memory resource
need to be stored for in terms of the time, τII, it takes for a type-II gate and associated classical
feed-forward to complete (essentially the number of steps in the protocol). In order to simplify the
derivation we are also assuming that τII is the time required to perform single-qubit measurements
and the associated classical feed-forward, although it must be appreciated that in reality such
measurements could take slightly more time than the type-II gates. However the vast majority
of the time steps involved in the building process of the quantum memory only involve type-II
fusion gates for the creation and joining of the hypertrees. Thus if the time required to perform
single-qubit measurements is comparable with τII, it should not make a significant difference in
the estimate derived for τmax. In giving this estimate, we make the assumption throughout that
the resources for implementing parallel computations are available in every step. τmax is thus
the time it takes from the moment individual un-entangled photons are produced until they are
finally measured as part of the linear clusters used in the memory.

We estimate this time to be

τmax =
[

m∑
i=0

log2(bi) + m + log2(kn) + C

]
τII, (13)

where bi are the branching parameters and m is the maximum depth of the trees cluster states
introduced in [8] and C is a constant ∼5–8.

To derive this expression for τmax we count first the time steps required to build 2-trees out
of un-entangled photons, then the number of time steps it takes to build trees out of 2-trees, then
the time it takes to build trees into hypertrees and lastly the time it takes to implement all the
type-II fusion gates along with the single photon measurements, to join together tree encoded
qubits as linear logical clusters and measure the logical qubits.

The time it takes to build 2-trees from un-entangled photons is equal to 2τII. One τII time
step is required to build the intermediate three photon GHZ, |000〉 + |111〉, states, and another
τII is required to fuse those into 2-trees.

To see what the total time is to build the trees introduced in [8] using 2-trees we need to
note first the number of τII time steps required in order to increase the branching at any level
from 2 to bi (see figure 4 step 2). At each τII time step we attempt fusion gates in order to join
trees together to double the top level branching by post selecting the successful type-II fusion
gate outcomes. Thus it takes approximately log2 (bi) τII time steps to increase the branching to bi.
To add a higher level on the existing sub-trees with branching equal to 2 (see figure 4 step 1)
requires one τII time step. Thus overall the number of τII time steps required to build trees from
2-trees is

∑m
i=0 log2 (bi) + m.
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To build trees into hypertrees essentially means that we want to add an additional higher
level with branching equal to kn. Thus by following the same logic this can be achieved by
log2 (kn) extra τII time steps.

In order to implement fusion gates on hypertrees in order to join their tree-encoded
logical qubits into tree-encoded linear clusters (as required by the proposed memory gate),
requires merely three τII time steps. This is because all the type-II gates can be implemented
simultaneously in one τII time step. Provided that at least one of these gates is successful (which
occurs with near unit probability) the desired fusion between the encoded logical qubits can
be engineered by choosing appropriate measurement patterns for the subtrees attached to these
node qubits. Whatever the outcomes of each of these gates will be, the measurement pattern that
dictates what would have to be performed on the trees attached to each of the node photons on
all the hypertrees involved, would be known as soon as the fusion outcome is registered. These
measurement patterns would take at most two τII time steps to complete. This is because normally
we can attempt to measure in one τII time step all the qubits in level 0 of the trees [8] attached on
every node photon. Then, subject to whether or not the measurements on this level succeed or fail
because of loss, this would define a distinct measurement pattern that must be implemented on
all the remaining qubits of the lower levels of the tree. This measurement pattern gives the basis
in which each of the remaining qubits in the trees attached to the node qubits has to be measured.
The measurement bases of these patterns are all Pauli measurements and are not dependent upon
the patterns of loss within them. Therefore this entire set can be measured in one time step.

The last thing remaining is to perform the logical X measurements on the data qubit, and
the adjacently joined qubit from the linear cluster (see figure 8), remembering that both these
are tree encoded. In order to implement the logical X measurements would require a set of many
physical measurements [8]. However all these measurements can be performed in two τII time
steps. First we attempt X measurements on all of the physical qubits at level 0 of the trees in both
of these logical qubits. As before, depending on whether or not loss occurs in the measurements
defines a distinct measurement pattern that can be implemented on all the remaining qubits of
the tree. This again can be implemented in one further τII time step because all the measurements
are again of Pauli observables.

Note that the expression for τmax is logarithmically dependent on the branching parameters
of the trees and hypertrees used for the encoding and creation of the logical cluster states. This
suggests that if there are enough resources available to allow for any operations to be performed
in parallel this loss tolerant quantum memory is very fast, relying on qubits which do not have
to be stored over long times.

7. Individual photon memory

In the previous sections we assumed that photons not used by a type-II fusion gate during the
creation of the quantum memory can be perfectly stored until the memory is created. Of course,
this assumption is not reasonable in a laboratory implementation.

Suppose that PτII
is the probability of successfully storing a photon not used in a type-II

for a time τII. Further assume the pessimistic scenario where every photon (used in the building
process of the quantum memory we are proposing) had to survive for the maximum time τmax.
This would suggest that the probability of successfully storing any photon would be (PτII

)τmax/τII .
Here we make the assumption that the individual photon memory is similar in form to the
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cyclical quantum memory for photons proposed in [5] (i.e. the rate of photon loss during storage
is constant). In other words the probability of storing the photon degrades by a factor of PτII

for
every τII time step the photon is stored.

In [8] it was shown that it is possible to perform universal quantum computing using tree-
encoded qubits, provided that the probability of successfully detecting the physical qubits on the
trees is greater than 50%. This implies that:

(1 − ε)ηD

(
PτII

)τmax/τII � 1/2. (14)

If the above inequality is satisfied, then it is possible to build a quantum memory which is
able to store data with arbitrary success probability over arbitrarily long times whereby the
resource scalings involved are of the form described in the earlier sections of this paper. The
only implication of properly considering memory errors in the derivation of the 2-trees resource
scaling is that the degree of the polynomial dependence on the tree branching parameters will
change. Properly considering memory errors effectively reduces the success rate of the type-II
fusion gate by (at worse) a factor of P(2τmax/τII)

τII
as such errors can be absorbed in the type-II fusion

gate as loss errors. This in effect would increase the degree of the polynomial dependence the
2-trees overhead has on the tree branching parameters (see section 3). On the other hand the
proper consideration of the memory errors during the building process of the quantum memory
has no effect on the derivation of τmax, the maximum time individual photons need to be stored
for in the process of building and using the quantum memory proposed in this paper.

Let us give an example with some sensible values of the various parameters involved, to
give an idea as to what the expectations are for PτII

. Suppose that the detector efficiency, ηD,
and the source efficiency, ηS, are both 95%. Further assume that we have P(τmax/τII)

τII
= 85%. This

means that the loss rate of the initial 3-qubit GHZ states (and all the subsequent trees produced
using type-II gates) using the linear optics circuit proposed by [13] would be approximately
30%. Further suppose that we desire to implement a loss tolerant quantum memory gate which
will have an effective success probability: Pmem � 99.99%. This probability is the combined
probability of successfully joining an encoded 2-linear cluster to a single data qubit, and being
able to perform the two logical X measurements. To achieve this, it would suffice to create trees
that have a success probability of 99.999% for performing a single-qubit measurement on a
tree-encoded qubit [8] and to create the hypertrees involved with enough node photons such that
the effective success probability for joining two of them together would be 99.999%. (This is
because [99.999%]5 � 99.99%.)

The trees that can suppress a loss rate of 30% to an effective success probability of 99.999%
for performing the single-qubit measurement on tree-encoded qubits have branching parameters
{11, 23, 22, 4, 1} (data from [8]). Each type-II gate will succeed with probability � PII(0.85)2 �
14.5% with the values of ηD , ηS and P(τmax/τII)

τII
given above. Thus k, the number of node photons

that have to be present to boost the effective probability of joining hypertrees together, PCZ, to
99.999% is ∼74. The number of bonds each hypertree forms with other hypertrees, n, is equal
to 2 since we are only building linear cluster states for the needs of the proposed memory (cf in
a linear cluster state each qubit is at most connected to two other qubits).

Substituting these values in the expression for τmax we find that the number of τII time steps
which are required for the memory 2-qubit linear cluster are ∼25. Therefore we require that:

P25
τII

= 0.85 ⇒ PτII = 0.993. (15)
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Figure 10. Graph showing how Pmem varies with storage time when the tree-
encoded memory is implemented. The legend gives the number of qubits present
in the hypertrees for making up the tree-encoded, memory cluster states for each
curve.

Therefore in this specific example we demonstrated that logical qubits can be stored for
a time of 25τII with a success probability of �99.99% provided that individual photons can
be stored for a time τII with probability of 99.3% (assuming of course the values given for the
detector and source efficiencies as well). Comparing with technology which is currently available
we see that the value of PτII

derived above is a bit demanding, some two orders of magnitude
away from what is currently possible. For example the cyclical quantum memory for photons
proposed in [5] has a cycle time of 13.3 ns during which the probability of successfully storing
the photon is 81%. More recently in [18] it was shown that gate operation times with active feed-
forward take ∼150 ns. Setting τII to 150 ns shows that individual photon memory times should
improve by at least an order of magnitude in storage times and at least an order of magnitude in
the success probability rate in order to be able to implement the proposed quantum memory.

In figure 10 we show how Pmem can be affected by simply varying the resources used in the
tree-encoded memory should this value of PτII

be achieved. In each of the plots we assume that
the probability for storing an individual photon over time τII is taken to be 99.3% and observe
how Pmem varies when the number of qubits present in hypertrees is increased. As we can see
from figure 10 for the case when no encoding is used, Pmem drops to zero very rapidly in a time
less than 1000τII. However by increasing the number of qubits used in hypertrees one can actively
reduce the rate by which Pmem decays. As long as equation (14) is satisfied, then the decay rate
can in principle be reduced arbitrarily close to zero.

8. Conclusion

In this paper we showed that it is possible to loss tolerantly create a quantum memory based on
a teleportation-type method which itself is tolerant to photon loss. The method exploits the fact
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that successive pairs of measurements of qubits in the X-basis in linear cluster states have the
effect of performing the identity gate. We demonstrated that the success probability with which
data qubits can be stored with can approach unity exponentially fast by polynomially increasing
the resource overhead with respect to the success probability. We also showed that the resources
only need to scale polynomially with respect to the time we wish to keep a qubit stored.

In addition we showed that the maximum time required to store photons in order to create
an elementary unit of the the loss tolerant memory—namely the 2-qubit linear cluster state—is
logarithmically dependent on the resources required. Strictly speaking, this can indeed destroy
the threshold result, however, from a practical point of view, this is a mild limitation since it only
affects storage for extremely long times.

In the scheme for the quantum memory we are proposing, we introduced special cluster
state structures (we called them hypertrees) which allow probabilistic type-II gates to be used to
perform logical CZ-gates amongst tree-encoded qubits in a near-deterministic fashion. Since it is
straightforward to convert parity measurements to entangling gates (see e.g. [9, 14]), this raises
the possibility of using these gates to implement an additional layer of encoding for tolerance to
more general errors, while retaining the much relaxed loss threshold that our protocol provides.
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