
            

OPEN ACCESS

The electromagnetic model of gamma-ray bursts
To cite this article: M Lyutikov 2006 New J. Phys. 8 119

 

View the article online for updates and enhancements.

You may also like
Microfabrication By High Rate Anodic
Dissolution: Fundamentals and
Applications
Madhav Datta

-

Wide-angle high-performance polarizers
based on all-elliptical-metamaterial one-
dimensional photonic crystals
Yuchun She, Zhaoming Cheng, Hongju Li
et al.

-

Multi-resonant piezoelectric shunting
induced by digital controllers for
subwavelength elastic wave attenuation in
smart metamaterial
Gang Wang, Jianqing Cheng, Jingwei
Chen et al.

-

This content was downloaded from IP address 3.144.151.106 on 03/05/2024 at 06:20

https://doi.org/10.1088/1367-2630/8/7/119
https://iopscience.iop.org/article/10.1149/MA2015-01/17/1244
https://iopscience.iop.org/article/10.1149/MA2015-01/17/1244
https://iopscience.iop.org/article/10.1149/MA2015-01/17/1244
https://iopscience.iop.org/article/10.1088/1402-4896/acf3ab
https://iopscience.iop.org/article/10.1088/1402-4896/acf3ab
https://iopscience.iop.org/article/10.1088/1402-4896/acf3ab
https://iopscience.iop.org/article/10.1088/1361-665X/aa53ea
https://iopscience.iop.org/article/10.1088/1361-665X/aa53ea
https://iopscience.iop.org/article/10.1088/1361-665X/aa53ea
https://iopscience.iop.org/article/10.1088/1361-665X/aa53ea


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

The electromagnetic model of gamma-ray bursts

M Lyutikov
University of British Columbia, 6224 Agricultural Road, Vancouver,
BC V6T 1Z1, Canada and
Department of Physics and Astronomy, University of Rochester,
Bausch and Lomb Hall, PO Box 270171, 600 Wilson Boulevard, Rochester,
NY 14627-0171, USA
E-mail: lyutikov@phas.ubc.ca

New Journal of Physics 8 (2006) 119
Received 14 December 2005
Published 31 July 2006
Online at http://www.njp.org/
doi:10.1088/1367-2630/8/7/119

Abstract. The electromagnetic model (EMM) of gamma-ray bursts (GRBs) and
a contrast of its main properties and predictions with the hydrodynamic fireball
model (FBM) and its magnetohydrodynamical extension are described. The EMM
assumes that rotational energy of a relativistic, stellar-mass central source (black
hole–accretion disk system or fast rotating neutron star) is converted into magnetic
energy through a unipolar dynamo mechanism, propagated to large distances in
the form of relativistic, subsonic, Poynting flux-dominated wind and is dissipated
directly into emitting particles through current-driven instabilities. Thus, there is
no conversion back and forth between internal and bulk energies as in the case of
the fireball model. Collimating effects of magnetic hoop stresses lead to strongly
non-spherical expansion and formation of jets. Long and short GRBs may develop
in a qualitatively similar way, except that in the case of long burst ejecta expansion
has a relatively short, non-relativistic, strongly dissipative stage inside the star.
EMMs and FBMs (as well as strongly and weakly magnetized fireballs) lead to
different early afterglow dynamics, before deceleration time. Finally, the models
are discussed in view of latest observational data in the Swift era.
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1. Short introduction

Gamma-ray bursts (GRBs) are conventionally divided into two classes, short-hard and long-soft,
distinguished by their duration (with a division near ∼2 s) and spectrum hardness (Kouveliotou
et al 1993). Detection of Type Ic supernovae nearly coincident with long GRBs unambiguously
linked them with deaths of massive stars (Hjorth et al 2003, Stanek et al 2003). Studies of the
host galaxies of long GRBs, which turned out to be actively star-forming, further strengthen this
association (Djorgovski et al 1998). Recent progress in observations of short bursts showed that
on one hand they show qualitatively similar afterglow behaviour (but without any supernovae
signature), while on the other hand their energetics was two to four orders of magnitude smaller
and they are preferentially (at the time of writing three out of four) associated with older stellar
populations (Covino et al 2005, Fox et al 2005, Gehrels et al 2005, Prochaska et al 2005, Retter
et al 2005, Villasenor et al 2005). This indirect evidence is consistent with formation of short
GRBs in compact star mergers (double neutron stars or black hole–neutron star binaries) and
formation of a black hole (e.g. Rosswog et al 2003, Aloy et al 2005).
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2. Short and long GRBs

The association of two types of GRBs with different astronomical objects is somewhat surprising
given their apparent similarity (perhaps less surprising in view of the fact that some short
GRBs may be associated with nearby SGRs). One possible reason is that though short and
long GRBs occur in different astrophysical settings, their appearance is governed by similar
physical processes related to formation and early evolution of stellar mass relativistic compact
objects. (Similarities of temporal and spectral properties of the first 2 s in long bursts and short
bursts (Nakar and Piran 2002, Ghirlanda et al 2003) may be an indication of this.) But then one
expects that during a merger of, e.g. two neutron stars, the resulting black hole has large angular
momentum and thus can potentially release much more energy than observed (one can invoke
different efficiencies, but a naive guess would be that it is harder to extract and propagate energy
from a compact object inside a stellar core, contrary to observations).

So why are short GRBs so under-energetic when compared with long ones? One possibility
is that the presence of a disk is a necessary condition for extracting energy from a black hole, so
after the disk disappears energy extraction stops. In this case, the energy and angular momentum
that will power a GRB outflow effectively come not from the central black hole but from the
surrounding disk (in the sense that it is the energy and/or lifetime of the disk and not the energy
in the black hole that determines the resulting energy of a GRB outflow) (for related discussion
see also van Putten (2005)).

In case of neutron star mergers, a black hole forms fairly early, while the mass of the accretion
disk is small, �0.1M�, with short viscous timescales, ∼0.1–1 s (e.g. Ruffert and Janka 2001).
On the other hand, a black hole inside a collapsing core of a massive star may accrete several
solar masses of material (e.g. MacFadyen et al 2001) (at any given moment the mass of the
disk is small, but a large amount of mass, ∼1–10M� passes through the disk during accretion).
In addition, the amount of the rotational energy stored in the case of core collapse depends on
core rotation before the explosion (which, in turn, depends on metallicity through wind angular
momentum loss (Woosley and Heger 2005)), resulting in a broad spread of rotational energies.

3. Principal issues: electromagnetic and fireball models (FBMs)

In this paper, the electromagnetic model (EMM) of GRBs, which assumes that the energy that will
power a GRB comes from rotational kinetic energy of a central source, is described. The energy
is extracted through a magnetic field, which can be generated by local dynamo mechanisms (e.g.
Pugliese et al 1999, Proga et al 2003, McKinney and Gammie 2004, De Villiers et al 2005,
Hawley and Krolik 2005). As argued above, the GRB energy should then be related not to the
total rotational energy of a central black hole but to the disk around it. Another possibility for
long bursts is the formation of a ‘millisecond magnetar’, a fast rotating strongly magnetized
protoneutron star.

Whether magnetic fields play an important dynamical role at any stage in the outflow
remains, in our view, one of the principal issues in GRBs physics. Currently, the overwhelming
point of view, advocated by the FBM, is that magnetic fields do not play any major dynamical role
(except, perhaps, at a very early stage, after which fields are dissipated quickly). FBM advocates
that in the emission region magnetic fields are re-created locally (e.g. through development
of Weibel instability (Medvedev and Loeb 1999)), with energy density typically much smaller
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than plasma energy density. Fields are small scale, with correlation length lc much smaller than
the ‘horizon’ length lc � R/� (R is the radius of the outflow in the laboratory frame and �

is its bulk Lorentz factor). An alternative approach, advocated by MHD and EMMs (i.e. Usov
1992, Blandford 2002, Lyutikov and Blandford 2003, Vlahakis and Königl 2003) is that there
are dynamically important large scale fields with ‘super-horizon’ correlation length lc � R/�,
which are created at the source and which may play a major role in driving the whole outflow in
the first place.

To quantify the dynamical importance of large-scale magnetic fields, it is useful to introduce
the magnetization parameter σ as a ratio of Poynting FPoynting to (cold) particle Fp fluxes (or as
a ratio of rest frame energy densities)

σ = FPoynting

Fp
= B2

4π�ρc2
= b′2

8πρ′c2
, (1)

where B and ρ are magnetic field and plasma density in the laboratory frame, b′ and ρ′ are
magnetic field and plasma density in the plasma frame (where the electric field is zero). For
σ � 1 magnetic fields are dynamically unimportant (this is assumed within a framework of a
conventional FBM), while for σ � 1 magnetic fields start to play an important dynamical role.
For σ � 1, there is an important qualitative change in the dynamical behaviour of the flow at
σcrit = �2/2. For σ < σcrit the flow is super-Alfvenic, while for σ > σcrit the flow is sub-Alfvenic
(and sub-fastmagnetosonic). The difference is somewhat analogous to the difference between
subsonic and supersonic flows in hydrodynamics.

Thus, depending on the parameter σ three qualitatively different regimes for expansion of
the ejecta may be identified, which can be called (i) FBM (below) σ � 1, (ii) MHD models
1 � σ < σcrit and (iii) EMM (below) σ > σcrit. These three possibilities lead to a qualitatively
different dynamic behaviour of flows. Let us next describe qualitatively the main features of the
models. (As the FBM and EMM are at the extreme range of σ we discuss those first.)1

FBM (e.g. Piran 2004). The defining characteristic of the FBM is that at intermediate
distances (far from the central source but before most energy is transferred to the forward shock)
most energy produced by the central source is carried by the bulk motion of ions. In temporal
order, the transformations of energy are as follows. Initially, the energy that will power the GRB
and its afterglow is thermalized near the central source, so that most of it is converted into
lepto-photonic plasma. This internal energy is then converted to the bulk motion of ions, and
reconverted back into internal at internal shocks; at the same time, small-scale magnetic fields
are generated. The energy of these generated magnetic fields is then used to accelerate leptons
via the Fermi mechanism to highly relativistic energies.2

EMM (Lyutikov and Blandford 2003). The defining characteristic of the EMM is that the
bulk energy of the flow is carried subsonically by the magnetic field. In temporal order, the
evolution of the energy proceeds as follows. The energy that will power a GRB comes from
kinetic rotational energy of the central source (millisecond pulsar or BH–disk system). It is
then converted to magnetic energy using a unipolar inductor (as in pulsars), transported to large
distances in a form of strongly magnetized wind and is used to accelerate particles in the emission
region. Acceleration of particles is done via magnetic dissipation (not through shocks).

1 The definitions and discussion below are based not on the nature of the central object but on ejecta content at large
distances from the central region and before production of γ-rays occurs.
2 The energy that goes to non-thermal particles is electromagnetic even in the FBM: Fermi-type acceleration is
done by turbulent EMF associated with fluctuations of magnetic field.
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MHD model (e.g. Drenkhahn and Spruit 2002, Vlahakis and Königl 2003). In this case,
most energy is also carried by magnetic field (similar to Lyutikov and Blandford 2003), but the
flow is supersonic, similar to FBM. In the version of Drenkhahn and Spruit (2002), magnetic
field energy is first converted into bulk motion and then dissipated through internal shocks,
similar to FBM. This is, in principle, not necessary, so that magnetic field energy may be
dissipated directly into emitting particles, similar to EMM.

The principal differences between the EMM and MHD approaches are that MHD-type
outflows usually cross the fast magnetosonic critical surface after which moment they become
causally disconnected from their source (Goldreich and Julian 1970). Initially the flow is
expanding freely, so that the flow dynamics is determined by the internal structure of the flow.
Only after the flow reaches the terminal velocity does the interaction with the media become
important. Unlike MHD, force-free flows are sub-fast magnetosonic, so no conditions at the
fast critical surface appear. In this case, it is the interaction with boundaries that determines the
properties of the flow (similar to subsonic hydrodynamic flows). Thus, the distinctive feature
between MHD and force-free flows is whether the wind becomes fast supersonic (MHD regime,
σ < σcrit) or not (force-free regime, σ > σcrit). This important difference leads to somewhat
different dynamics of the flow and can be tested with observations, as discussed in subsection 10.2.

4. Source formation and energy release in EMM

4.1. Electromagnetic luminosity and currents

In this section, the main ingredients of the EMM, stressing its principal difference and predictions
from the FBM, have been described. EMM assumes that the GRB ‘prime mover’ is a relativistic,
fast rotating, near-stellar-mass source. As discussed above, in order to reconcile energies of short
and long GRBs the ‘prime mover’should not be the black hole but the disk around it. For numerical
estimates, it is assumed that a central source generates luminosity L = L50 × 1050 erg s−1 for
a time ts, where ts ∼ 100 s for long bursts and ts∼1 s for short ones (there are indications that
both long and short bursts are powered by the same luminosity, but for different time (Fox et al
2005)). The mass of the central source is ∼0.01M� for short bursts and ∼M� for long bursts
(we stress again that this is the total mass passing through the disk, and not in the black hole).
The source is assumed to rotate with a spin frequency ∼ kHz. In addition, it is assumed that a
source possesses a large magnetic field of Bs∼1014L

1/2
50 G. If initially the core is fast rotating (e.g.

Woosley and Heger 2005), the total rotational energy in the disk,∼MdiskR
2
disk�

2, in the case of core
collapse is much larger, ∼7.9 × 1052(Mdisk/M�)(Rdisk/×106 cm)2(ω/6.28 × 103 rad s−1)2 erg,

than in the case of mergers, ∼7.9 × 1050 erg with Mdisk ∼ 0.01M� in the above estimate.
The source is expected to be active for ts ∼ E/L ∼ 100 s for long bursts and ∼1 s for short
bursts.

Rotational energy of the central object is extracted by magnetic fields through a unipolar
induction mechanism, similar to the prevailing model of active galactic nuclei (AGN) jets (e.g.
Lovelace 1976, Ferrari 2004). Magnetic fields both launch the jet (e.g. through Blandford–
Znajek mechanism) and collimate it by hoop stresses. The latest full relativistic MHD numerical
simulations of accretion disk–black hole systems do show formation of the strongly magnetized
axial funnel (e.g. McKinney and Gammie 2004, De Villiers et al 2005). Thus, large-scale,
energetically dominant magnetic fields may be expected in the launching region of GRB jets.
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Qualitatively, in the immediate vicinity of the source, the plasma is separated into two
phases: an internal matter-dominated phase in which large currents are flowing and an external
magnetically dominated phase. Strong magnetic fields and magnetic flux are generated in the
dense medium (a disk or a differentially rotating neutron star-like object), while relativistic
outflow is generated in the magnetically dominated phase. In this case, matter loading may be
expected to be small (e.g. analogous to pulsar wind). As the source remains active for about a
thousand to a million dynamical times, the flow will be able to settle down quickly to a quasi-
steady state evolving slowly as the hole or neutron star slows down. The separation into matter-
and magnetic field-dominated phases is somewhat similar to the Sun, where the dynamo operates
in the tachocline, deep below the surface, while magnetic energy and, most importantly, magnetic
flux are dissipated outside the star.

The key assumption of the model is that the dissipation rate at the source remains low
enough such that the power continues to be dominated by the electromagnetic component (rather
than the heat of a fireball) well out into the emission region. Thus, electrical currents flow all
the way out to the expanding blast wave, rather than being dissipated close to the source. For
electromagnetically dominated outflows, the value of the total current may be related to the total
luminosity of the source by

I ∼
√

Lc

4π
∼ 3 × 1020L

1/2
50 A, (2)

where the notation Xn = (X/10n) has been adopted. Under general electromagnetic and
relativistic conditions, the total impedance of the source and the emission region is close to
the impedance of free space Z ∼ 100 �.

In case of long bursts, associated with collapse of massive stars, the source will initially
inflate a non-relativistically expanding electromagnetic bubble inside the star. This magnetized
cavity is separated from the outside material by the (tangential) contact discontinuity (CD)
containing a surface Chapman–Ferraro current. This current terminates the magnetic field and
completes the circuit that is driven by the source. On a microphysical level, the current is created
by the particle of the surrounding medium completing a half turn in the magnetic field of the
bubble, so that the thickness of the current-currying layer is of the order of the ion gyro-radius.
After the breakout, the density that controls the ejecta expansion falls down, so that the expansion
becomes relativistic. In case of short bursts, associated with merger of two neutron stars, a
somewhat similar process will happen, except that there is no non-relativistic stage, so that the
bubble is directly inflated in the circumburst medium.

4.2. Distribution of current in the wind: structured jet

The form of expanding bubble depends on lateral distribution of source luminosity, which within
a framework of EMM mode is given by lateral distribution of current. At a relativistic stage,
expansion is nearly ballistic (Shapiro 1979) while at a non-relativistic stage inside a star, a flow
may be collimated both through the action of magnetic hoop stresses and interaction with the
surrounding gas (see subsection 5.2). One particular stationary outflow configuration, which
captures the essential features of the outflow, is that the outgoing current is confined to the
poles and the equatorial plane and closes along the surface of the bubble, figure 1. This current
distribution minimizes the total energy given a total toroidal magnetic flux and has been advocated
in relativistic stationary winds (Heyvaerts and Norman 2003). The magnetic field in the bubble is
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Figure 1. Current flow in the electromagnetic bubble. Current flow is mostly
along the axis, on the surface of the magnetic shell, along equator and close-up
at the trailing part of the shell. The magnetic shell is preceded by the forward
shock, typically r/�2 ahead of it. Non-sphericity of the shell, which is of the
order ∼1/�2, is enhanced.

inversely proportional to the cylindrical radius, Bφ ∝ 1/(r sin θ). Accompanying this magnetic
field is a poloidal electrical field so that there is a near-radial Poynting flux carrying energy away
from the source. Thus, as the magnetic field strength is strongest close to the symmetry axis, the
bubble will expand fastest along the polar direction. The internal structure of an outflow then
corresponds to a ‘structured jet’ with Lθ ∼ θ−2 (Lipunov et al 2001, Rossi et al 2002), so that
the central source releases an equal amount of energy per decade of θ.

5. Long GRBs: expansion inside a star

5.1. How important is dissipation?

Some fraction of the central source luminosity is likely to be dissipated close to the source. The
FBM implicitly assumes that all of the energy released is quickly converted into heat, while in
the EMM this does not happen and the energy flows away from the light cylinder mainly in
the form of an electromagnetic Poynting flux and the load impedance is located in the emission
region.

The issue of dissipation is somewhat complicated, as discussed next. On one hand, somewhat
paradoxically, it becomes harder to convert electromagnetic energy directly to the pair plasma
the stronger the magnetic field becomes. The reason is that the maximum potential drop
that is available for dissipation will be limited by various mechanisms of pair production.
Typically, after an electron has passed through a potential difference 
V ∼ 109–1012 V it will
produce an electron–positron pair either through the emission of curvature photon or via inverse
Compton scattering. This will be followed by an electromagnetic cascade and the newly born
pairs will create a charge density that would shut-off the accelerating electric field. In other
words, the pair density required to supply the electrical current and space charge scales linearly
with the field strength, while the electromagnetic energy density scales as its square. The stronger
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the field, the more likely it is to persist into the outflow. This is because GRBs are so powerful
that the dissipation in the source is probably low.

There is an important caveat to the preceding discussion which applies to very early, non-
relativistic, stages of bubble expansion in case of long bursts. Somewhat similar to pulsar wind
nebulae (cf Rees and Gunn 1974), non-relativistic, ideal, homologous expansion of strongly
magnetized nebulae which is causally disconnected from the source and injects toroidal magnetic
field at nearly the speed of light cannot occur. The reason is that magnetic flux and energy are
supplied to the inflating bubble by a rate that cannot be accommodated in the bubble. The rate of
supply is determined by the processes inside the light cylinder of a newly formed, compact object,
while inflation of the bubble is controlled by the external gas density. (Even if the wind remains
subsonic, it is unlikely that processes at the edge of the inflating bubble would influence wind
generation region near the light cylinder.) This leads to the following ‘contradiction’. Magnetic
flux (integrated over the meridional plane) is supplied to the bubble at a rate �̇ ∼ 2Ic. Similarly,
energy is supplied to the bubble at a rate U̇EM ∼ EI. We can also compute the magnetic flux
� = LI and the energy stored within the bubble UEM = LI2/2, using the self-inductance L. Let
the bubble radius be R(θ, t) where θ is the polar angle measured from the symmetry axis defined
by the spin of the compact object. If the magnetic field in the bubble is predominantly toroidal
between cylindrical radii �min and �max = R sin θ, this is given by

L ∼ µ0

2π

∫
dz ln

(
�max

�min

)
. (3)

We therefore see that, if the bubble expands sub-relativistically, the rate of supply of both
flux and energy exceeds the rate at which the flux and energy can be stored by a factor ∼
[ ln(�max/�min)(dz/dt)/c]−1 (cf Rees and Gunn 1974). Therefore, for non-relativistic expansion
of the bubble, too much flux and too much energy are generated by the source.

The way out of the ‘paradox’ is that dissipation must become important, which will destroy
some magnetic energy and most importantly eliminate most of the toroidal flux. Most of
the dissipation is likely to occur near the axis where the current density is highest and the
susceptibility to current-driven instability is greatest. In this case, a lateral flow of energy will set
in, carrying the poloidal field lines with it towards the axis. This, in turn, will lead to the pile-up
of magnetic field near the axis and to faster radial expansion near the axis (the toothpaste tube
effect) (Lyutikov and Blandford 2003).

5.2. Form of the expanding bubble

The dynamics of a non-spherically expanding bubble may be described using the method of
Kompaneets (1960), and Zel’dovich and Raizer (1967). Consider a small section of non-spherical
non-relativistically expanding CD with radius R(t, θ). The CD expands under the pressure of
a magnetic field so that the normal magnetic stress at the bubble surface is balanced by the
ram pressure of the surrounding medium. At the spherical polar angle θ, the CD propagates
at an angle tan α = −∂ln R/∂θ to the radius vector. Balancing the pressure inside the bubble
B2/(8π) = I2/(2πc2R2) with the pressure of the shocked plasma gives

(
∂R

∂t

)2

= κ
I2(t)

2πR2 sin2 θρ(R, θ)

[
1 +

(
∂ ln R

∂θ

)2

T

]
, (4)
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where κ is a coefficient of the order of unity which relates the pressure at the CD to the pressure
at the forward shock.

Equation (4) shows that non-spherical expansion inside the star is due to both the anisotropic
driving by magnetic fields and collimating effects of the stellar material (the term in parenthesis,
which under certain conditions tends to amplify non-sphericity). The rate of expansion of the
bubble inside the star depends upon the density profile of the stellar envelope and the time
evolution of the luminosity (or, equivalently, of the current I(t)). For a given dependence ρ(R, θ)

and I(t), equation (4) determines the velocity of the CD. Generally, solutions will be strongly
elongated along the axis. A simple analytical solution for I, ρ ∼ const. is

R(t, θ) =
(

2

π

I2

ρc2

)1/4 √
t

sin θ
. (5)

(current is related to the luminosity by equation (4)). Qualitatively, the bubble and the forward
shock will cross the iron core (rc ∼ 2.5 × 108 cm) in t ∼ rc

√
ρ/B(rc) ∼ 0.3 s, short enough to

produce an ample supply of 56Ni (Woosley et al 2003). If M(R) is the stellar mass external to
radius R, then the breakout time is

tbreakout(θ) ∼ 1θ2
−1

(
M

M�

)1/2 (
R

R�

)1/2

L
−1/2
50 s. (6)

The electromagnetic bubble can be confined equatorially by the star for the duration of the
burst tbreakout(π/2) ∼ 100 s and will expand non-relativistically as we have assumed. However
the expansion along the axis proceeds on a short timescale and breakout should occur early
in the burst.

Thus, along the jet axis non-relativistic expansion lasts for several seconds, which is much
shorter than the burst duration. After breakout, the flow quickly becomes relativistic so that there
is no longer any need for dissipation. Thus, relative fraction of dissipated energy is small, so that
overall the flow magnetization remains large. Most of the dissipation described above will result
in creation of a lepto-photonic plasma, which decouples after photosphere, so that the remaining
flow remains strongly magnetized. In summary, when the bubble expands non-relativistically, it
must be dissipative, while after breakout, the expansion becomes relativistic and the resistance
falls so that the electromagnetic energy that is still being supplied by the source is mostly absorbed
by the inflating bubble and by doing work against the surroundings.

6. Optically thick expansion: mini-fireball

Under the electromagnetic hypothesis, most of the energy released by the source comes out in
the form of Poynting flux. However, there must be some dissipation that would lead to creation
of a lepto-photonic component (as discussed in subsection 5.1); in the case of non-relativistic
stage of bubble expansion inside a star, dissipation may be considerable. This will create an
optically thick ‘warm’ fireball (in a sense that it is dominated by magnetic field energy, but also
has considerable pressure). Expansion of this ‘warm’ fireball will create a thermal precursor,
similar to the conventional FBM, but modified by presence of magnetic field (Lyutikov and
Usov 2000, Lyutikov and Blandford 2003).
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At early stages (before the breakout in case of long bursts), the plasma enthalpy is strongly
dominated by a lepto-photonic plasma with a temperature

T ∼
(

L

a
�r2βc�2(1 + σ)

)1/4

, (7)

where 
� is a typical opening solid angle, and luminosity of the source can then be written as
L = ∫

d� �2r2βc(b2/2 + w), where w is plasma enthalpy and b is a toroidal magnetic field in
the plasma rest frame times

√
4π,

After breakout, the flow will accelerate to relativistic velocities. Initially, conical expansion
is mostly pressure-driven, even in the strongly magnetized case (in this case, magnetic pressure
gradients and hoop stresses balance each other out). This results in dynamics qualitatively similar
to the unmagnetized case: the wind plasma accelerates � ∼ r while its density, pressure and
temperature decrease n ∼ r−3, p ∼ r−4, T ∼ r−1, so that the magnetization parameter remains
approximately constant (Lyutikov and Blandford 2003).

When the temperature falls below ∼10–20 keV, most of the pairs annihilate. This suddenly
reduces the optical depth to Thomson scattering below unity. (Under certain conditions, photons
may remain trapped in the flow. In this case, thermal driving by photon pressure continues, until
the thermal photons escape.) As a result the lepto-photonic part of the flow decouples from the
magnetic field and σ increases by roughly seven orders of magnitude to σ ∼ 109. The thermal
radiation from the lepto-photonic component has a rest-frame temperature T0 ∼ 10–20 keV times
a boost due to the bulk motion. This thermal radiation, which should peak around ∼100 keV
may put constraints on the initial σ (Lyutikov and Usov 2000, Daigne and Mochkovitch 2002).

7. Relativistic expansion

7.1. Short GRBs and long GRBs after breakout

In the case of long GRBs inflating a bubble inside a star, eventually the bubble will break free of
the star forming two axial jets along which Poynting flux will flow until the central source slows
down on the timescale ts ∼ 100 s. Outside the star, the bubble will expand ultra-relativistically
and bi-conically. For short GRBs, presumably associated with merger of neutron stars in a low-
density environment, there is no preceding non-relativistic stage, so expansion of the bubble is
relativistic from the beginning. In case of relativistic motion, there is no longer any necessity to
destroy magnetic flux through ohmic dissipation: the effective load can consist of the performance
of work on the expanding blast wave. This is where most of the power that is generated by the
central magnetic rotator ends up.

After the bubble has expanded beyond a radius rsh ∼ cts ∼ 3 × 1012ts,2 cm (∼1010 cm
for short bursts), the electromagnetic energy will be concentrated within an expanding,
electromagnetic shell with thickness ∼rsh and with most of the return current completing along
its trailing surface (see figure 1). The global dynamics of this shell and its subsequent expansion
are set in place by the electromagnetic conditions at the light cylinder and within the collimation
region. An important property of ultra-relativistic outflows is that they are hard to collimate
(Chiueh et al 1991, Bogovalov 2001), so that any collimation should be achieved close to the
source, within a star, where the flow is only mildly relativistic (see, however, Vlahakis and
Königl 2003).
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Interaction of the magnetic shell with the circumstellar medium proceeds in a similar way to
the non-relativistic expansion inside a star: the leading surface of the shell is separated by a CD
(which actually becomes a rotational discontinuity if the circumstellar medium is magnetized
(Lyutikov 2002)). Outside the CD, an ultra-relativistic shock front forms and propagates into
the surrounding circumstellar medium. The expansion is non-spherical. As long as the outflow
is ultra-relativistic, the motion of the forward shock is virtually ballistic (Shapiro 1979) and
determined by the balance between the magnetic stress at the CD and the ram pressure of the
circumstellar medium.

A type of collimation in the case of electromagnetic explosions is somewhat different from
the conventional jet models of AGNs. We expect that large Poynting fluxes associated with
explosive release of ∼1051 ergs in the case of long GRBs are sufficient to drive a relativistic
outflow over a large solid angle, so that during the relativistic stage the resulting cavity is almost
spherical, but the Lorentz factor � of the CD is a strong function of the polar angle. The angular
distribution of magnetic field (and of the Lorentz factor of the expansion) depends on the dynamics
of the bubble at the non-relativistic stage and the distribution of the source luminosity.

In the framework of EMM, the outflow is strongly magnetized and subsonic, σ > σcrit,

despite being strongly relativistic. In this case, the ejecta, in some sense, may be considered
as a collection of outgoing fast magnetosonic waves propagating from the source to the CD.
Motion of the CD is then determined by the pressure balance between the Poynting flux from the
source and the ram pressure of the interstellar medium (ISM). Thus, motion of the CD depends
on the source luminosity L(t′) at the retarded time t′ such that R(t) = t − t′. In addition to
forward flux, there is a much weaker, by a factor �2, reflected flux that propagates backward
into the flow information about the circumstellar medium. Interference of forward and backward
propagating waves allows us to define a finite Lorentz factor of the ejecta. The distribution of
reflected current is determined by the outgoing current and the boundary conditions. At later
times, multiple reflections from the CD and the centre become important as well.

7.2. Stages of relativistic expansion of the electromagnetic shell

Relativistic expansion of the magnetized shell may be separated into two stages, which will be
called ‘early’and ‘late’, depending on whether or not most of the fast waves emitted by the central
source have caught up with the CD and their energy has been given to the circumburst medium.
The transition between two stages occurs at the moment which is similar to the deceleration
radius in FBM, except that in the case of EMM the shell is decelerating all the time, but with
different laws before and after the transition. Keeping with tradition, the transition radius will
be called the deceleration radius.

7.2.1. ‘Early’ stage. At r > rph the outflow becomes a relativistically expanding shell of
thickness ∼cts ∼ 3 × 1012 cm for long GRBs and ∼3 × 1010 cm for short GRBs. The shell
contains a toroidal magnetic field; the current now detaches from the source and completes
along the shell’s inner surface. At this stage, the CD is constantly re-energized by the fast-
magnetosonic waves propagating from the central source. The average motion of the CD R(t) is
determined by the average luminosity at the retarded time t′:

L�(t′) ∼ ρc3�4R(t)2β3, (8)
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which for constant luminosity gives � ∼ (L�/ρc3)1/4r−1/2 (in a constant density medium) or
� ∼ (L�/4κρ0r

2
0c

3)1/4 = const. (in a ρ(r) = ρ0(r0/r)2 wind). If the central source releases
most of the current along the axis and the equatorial plane, as argued in subsection 4.2, then
� ∝ 1/

√
sin θ at this stage. If source’s luminosity varies, this will be reflected in the ‘jitter’ of

the CD. Development of instabilities at the CD, such as the impulsive Kruskal–Schwarzschild
instability (Lyutikov and Blandford 2003) may lead to dissipation and particle acceleration. The
internal structure of the magnetic shell is a messy mixture of the outgoing waves from the source
and the ingoing waves reflected from the CD, similar to a pre-Sedov phase in hydrodynamical
explosions. Unlike the case of a hydrodynamic blast wave with energy supply, no internal
discontinuities form inside the magnetic shell.

The early stage lasts for cts < r < rdec, where

rdec = (L�t2
s /ρc)1/4 ∼ 3 × 1016L

1/4
50 t

1/2
s2 n−1/4 cm (9)

for long bursts (in the observer frame this phase lasts ∼ ts ∼ 100 s) and rdec ∼ 3 × 1015 cm
for short bursts (similarly, in the observer frame this phase lasts ∼ ts ∼ 1 s). Radius rdec (9) is
somewhat similar to the deceleration radius in case of FBM; at this moment most energy of
the shell is given to the circumburst medium, Lθts ∼ E(θ) ∼ ρc2r3

decγ(rdec, θ)
2 (note that here

� = �(rdec), not �0 as in the case of FBM, since there is no formal definition of �0 in case of
EMM).

7.2.2. ‘Late stage’ (r < r < rNR ≡ (L�ts/ρc2)1/3). At distances r > rdec most of the waves
reflected from the CD have propagated throughout the shell, so that all the regions of the shell
come into causal contact. Most of the energy of the explosion will reside in the blast wave which
will eventually settle down to follow a self-similar expansion. As the expanding shell performs
work on the surrounding medium its total energy decreases; the amount of energy that remains in
the ejecta shell during the late stage is small, ∼E�/�2. Most of the energy is still concentrated
in a thin shell with 
R ∼ R/�2 near the surface of the shell which is moving according to
� ∼ √

E�/ρc2 r−3/2 (in a constant density medium), or � ∼ r−1/2 (in a ρ ∼ r−2 wind). If the
central source releases most of the current along the axis and the equatorial plane, as discussed in
the subsection 4.2, then � ∝ 1/ sin θ at this stage. (Note that at the ‘early stage’ � ∝ 1/

√
sin θ,

but no lateral re-distribution of energy is required at the transition since transition between ‘early’
and ‘late’ stages occur at different times for different θ.) The energy of the shell decreases only
weakly with radius, dE/dt ∼ 1/r in constant density and dE/dt ∼ 1/r3 in a wind, so that the
surface of the shell keeps moving relativistically as long as the preceding shock wave is moving
relativistically, until r ∼ (E�/ρc2)1/3 ∼ 1018 cm—the shock never becomes completely free of
the shell (Lyutikov and Blandford 2003). Interestingly, the structure of the magnetic shell (in
particular the distribution of energy) resembles at this stage the structure of the hydrodynamical
relativistic blast wave (Blandford and McKee 1976). This can be formally understood by noting
that for motion perpendicular to the magnetic field dynamical equations for magnetized flow can
be reduced to the non-magnetic case, but with a different equation of state (Landau and Lifshits
1982).

‘Late stage’ of magnetic shell expansion corresponds to the conventional afterglow phase
when synchrotron and inverse Compton radiation is emitted throughout the electromagnetic
spectrum. The initially aspheric expansion will give the appearance of a jet with the
‘achromatic break’ occurring when the fastest Lorentz factor of the spine �(θ = 0) becomes
comparable with the reciprocal of the observer’s inclination angle with respect to the
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symmetry axis, �(θ = 0) ∼ 1/θob. When r > rNR ∼ (Lt/ρc2)1/3 ∼ 2 × 1018L
1/3
50 t

1/3
s2 n−1/3 cm,

the blast wave become non-relativistic and will become more spherically symmetric, while
evolving towards a Sedov solution.

8. Production of GRB

By the time the shell radius expands to rdec, most of the electromagnetic Poynting flux from the
source will get caught up with the CD and get reflected by it, transferring its momentum to the
blast wave. Simultaneously a strong region of magnetic shear is likely to develop at the outer
part of the CD (Lyutikov 2002).

We propose that the γ-ray-emitting electrons are accelerated near rdec ∼ 1015–1016 cm
(for long bursts) and ∼ 1015 cm (for short bursts) due to development of electromagnetic
current-driven instabilities (conventional model of particle acceleration—acceleration at internal
shocks—cannot work in this model since in the limit σ � 1 fast shocks are either weak or do not
form at all). The development of current instabilities usually results in enhanced or anomalous
plasma resistivity which leads to an efficient dissipation of the magnetic field. The magnetic en-
ergy is converted into heat, plasma bulk motion and, most importantly, into high-energy particles
which, in turn, are responsible for the production of the prompt γ-ray emission. The conversion of
magnetic energy into particles may be very efficient. For example, recent RHESSI observations
of the Sun indicate that, in reconnection regions, most of the magnetic energy goes into non-
thermal electrons with power-law distribution in energies (Benz and Saint-Hilaire 2003). Though
the details of how magnetic dissipation and particle acceleration proceed in Solar flare and GBR
outflows are bound to be different, the underlying principles may be similar.We discuss them next.

To illustrate how magnetic dissipation may proceed, we briefly describe the physics
underlying the development of the so-called tearing mode. Consider a smooth distribution of
electrical current, which can be viewed as a set of many small current wires. Since parallel currents
attract, such a system is likely to develop narrow current sublayers where dissipation, which is
inversely proportional to the square of magnetic field gradient, becomes high. In addition, high
anomalous resistivity, proportional to local current density is likely to develop. Similar to non-
relativistic plasmas, in strongly magnetized plasmas, a tearing mode develops on timescales much
shorter than resistive timescale in the bulk (Lyutikov 2003). The final outcome of the development
of the tearing mode is formation of reconnection sites and dissipation of magnetic energy.

Particle acceleration by dissipative magnetic fields may proceed in a number of ways.
The best studied non-relativistic example is particle acceleration in reconnection regions
either by inductive electric fields outside the current sheet or resistive electric fields inside the
current sheets (e.g. Craig and Litvinenko 2002) or formation of shocks in the downstream of
reconnection regions (e.g. Blackman and Field 1994). Investigation of the particle acceleration
in the relativistic regime of reconnection is only beginning (e.g. Larrabee et al 2003). Relativistic
reconnection may produce power-law spectra of accelerated particles (Larrabee et al 2003,
Zenitani and Hoshino 2004). For example, in the relativistic Sweet–Parker reconnection model
(Lyutikov and Uzdensky 2003), if one balances linear acceleration inside the reconnection
layer by the resistive electric field, dTE ∼ eEc with the rate of particle escape (proportional to
relativistic gyro-frequency), dT ln N(E) ∼ ωB(mc2/E), one finds N(E) ∼ E−βin where E is the
energy of a particle, N(E) is the particle number and βin is the inflow velocity (Zenitani and
Hoshino 2004). For relativistic reconnection the inflow velocity can be relativistic (Lyutikov
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and Uzdensky 2003), βin → 1. The fact that reconnection models can produce spectra which
are prohibitively hard for shock acceleration may serve as a distinctive property of EMMs.

In addition to the acceleration mechanisms which are based on known non-relativistic
schemes, it is feasible that acceleration in relativistic, strongly magnetized plasma may proceed
through mechanisms that do not have non-relativistic or fluid analogues. Examples of this type
of acceleration include particle acceleration through formation of a spectral cascade of nonlinear
waves in force-free plasma which transfer energy to progressively larger wave vectors until this
energy is taken up in accelerating a population of relativistic electrons and positrons (Thompson
and Blaes 1998). Since for σ > 1 the cascade is likely to be terminated at plasma frequency, which
is lower by a factor

√
σ of the cyclotron frequency, the likely emission mechanism in this case

is inverse Compton scattering. Another possibility is development of kinetic electromagnetic-
type instabilities of the shell surface currents, as proposed by Smolsky and Usov (1996) and
in somewhat different form by Liang and Nishimura (2003). Since studies of kinetic properties
of strongly magnetized relativistic plasmas are only beginning, it is hard to predict acceleration
efficiency and particle spectra. Numerical studies in the coming years will be most important
here.

9. Production of afterglows

Except at the early stage (as discussed in subsection 7.2.1), afterglows are generated in a similar
way both in the FBM and EMM.As the magnetic shell expands, its energy is gradually transferred
to the preceding forward shock wave. Relativistic particles are accelerated in the blast wave
producing the observed afterglow in a manner which is similar to that proposed for fluid models,
except that the CD itself may be an important source of magnetic flux through impulsive Kruskal–
Schwarzschild instability (Lyutikov and Blandford 2003), so that afterglows may result from a
mixture of relativistic particles, derived from the shock with magnetic field derived from the
shell.

At late times, well beyond rdec (which in the observer frame is nearly coincident with
the prompt phase), the temporal behaviour of proper afterglow (as opposed to tails of prompt
emission, see subsection 10.3) is determined by the total energy release Eω and not by the form
of that energy. As a consequence, late afterglow observations can hardly be used to distinguish
between the models. The only property of the source that the forward shock ‘remembers’ at late
times is the angular distribution of the deposited energy E(θ) (there is little sideways evolution
in the relativistic regime (Shapiro 1979)). Thus, the angular distribution of the total energy E(θ)

can be used to distinguish between different models, if a model predicts it.
In case of EMM, the preferred lateral distribution of the magnetic field, energy fluxes and

luminosity correspond to the line current, subsection 4.2, so that L ∼ 1/ sin2 θ. This translates
into distribution of Lorentz factors of the forward shock

� ∼
(

E

ρexc5

)1/2
t−3/2√
θ2 + θ2

0

, (10)

where θ0 is the angular size of the core of the jet. (Its minimal size is the magnetic Debye
radius, rD = √

I/2πnec, which gives θ0 ∼ (m2c5σ2�2/Le2)1/4 ≈ 10−3L
−1/4
50 σ

1/2
9 �

1/2
2 (Lyutikov

and Blandford 2003).) This type of shock has been named ‘structured jet’ (or universal jet)
(Lipunov et al 2001, Rossi et al 2002), though in our model there is no proper ‘jet’, but simply
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a non-spherical outflow. The most intense bursts and afterglows in a flux-limited sample will be
seen pole-on and can exhibit achromatic breaks when � ∼ θ−1, which might be mistaken for
jets.

In conclusion, the observational appearance of GRB afterglows depends mostly on two
parameters: (i) explosion energy (more precisely, on the ratio on the explosion energy to
circumstellar density) and (ii) the viewing angle that the progenitor’s axis is making with the
line of sight. This possibility, that all GRBs (and x-ray flashes (XRFs)) are virtually the same
but viewed at different angles, resembles the unification scheme of AGNs.

10. Tests of GRB models

10.1. Testing the FBM: reverse shock emission

Perhaps the simplest test of GRB models could come from observations of emission from the
reverse shock propagating in the ejecta, which typically falls into the optical range. FBM predicts
strong reverse shock emission, so that the absence of nearly contemporaneous optical emission
in most GRBs would be a strong argument against FBM. In MHD models with σ > 1 reverse
shock is weak, while in EMM reverse shock is absent altogether.

Since the possible observation of reverse shock emission may play a decisive role in
validating a GRB theory, we next discuss briefly properties of the reverse shock expected
within a framework of FBM (for more extensive discussion, see, e.g. Sari and Piran 1999,
Kobayashi 2000). In the framework of FBM, both reverse shock and internal shocks which
produce prompt γ-ray emission originate in the same fluid and have similar properties (e.g.
being weakly relativistic). One can naturally expect that the microphysical properties of the
accelerating particle, being complicated and poorly understood, are the same for the same type
of shocks. Thus, the conventionally introduced quantities like εB (magnetic field value with
respect to equipartition), εe (electron energy density with respect to equipartition) and γmin

(minimum Lorentz factor of accelerated electrons) must be the same for both cases. As a result,
for any given burst, observations of the prompt emission can be used to predict the properties of
a corresponding optical flash.

The amount of energy dissipated in the reverse shock is comparable to the energy dissipated
in the forward shock and to the total GRB energy (Sari and Piran 1999). The principal difference
between prompt and optical emitting electrons is the radii of emission and ratio of cooling
to expansion timescales. In the framework of FBM, prompt emission is generated at distances
rGRB ∼ 2�2

0δtc ∼ 1012–1013 cm (δt ∼ 0.01 s is the variability timescale of the central source and,
within the framework of FBM, of the prompt emission), while reverse shock emission is typically
generated at distances R ∼ 2cts�

2
0 ∼ 1016 cm (seen at observer time tobs ∼ ts; we concentrate on

a simple so-called ‘thick shell’ case). Using conventional fireball parameterization for minimum
Lorentz factor of accelerated particles γmin ∼ εe(mp/me)�s, where �s is the shock Lorentz factor,
and parameterizing energy density of magnetic field in the plasma rest frame to ion energy density,
ρc2 = L/(4π�2

0r
2c) and b = √

εB

√
8πρc2, the ratio of prompt to reverse shock frequencies is

ωGRB

ωRS
∼ rRS

rGRB

(

�

�RS

)2

∼ rRS

rGRB
∼ ts

δt
, (11)

so that the peak of reverse shock emission occurs at ∼1–10 eV.
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An important qualitative difference between prompt and optical emitting electrons is that
the former are in the fast cooling regime, while the latter are in the slow cooling regime. The
radius beyond which optically emitting electrons enter the slow cooling regime,

rcool ∼ εBεe
(�RS − 1)LmpσT

3πc3m2
e�

3
0

∼ 2 × 1014L50 cm. (12)

(�RS − 1 ∼ 1 and �0 = 300 was assumed) is typically smaller that RRS. As a result, only a small
fraction of energy received by an optical electron ∼RRS/(�0rcool) ∼ 0.02 is emitted; the rest is
lost to adiabatic expansion. For a GRB of Eγ ∼ 1051 ergs, optical flash would have E ∼ 1049 ergs.
For a typical GRB burst with fluency ∼10−6 erg cm−2, and duration of ∼100 s, this will result
in an optical flash of magnitude ∼12 m. Even if we increased the estimate of RRS and duration
of optical flash each by an order of magnitude, the resulting optical flash would have ∼17 m.

On the other hand, the brightest bursts may reach fluences ∼10−4 erg cm−2, which, according to
these estimates, can produce an optical flash of ∼7 m. In addition, adiabatic cooling results in
flux decay ∝ t−2 and a clear radio signal is expected (e.g. Nakar and Piran 2004). Thus, FBM
makes a predictions that all GRBs must have optical flashes in the range 12–17 mm, with some
variations of a few magnitudes (both brighter and dimmer) depending on particular properties
of each burst.

In the Swift era, not a single GRB has shown the predicted behaviour. This is despite the fast
on-board optical telescope and a large number of ground-based robotic telescopes (RAPTOR,
ROTSEE, TAROT and others). Reverse shock emission is virtually an unavoidable prediction
of the FBM, so that the absence of predicted reverse shocks emission in the Swift era argues
against the FBM. Naturally, there is a number of ways that through which optical flashes can
be suppressed (e.g. cooling of optically emitting electrons on photons of prompt emission
(Beloborodov 2002),‘thin shell case’, when the reverse shock emission is spread over longer
times, producing a weaker signal (e.g. McMahon et al 2005)). A possible explanation of the
absence of a clear reverse shock signal is that the ejecta plasma is strongly magnetized. In the
case when the energy density of magnetic field dominates the total energy density (σ � 1),

reverse shock becomes very inefficient in dissipating flow energy (Kennel and Coroniti 1984).
Irregular optical flashes (like GRB 050525a (Klotz et al 2005) and GRB 050904 (Boer

et al 2005)) may be produced by other mechanisms, like γ-ray pair production in front of the
forward shock (Thompson and Madau 2000, Beloborodov 2002), or be a low-energy tail of
prompt emission.

10.2. EMM: bright early afterglows

FBMs and EMMs make very different predictions for the properties of early afterglows (see
figure 2, Lyutikov 2004). According to EMM, at the early afterglow stage the Lorentz factor and
peak frequency are larger (and falling with time) than in the FBM (constant Lorentz factor and
peak frequency). Early afterglows in the EMM are more energetic than in FBM, figure 3, and
can blend with the prompt phase.

10.3. Emission radius of prompt photons and early Swift afterglows

One of the surprising early results from the Swift satellite was the detection of x-ray spikes
and breaks in light curves at intermediate times, much longer than the burst duration but well
before the conventional jet break (e.g. Chincarini et al 2005, Nousek et al 2005, Tagliaferri
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Figure 2. Evolution of Lorentz factors in the FBMs and EMMs for constant
external density. Relative normalization of the curves depends on the viewing
angle (in the EMM).

et al 2005). Typical behaviour includes fast–slow–fast decay with transitions near 100–1000 s
and ∼104 s. This presents a real challenge to GRB models, since if the emission is seen ‘head
on’, within an angle θ � 1/γ, the radii at which these features should be produced correspond to
radii much larger than the deceleration radius. At these times, most of the energy is in the forward
shock which should produce a smooth light curve. (Late time injection or specific distribution
of Lorentz factors are some of the possibilities that are discussed (e.g. Lazzati and Begelman
2005, Zhang et al 2005). For a discussion in the framework of the cannonball model see Dado
et al (2005).)

The initial fast decaying part of afterglows was argued to be a ‘sideways’ prompt emission,
coming from angles θ > 1/� (Kumar and Panaitescu 2000, Barthelmy et al 2005). If this
interpretation is correct, one can determine emission radii of the prompt emission and compare
them with model predictions. (We remind that FBM predicts radii of emission rem ∼ 2�2

0cδt ∼
1012–1013 cm, while EMM predicts rem � rdec ∼ 1016 cm, equation (9)). If emission is generated
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Figure 3. X-ray afterglow in the 2–10 keV energy band for a uniform medium of
density n = 1 cm−3 and injected power Liso = 1052 erg s−1. The source is active
for 50 s, the assumed redshift is z = 2.5, fraction of energy in electrons εe = 0.1,

fraction of energy in magnetic field εB = 0.001. Blue line: EMM, red line: FBM
(from Mochkovitch et al, in preparation).

at rem and is coming to the observer from large angles, θ > 1/�, its delay with respect to the start
of the prompt pulse is 
t ∼ (rem/c)θ2/2. For a typical observer angle θ ∼ 0.1 and first break of
a light curve at 
t ∼ 1000 s, the implied emission radius is rem ∼ 6 × 1015 cm. This is at least
two orders of magnitude larger than is assumed in the FBM, but is close to the assumption of
the EMM. (To be consistent with FBM and variability on short timescales, the Lorentz factor
of the flow should be �0 ∼ 3000, but this would imply that emission is strongly de-boosted,
�0θ ∼ 300 � 1.) Interpretation of light curve breaks at ∼103 s as being due to prompt emission
seen at large angles, θ > 1/�, is inconsistent with the FBM.

10.4. Fast variability from large radii

If prompt emission is produced at distances ∼1015–1016 cm, how can fast variability, on
timescales as short as milliseconds, be achieved? One possibility is that emission is beamed in
the outflow frame, for example due to relativistic motion of ‘fundamental emitters’ (Lyutikov and
Blandford 2003).A possible origin of relativistic motion of ‘fundamental emitters’may be the fact
that in the case of relativistic reconnection occurring in plasma with σ � 1, the outflowing matter
reaches relativistic speeds with γout ∼ σ (Lyutikov and Uzdensky 2003). Internal synchrotron
emission by such jets, or Compton scattering of ambient photons will then be strongly beamed
in the frame of the outflow.

Consider an outflow moving with a bulk Lorentz factor � with randomly distributed emitters
moving with respect to the shell rest frame with a typical Lorentz factor γT. Highly boosted
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emitters, moving towards an observer, have Lorentz factor γ ∼ 2γT�, so that modest values of
γT ∼ 5–10 � � ∼ 100–300 suffice to produce short timescale variability from large distances.
As the burst progresses, larger angles and more internal jets producing prompt emission become
visible. Most of them will be seen from large angles > 1/γT in the bulk frame, producing smooth
curves. Occasionally, a jet at large viewing angle, θ > 1/�, but directed towards an observer will
be seen, producing an x-ray flare. One expects a break in the light curve at 
t ∼ (rem/c)θ2/2,
where θ is a viewing angle (in a structured jet model, this is the angle between the jet axis
and direction to the observer). Afterglow should start to blend with prompt emission at later
times. In figure 4, we plot an example of a prompt light curve in this model (Lyutikov 2006).
The model readily explains many unusual properties of early afterglows: (i) x-ray flares and
light curve breaks at late times, much longer than conventional prompt GRB duration (extended
source activity is not needed!), (ii) fast variability, (iii) gradual softening of the spectrum and
(iv) hardening of a spectrum during x-ray flares (Burrows et al 2005).

10.5. Observational implications of the EMM

In this section, we give a short discussion of how the main GRB phenomena are (or may be)
explained within the framework of EMM.

• Jet break in afterglow. GRB outflows have large opening angles, but do not have a jet in a
proper sense. Outflows are non-isotropic so an achromatic break is inferred when the viewing
angle is θob ∼ 1/γ.

• Structured jet. The model predicts and gives a theoretical foundation for the ‘structured jet’
profile of the external shock.

• XRF flashes. Another testable prediction of the model is that much more numerous XRFs
should be observed, which may be coming ‘from the sides’ of the expanding shell, where the
flow is less energetic and the Lorentz boosting is weaker. In addition, the total bolometric
energy inferred for XRFs (from observations of afterglows before radiative losses become
important) should be comparable to the total bolometric energy of γ-ray bursts. Generally, the
distributions of parameters of XRFs should continuously match those of GRBs.

• Weak thermal precursor. If a fraction 1/σ ∼ 0.01–0.1 of the magnetic energy is dissipated near
the source, this should produce a thermal precursor with luminosity ∼ 0.01–0.1 of the main
GRB burst.

• Hard–soft evolution. The trend of GRB spectra to evolve from hard to soft during a pulse is
explained as a synchrotron radiation in an expanding flow with magnetic field decreasing with
radius B ∝ √

L/r (later in a pulse emission is produced further out where magnetic field is
weaker, so that the peak energy will be lower; this is similar to ‘radius-to-frequency mapping’
in radio pulsars and AGNs).

• Amati Epeak–L correlation. A correlation between peak energy and total luminosity,
Epeak ∼ √

L (Amati L et al 2002) follows from the assumption of a fixed typical emission
radii and fixed minimum particle energy since B ∼ √

L� (see also Lovelace 1976).

• Variability. Variability of the prompt emission reflects the statistical properties of dissipation
(and not the source activity as in the FBM). Magnetic fields are nonlinear dissipative dynamical
system which often show bursty behaviour with power-law PDF. (For example, solar flares
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Figure 4. Prompt emission produced by emitters moving randomly in the bulk
frame. Emission is generated within a shell of thickness tsc = 3 × 1012 cm
moving with � = 100 at distance rem = �2tsc by randomly distributed jets with
random orientation moving with random Lorentz factors 1<γT < γT,max = 5.

Each emitter is active for random time 0 < t′em < 0.5tsc� = tpulse,max in its
rest frame. Homogeneous jet centred on an observer with opening angle θ =
0.1, dimensionless parameters Nπ/(�γT,maxθ)

2 = 1.2 (probability of seeing one
sub-jet ‘head-on’ from angles <1/�) and N(ctpulse,max/2)2/r2

emθ2tsc� = 0.19
(efficiency of energy conversion), where N is the total number of emitters.
Intensity of emission is ∝δ3+α, where δ is a Doppler factor and α = 0.5 is a
spectral index. As the burst progresses, the average Doppler factor δ ≈ ts�/t and
the average flux decays as t−(2+α) = t−2.5 in accordance with analytical estimates
(Fenimore et al 1998). Dashed line, expected afterglow signal rising ∝t2, peaking
at ∼100 s and falling off ∝t−1.5 with arbitrary normalization (Lyutikov 2006).
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show variability on a wide range of temporal scales, down to minutes, which are unrelated to
the timescale of 22 years of magnetic field generation in the tachocline.)

• Prompt and afterglow polarization. Claims of high polarization (Coburn and Boggs 2003,
Willis et al 2005) if confirmed, may provide a decisive test of GRB models (see, however,
Rutledge and Fox 2003, Wigger et al 2004). The best way to produce polarization in the range
10% � � � 60% is through synchrotron emission in large-scale magnetic fields (Lyutikov
et al 2003). (Larger polarization can only be produced with inverse Compton mechanism,
whereas smaller polarization can be produced by small-scale magnetic fields.)

Large-scale field structure in the ejecta emission may also be related to polarization of
afterglows if fields from the magnetic shell are mixed in with the shocked circumstellar material.
In this case, the position angle should not change through the afterglow while if polarization is
observed both in prompt and afterglow emission the position angle should be the same. Also,
polarization should be most independent of the ‘jet break’ moment.

11. Conclusion

In this paper, the underlying assumptions for the ‘electromagnetic hypothesis’for ultra-relativistic
GRB outflows have been outlined. The most striking implications of the electromagnetic
hypothesis are that particle acceleration in the sources is due to direct dissipation of
electromagnetic energy rather than shocks and that the outflows are cold, electromagnetically
dominated flows, at least until they become strongly dissipative.

One of the major drawback of the model is that magnetic dissipation and particle acceleration
are very complicated processes, depending crucially on the kinetic and geometric properties of
the plasma. This situation may be contrasted with the shock acceleration schemes, where a
qualitatively correct result for the spectrum of accelerated particles, a kinetic property, can be
obtained from simple macroscopic considerations ( jump conditions). The example of the Solar
corona shows that despite being complicated, magnetic dissipation is an effective mean of particle
acceleration.

Possible observational tests of the hypothesis have been discussed. In particular,
interpretation of early afterglow features as being due to prompt emission seen at large angles,
θ�1/�, allows us to measure radius at which prompt emission has been produced. Large prompt
emission radii, ∼6 × 1015 cm, seem to be inconsistent with the FBM, but close to the prediction
of the EMM. Internal relativistic motion of ‘fundamental emitters’assumed within the EMM may
also explain x-ray flares during early afterglow phases (without the need for long source activity).
An important implication of the EMM is that supernova explosions may be magnetically driven
as well (Bisnovatyi-Kogan 1971, Leblanc and Wilson 1970, Proga et al 2003, Wheeler et al
2005).
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Appendix A. Applicability of the fluid approach for a blast wave

In case of extremely high Lorentz factors of the ejecta (which require even higher values of σ than
were assumed in this paper), the fluid approximation for interaction of magnetized ejecta with
ISM may break down. Consider an interface between the ejecta and the surrounding medium in
its rest frame. As a particle from the surrounding medium enters the ejecta, it starts gyrating in
the magnetic field. If a fraction σ/(σ + 1) of the source luminosity L is in the form of magnetic
field, then the turn angle in the rest frame in one dynamical time is

ω′
Btexp ∼

√
σ

σ + 1

2e
√

πL

c5/2mp�3
. (A.1)

In order to justify the fluid approximation, this should be larger than unity, which requires

� �
( σ

σ + 1

)1/4
(

4πe2L

c5m2
p

)1/6

∼ 4 × 104, (A.2)

for σ�1. Thus, for any � � 4 × 104, an ISM particle can complete a half turn on a timescale
short if compared with the expansion timescale. In this case, in a laboratory frame, momentum
of the ejecta will be given to the particles almost instantaneously. For larger Lorentz factors, the
instantaneous hydrodynamical approximation is not applicable, but if particles are turned by an
angle larger than ∼1/� (larger than ∼π in the observer frame) they will still be carried with the
flow. Since the rest-frame magnetic field goes as ∼1/(t�(t)), approximately linearly with time
(for constant �), the rotational phase of a particle increases only logarithmically,

∫
ω′

B dt′ ∝ ln t.
Thus, it takes a very long time for a particle to complete one gyration and be expelled from the
ejecta. In this case, the ejecta will be effectively loaded with ISM particles.

Finally, for very high Lorentz factors,

� �
( σ

σ + 1

)1/4
√

eL1/4

c5/4√mp
∼ 8 × 106, (A.3)

a particle makes a turn of less than 1/� (in the ejecta frame) on a dynamical timescale. In this
case, the ejecta just pass through ISM without much interaction and without slowing down.
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