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Abstract. We develop a numerical method to simulate mechanical objects in a
viscous medium at a scale where inertia is negligible. Fibers, spheres and other
voluminous objects are represented with points. Different types of connections
are used to link the points together and in this way create composite mechanical
structures. The motion of such structures in a Brownian environment is described
by a first-order multivariate Langevin equation. We propose a computationally
efficient method to integrate the equation, and illustrate the applicability of the
method to cytoskeletal modeling with several examples.
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1. Introduction

The internal architecture of living cells relies largely on microscopic fibers, which form the
cytoskeleton with their associated proteins. These fibers have remarkable mechanical properties.
Microtubules and actin filaments for instance have persistence lengths of∼5 mm and 20µm,
respectively, and can sustain pico-Newtons of force without breaking [1]. Yet these fibers can
also be broken down quickly, because they are formed by the non-covalent assembly of protein
monomers. Filament ends can grow or shrink, or even alternate between those two states in a
remarkable process called dynamic instability [2, 3]. Structurally, the monomers in microtubules
and actin filaments assemble head to tail in a regular manner. On the resulting polar lattices,
mechano-enzymes called molecular motors (for example kinesin on microtubules or myosin
on actin-filaments) use chemical energy to move directionally [1] or to organize the filaments
in space [4]. Furthermore, specific enzymes control the filaments by regulating nucleation,
assembly/disassembly or even by severing the filaments.

The cytoskeleton is involved in multiple cellular processes such as cytokinesis, motility,
polarization and mitosis. These functions are accomplished by many filaments working together.
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In this way, a set of dynamic or short-lived filaments may form a stable larger assembly, as
exemplified by the mitotic spindle [4]. Many of the enzymes involved in the assembly of these
structures are part of multi-functional entities [5–7]. For example, motors form oligomers that
can actively connect filaments together [4]; motors may be able to disassemble filaments [6];
nucleation can be controlled such that it occurs on existing filaments [8, 9]; crosslinkers may
be polarity-specific [10] and motors are sometimes linked to proteins that track the tips of
growing microtubules [7, 11–13]. Generally speaking, modularity allows the cytoskeleton to
be reprogrammed, for example, at different stages of the cell cycle. It allows cells to reuse the
same functional elements to achieve different tasks and multiplies the number of way in which
the organization of fibers can be regulated. This modularity is certainly a consequence of the
combinatorial exploration operating during natural selection [14]. In any case, the cytoskeleton
in addition to fibers contains a kit of activities which can be combined in many ways.

Biological systems are hard to understand, and theory is necessary to approach the non-
intuitive aspects [15]. It is notable that many models in the cytoskeleton field often include the
same basic elements (for a recent review on this subject, see [16]). This reflects the inherent
modularity of the biological design illustrated briefly in the previous paragraph, and also affects
the modeling approach. It implies that it is worthwhile to build a computer simulation to model a
few basic elements, if these elements can be combined freely to rapidly model diverse situations.
In practice, the elements of the simulation (e.g. a model of kinesin, or a model of a severing
enzyme) can even be implemented, tested and benchmarked by different teams of experts for
each aspect of the system. Sharing computer code in this way can in fact be a practical means
to combine the efforts of the community.

Writing a cytoskeletal simulation is likely to be a collective task also because it is a
demanding project, involving multiple aspects: (a) chemical reactions that occur inside cells,
(b) transport along fibers, for example, the motion of molecular motors, (c) assembly dynamics
of cytoskeletal fibers and (d) motion and deformation of fibers. Fortunately, numerous
algorithms are available for certain of these aspects, in particular for reaction–diffusion (see, [17,
18]). Transport along fibers can be modeled with advection equations, or with more details of
the motion of the motors [19]. The assembly dynamics of fibers has been the subject of much
research and cannot be reviewed here (see [16]). The deformation of the fibers is a classical
mechanical problem (see for example [20, 21]). However, the scale of living cells is associated
with many specific features. In particular, Brownian motion plays a fundamental role, inertia is
negligible [22] and the fibers are dynamic: they can lengthen or shorten by self-assembly. As a
consequence, the physics of biological fibers is fundamentally distinct from other mechanical
systems. In brief, public or commercial codes are not adapted to simulate the cytoskeleton.

The purpose of this paper is to describe a method to calculate the mechanics of an
ensemble of connected fibers and other objects, which is the basis of a cytoskeletal simulation
such as cytosim. The physics of such a system is described by a Langevin equation (for an
introduction, see [23]) that recreates the Brownian motion of the fibers and includes bending
elasticity, fiber–fiber interactions and external force fields. Following earlier work [24, 25], we
use constraints in order to maintain the length of the fibers. This is an alternative to methods
in which potentials are used to represent the longitudinal stiffness of fibers. We extend this
approach by introducing an implicit integration scheme. Our method was first used to simulate
the effects of motor complexes on two radial arrays of microtubules (asters) [26], and more
recently, the assembly of anti-parallel microtubule arrays inSchizosacchoromyces pombe[7]
and the positioning of the spindle in theCaenorhabititis elegansembryo [27]. A major aim of
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Figure 1. Elementary objects: all objects in the simulation are described by
points. The points can move in the viscous medium, but the relative distances
between certain points are conserved (lines). Left: afiber is modeled as an
equidistributed string of points. Center: asphereis composed of a central point
and peripheral points, located at a distancer from the center. The peripheral
points can move on the surface, as if they were in a viscous membrane. Right:
a solid is a set of points that behaves like a solid body. Its shape and size are
constants.

these simulations was to reconstitute the system’s operationin silico, from established physical
principles. This offers two major advantages: (i) the assumptions of the model are well defined
and can always be modified and (ii) any property of the system can be measured easily. This
facilitates further investigations. For example, we could systematically simplify the model in
order to identify a minimal set of working properties [7]. In addition, we could identify the
parameter range under which the system can operate [27]. However, for these results to be
valid, the systems operation needs to be reproduced correctly at the first place! To maximize
the chances of success, it is desirable to reconstitute the mechanics in a physically sensible and
accurate way. One may otherwise derive conclusions which do not apply to the real system.

In this paper, we focus on the mechanical aspects of the fibers, and explore the numerical
resolution of the associated equations. We first describe objects that in addition to fibers are
useful for simulating different cellular skeletons. We then present the equation of motion and
discuss its numerical integration. We examine the numerical stability of the resulting method
and discuss how it affects the simulation speed. Finally, we discuss how other aspects of the
cytoskeleton can be added to extend the mechanical calculation.

2. Objects

More accurate mechanics can be achieved if we introduce two new objects in addition tofibers:
spherical sets of points (spheres) and non-deformable sets of points (solids). These objects
are also described with points but have different morphologies (see figure1). The mechanical
properties are also distinct. Whilefibers may bend, thesolids do not deform. Thespheres
can represent spherical viscous membranes such as vesicles. Any number of objects can be
combined in various ways to build complex cytoskeletons. For example, to simulate interacting
microtubule asters [26], fiberswere positioned around asolid using static links (see figure2A).
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Figure 2. For caption see following page.
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Figure 2. Some problems studied with cytosim. In all the images,fibers are
indicated in white, along with their model-points. (A) An aster is constructed
by assembling fibers radially around a solid [26, 27]. Right top: interactions of
microtubules with the cell cortex. Right bottom: thesolid is made of a central
point (blue) surrounded by two concentric layers of peripheral points (green
and red). Only the central point is associated with a viscous drag (ai > 0). The
other points are used to attach fibers: the minus-end to one green point, and a
distal position on the fiber to one red point. Using a similar simulation with two
asters linked by asolid spindle, we proposed an original model describing the
3D motions of the spindle in the first cell division of theC. elegansembryo [27].
(B) Microtubules in interphase fission yeast and the nucleus, represented by a
sphere(blue/green). This can be used to study the role of mechanics in regulating
the dynamics and organization of microtubules. (C) Self-assembly of interphase
microtubules arrays in fission yeast. The simulation contains no steric interaction
between the fibers, and they overlap freely. In the display, however, the fibers are
shifted in order to visualize the bridging complexes (bottom and right). Using
this simulation, we could identify a minimal ‘recipe’ to make stable bundles
from dynamic microtubules. This recipe describes how cross-linking, nucleating
and motor activities can be associated to obtain the result observedin vivo.
(D) Self-segregation of plasmids in prokaryotes. Actin-like filaments are
simulated, together with twosolids, representing the plasmids [28]. The
efficiency of the segregation is recapitulated in the simulation, and can therefore
be analyzed.

The solid represented in this case the organelle (called the centrosome) which in the cell
generates microtubules in a radial fashion.In vivo as well as in the simulation, the resulting
structure is radially symmetric, and the fibers have their ends mechanically joined together.
Two such asters were further connected by anothersolid, to model the positioning of the
mitotic spindle inC. elegans[27]. In this case, the additional solid represented the pole-to-
pole mechanical connection achieved by the mitotic spindle. To simulate nuclear positioning in
S . pombe, fibers(microtubules) were attached to asphere, and the ensemble was confined in a
cylindrical volume (see figure2B). Thefibersand thesphererepresented microtubules and the
cell nucleus, which are attached also in the real cell. To model the formation of anti-parallel
microtubule arrays inS. pombe[7], fiberswere connected by motors and other crosslinkers (see
figure2C). Usingfibersandsolids, it is also possible to model the segregation of parM plasmids
in Escherichia coli(see figure2D), a process which depends on actin-like filaments [28]. The
objects can naturally be combined in many more ways than illustrated here. This enables diverse
cellular mechanics to be reproduced, and consequently widens the application scope of the
method. This freedom is intimately linked to the structure of the master equation that will be
examined below, and to the way it is integrated numerically.

3. Constrained Langevin dynamics

In the simulation, fibers and other objects are described by points. The coordinates of the points
are collected in a vectorx of size Nd, for a system ofN points in dimensiond. Following
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Figure 3. Dynamics with constraints. The principle of the algorithm is illustrated
here for a pointni constrained to stay at a fixed distance fromn0. The point
is first moved on the tangent to the circle (this is the plane associated with
the constraint) using an implicit integration scheme. The constraint is then re-
established exactly by projecting on the sphere. We call this last operation
‘reshaping an object’.

Langevin (for a simple introduction, see [23]) the equation of motion reads:

dx = µ F(x, t)dt + dB(t) (1)

F(x, t) of size Nd contains the forces acting on the points at timet . It includes object-
specific forces such as bending elasticity, and all the links between different objects.d B(t)
of size Nd summarizes the random molecular collisions leading to Brownian motions; it is a
stochastic non-differentiable function of time. The matrixµ contains the mobility coefficients
of the object-points, which will be defined later for each object.

In addition, certain distances between points inside the objects (|ai − a j | = λi j ) must be
conserved during the motion. To satisfy these constraints, we perform a step of the dynamics
in a subspace tangent to the manifold defined by the constraints, and project the result on
the manifold. The procedure can be explained simply for a pointn constrained to move at a
distancer from a fixed positionn0 (see figure3). To calculate the motion ofn, we first write
its dynamics in the plane tangent to the sphere at the current position (this is the plane allowed
by the constraint|n − n0| = r ). The restricted dynamics is integrated implicitly, and the result
projected on the sphere to restore the constraint exactly. This approach can be generalized as
described next.

4. Numerical integration

From an initial configuration, the system is calculated by discrete time stepsτ (see [29] for
a general discussion on numerical integration). To calculatext+τ from xt , the equation (1) is
integrated implicitly. We will discuss the advantages of using an implicit rather than an explicit
integration in section9, and concentrate here on the practical issues. For an implicit integration,
we need to expressF(x, t) linearly as At x + Gt , where the square matrixAt contains the
stiffness coefficients associated with the interactions, and the vectorGt contains the constant
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forces. This linearization is obtained by summing over all the interactions present at timet (see
figure6). In our simulations, many of the interactions were modeled as harmonic potentials for
simplicity, and are therefore already linear. Non-linear interactions simply need to be linearized
at this point. In particular, the linearization of the constraints leads to an orthogonal projection
P(x), which will be defined later for each object. To obtain a finite difference scheme for the
interval [t, t + τ ], P and A are used at timet , but x is used att + τ (usingxt+τ instead ofxt is
the basis of implicit integration):

xt+τ − xt = Pt [ τµ(At xt+τ + Gt)+ δBt ] ,

leading to a system of linear equations:

[ I − τ PtµAt ] (xt+τ − xt) = Pt [ τµ(At xt + Gt)+ δBt ] , (2)

whereAt = A(t), Gt = G(t), Pt = P(xt). The ‘simulated Brownian’δBt =
∫ t+τ

t dB is a vector
{βi θt,i }i ∈[1,Nd], whereθt,i ∼ N(0,1) areNd independent normally distributed numbers (derived
from uniformly distributed pseudo-random numbers [29]). The factorsβi ∼ τ 1/2 represent the
magnitude of the Brownian motion during a lapse of timeτ . We will see later how they are
obtained by calibrating the diffusive motion for the objects. The equation can be solved to
obtainxt+τ , since both the right-hand side and the matrix [I − τ PtµAt ] are known. It would
be inefficient to invert the matrix, because the system is sparse (it only has few non-zero
coefficients). This is true of matrixAt , as long as objects are only connected to few others.
This is also true ofPt which is block-diagonal: it has one block for each object on the diagonal,
but the rest of the coefficients are null. This is because the constraints never involve points
from different objects, and the projection can thus be done independently for each object.
In this situation, it is advantageous to solve the linear system using an iterative method [29].
Different iterative solvers are adapted to different matrices. BecausePt At is non-symmetric, we
have used the biconjugate gradient stabilized (http://www.netlib.org). This method iteratively
converges toward the solution of the linear system, and can be stopped when the difference
with the exact solution is below a certain threshold. We set this threshold toψ min(βi ), with
ψ = 1/10. In this way, the numerical error onx remains below 10% of the Brownian motion,
and the approximate solution of (2) is practically indistinguishable from the real one. In practice,
it is wise to systematically varyψ andτ for each application to check the convergence of the
method. It is easy to verify, for example, that more stringent values ofψ produce the same
results.

Finally, since equation (2) is obtained by linearization, an additional correction is necessary
to re-establish the constraints. The result of equation (2) is projected back on the manifold
associated with the constraints [26]. This introduces corrections which are second-order inτ .
In the following sections, we will call this procedure ‘reshaping’ the objects. We now survey
how fibers, spheresandsolidsare represented in space, their mobility coefficients, projection
operators and ‘reshaping’ procedure. The interactions between objects (which contribute toAt

andGt ) will be described subsequently.

5. Linear set of points (fiber)

Fibers are modeled as infinitely thin linear objects behaving like elastic, non-extensible
rods [26]. Each fiber is represented byp + 1 equidistant model-pointsmi , for i ∈ [0, p],
separated by a distanceL/p. A fiber is polar:m0 is the minus-end andmp the plus-end. The
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Figure 4. Dynamic fibers. Top: the model-points of afiber are updated when the
tips grow, but they are always equally distributed over the fiber. Points are added
or removed as necessary to ensure an optimal coverage (see section5). Bottom:
an intermediate positionx along the fiber is interpolated from the model-points
located on each side:x = (1−α)mk +αmk+1 (see section5).

number of segmentsp is adjusted as a function of the total lengthL of the fiber. Points are added
or removed, in order to always minimize|ρ− L/p|, for each fiber as it grows or shrinks (see
figure4). The desired segment lengthρ is a parameter affecting the precision of the simulation.
To setρ, one may run a representative case with various values (for microtubules,ρ < 0.5µm
is usually appropriate).

It is often necessary to interpolate between the model-points, when, for example,
calculating the positionx of a molecule attached to the fiber. Ifmk and mk+1 are the
model-points on each side ofx, we usex = (1−α)mk +αmk+1. The interpolation coefficient
α ∈ [0,1] is calculated from the known relative positions of the three points along the fiber:
α = |mkx|/|mkmk+1|. The model-points are themselves updated using this interpolation
procedure at every time-step if the length of the fiber has changed (see figure4).

5.1. Bending elasticity

Fibers can bend under external forces and resist these forces elastically. The standard formula for
bending elasticity [20] can be applied to strings of points. For any set of three consecutive points
mk, k ∈ {i − 1; i ; i + 1}, we approximate it linearly as a triplet of forces{−F; 2F; −F}. Each
triplet corresponds to the torque generated between two consecutive segments (see figure5).
Furthermore, we haveF = α(mi −1 − 2mi + mi +1), with α = κ(p/L)3, whereκ is the bending
modulus of the fiber, andL/n the length of each segment. The result was verified by comparing
the buckling threshold in the simulation with Euler’s formulaπ2κ/L2. The procedure is
appropriate ifρ is such that the angles between consecutive segments remain small during the
simulation (not shown). Physically, the forces are isotropic, i.e. they can be written as a reduced
matrix of size p× p (and not pd× pd), obtained by adding several times the 3× 3 matrix
E = −(1, −2, 1)⊗ (1, −2, 1) (⊗ is the tensor product). The final result is simple because
points are distributed regularly over the length of the fiber (see figure5).
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Figure 5. Matrix elements associated with bending elasticity. The stiffness
matrix At contains the bending elasticity of fibers. The contributions are obtained
by adding a 3× 3 elementary matrix for each consecutive triplets of points (see
section5.1). The sum of all rows and columns is zero, since the matrix should
only generate an internal torque. The forces associated with the first triplet
(points x1, x2 and x3) are depicted. The resulting matrix for 5 points is also
shown, and the generalization is straightforward. For any fiber, the result is a
symmetric banded matrix multiplied by a scalarα that depends on the bending
elasticity modulus and on the distance between the points.

5.2. Mobility

The motion of an object at low Reynolds number is characterized by a mobility. This is defined
by factors which link speed and force (speed= mobility × force). These factors depend on the
size and shape of the object, and on the viscosityη of the surrounding fluid. For instance, a
straight cylinder has two mobility factors, because it is twofold easier to move in the longitudinal
direction than in a transverse direction. This anisotropy could not be implemented simply,
because fibers in the simulation may bend and adopt arbitrary shapes. An exact calculation
would require finding the hydrodynamic interactions between all the points in the system. This
can be done in the future, but for simplicity, we have so far used the averaged mobility of a
straight rod of lengthL and diameterδ: µ= log(Lh/δ)/3πηL [30]. The logarithmic term is an
effective hydrodynamic correction on the scaleLh, which is either the length of the fiber, or a
hydrodynamic cut-off, whatever is smallest. We derive a single mobility factors for thep + 1
points representing a fiber:µp = (p + 1) µ.

5.3. Projector associated with the constraints

In this section, we calculate the projectionP derived from the constraint that the length of the
fiber should remain constant during the resolution of equation (1). For each fiber, the coordinates
of the p + 1 model-pointsmk are stored in a vector of dimension(p + 1)d (for d = 3, {x0, x1, x2}

correspond tom0, and{x3, x4, x5} to m1, etc). The motions of these points are determined by
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externalforcesf = { fk}, and additionally byinternal forcesf̂ = { f̂k}. The speeds resulting from
f̂ + f should be compatible with the constraintsCk = (mk+1 − mk)

2
− (L/p)2 = 0 for k ∈ [0, p].

To calculatêf from f, we first define thep× d(p + 1) Jacobian matrixJi j = ∂Ci /∂x j . In 3D, it
reads:

J = 2

x0−x3 x1−x4 x2−x5 x3−x0 x4−x1 x5−x2 0 0 0 · · ·

0 0 0 x3−x6 x4−x7 x5−x8 x6−x3 x7−x4 x8−x5 · · ·

...
. . .

 .

Because the mobility coefficients are the same for all the points (µp, see section5.2), the
speed of the points isv = µp(f + f̂ ). This motion maintains the constraints ifJ v = 0. Therefore
f̂ must be such thatJ(f + f̂ )= 0. Furthermore, internal forces should not contribute to the global
motion or the rotation of the object. This imposes that their work should be null for any motion
compatible with the constraints:f̂ · u = 0 for anyu such thatJu = 0. This implies that̂f = J tλ,
whereλ is a vector of sizep (the Lagrange multipliers). We deriveJ(f + J tλ)= 0, and since
J Jt of sizep× p is non-singular,λ= −(J Jt)−1J f, and finallyf̂ = −J t(J Jt)−1J f. This shows
that the total force can be obtained linearly asf + f̂ = P f, with P = I − J t(J Jt)−1J. From this
result, it is clear thatP is an orthogonal projection (P is symmetric and idempotentP P = P).
Notice thatJ Jt is banded symmetric, and therefore easy to invert, which means thatP can
be computed fast.P (which depends solely onx) is one block of the operatorPt used in
equation (2).

Fibers are ‘reshaped’ to restore the constraints exactly after the model-points have been
moved. This is done sequentially fork ∈ [0, p], by moving the pointsm0, . . . , mk in the
direction ofmk+1 − mk and mk+1, . . . , mp in the opposite direction, to restore|mk+1 − mk| =

L/p while conserving the center of gravity of the fiber.

5.4. Brownian motion

To simulate Brownian motion, a termδBt is attributed to each fiber coordinatext (equation (2)).
This term is most simply calibrated by considering diffusion in the absence of bending or
external forces (A = 0 andG = 0). If we first assumePt = I in equation (2), we getxt+h − xt =

δBt . To produce a pure diffusion with a coefficientD, one needs:

〈xt+τ − xt〉 = 0, 〈 (xt+τ − xt)
2
〉 = 2 D τ.

This holds true, ifδBt is normally distributed, of mean zero and variance 2Dτ . We can use
δBt = βθ , whereθ ∼ N(0,1) is a random number generated for each time step, andβ =

√
2Dτ ,

as mentioned in section4. From Einstein’s relation, we setD = µpkBT , whereµp is the
mobility, kB the Boltzmann constant, andT the absolute temperature. For a fiber withp + 1
points, we use(p + 1)d random numbers, independent and all normally distributed of variance
β2. Projecting these numbers withP produces the appropriate diffusion for the fiber, as well as
thermally-driven deformations. For example, the translationx of the center of gravity depends
on the sum of all the terms inδB corresponding to the fiber, leading to a diffusionD = µkBT
(with µ and notµp).
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6. Spherical set of points (sphere)

To simulate the nucleus ofS. pombeand attach microtubules on its surface (see figure2B), we
implemented a ‘spherical set of points’ of radiusr . Such object is composed of a pointn0 in
the center, andq additional pointsni on the periphery. If we definerk = nk − n0, the constraints
are|rk| = r . A spheremoves as a rigid body, and the peripheral points behave as if they were
embedded in a viscous surface (see figure1). If fk is the force applied at pointk, the motion of
the set reads:

dno = µTF dt + dBT,

(3)

drk =
(
µRM dt + dBR

)
rk + Pk

(
µS fk dt + dBS

k

)
,

where F =
∑q

i =0 fi is the total force on the sphere,M =
∑q

i =1 r i × fi is the total torque
calculated from the center, and where

Pk = I −
rk ⊗ rk

r 2
k

,

is the projection on the plane tangent to the sphere inrk. dBR, dBT and dBS
k are the Brownian

terms. Note that these equations would not describe a set of peripheral points articulated around
a central node. For example, the motion of the centern0 depends on the sum of all the forces
applied to the object, and not only on the force applied inn0. This in fact corresponds to a sphere
with points on its surface. To keep track of the orientation of the sphere, we also included three
reference points̃nk on the surface, which form withn0 a reference frame associated to the
sphere. The motion of these reference points is entirely determined by the total torque on the
sphere: d̃rk =

(
µRM dt + dBR

)
× r̃k, where as beforẽrk = ñk − n0. When the object needs to be

‘reshaped’, the peripheral points are simply projected on the surface (n0 is not moved).

6.1. Mobility and Brownian motion

The equations involve three mobility factors: the translation and rotational mobility of the sphere
µT andµR, and the mobility of the points in the surfaceµS. Stokes’ law can be used to setµT and
µR, if the sphere is surrounded by a large volume of fluid. The mobility coefficients for the points
in the surface can also be calculated [31]. As described above, points undergo three different
types of motion, and a random numberδBt in equation (2) is associated with each of these
motions. The parameters are calculated by considering diffusion in the absence of other forces
(A = 0 andG = 0). For the translational diffusion of the sphere, the result from equation (3) is
obtained as previously for the fiber:βT

=
√

2µTτkBT . Rotational diffusion is calibrated using
equation (3). If r t is fixed on the surface, we getr t+τ − r t = δBR

t × r t . This should be a rotational
diffusion of a point on a sphere:

〈r t+τ − r t〉 = 0, 〈(r t+τ − r t)
2
〉 = 4kBTµRr 2τ.

Since|r t | = r , we can use forδBR
t a random vector withd independent components of mean

zero and variance 2τµRkBT/r 2. A peripheral pointr t also diffuses on the surface, which in
equation (3) is described byr t+τ − r t = Pk δBS

k,t . The projectionpt of r t should diffuse in 2D:

〈pt+τ − pt〉 = 0, 〈(pt+τ − pt)
2
〉 = 4kBTµSτ.
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Since Pk is the identity in the tangent plane, we used forδBS
k,t a vector withd independent

components of mean zero, and variance 2τµSkBT .

7. Non-deformable set of points (solid)

We also implemented non-deformable objects calledsolids (see figure1) in which the points
move together in such a way that the shape and size of the set is conserved. The number of
points p in a solid, and their positionssi can be chosen arbitrarily, and each point is associated
with a radiusai > 0. The mobility of thesolid is derived from Stokes’s result for the spheres
of centersi and radiusai , neglecting for simplicity the hydrodynamic interactions between the
spheres. It is possible to include points withai = 0 provided that

∑
i ai > 0. In our previous

work, we have actually usedsolidswhere only oneai was non-zero. These solids moved like
isolated spheres, and the pointsai where positions to which forces could be applied.

7.1. Mobility and constrained motion

Because the set of points should not deform, its elementary motion during a time-step can
be written as(st+τ

i − st
i )/τ = v +ω× st

i , where v and ω are instantaneous translation and
rotation speeds. The spheres of radiusai in a medium with viscosityη have a translational
drag coefficientξi = 6πηai , and a rotational drag coefficientξωi = 8πηa3

i [30]. The forces and
torques resulting from the friction of the fluid on the sphere thus read:

f̃i = ξi (v +ω×si ), M̃i = ξωi ω,

and should match the externally applied forcesfi :

∑
i

f̃i =

∑
i

fi ,
∑

i

si × f̃i + M̃i =

∑
i

si × fi .

This set of four equations can be solved algebraically in both 2D and 3D, to expressv andω
as a function of the external forcesfi . The result always fits in the format of equation (1). It
is actually not necessary to calculate the matrixP to run a simulation. It is more efficient to
calculatev andω when the productPµ f is needed. To ‘reshape’ asolid, one may restore a
reference configuration in the current position and orientation. For this, the best translation and
rotation which brings the reference points on to the current points is calculated [32]. The current
points are then replaced by the transformed reference configuration. The Brownian components
are calibrated as described before.

8. Interactions between objects

The three objects defined previously can be linked together using elementary interactions. By
adding the contributions of all these interactions in the system, we obtain the linearized force
F(x, t)= At x + Gt , which enters equation (2). In practice, each elementary interaction leads
to a small matrix, which needs to be added to the matrixAt and vectorGt , at the right rows
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Figure 6. Stiffness matrix and force vector. The stiffness matrixAt and the force
vector Gt in equation (2) are set by considering all the interactions present at
time t . For each interaction, the appropriate formula (section8) is first expanded
algebraically. The factors associated with the coordinates of the points are added
to A, and the coefficients which are independent of the coordinates are added
to G. At the end of the procedure, one obtains a (sparse) symmetric matrixA
and a vectorG that provide the forces on the pointsF = A x + G. Here, we
illustrate how a connection of stiffnessk1 (section8.2) contribute to factorsk1

and−k1 at the rows and columns ofA corresponding to the points connected.
For a connection to a fixed positiong (section8.1), a stiffness coefficient−k2 is
added inA, whilek2g is added inG. In this example, the connections are attached
exactly to points of the system, but this is not always the case. Section8 explains
the general procedure. In addition, the matrix represented here corresponds to
a 1D system. It needs to be duplicated for a 2D simulation, and triplicated in
3D (section8.5).

and columns to correspond to the appropriate points (see example on figure6). It is necessary
to repeat the procedure at every time step, because the position of the interactions may change
with respect to the model-points. We define four interactions in the case where they connect
model-points of the objects. We later explain the procedure to connect intermediate positions
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between the model-points. This approach can be generalized to more complicated interactions
if necessary. For example, it is possible to implement a ring which is able to slide along a fiber
with viscous resistance [33].

8.1. Connecting an object to a fixed position

The simplest way to immobilize an object is to attach a pointa within the object to a fixed
position g. If the stiffness of the link isk, the resulting force isfa = k (g− a). In practice,
this means adding−k at one diagonal position in matrixAt , and kg to the vectorGt (see
figure 6). Such interactions are used to model gliding assays (see figure8) in which motors
immobilized on a surface propel fibers in solution. Each attached molecular motor leads to an
elementary interaction whereg corresponds to the place of immobilization, anda corresponds
to the position on the fiber at which the motor domain is attached.

8.2. Connecting two objects

Points from two different objects can be connected by a link of stiffnessk. The forces between
the points arefa = − fb = k (b− a). These elementary interactions are effective to model
oligomeric motors [26] and more generally any entity which is able to connect two fibers
together (see figure2C). In the case of an oligomeric motor,a andb are the positions to which
the two motor domains are attached on the fibers.

8.3. Confinement in a convex shape

To confine the objects inside a convex shape, we use a harmonic potential that is flat inside
the allowed region, and rises quadratically away from its edge. Hence, a pointa outside the cell
volume is subject to a forcef (a)= k(p(a)− a), wherep(a) is the closest point toa on the edge
of the allowed volume. Becausep is also the orthogonal projection ofa, the force corresponds
to a friction-less edge. We linearizedf asx → k (ea · (p(a)− x) )ea, whereea is a unit vector
in the direction ofp(a)− a. This linearization corresponds to the tangent plane inp(a), and
usually gives a good approximation off (a) as long as the curvature is small. To confine afiber,
it is sufficient to follow the procedure for its model-points, if the volume is convex, which is the
case for example of the cylindrical yeastS. pombe(see figure2B). To confine the nucleus of
radiusr in the same volume, we used a cell volume reduced byr . In this way only the center of
thesphereneeds to be tested.

8.4. Connecting two objects at a given distance

A Hookean spring of stiffnessk with a non-zero resting lengthr between two pointsa andb
corresponds to:

fa = − fb = −k

(
1−

r

|δ|

)
δ,
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with δ = a − b. This force should be linearized for|δ| ≈ r , leading fora to a termkrδ/|δ| in Gt

and a contribution inAt which is:

−k
δ⊗ δ

δ2
, if |δ|6 r , and − k

[
I −

r

|δ|

[
I −

δ⊗ δ

δ2

]]
, otherwise,

and the opposite contributions forb. This interaction can be useful to introduce a repulsion
between the points. It can, for example, represent the physical interaction between the nuclear
membrane and the microtubules inS. pombe(see figure2B).

8.5. Interpolation of forces

We have discussed connections which were attached to model-points. However, in the case of
a fiber, a molecule may bind at any positionx, which is likely to be between the two model-
pointsmk andmk+1. When this happens,a is interpolated from the flanking model-points using
a coefficientα = |mkx|/|mkmk+1| in [0,1]. In the same way, a forcef applied inx can be
distributed to the model-points asfk = (1−α) f and fk+1 = α f . Since this procedure preserves
any linearity in the relationship between force and coordinates, the different matrix elements
mentioned previously can be used with interpolated points, provided they are multiplied left
and right by an appropriate weight matrix. We can illustrate the procedure for the simplest
connectionfa = − fb = k (b− a) of stiffnessk between two pointsa andb (section8.2), which
reads: (

fa

fb

)
=

(
−k k

k −k

) (
a
b

)
.

Whena andb are model-points, this 2× 2 matrix is a reduction ofA, corresponding to
thex, y or z-subspaces. This is sufficient in this case because a Hookean spring of null resting
length isisotropic, that is to say it does not mixx-, y- andz-coordinates, and applies similarly
to each subspace. This is not the case for all interactions discussed in this section, and it is
often necessary to calculate a full matrix. Moreover, whena andb are intermediate positions
between the model-points, we have two indicesk, l and two interpolation coefficientsα, β
such thata = (1−α)mk +αmk+1 and b = (1−β)ml +βml+1. If we defineα = 1−α and
β = 1−β, and

w =

(
α α 0 0
0 0 β β

)
,

we get: 
fk

fk+1

fl

fl+1

 = wt

(
fx

fy

)
= −kwt

(
−1 1

1 −1

)
w


mk

mk+1

ml

ml+1

 .

The resulting 4× 4 matrix isw (−k) wt , withwt
= (α, α,−β,−β). We derive that a matrix

made by adding multiple such interactions is symmetric negative-semidefinite (xt Ax6 0, for
any x). The fact that this is true for any configuration of the connections guarantees the
numerical stability of the method, as explained in the next section.
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9. Numerical stability and performance

We have described all the components of equation (2) which describes the collective mechanics
of cellular fibers and other objects. The necessary steps of the calculation are summarized in
figure7. It is useful at this stage to examine the method mathematically. This is usually done by
looking at two properties: precision and numerical stability [29]. The precision is a measure of
how the typical error behaves when the time-stepτ becomes small. The numerical stability is
a measure of how largeτ can be, before the calculation fails. Numerical precision is important
for deterministic equations, for example, to predict the trajectories of celestial bodies. However,
this is not so critical at the cellular scale. In fact, to simulate the Brownian motion present in
the cell, a random termδB ∼

√
τ was included in equation (2). The presence of this ‘noise’

indicates that the physics itself limits the precision at which the position of an object can be
predicted. This fact undermines the usefulness of high precision schemes. The implicit method
that we have described is of order one: the step’s error scales likeO(τ 2), which is better than the
physical ‘noise’ in

√
τ . We found that it was not practically useful to use higher order numerical

schemes.
In contrast, the numerical stability of the method is most important. Indeed, explicit

schemes usually converge only if the time-step is small. In general, a condition likeτµk< 1
must be fulfilled, whereµ is the mobility of a point in the system, andk the stiffness of the
interaction potential. For example, we looked at a test-case in which a microtubule is pushed by
immobilized motors (see [25] and figure8). It can be simulated explicitly only ifτ < 1µs, but
the implicit method can use larger time-steps. To achieve this stability, we treated the repulsive
and attractive interactions in the system differently. Compressive forces in the fibers (which
are repulsive in nature) were replaced by constraints. All the other forces were attractive.
This ensured thatAt would be negative-semidefinite (this result was proven in section8.2
for Hookean interactions of null resting length). Mathematically, becausePt is an orthogonal
projection, we can show that the eigenvalues ofI − τµPt At are always greater than 1, for any
value of τ . This implies that our integration scheme is unconditionally stable. For the other
elementary interactions, some instabilities may appear, but only for very high values of the time
step (not shown).

Beyond stability, other considerations naturally limit the choice ofτ . In particular, the
iterative solver might not converge whenτ is large. The optimal time-step generally depends
on the problem studied, and it is best to perform systematic trials to find it. For the test-case
(see figure8), the results are consistent forτ < 20 ms. This means that a value of 5 or 10 ms
would be appropriate. The computational requirements depend on the total number of steps
(total time/time-step), but also on the cost of individual steps. An implicit step of integration
is always more costly than an explicit step, because a linear system must be solved. However,
the use of sparse matrix techniques reduces the additional work. In practice the considerable
reduction in the number of steps makes implicit simulations faster (in the test-case, this gain
is 104, usingτ = 10 ms instead of 1µs). Increasing the execution speed is essential if many
simulations need to be performed. Implicit methods require increased numerical labor, of which
we have illustrated the main difficulties. Using the method described here, we can simulate
the examples shown in figure2(B–D) much faster than the real time using one processor
(http://www.cytosim.org).
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Pool coordinates of object-points.
Calculate projection P for each object.

Project solution to 'reshape' the objects.

For mobile attachments such as molecular motors:
calculate tensions in the interaction link.

Use this information to move attachment positions, 
according to the characteristics of the motors.

Calculate forces on fiber tips.
Elongate fibers according to their force-growth curve.

Recalculate the model-points of fibers by interpolation.

Calculate right-hand side of equation (2), 
solve system of linear equations using iterative method,

with a precision exceeding , with =0.1.

Set Brownian components from random numbers,
record Brownian magnitude in 

Loop over all interactions to set matrix A and vector G.

Delete/nucleate filaments, add/remove objects.
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Attachment trials for unbound motors.
Detachment trials for bound motors.

(detachment rates are usually force-dependent)

β

Figure 7. Synopsis of a simulation time-step. Sub-steps necessary to simulate
a system of molecular motors and dynamic fibers. The collective mechanics
corresponds to the algorithm described in the paper. As a byproduct of
calculating the mechanics, one gets the tensions in the fibers and the forces
connecting the fibers. With this information, simulation sub-steps can be
performed for the objects independently. Events such as the binding and the
unbinding of motors and the nucleation of new filaments will most likely be
modeled stochastically. Depending on the level of details required, less-discrete
events may be simulated in a deterministic manner. For example, the active
motion of molecular motors and the assembly dynamics of cytoskeletal fibers
can be simulated as non-random processes characterized by a force-velocity
curve.
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Figure 8. Numerical stability of the integration scheme. Top: a gliding assay
where a filament is attached at its end (time-intervals of 5 s). The motors pushing
the fiber lead to the formation of a rotating spiral, as observed experimentally
[25]. The rotation speed and maximum radius of the spiral can be calculated
from the parameters of the system: 16 000 motors cover an area of 2× 2µm,
and have the characteristics of kinesin: stall forcefmax = 5 pN, unloaded speed
0.4µm s−1, binding rate 10 s−1, unbinding ratepoff = 0.5 s−1 exp(force/2.5 pN),
maximum binding distance 10 nm and stiffness 200 pNµm−1. The microtubule
of length 8µm has a rigidity of 20 pNµm2. It is constrained at the minus end
by a link of stiffness 4000 pNµm. The effective viscosity is 0.02 pN sµm−2.
Bottom: the configuration is simulated for different values of the time-step
τ , with accurate results forτ < 20 ms. The algorithm is numerically stable,
and even produces a spiral withτ ∼ 0.5 s. However, the radius is then under-
estimated, and the rotation speed overestimated. Another critical parameter, the
distanceρ between the points on the fiber was also varied. The results shown for
ρ = 0.1, 0.2, 0.4 and 0.5µm (different lines) are similar, because all these values
are appropriate. The calculations were inaccurate however withρ = 0.8µm
(data not shown). This is expected considering that the radius of the spiral is
∼1.4µm.
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10. Other elements of a cytoskeletal simulation

In addition to mechanics, a cytoskeletal simulation such as cytosim must include additional
aspects such as the motion of molecular motors, their binding/unbinding dynamics, as well
as the transitions between growth and shrinkage of dynamic fibers. These processes can be
modeled most simply by executing small sub-routines after the Brownian mechanics has been
calculated, because they correspond to independent operations (see figure7). However, two
particularly important aspects of cytoskeletal physics need to be mentioned. Firstly, only in
very particular cases can we approximate the system as a well-mixed reactor. At least some
of the molecules should be spatially resolved. Secondly, the mechanics commonly affects the
chemistry. For instance, the rates of certain key reactions are force-dependent. This is the case
for the unbinding rates of molecular motors and for their stepping rate (see below). Because
these elements are essential for modeling the system accurately, it will be rarely possible to
apply algorithms developed for purely chemical systems (e.g. the Gillespie algorithms [34] or
even spatially resolved methods [35]) without extensive modifications. We can however use
simple and robust simulation strategies, as illustrated below in the case of molecular motors.

10.1. Modeling molecular motors

In cytosim, a motor is characterized by a position, when it is not attached, and by a pointer to a
fiber and a curvilinear abscissa, when it is attached (see figure9). The abscissa is the distance,
measured along the fiber, between a reference and the attachment position. It is necessary to
use a reference which is fixed with respect to the physical lattice, because the model-points of a
fiber are themselves updated as the fiber grows (see figure4). This description neatly separates
the details of how the mechanics is implemented from the routines simulating the motors
per se. This means that the interface with the rest of the program can be very simple, with
only two procedures:step(f)andattach(m).

10.1.1. Active motion.The first procedurestep(f)simulates the possible actions of a bound
motor. The argumentf is the load of the motor calculated during the collective mechanics.
The procedure should decide to detach the motor, or to update the abscissaa according to a
microscopic model for the intervalτ . For a well-characterized motor like kinesin, a classical
model is based on the measured characteristics of the motion: the abscissa is increased by
δa = τvmax(1− f/ fstall). In addition, a force-dependent unbinding ratepoff = p0 exp(| f |/ f0)

is used to model the dissociation from the fiber.vmax, p0, f0 and fstall are characteristics of the
motor that have been measured for kinesin [1]. With this model, the fibers are continuous tracks
along which motors may be located anywhere. Alternatively, we may model the motion of a
motor as a succession of discrete stochastic steps. In this case, the motor does one of four things:
stay immobile, detach, take a step toward the minus-end or take a step toward the plus-end. This
means that if the motor does not detach, the abscissa is either unchanged, or it is increased or
decreased by the step size (8 nm). The procedurestep(f)calculates the probabilities of these
events as a function of the forcef for the intervalτ , and selects one of them. This model is
quite attractive, because these probabilities are actually available for kinesin [36]. Most models
describing the movement of motors [19] can be summarized similarly with a functionstep(f).
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Figure 9. Molecular motors. Top: an unbound motor (diamond) is represented by
a position. Attachment occurs on the closest site on the fiber-segment, provided
this site is within a distanceε (dashed lines). The capture regions of the segments
are truncated such that they cover exactly the region located at a distanceε from
a straight fiber. When the fiber is not straight, the gaps and overlaps exactly
compensate each other. Bottom: a bound motor is represented by a pointer to
a fiber, and by a curvilinear abscissaa(t) measured from a fixed origin on
the fiber. This defines the position of the motor along the fiber independently
of the mathematical representation of the fiber. The motor sub-model needs
to decide whether the motor should detach during the interval of timeτ , or it
needs to calculate the displacementδa during the same interval. For this, it can
use the loadf calculated during the collective mechanics, and other properties
associated with the fiber, such as the proximity of the ends, or information on the
crowdedness of the binding sites on the fiber.

10.1.2. Attachment to fibers.The second procedure necessary to model motors,attach(m)
simply decides if a unbound motor binds or not to a sitem. Usually the model would specify
ε, a maximum distance at which a motor may bind from its current position (see figure9). In
addition, the molecule would bind at the closest site on the fiber (the orthogonal projection)
with a certain molecular binding ratekon (s−1). To simulate attachments, one therefore needs to
first find the fiber-segments which are closer thanε, typically from all the positionsx at which
molecular motors are located. For each pointx, the list of candidates should then be shuffled,
to ensure a random ordering of the segments. The molecular binding rate can finally be tested
sequentially for each segment in the list, for example, by comparingτkon with a random number
θ in [0,1]. The first successful trial is followed by attachment. If done naively, the first step of
the operation may require calculating the distance of all points to all fiber-segments, and thus
a great deal of computation for many motors. To avoid this bottleneck in cytosim, a divide and
conquer algorithm was developed (see figure10). Its goal is to limit the number of segments
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Figure 10. Divide and conquer algorithm. To simulate the attachments to fibers,
we must be able to find all the fiber-segments which are within a distanceε

from an arbitrary positionx. We can proceed according to the following two
steps method. Divide (left): a grid is set in space, each node of the grid being
associated with a list of segments. The segments are recorded on the grid, at the
nodes located at a distanceh or less (h will be defined later). This operation is
performed in 2D using standard rasterizer codes derived from computer graphics,
which are optimized to scan all points with integer coordinates located inside an
arbitrary polygon. We rasterize the rectangles built around the segments at a
distanceh. For example, on this diagram, the blue segment is recorded at the
blue points, and the red segment at the red points. In 3D, the rectangular volume
can be rasterized following the same principles as in 2D. Conquer (right): after
the segments have been distributed over the grid, one can quickly find which
ones are nearx: one needs to check only the segments recorded at the grid point
g closest tox. One will find all segments located at distanceh − d/2 or less
from x, since|gx|< d/2, whered is the diagonal of the grid. Hence, to find all
the segments closer thanε, one setsh = ε + d/2 during the rasterizing operation.
Note: the grid does not need to be square (the unit cell can be rectangular) and
it can be adjusted for optimal performance. If the grid is too fine, it will use a
lot of memory and rasterizing will be slow. If the grid is coarse (d large), the
number of candidates returned for a pointx will be larger. Experimentation may
be necessary to optimize the grid, but the procedure provides exact results for
any cell size.

that need to be tested to find those which are close tox. The geometrical distance betweenx and
these segments is calculated using the vector cross-product to exactly determine which ones are
closer thanε. Reducing the number of tested segments is sufficient to accelerate the simulation.

11. Conclusion

The method described here is efficient to simulate sparsely connected networks of filaments. It
applies to manyin vivosituations, because the connections between fibers are usually mediated
by proteins that are small compared to the fibers, and consequently the fibers are only locally
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connected. We have modeled fibers as oriented lines, which is sufficient to calculate the extent
of bending. It may be necessary in the future to include more details such as writhe, since
cytoskeletal fibers also have a torsional rigidity. The method can be extended in several other
ways. One could, for instance, easily model discrete binding sites on the fibers. This may be
important if the fibers are highly covered and molecules compete or interact while bound to
the lattice. It is also possible to extend the overdamped mechanics by adding hydrodynamic
effects. It will be very exciting to integrate fiber mechanics with membrane dynamics, since
membranes and cytoskeleton contribute synergistically to cellular architecture, but this might
take some time. Cellular chemistry, reaction–diffusion of the components in the cell, gene
expression networks, can be added more simply. This can be done by interfacing our software
with other tools (e.g. the Virtual Cell project), which already cover some of these aspects of
physiology. We did not discuss here implementation issues, but the scale of the task should
remind us of their importance. Software modularity is essential to divide the development effort
into separate projects of manageable size. Sub-models or algorithms should be developed and
tested separately, in such a way that they can be added or removed from the integrative software
easily. Dividing the work among different groups is the best way to produce the high-quality
cellular simulations that biology needs.
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