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Abstract. We investigate the degradation of reference frames (RFs), treated
as dynamical quantum systems, and quantify their longevity as a resource for
performing tasks in quantum information processing. We adopt an operational
measure of an RF’s longevity, namely, the number of measurements that can be
made against it with a certain error tolerance. We investigate two distinct types
of RF: a reference direction, realized by a spin-j system, and a phase reference,
realized by an oscillator mode with bounded energy. For both cases, we show that
our measure of longevity increases quadratically with the size of the reference
system and is therefore non-additive. For instance, the number of measurements
for which a directional RF consisting of N parallel spins can be put to use scales as
N2. Our results quantify the extent to which microscopic or mesoscopic RFs may
be used for repeated, high-precision measurements, without needing to be reset—
a question that is important for some implementations of quantum computing.
We illustrate our results using the proposed single-spin measurement scheme of
magnetic resonance force microscopy.

New Journal of Physics 8 (2006) 58 PII: S1367-2630(06)18448-7
1367-2630/06/010058+20$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:bartlett@physics.usyd.edu.au
http://www.njp.org/


2 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Contents

1. Introduction 2
2. Preliminaries 3
3. Directional reference frame 5

3.1. Measurement of a spin-1/2 system relative to a spin-j directional RF . . . . . . 5
3.2. Measurement-induced update of the directional RF state . . . . . . . . . . . . . 5
3.3. Measure of directional RF quality. . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4. Scaling of the longevity of a directional RF with size . . . . . . . . . . . . . . 7
3.5. Application to single-spin measurement using MRFM for solid-state

quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4. Phase reference 10

4.1. Measurement of single-rail qubit relative to phase reference . . . . . . . . . . . 10
4.2. Measurement-induced update of the phase reference . . . . . . . . . . . . . . . 11
4.3. Measure of phase reference quality . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4. Degradation of phase reference . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5. Discussion 14
Acknowledgments 15
Appendix A. Proof that Lüders rule updating is minimally disturbing 15
Appendix B. Derivation of the recurrence relation for a directional RF 17
Appendix C. Optimal measurement of relative phase 18
Appendix D. Optimal RF state for estimating relative phase 19
References 20

1. Introduction

In quantum measurement theory, the apparatus is generally treated as a classical system—one
that is not described by the quantum formalism. The same is true for the macroscopic systems
that serve as reference frames (RFs), for instance, a ruler with respect to which positions are
defined, a set of gyroscopes with respect to which orientations are defined, or a clock with respect
to which phases are defined. Just as attempts to quantize the measurement apparatus have led
many researchers to foundational puzzles (such as the quantum measurement problem), the
quantization of RFs has also generated its fair share of confusion and controversy ([1] provides
a synopsis and numerous references).

In addition to providing, through such puzzles, an opportunity for us to refine our
understanding of quantum theory, the quantization of RFs is also useful for answering certain
practical questions. In many quantum experiments, one can understand certain systems as
constituting mesoscopic or even microscopic RFs to which other systems are compared. In
such cases, the conventional approach wherein RFs suffer no back-action may yield a poor
approximation to a full quantum treatment.

A recent example is the investigation of how well a quantum optical field prepared in
a coherent state can serve as a local oscillator for homodyne detection [2]. It has also been
proposed that the finite size of an RF can lead to effective decoherence on the system it describes
in contexts ranging from collapse theories [3] to the evaporation of black holes [4]. In particular,
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there have been several investigations into the consequences of the quantum nature of laser fields
for the manipulation of physical qubits in quantum information processing [5, 6].

Our goal in this paper is to go beyond consideration of how the finite size of the RF
affects the purity or coherence of systems described with respect to it, and to examine how
this finiteness affects its longevity i.e., how many times it can be used in a measurement as an
accurate RF. In particular, we demonstrate quantitatively how, if one makes measurements of
the ‘orientation’ of a large number of systems relative to a single quantum RF, then as a result of
these measurements the state of the RF becomes more mixed, more symmetric and is thereafter
less useful for implementing the sorts of tasks for which an RF is required. This degradation
(and ultimate depletion) is yet another reason (in addition to those provided in [7]–[10]) for
considering RFs as an information-theoretic resource.

At first glance, one might expect that the longevity of an RF, quantified by the number
of estimations of the relative orientation of a system to the RF that one can achieve with a
certain error bound before it degrades beyond use, would scale linearly with the size of the RF.
For example, if two identical directional RFs were used together, one would naively expect the
resulting combined RF to last twice as long as either constituent RF would separately. However,
our analysis shows that the scaling does not match this expectation. In fact, the longevity of
such a directional RF scales quadratically with the number of spins N. We show that the same
scaling holds for a phase reference, such as a coherent state. Specifically, the longevity of such
a phase reference scales quadratically in the average excitation number (e.g., photon number).
This result is encouraging for the potential usefulness of mesoscopic RFs in quantum information
processing applications.

We illustrate this point with a simple calculation for single-spin measurements using
magnetic resonance force microscopy (MRFM), demonstrating both that this measurement
scheme may exhibit effects due to the degradation of its directional RF with repeated use, but
also that it may be possible to use such a device for the large number of measurement required
for quantum computing applications without significant degradation.

We emphasize the distinction between the quality of an RF, which describes how well
a quantum RF approximates an ideal classical RF for the purposes of measurement, and the
longevity of an RF, which describes how many times it can be used in a measurement whilst
maintaining a certain quality. Whereas general uncertainty-principle-based arguments can often
be used to determine the scaling of the quality of a quantum RF, we are unaware of any such
argument that can predict the quadratic scaling of the longevity that we determine in this paper.

2. Preliminaries

We define the longevity of an RF as the number of times it can be used to perform a particular
operational task with some chosen finite degree of success. To explain the particular task we
choose, it is convenient to be able to compare our RF with another, much larger ‘background’
RF. We denote the RF whose longevity we are studying by R, which is initially correlated
(aligned) with the background RF.6 For example, R may be a gyroscope used in a laboratory
experiment, to which directional systems are compared, and the background RF could be the
frame defined by the earth or the fixed stars.

6 In [1], an RF R with this feature was referred to as implicated.
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The task to which R will be put to use is the estimation of the direction of a system S

relative to the background RF. (We here use the term ‘direction’ in a generic way to mean the
group element relating S to the background RF even if the the group of transformations in which
we are interested is not the rotation group.) Such an estimation is achieved by measuring the
relation between S and R, then combining the outcome with one’s prior information about the
directionality of R relative to the background RF, to deduce something about the direction of S

relative to the background RF. However, because R is a finite quantum system, the measurement
of the relation between S and R causes a disturbance to the quantum state of R, so that after this
measurement, one’s ability to infer the directionality of another system S′ is decreased. Thus,
R can only be used a finite number of times for such a task before its directionality relative to
the background RF is so poorly defined that it is no longer useful for this purpose. It is this
degradation that we investigate.

Because neither S nor R physically interacts with the background RF during the task of
interest, we can take the background RF to be non-dynamical. (More precisely, because the
dynamics induced between R and S is completely relational, we will see that the use of the
background RF is equivalent to simply choosing a convenient gauge and has no bearing on
the physics.) The RF R, on the other hand, must be treated dynamically. Consequently, we
assign a Hilbert space and quantum states to R but not to the background RF. Adopting the
terminology of [1], R is treated as an internal RF, while the background RF is treated as an
external RF. We shall also say that we are treating R as a quantum RF, and the background RF as a
classical RF.

A few aspects of our direction-estimation task must be made specific. First, there is the
nature of the measurement that determines the relation between S and R. To be conservative,
we assume: (i) the measurement is the one that maximizes one’s ability to estimate the relation
between S and R, and thus also maximizes one’s ability to estimate the direction of S relative
to the background RF (the figure of merit for estimation will be specified later) and (ii) the
measurement is implemented in a manner that leads to the smallest possible degradation of R

while still satisfying feature (i). Feature (ii) ensures that we are determining the best possible
longevity for a given degree of success in direction-estimation. Taking into account the fact that
the more information we gain in the measurement, the more disturbance we create, feature (i)
ensures that the longevity we derive will be a lower bound for the number of uses to which R

can be put for any other sort of direction estimation task on S.
The second aspect of our estimation task that must be made specific is the initial quantum

state of R. We choose to investigate the state that leads to the least initial error in estimating
the directionality of S relative to the background RF. We emphasize that, although the optimal
RF states and optimal measurements may not necessarily be easy to achieve in practice, they
establish the quantum limit and therefore bound any RF longevity.

We note that an equivalent definition of longevity can be achieved without making any
reference to a background RF. In this case, our description of S and R would be subject to an
effective superselection rule for the group that is associated with the RF [11]. For instance, if the
RF is for orientation, then moving to a description that makes no reference to the background
RF would imply adopting an effective non-Abelian superselection rule for the group of rotations
SU(2). Although the usefulness of this mode of description has been emphasized elsewhere [1],
we shall not make use of it in the present paper. In what follows, we assign quantum states to
S and R that are non-invariant under the group of interest, even though the measurement of the
relation of S to R is invariant under this group. That is, the quantum states are assigned relative to
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an arbitrary background RF, which is not used in the measurement. One may liken this procedure
to choosing a gauge for convenience when describing gauge-invariant processes.

3. Directional reference frame

In this section, we study the degradation of a directional RF, that is, a reference for a direction in
space. (Note that a directional RF does not provide a full Cartesian frame, as it does not provide
a reference for rotations about its axis.)

3.1. Measurement of a spin-1/2 system relative to a spin-j directional RF

We use a spin-j system for our quantum directional RF, with Hilbert space Hj. The initial
quantum state of the spin-j system is denoted ρ(0). (Later, in subsection 3.3, we will determine
the state that minimizes the error in the estimation of direction.) We describe this RF relative to a
background RF, as noted in section 2, and choose it to be aligned in the +z-direction relative to the
background RF; we emphasize, though, that this alignment with a background RF is essentially
a choice of gauge. Because the quantum RF will serve only as a reference direction, and not
a full frame, we can choose it to be invariant under rotations about the ẑ-axis without loss of
generality. Thus, the initial quantum state, ρ(0) is diagonal in the |j, m〉 basis of Hj, that is, the
basis of simultaneous eigenstates of Ĵ2 and Ĵ z.

The systems to be measured against the quantum RF will be spin-1/2 systems, each with a
Hilbert space H1/2. We choose the initial state of each such system to be the completely mixed
state I/2, where I is the identity operator on H1/2. This corresponds to maximal ignorance about
the spin-1/2 system. Our quantum RF will be used to measure many such independent spin-1/2
systems sequentially. We shall assume trivial dynamics between measurements, and thus our time
index will simply be an integer specifying the number of measurements that have taken place.
The state of the RF following the nth measurement is denoted ρ(n), with ρ(0) denoting the initial
state of the RF prior to any measurement. We consider the state of the RF from the perspective
of someone who has not kept a record of the outcome of previous measurements. Thus, at every
measurement, we average over the possible outcomes with their respective weights to obtain the
final density operator.

A measurement of the relative orientation of a spin-1/2 particle to a spin-j system is
represented by operators that are invariant under collective rotations. The measurement that
provides the maximum information gain about the relative orientation between a spin-j and a
spin-j′ system has been determined in [12]. It is simply a measurement of the magnitude of the
total angular momentum Ĵ2. That is, it is the projective measurement {�J}, where �J projects
Hj ⊗ Hj′ on to the total Ĵ2 eigenspace with eigenvalue J(J + 1). For the case where j′ = 1/2, the
optimal measurement for determining the relative orientation is represented by the two-outcome
projective measurement {�+ ≡ �j+1/2, �− ≡ �j−1/2} on Hj ⊗ H1/2 [12].

3.2. Measurement-induced update of the directional RF state

A given projective measurement can be associated with many different update maps. As discussed
in section 2, we choose the update map that is minimally disturbing. In appendix A, it is shown
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that this corresponds to adopting the Lüders rule for updating: for a measurement outcome
associated with the projector �, the quantum state ρ is updated to �ρ�/Tr(ρ�).

Thus, under the optimal measurement for relative orientation, the evolution of the quantum
RF as a result of the nth measurement is

ρ(n+1) = E(ρ(n)), (1)

where

E(ρ) = TrS

( ∑
c∈{+,−}

�c(ρ ⊗ I/2)�c

)
, (2)

and TrS denotes the partial trace over the spin-1/2 system.
The map E can be written using the operator-sum representation [13] as

E(ρ) = 1

2

∑
c∈{+,−}

∑
a,b∈{0,1}

Ec
abρE

c†
ab , (3)

where

Ec
ab ≡ 〈a|�c|b〉 (4)

is a Kraus operator on Hj and {|0〉, |1〉} is a basis for H1/2. These operators can be straight-
forwardly determined in terms of Clebsch–Gordan coefficients.

We note that the evolution of the RF is not unitary (and would not be unitary even if the
measurement result was kept), because the quantum RF becomes entangled with the measured
system which is subsequently discarded. Thus, the map E is irreversible and consequently one
may say that the quantum state of the RF undergoes decoherence.

In appendix B, we provide a recurrence relation for the matrix elements of the state ρ(n).

3.3. Measure of directional RF quality

One simple measure of how much the RF degrades is the fidelity [13] between the state after n

measurements, ρ(n), and the initial state, ρ(0), which clearly decreases with n. Another natural
measure is the asymmetry of the state [14], which also is found to decrease with n. However, rather
than use these measures, we will instead choose to quantify the quality of the RF operationally
as the average probability of a successful estimation of the orientation of a spin-1/2 system in
a pure state (relative to the background RF). For simplicity, we assume that this fictional ‘test’
spin-1/2 system is with equal probability either aligned or anti-aligned with the background
RF. It is worth making special note of the fact that in the sequence of measurements that cause
the RF degradation, the state of the spin-1/2 system is not assumed to be a pure state that is
aligned or anti-aligned with the RF. It is assumed to be completely mixed. However, after each
measurement we ask: if a spin-1/2 system in such a pure state were compared to the RF, how
well could we estimate whether it was aligned or anti-aligned?

Denote the pure state of the test spin-1/2 system that is aligned (anti-aligned) with the initial
RF by |0〉 (|1〉). For a spin-1/2 system prepared in the state |0〉, the probability of success, that
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is, of finding the correct (j + 1/2) result, is

P0
s (n) = Tr([ρ(n) ⊗ |0〉〈0|]�+) = TrR(ρ(n)E+

00). (5)

Similarly, for a spin-1/2 system prepared in the state |1〉, the probability of the correct (j − 1/2)

result is P1
s (n) = TrR(ρ(n)E−

11). Thus, the average probability of success is

P s(n) = 1
2TrR(ρ(n)(E+

00 + E−
11)). (6)

Using Clebsch–Gordan coefficients to determine the Kraus operators of equation (4), we find

P s(n) = 1 − 1

(2j + 1)

j∑
m=−j

(j − m + 1/2)TrR(ρ(n)|j, m〉〈j, m|). (7)

We remind the reader that, at every measurement, the resulting density matrix for the RF has been
averaged over the possible previous outcomes with their respective weights. Thus, this measure
P s(n) is applicable to situations where the prior measurement record is discarded. In addition,
this method also quantifies the average case longevity even if the measurement record is kept.

We now focus our attention on a particular initial state of the RF. We choose the state that is
optimal for our measure of RF quality, in other words, we choose the ρ(0) that maximizes P s(0).
This involves minimizing the sum in equation (7), which may be written as

Tr(Mρ(0)), (8)

where

M =
j∑

m=−j

(j − m + 1/2)|j, m〉〈j, m|. (9)

Clearly then, we should choose ρ(0) to be an eigenvector of M associated with the smallest
eigenvalue, namely, ρ(0) = |j, m = j〉〈j, m = j|. Thus, we see that the quantum state that
maximizes our measure of quality of the RF is an SU(2) coherent state, yielding P s(0) =
1 − 1/[2(2j + 1)].

(This result is not in conflict with that of Peres and Scudo [15], where it was demonstrated
that the product state of N parallel spins (which is equivalent to the SU(2) coherent state) was
not the optimal state for the transmission of a reference direction, because their system was not
assumed to be a spin-j representation, as we have done here. An interesting direction for future
work is to extend the results of [16] in order to determine the optimal measurements of spin-1/2
systems against these more general RF systems and to explore the degradation in this case.)

3.4. Scaling of the longevity of a directional RF with size

Our problem is to solve equation (1) to determine the RF state as a function of n. In the limit
j � 1, one can obtain a closed-form expression for the diagonal elements of the state of the RF
at step n, assuming an initial state ρ(0) = |j, j〉〈j, j|. It is

Tr(ρ(n)|j, m〉〈j, m|) = (−1)j−m

(
n

j − m

)
(j − m)!(−2j)U(j − m + 1, n + 2, −2j), (10)

where U(a, b, z) is Kummer’s U function [17]. Details are given in appendix B.
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Figure 1. A plot of the success probability for a test particle to be measured
correctly against the directional RF, versus the number of previous spins that
have been measured against the frame. The plots (from bottom left to top right)
are for an RF of spin j = 1, 3, 5, 10, 15, 25, 50 and 100, respectively.

Using this result, we find the rate at which P s(n) decreases with n to be

P s(n) = 1

2
+

j

2j + 1

(
1 − 2

(2j + 1)2

)n

. (11)

We plot this for various values of j in figure 1.
The initial slope of this function bounds the rate of degradation. It is

R ≡ P s(1) − P s(0) = −2j/(2j + 1)3. (12)

Thus, in the large j limit, we have the rate of degradation with n satisfying R � −1/(4j2).
Let ε < 1 be a fixed allowed error probability for the spin-1/2 direction estimation problem.

After n measurements, the probability of successful estimation is lower bounded by 1 + nR, so
the number of measurements required to ensure that this bound be greater than 1 − ε is −ε/R.
Consequently, the number of measurements that can be implemented relative to the spin-j RF
with probability of error less than ε is

nmax � εj2. (13)

This result implies that the number of measurements for which an RF is useful, that is, the
longevity of an RF, increases quadratically rather than linearly with the size of the RF.

Numerical calculation of the longevity’s dependence on RF size for various choices of error
threshold confirm this result; see figure 2.

This result implies that, in order to maximize the number of measurements that can be
achieved with a given error threshold, one should combine all of one’s directional RF resources
into a single large RF and perform all measurements relative to it. It is also worth noting that if
the directional RF is composed out of N spin-1/2 systems, so that it has size j = N/2 + 1, the
number of measurements that can be performed with probability of error less than ε scales as N2,
whereas one might have naı̈vely thought that it would be good for only as many measurements
as there are constituent spins. Finally, note that an SU(2) coherent state for N spin-1/2 systems
is a product state so that entanglement does not appear to be responsible for this property.
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Figure 2. A log–log plot of the longevity (number of measurements before the
error probability for a test particle exceeds a fixed threshold) of a directional
RF versus the size of the frame. Plots for various different error thresholds are
given. A clear quadratic asymptotic dependence emerges despite the relatively
small RFs indicated: linear regression yields gradients which all lie within 2 ± 0.1.

3.5. Application to single-spin measurement using MRFM for solid-state
quantum computing

The physical nature of measurement apparatuses and reference systems is particularly relevant
for quantum computation. The stringent requirements placed on measurement devices for use in
quantum computing include (i) large coupling strengths, often requiring the measurement device
to be made very small and placed close to the quantum registers (qubits); and (ii) the apparatuses
must be well described by classical, noiseless devices in order to obtain the required levels of
accuracy (e.g., perform projective von Neumann measurements). These two requirements appear
at first glance to be mutually exclusive, but may be satisfied by novel mesoscopic measurement
schemes. Consider, as an example, the proposal to use MRFM to measure the direction of
a single spin [18, 19] in a solid-state quantum computer. This scheme makes use of a small
magnet placed on the tip of a nano-mechanical resonator; monitoring the oscillations of the
resonator can be used to measure the direction of a spin placed near the magnet. To couple
strongly to a single spin, the measurement device must be cold and very small (i.e., a resonator
with a mass of the order of picograms, with a magnet on the tip of length scale 10 nm [19]).
However, objects on this scale are poorly approximated as classical, macroscopic measurements
apparatuses, and thus a semi-classical or full quantum treatment of the measuring device is
required.

The results we have presented here can be applied to the proposed use of MRFM to measure
the direction of a single spin, and its associated applications to solid-state quantum computing.
The design parameters of a scheme to obtain single-spin measurement are outlined in [19], in
which the magnet consists of an iron sphere of diameter ∼300 Å. Treated as a quantum system,
then, the magnet can be approximately described by 106 parallel spins. With an error tolerance
of 10−4 (a reasonable threshold for quantum computation) this RF would perform 108 optimal

New Journal of Physics 8 (2006) 58 (http://www.njp.org/)

http://www.njp.org/


10 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

measurements before degrading beyond further usefulness. Thus, if the measurement scheme
can be chosen such that the disturbance on the RF due to each measurement is comparable with
that of the optimal update map, it appears that a mesoscale RF such as this may be suitable for
repeated use in large-scale quantum computation.

4. Phase reference

We now consider the case of a phase reference. Our systems will consist of oscillator modes,
taken to be optical modes for clarity. It should be noted that we focus on the optical case
only to make the description of the results less abstract; the results are applicable to any phase
reference.

4.1. Measurement of single-rail qubit relative to phase reference

For our phase reference, we take a single oscillator mode with Hilbert space denoted by HR.
(Note that we could instead use a multimode phase reference, or even many qubits prepared as
‘refbits’ [10].) Again, the initial quantum state of the RF is denoted ρ(0). We describe this RF
relative to a background phase reference, and arbitrarily choose its phase to be zero (our choice
of gauge).

The systems to be measured against the RF will be single-rail qubits, i.e., oscillators with
states restricted to the lowest-energy two-dimensional subspace spanned by Fock states |0〉 and
|1〉. The Hilbert space is denoted HS .

We consider the particular estimation task wherein the system is promised to encode phase
0 or phase π with equal probability, which is to say that it is promised to be in a state |+〉 or
|−〉, where |±〉 = 2−1/2(|0〉 ± |1〉), with equal probability. In this case, an optimal measurement
for estimating whether the relative phase between system and quantum RF is 0 or π is the
two-outcome projective measurement {�+, �−} with

�+ =
∞∑

m=1

|m, +〉〈m, +| + |0〉R 〈0| ⊗ |0〉S 〈0|, �− =
∞∑

m=1

|m, −〉〈m, −|, (14)

where

|m, ±〉 = 1√
2
(|m〉R|0〉S ± |m−1〉R|1〉S). (15)

This is demonstrated in appendix C.
It is worth noting that this measurement is a coarse-graining of the optimal projective

measurement of phase [20] on each of the two-dimensional eigenspaces of total photon number;
we further note that this measurement was used in [21] for the same purpose.

We will be interested in determining how the RF state evolves after many such measurements
on distinct systems. For simplicity, we consider the RF state as it is described by an observer
who does not know whether the system was in the state |+〉 or |−〉 initially, and because the
two are presumed equally likely, the initial state of the system is presumed to be the completely
mixed state I/2. We also assume that the observer does not keep track of the results of the
measurements.
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4.2. Measurement-induced update of the phase reference

As with the directional example, the update rule for this two-outcome projective measurement
that is minimally disturbing is the Lüders rule, described in appendix A.

With this choice of update rule, the evolution of the quantum RF as a result of the
nth measurement has the same form as equations (1)–(4) but where the Ec

ab operators are now
given by

E+
00 = 1

2(IR + |0〉〈0|), E−
00 = 1

2(IR − |0〉〈0|), (16)

E+
11 = E−

11 = 1
2IR, (17)

E+
10 = −E−

10 = (E+
01)

† = −(E−
01)

† = 1
2A, (18)

where IR is the identity on HR and

A ≡
∞∑

m=0

|m〉〈m + 1|. (19)

The update map due to a single measurement is therefore

E(ρ) = 1
2ρ + 1

4 |0〉〈0|ρ|0〉〈0| + 1
4A

†ρA + 1
4AρA†. (20)

Again we note that although it may be difficult to achieve such an update map in practice,
it is nonetheless interesting to consider because it defines the quantum limit of RF longevity.
If the systems under consideration are modes of the electromagnetic field, this update map
is particularly impractical given current technology because it corresponds to a quantum non-
demolition measurement on the electromagnetic field. An interesting problem for future research
is to determine how much degradation, in excess of the quantum limit, is incurred by the use of
more realistic update maps.

4.3. Measure of phase reference quality

As with the directional case, we operationally quantify the quality of the RF at step n as the
average probability of success in a hypothetical measurement of whether a qubit system is in
phase or out of phase with the background phase reference, that is, whether the qubit is in the
state |+〉 or |−〉, given equal prior probability for these two possibilities. Denoting the state of
the RF at step n by ρ(n), and using the optimal measurement (14), the average success rate is
found to be

P s(n) = 1
2 + 1

2

∞∑
m=0

Re(ρ(n)
m,m+1), (21)

where ρ
(n)
m,m+1 ≡ Tr(ρ(n)|m〉〈m + 1|).

Just as we did for the directional case, we consider the degradation in the case of an initial
state of the RF that is initially optimal for our measure of RF quality, i.e., the state ρ(0) that
maximizes P s(0). However, if the accessible Hilbert space HR is taken to be infinite-dimensional,
then this probability can trivially be made arbitrarily close to one. To obtain a non-trivial and
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physical result, we must bound the energy of the state ρ(0) in some way; we may then use
this bound as a measure of the ‘size’ of the RF, analogous to the use of total spin j for the
directional case.

One natural choice for implementing this bound is to limit the maximum photon number
to some fixed value N, i.e., demand that ρ(0) has support entirely on the (N + 1)-dimensional
subspace spanned by {|m〉, m = 0, . . . , N}. We now seek the state ρ(0) that maximizes P s(0)

subject to this constraint. This requires us to maximize the expression

Tr(MNρ(0)), (22)

where

MN =
N∑

m=0

(|m〉〈m + 1| + |m + 1〉〈m|). (23)

Thus we must choose ρ(0) to be the eigenvector of MN with minimal eigenvalue. The solution is

|ψN〉 = N
N∑

m=0

sin

[
(m + 1)π

N + 2

]
|m〉, (24)

where N is a normalization factor. This is the same state that is optimal for determining
the relative path length between two arms in an interferometer, for several different figures
of merit [22]. We provide a derivation of equation (24) in appendix D. For this state,
we have

P s(0) = 1
2(1 + cos(π/(N + 2))) � 1 − π2

2N2
, for large N. (25)

We note, however, that our method of bounding the energy of the initial state ρ(0) excludes
states, such as the coherent state |α〉 = e−|α|2/2

∑∞
n=0(α

n/
√

n!)|n〉, that have nonzero support on
the entire Hilbert space HR but nevertheless have a finite energy. It is beyond the scope of this
paper to explore all the varied possibilities for determining optimal phase references for alternate
choices of bounds. However, because of the ubiquity of coherent states as phase references in
many physical systems, we will also consider how the longevity of a coherent state compares
with the optimal phase-encoding state with bounded number (24). We compare the size of such
states through average photon number n̄, which is given by |α|2 for a coherent state and by N/2
for an optimal phase-encoding state containing at most N photons.

4.4. Degradation of phase reference

To determine the rate at which P s(n) decreases with n, given an initial state ρ(0) for the RF,
we need only to determine the evolution of the matrix elements ρm,m+1. To this end, we use
equation (20) to obtain the following recurrence relation for these elements,

ρ
(n+1)
m,m+1 = 1

2ρ
(n)
m,m+1 + 1

4ρ
(n)
m+1,m+2 + 1

4ρ
(n)
m−1,m. (26)
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Figure 3. A plot of the success probability for a test mode to be measured correctly
against the phase RF, versus the number of previous oscillators that have been
measured against the frame. Plots are shown for both coherent states and the
optimal phase-encoding states for bounded number. The plots (from bottom left
to top right) are for an RF of average photon number m̄ = 1, 4, 9, 16, 25, 36, 49
and 64, respectively. The fact that the plots for the coherent state and the optimal
phase-encoding state are nearly overlapping at m̄ = 4 and 9 is a result of the
similarity of the number distributions of the two states at these values of m̄.

As it turns out, the elements on the m, m + 1 diagonal depend only on elements on this diagonal
at the previous time step. The solution to this recurrence relation is found to be

ρ
(n)
m,m+1 = 1

4n

n+m+1∑
j=1

[(
2n

n − j + m

)
−

(
2n

n − j − m

)]
ρ

(0)
j,j+1. (27)

This expression can be used in equation (21) to determine numerically how P s(n) decreases with
n for a given choice of initial state ρ(0). In figure 3, we plot P s(n) for an initial optimal phase-
encoding state with number bound N, equation (24), for various values of N. For comparison,
we also plot P s(n) for an initial coherent state with mean number |α|2 = N/2 (so that we are
comparing states with the same mean number of photons). We note that, although the optimal
phase-encoding state with bounded number gives a superior initial probability of success P s(0)

when compared to that of the coherent state, the latter appears more robust and does not degrade
as quickly. This result demonstrates, perhaps surprisingly, that optimizing the initial quality of a
quantum RF (quantified by the initial probability of success) does not optimize the longevity of
the state. It is an interesting line of future research to determine which quantum states give the
optimal longevity.

We find numerically that the longevity of a phase reference, both for the optimal phase-
encoding state with bounded number and for the coherent state, scales as n̄2, the mean photon
number squared; see figure 4. Specifically, we find that P s(n) reaches a fixed value independent
of n̄ after a number of uses equal to n̄2. Again, we find that the number of measurements for
which a phase RF is useful, that is, the longevity of an RF, increases quadratically rather than
linearly with the size of the RF.
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Figure 4. A log–log plot of the longevity (number of measurements before the
error probability for a test particle exceeds a fixed threshold) of a phase RF
versus the size of the frame. Plots for various different error thresholds are given.
A clear quadratic asymptotic dependence emerges despite the relatively small
RFs indicated: linear regression yields slope fits which all lie within 2 ± 0.1.

5. Discussion

We have presented results on the degradation of both a directional and a phase reference. In
each case we have essentially uncovered a quadratic scaling of the number of uses the frame can
endure in terms of the size of the frame. An open question is whether this quadratic scaling of
longevity holds for all types of RFs.

It is interesting to consider whether a semi-classical model would suffice for describing the
degradation of an RF. In particular, one could employ a description of a dynamical classical RF
that uses a probability distribution on the space of ‘orientations’ which encodes one’s ignorance
of the exact direction, and also use a measurement theory that relates the probability of successful
measurement to the uncertainty (variance) of this distribution. This uncertainty would increase
with repeated measurements; a simple model might be to use diffusion (i.e., a classical random
walk) to characterize this increase. Our key result in this paper is to determine the rate of
degradation and its dependence on the size of the RF. If this rate was to be determined solely
from a semi-classical model, then the model would require a sophisticated measurement theory
for determining the direction of a quantum spin relative to a classical object of a given size. We
believe that a heuristic, semi-classical model that predicts the quadratic scaling of the number
of uses of an RF in terms of its size would be very desirable.

It is worth noting that we have considered only the consequences of measurements on an
RF, and not the consequences of a continual interaction with an environment. In practice, RFs do
interact with their environments, and so the impact on their longevity is an important question for
future research. It should be noted that although many environments are likely to act in a manner
similar to measurements, thereby increasing the rate of degradation, others might in fact act to
continuously realign one’s quantum RF with another, larger, RF which exists in the background.
For instance, if the RF is composed of a number of spins, and is continuously interacting with a
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strong uniform magnetic field, then thermalization will tend to cause the spins to become aligned
with the field.

Spatial/directional RFs are ubiquitous, and so one might question the need for considering
their degradation. It could be argued, for example, that any directional RF which has degraded
can be realigned with some background RF in the lab (treated as a macroscopic directional RF) at
any time. However, such realignment may prove to be difficult for microscopic apparatuses that
are placed close to the quantum systems to be measured. In addition, realignment of a degraded
shared RF costs resources—an issue that can be important especially within the context of
quantum communication. Our main result shows, however, that such realignment may not be
necessary for many situations, such as the MRFM example discussed above.

Although some RFs, such as directional RFs, are indeed ubiquitous, RFs for many other
degrees of freedom are not. Some RFs must be painstakingly prepared via some controlled
quantum process. One example is the BCS ground state of a superconductor, which serves as a
phase reference for experiments involving superconducting qubits; another example is a Bose–
Einstein condensate. An analysis similar to the one presented in this paper for any such frame
could be used to determine the RF size necessary to keep errors below a specified threshold for
a specified number of uses.

Although in this paper we have considered the amount of degradation that results from
measurements that maximize the information gain about the relative orientation of system and RF,
it is clear that there is a trade-off between longevity and information gain; the more informative
the measurement, the more degradation to the RF. An interesting problem for future research is
to determine the precise nature of this trade-off.
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Appendix A. Proof that Lüders rule updating is minimally disturbing

A measure of the quality of an RF, henceforth a measure of ‘frameness’, is operational if it
quantifies the maximum success with which one can achieve some task in a variation over
all protocols that use only the resource and invariant operations. Any operational measure of
frameness F is by definition a monotone with respect to operations that are invariant under the
action of the group associated with that RF, that is, if ρ is the quantum state of an RF for the
group G, then

F(E(ρ)) � F(ρ), (A.1)

for all E that are invariant under G, that is, for which E[U(g)(·)U†(g)] = U(g)E(·)U†(g) for all
g ∈ G. We call such measures frameness monotones.
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The maximum probability of a successful estimation of a direction of a system relative
to a quantum RF is clearly an operational measure of frameness (it involves a variation over
all estimation protocols that use invariant operations and the RF resource). It is therefore by
definition a frameness monotone.

We now make use of the following proposition concerning CP maps that are update maps
for a projective measurement.

Proposition. For any map E such that E†(I ) = �, where � is a projector, we have

E(ρ) = E(�ρ�). (A.2)

Proof. Any Krauss decomposition of E is of the form

E(ρ) =
∑

µ

KµρK†
µ, (A.3)

with ∑
µ

K†
µKµ = �. (A.4)

Given that every term in the sum is positive, that is, K†
µKµ � 0, it follows that

supp(K†
µKµ) ⊆ supp(�), (A.5)

where supp(A) denotes the support on the Hilbert space of the operator A. It follows that

supp(

√
K

†
µKµ) ⊆ supp(�), (A.6)

and thus √
K

†
µKµ =

√
K

†
µKµ�. (A.7)

But now using the polar decomposition Kµ = Uµ

√
K

†
µKµ, we infer that

Kµ = Kµ�. (A.8)

Our claim then follows trivially. �
Now, by virtue of the fact that E is invariant under G, and by virtue of the fact that the

probability of successful estimation of a direction, Ps, is a frameness monotone, it follows that

Ps(E(ρ)) = Ps(E(�ρ�)) (A.9)

� Ps(�ρ�). (A.10)

Normalizing our density operators, we have

Ps

(
E(ρ)

Tr(�ρ)

)
� Ps

(
�ρ�

Tr(�ρ)

)
. (A.11)

Thus the probability of successful estimation given a Lüders rule collapse map ρ →
�ρ�/Tr(�ρ) is an upper bound for the probability of successful estimation for any collapse
map associated with �. Thus, one can do no better than to use the Lüders rule collapse map.
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Appendix B. Derivation of the recurrence relation for a directional RF

In order to explicitly solve for the degraded state ρ(n) of a directional RF as a function of n,
we now derive a recurrence relation for the matrix elements of the state. The Ec

ab operators
can be obtained in the |j, m〉 basis using Clebsch–Gordan coefficients by making use of the
decomposition

�± =
j± 1

2∑
M=−(j± 1

2 )

|j ± 1
2 , M〉〈j ± 1

2 , M|, (B.1)

where

|j ± 1
2 , M〉RS = (j, M − 1

2; 1
2 ,

1
2 |j ± 1

2 , M)|j, M − 1
2〉R|0〉S

+ (j, M + 1
2; 1

2 , − 1
2 |j ± 1

2 , M)|j, M + 1
2〉R|1〉S. (B.2)

Denoting 〈j, m|R E |j, m′〉R by [E]xx′, where x ≡ j − m, we have

[E+
00]xy = 2j + 1 − x

2j + 1
δxy, [E+

11]xy = (x + 1)

2j + 1
δxy, [E−

00]xy = x

2j + 1
δxy,

[E−
11]xy = 2j − x

2j + 1
δxy, [E±

01]xy = [E±
10]yx = ±

√
x(2j + 1 − x)

2j + 1
δx−1,y,

where 0 � x, y � 2j.
Using these expressions, we are led to the following recurrence relation:

(2j + 1)2ρ(n+1)
xy = (2j2 + 2j + 1 + 2(j − x)(j − y))ρ(n)

xy

+
√

xy(2j + 1 − x)(2j + 1 − y)ρ
(n)
x−1,y−1

+
√

(x + 1)(y + 1)(2j − x)(2j − y)ρ
(n)
x+1,y+1. (B.3)

Note that if the initial state is diagonal in the |j, m〉 basis (as is noted in subsection 3.1, we can
demand this without loss of generality), it remains diagonal. In this case, the recurrence relation
is simply

(2j + 1)2ρ(n+1)
xx = (2j2 + 2j + 1 + 2(j − x)2)ρ(n)

xx

+ x(2j + 1 − x)ρ
(n)
x−1,x−1 + (x + 1)(2j − x)ρ

(n)
x+1,x+1. (B.4)

We now explicitly solve for ρ(n) for the optimal initial state ρ(0) = |j, j〉〈j, j| for j � 1. The
recurrence relation in this limit is

ρ(n+1)
xx = [1 − 1

2j
(2x + 1)]ρ(n)

xx + 1
2j

[xρ(n)
x−1,x−1 + (x + 1)ρ

(n)
x+1,x+1]. (B.5)

Expressing the initial condition in matrix form as ρ
(0)
00 = 1 and all other elements equal to 0, we

find the diagonal matrix elements after n measurements to be

ρ(n)
xx =

n∑
k=x

(−1)k+x

(
n

k

) (
k

x

)
k!

(2j)k
, (B.6)
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which can be expressed in closed form as equation (10). One can verify that this is indeed a
solution to the recurrence relation.

Appendix C. Optimal measurement of relative phase

We seek the optimal measurement for estimating whether two oscillators are in phase, or π out
of phase, assuming the second has a maximum occupation number of 1 (i.e. the second oscillator
is a qubit), and assuming that the 0 and π relative phases occur with equal probability.

The total Hilbert space that we need to take account of is

∞⊕
n=0

Hn ⊗ (H0 + H1) =
∞⊕

m=0

Km, (C.1)

where

Km =
{

span{|m〉|0〉, |m−1〉|1〉} for m > 0,

span{|0〉|0〉} for m = 0.

By Schur’s lemma, any positive operator that is invariant under collective phase rotations must
be block diagonal with respect to

⊕∞
m=0 Km. In other words,

Eλ =
∞∑

m=0

∑
µ

w(λ)
m,µGm,µ, (C.2)

where {Gm,µ}µ is a POVM on Km, and where w(λ)
m,µ � 0 and

∑
λ w(λ)

m,µ = 1 to ensure that∑
λ Eλ = I. It follows that w(λ)

m,µ is a probability distribution over λ and consequently that the
Eλ can be obtained by random sampling of the Gm,µ. Thus, we may as well simply measure the
POVM {Gm,µ}m,µ.

Because the measurement outcome associated with the POVM element K0 yields no
information about the relative phase, we adopt the arbitrary convention that upon obtaining
such an outcome a relative phase of 0 is guessed.

Now consider the measurement outcomes associated with POVM elements confined to
Km for m > 0. Within Km, the optimal POVM for estimating whether the relative phase is 0
or π may be assumed to be covariant with respect to the group of relative transformations.
Because there are only two transformations, namely, V(0) = I ⊗ I and V(π) = I ⊗ eiπN̂,

there need only be two POVM elements, which we denote Gm,0 and Gm,π, and covariance
implies that

Gm,π = V(π)Gm,0V(π)†.

The optimal POVM may also be assumed to be rank 1 in Km, so that

Gm,0 = |gm〉 〈gm| , (C.3)

where

|gm〉 = gm,0 |m〉 |0〉 + gm,1 |m − 1〉 |1〉 . (C.4)

New Journal of Physics 8 (2006) 58 (http://www.njp.org/)

http://www.njp.org/


19 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Noting that

V(π) |gm〉 = gm,0 |m〉 |0〉 − gm,1 |m − 1〉 |1〉 , (C.5)

it follows that

Gm,0 + Gm,π = 2|gm,0|2|m〉〈m| ⊗ |0〉〈0| + 2|gm,1|2|m−1〉〈m−1| ⊗ |1〉〈1|. (C.6)

But given that Gm,0 + Gm,π = IKm
, we conclude that |gm,0|2 = |gm,1|2 = 1/2. Thus

|gm〉 = 2−1/2(|m〉|0〉 + eiφm|m − 1〉|1〉),
for some phase φm. Because we have assumed that the outcome associated with the POVM
element G0 is the one which leads to a guess of 0 relative phase, the optimal POVM must
have φm = 0. Thus, |gm〉 = |m, +〉 and V(π)|gm〉 = |m, −〉, where |m, ±〉 is defined as in
equation (15).

Coarse-graining all the POVM elements that lead to a guess of 0 relative phase (which
includes the projector on to |0〉|0〉 according to the convention we chose above) into a single
POVM element �+, and all those that lead to a guess of π relative phase into a POVM element
�−, we find that the optimal POVM has the form given in equation (14).

Appendix D. Optimal RF state for estimating relative phase

The characteristic equation we must solve is

det(MN − λIN) = 0, (D.1)

where IN is the identity operator on the space of N or fewer photons. Defining GN ≡ MN − λIN ,
one finds that

det GN = −λ det GN−1 − det GN−2, (D.2)

for which the solution is

det GN = UN(−λ/2), (D.3)

where the UN are the Chebyshev polynomials of the second kind, given by Um(cos θ) =
sin [(m + 1)θ]/sin θ. Given that UN(x) = ±UN(−x), it follows that the characteristic equation
is UN+1(λ/2) = 0, and thus the largest eigenvalue is λmax = 2 cos(π/(N + 2)).

To find the eigenvector |ψ〉 associated with the largest eigenvalue, we must solve

MN |ψ〉 = λmax|ψ〉. (D.4)

Defining ψm ≡ 〈m|ψ〉, we have

ψm+1 + ψm−1 = λmaxψm, (D.5)

for 1 � m � N − 1. At m = 0, we have ψ1 = λmaxψ0, and at m = N, we have ψN−1 = λmaxψN .
The solution is

ψm = Um(λmax/2) = N sin

[
(m + 1)π

N + 2

]
, (D.6)

where N is a constant. The coefficients ψm fall to zero at N + 1, verifying the presence of a
cut-off in photon number at m = N. This solution confirms equation (24).
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