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Abstract. The polarization of graphene is calculated exactly within the random
phase approximation for arbitrary frequency, wavevector and doping. At finite
doping, the static susceptibility saturates to a constant value for low momenta. At
q = 2kF it has a discontinuity only in the second derivative. In the presence of a
charged impurity this results in Friedel oscillations which decay with the same
power law as the Thomas–Fermi contribution, the latter being always dominant.
The spin density oscillations in the presence of a magnetic impurity are also
calculated. The dynamical polarization for low q and arbitrary ω is employed
to calculate the dispersion relation and the decay rate of plasmons and acoustic
phonons as a function of doping. The low screening of graphene, combined with
the absence of a gap, leads to a significant stiffening of the longitudinal acoustic
lattice vibrations.
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1. Introduction

Recent progress in the isolation of single graphene layers has permitted the realization of
transport and Raman experiments [1] which have stimulated an intense theoretical research
on the properties of a monoatomic graphene sheet. Most of the unusual electronic properties can
be understood in terms of a simple tight-binding approach for the π-electrons of carbon, which
yields a gapless linear band structure with a vanishing density of states at zero doping [2, 3].

The electronic band structure of an undoped single graphene sheet allows for a description
of the electronic properties in terms of an effective field theory which is equivalent to quantum
electrodynamics (QED) in 2 + 1 dimensions. Within such a framework important physical
quantities such as the electron self-energy or the charge and spin susceptibilities can be calculated
exploiting the special symmetries of the model [4].

Finite doping away from half-filling qualitatively changes the above description, since it
breaks electron-hole symmetry and also the pseudo Lorentz invariance needed for the equivalence
with QED in two space dimensions. One is thus forced to retreat to conventional condensed-
matter techniques such as e.g. Matsubara–Green’s functions. This was recently done for the static
susceptibility of graphene at finite doping [5]. Similar calculations for bulk graphite had been
performed by Shung et al [6], who investigated the dielectric function and the plasmon behaviour.
Studies of static screening in graphene based on the Thomas–Fermi (TF) approximation had
also been considered [7, 8]. The relation between the polarization and the transport properties
of graphene has been recently discussed in [5, 9, 10]. Thermo-plasma polaritons in graphene are
discussed in [11].

In this paper, we calculate the dynamical polarization within the random phase
approximation (RPA) for arbitrary wavevector, frequency and doping. We discuss the method
of calculation in the next section. We present in section 3 results for static screening, where
we analyse the Friedel oscillations induced by a charged or magnetic impurity, comparing our
results with those of the two-dimensional electron gas (2DEG). Section 4 discusses the plasmon
dispersion relation and lifetime. In section 5, we analyse the screening of the longitudinal acoustic
modes by the conduction electrons. Finally, section 6 presents the main conclusions of our study.
Some of the more technical aspects of the formalism are explained in the appendix.
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2. RPA calculation

Within the effective mass approximation, and focusing on one of the two unequal K-points, the
Hamiltonian of an hexagonal graphene sheet is given in the Bloch spinor representation as [2]

H = h̄vF

∑
k

Hk, Hk = ψ
†
k

(−kF φk

φ∗
k −kF

)
ψk. (1)

Here φk = kx + iky and ψk = (ak, bk)
T , where ak and bk are the destruction operators of the

Bloch states of the two triangular sublattices. We have also introduced the Fermi wavevector kF

which is related to the chemical potential µ via kF = µ/h̄vF. The Fermi velocity vF = 3at/2h̄ is
determined by the carbon–carbon distance a = 1.42 Å and the nearest neighbour hopping energy
t = 2.7 eV resulting in vF � 9 × 105 m s−1 [12]. We note that the effective Hamiltonian given
above is valid only for wavevectors k � �, where � � 8 eV is a high-energy cutoff stemming
from the discreteness of the lattice [12].

The quantity of interest for many physical properties is the dynamical polarization, since
it determines e.g. the effective electron–electron interaction, the Friedel oscillations and the
plasmon and phonon spectra. In terms of the bosonic Matsubara frequencies ωn = 2πn/β, it is
defined as [13]

P(q, iωn) = − 1

A

∫ β

0
dτeiωnτ〈Tρ(q, τ)ρ(−q, 0)〉, (2)

where A denotes the area. The average is taken over the canonical ensemble and the density
operator is given by the sum of the density operators of the two sub-lattices ρ = ρa + ρb.
This amounts to working in the long-wavelength limit. To first order in the electron–electron
interaction, we obtain

P(1)(q, iωn) = gSgV

4π2

∫
d2k

∑
s,s′=±

f ss′
(k, q)

nF(E
s(k)) − nF(E

s′
(|k + q|))

Es(k) − Es′
(|k + q|) + ih̄ωn

, (3)

with E±(k) = ±h̄vFk − µ the eigenenergies, nF(E) = (eβE + 1)−1 the Fermi function, and
gS = gV = 2, the spin and valley degeneracy.A characteristic difference between the polarization
of graphene and that of a 2DEG is the appearance of the prefactors f ss′

(k, q) coming from the
band-overlap of the wavefunctions [5, 6]

f ss′
(k, q) = 1

2

(
1 + ss′ k + q cos ϕ

|k + q|
)

, (4)

where ϕ denotes the angle between k and q.
At zero temperature, the Fermi functions yield simple step functions.We define the following

retarded function by replacing iωn → ω + iδ

χ±
D(q, ω) = g

4π2h̄

∫
k�D

d2k
∑
α=±

αf±(k, q)

ω + αvF(k ∓ |k + q|) + iδ
, (5)

where g ≡ gSgV. The +(−) sign corresponds to intra (inter)-band transitions and D is a general
upper limit.
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For µ = 0, the retarded polarization thus reads

P
(1)
0 (q, ω) = −χ−

�(q, ω). (6)

For µ > 0, i.e., for nonzero electron doping, the retarded polarization has an additional term


P(1)(q, ω) = χ+
µ(q, ω) + χ−

µ(q, ω). (7)

In the appendix, we give additional details of the calculation of equation (5). Here, we summarize
these expressions in terms of two complex functions, F(q, ω) and G(x), defined as

F(q, ω) = g

16π

h̄v2
Fq

2√
ω2 − v2

Fq
2
, G(x) = x

√
x2 − 1 − ln

(
x +

√
x2 − 1

)
. (8)

From now on it is always assumed thatω > 0, noting that the polarization forω < 0 is obtained via
P(1)(q, −ω) = [P(1)(q, ω)]∗. Equations (6) and (7) are then rewritten in the following compact
form

P(1)(q, ω) = P
(1)
0 (q, ω) + 
P(1)(q, ω), (9)

with

P
(1)
0 (q, ω) = −iπ

F(q, ω)

h̄2v2
F

, (10)

and


P(1)(q, ω) = − gµ

2πh̄2v2
F

+
F(q, ω)

h̄2v2
F

{
G

(
h̄ω + 2µ

h̄vFq

)
− �

(
2µ − h̄ω

h̄vFq
− 1

)

×
[
G

(
2µ − h̄ω

h̄vFq

)
− iπ

]
− �

(
h̄ω − 2µ

h̄vFq
+ 1

)
G

(
h̄ω − 2µ

h̄vFq

)}
. (11)

Equations (9)–(11) are the main result of this study. Details of the calculation are given in the
appendix, where we also give expressions for the real and imaginary part of the polarization in
terms of real functions.

Two limits of the polarization are of particular importance: (i) The long wavelength limit
q → 0 with ω > vFq fixed, which is relevant for optical spectroscopy and for the plasma
dispersion. (ii) The static case ω = 0 with q arbitrary, which is relevant for the screening of
charged or magnetic impurities.

For the first case we obtain

P(1)(q → 0, ω) = gq2

8πh̄ω

[
2µ

h̄ω
+

1

2
ln

∣∣∣∣2µ − h̄ω

2µ + h̄ω

∣∣∣∣ − i
π

2
�(h̄ω − 2µ)

]
. (12)
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Table 1. Low-frequency dependence of |ImP(1)| in the limit ω → 0 for a 2DEG
and for doped graphene. Here y ≡ q/2kF.

y < 1 y = 1 y > 1

2DEG ω ω1/2 0
Graphene ω ω3/2 0

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

ω  µ

q/kF

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

ω  µ

q/kF

1. 0.−2. −1.  Im P Re P

Figure 1. Density plot of ReP(1)(q, ω) (left panel) and ImP(1)(q, ω) (right panel)
in units of µ/h̄2v2

F. We set h̄ = 1.

And for the second case, we recover previous results [5]

P(1)(q, 0) = − gkF

2πh̄vF
+ �(q − 2kF)

gq

8πh̄vF
G <

(
2kF

q

)
, (13)

where G<(x) ≡ −iG(x) is the real function (for |x| < 1) given in equation (A.2). Note that for
2µ � h̄vFq � � the absolute value of the polarization is linear in q, and acquires rapidly the
behaviour of P

(1)
0 . By contrast, the polarization of the ordinary 2DEG decreases with increasing

wavevector for q > 2kF. Furthermore, and also in contrast to the 2DEG, where the first derivative
of the static polarization is discontinuous at q = 2kF, doped graphene has a continuous first
derivative at h̄vFq = 2µ and a discontinuous second derivative.

Table 1 summarizes the ω dependence of |ImP(1)| for ω → 0 for a 2DEG and for doped
graphene. While the dependence is the same for q 
= 2kF, a subtle difference appears at q = 2kF.
This difference is intimately related to the nonanalytic behaviour (as a function of q) of the
static polarization at q = 2kF. It leads to e.g. a different power law decay of the electron
screening, as will be shown in section 3. Table 1 also indicates that, depending on the order
in which the limits q, µ → 0 are taken, the low-frequency behaviour may be that of an insulator,
a metal, or a hybrid between the two.

The polarization is a continuous function of q and ω except for the square-root divergence
which F(q, ω) shows at ω = vFq. Figure 1 shows real and imaginary parts of the polarization
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RPA RPA0.1 0.−0.2 −0.1 Re P Im P
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Figure 2. Same as figure 1, for the renormalized polarization PRPA(q, ω).

given by equation (9). We note that ImP(1)(q, ω) = 0 for h̄vFq < h̄ω < 2µ − h̄vFq or 0 < h̄ω <

h̄vFq − 2µ, and negative otherwise, while ReP(1)(q, ω) < 0 for ω < vFq.
The divergence at ω = vFq vanishes in the self-consistent RPA result of the polarization

given by [14]

PRPA(q, ω) = P(1)(q, ω)

1 − vqP(1)(q, ω)
. (14)

Here, vq = e2/2κ0q denotes the in-plane Coulomb potential in vacuum. We note that
PRPA(q, vFq) = −vq so that the self-consistent polarization has a real and finite value at ω = vFq.

Figure 2 shows real and imaginary parts of the self-consistent polarization. While the singularity
at ω = vFq is absent, a new singularity appears in RePRPA(q, ω) at ω ∝ √

q, which reflects the
existence of plasmons, as will be discussed in section 4.

3. Static screening

An external charge density next(r) = Zeδ(r) is screened by free electrons due to the Coulomb
interaction. This results in the induced charge density δn(r)

δn(r) = Ze

4π2

∫
d2q

[
1

ε(q, 0)
− 1

]
eiq·r. (15)

Here ε(q, 0) ≡ limω→0 ε(q, ω). Within the RPA approximation [6]

ε(q, ω) = ε0 − vqP
(1)(q, ω). (16)

The effective dielectric constant ε0 includes high energy screening processes. We take
ε0 � 2.4 [5].
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−0.024

−0.016
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 0
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δn
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(k

F
r)
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Figure 3. Induced charge density δn(r) (in units of k2
FZe) as a function of the

dimensionless variable kFr/π. The inset shows the r−3 decay at large distances.
The high frequency screening is set to ε0 = 2.4. In the used representation the
graphs are invariant under a change of the chemical potential.

There are two contributions to the induced charge density. A non-oscillating part comes
from the long-wavelength behaviour of the polarization. This contribution is obtained within the
TF approximation and is given by

δnTF(r) � − Ze

2παgkFr3
, (17)

where α ≡ e2/4πκ0h̄vF � 2.5. We note here that in a 2DEG the TF contribution also decays as
r−3 [15].

The second contribution to the long distance behaviour is oscillatory and comes from the
non-analyticity of the polarization at h̄vFq = 2µ. [15, 16] However, and quite importantly, in
graphene the non-analyticity results from a discontinuity occurring only in second derivative,
the first derivative being continuous. This leads to an oscillatory decay

δnosc(r) ∝ Ze cos (2kFr)

kF(ε0 + 2α)2r3
, (18)

which contrasts with the behaviour of a 2DEG, where Friedel oscillations scale like δn(r) ∝
cos (2kFr) r−2. This difference has been previously noted in [8, 17], where however TF screening
was not considered. We emphasize here that, because the TF contribution is of the same order
of magnitude as the oscillatory part, it is essential to consider both of them. Furthermore we
note that, while the TF contribution to screening given in equation (17) is independent of the
dielectric constant ε0, the amplitude of the oscillatory part given in equation (18) decreases
with increasing ε0. In fact, our numerical calculations show that for large distances the induced
density does not change sign even in the hypothetical case of ε0 = 0 where the ratio between
oscillatory and TF contribution would be maximal. This remarkable general property can be
clearly appreciated in figure 3 for the particular case of ε0 = 2.4: The induced density δn(r) does
not change sign, but oscillates around a finite offset.

The polarization also determines the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction
energy between two magnetic impurities as well as the induced spin density due to a magnetic
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Figure 4. Same as figure 3, for the induced spin density δm(r).

impurity, both quantities being proportional to the Fourier transform of P(1)(q, 0) [18]. For a
magnetic impurity at r the induced spin density δm(r) is

δm(r) ∝ P(1)(r) = 1

4π2

∫
d2qP(1)(q, 0)eiq·r. (19)

Note that the magnetic response is proportional to the bare polarization, since the spin-spin
interaction is mediated via the short-ranged exchange interaction (in contrast to the long-ranged
Coulomb interaction in the case of the charge response).That is why theTF contribution is missing
and the induced spin density oscillates around zero. Figure 4 shows the numerically calculated
P(1)(r) in units of k3

F/h̄vF and illustrates this behaviour. Specifically in the long wavelength limit
we obtain

δm(r) ∝ cos (2kFr)

r3
, (20)

which is clearly seen in the inset of figure 4. Like for the induced charge density, we find that
the induced spin polarization δm(r) decreases like r−3 for large distances. Again, this contrasts
with the r−2 behaviour found in a 2DEG [18]. For the particular case of undoped graphene we
recover the monotonous r−3 decay obtained in [19].

Finally we note that, in contrast to the behaviour of charge screening, where the induced
charge scales like 1/µ at large distances, the envelop function of the spin density is independent
of the chemical potential at large distances.

4. Plasmons

The plasmon dispersion is determined by solving for ε(q, ωp − iγ) = 0, where γ is the decay
rate of the plasmons. For weak damping, the plasmon dispersion ωp(q) and the decay rate γ are

New Journal of Physics 8 (2006) 318 (http://www.njp.org/)

http://www.njp.org/


9 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0.25 0.5 0.75 1 1.25

0.5

1

1.5

2

2.5

0.25 0.5 0.75 1 1.25

0.5

1

1.5

0.2 0.4 0.6 0.8 1 1.2 1.4

0.02
0.04
0.06
0.08
0.1

0.12
0.14

0.2 0.4 0.6 0.8 1 1.2 1.4

0.05

0.1

0.15

0.2

0.25

0.3

ω  µ

0ε  = 2.4b)0ε  = 1

0ε  = 1 0ε  = 2.4
γ  µ γ  µ

q/kF q/kF

q/kF q/kF

a)

c) d)

ω  µ

Figure 5. Upper row: solid lines show the dispersion relation for plasmons
defined by Re ε(q, ω) = 0. Dotted lines show the low-q expansion of equation
(22), while the dashed lines represents ω = vFq. The crosses indicate where the
plasmons acquire a finite lifetime. Lower row: decay rate γ of plasmons (see
equation (21)) in units of chemical potential. We set h̄ = 1.

determined by [14]

ε0 = vqReP(1)(q, ωp), γ = ImP(1)(q, ωp)

(∂/∂ω)ReP(1)(q, ω) |ωp

. (21)

Solutions to the first equation only exist for ReP(1) > 0, which is the case only for finite doping
and ω > vFq. Furthermore, a stable solution requires ImP(1) = 0, as is the case for region 1B of
figure 6. Using the low-q expansion of the polarization given in equation (12), and neglecting
the logarithmic correction, we obtain

h̄ωp(q) =
(
gαµh̄vFq

2ε0

)1/2

, (22)

with α defined below equation (17). The
√

q behaviour of the plasmon dispersion also appears
in the 2DEG.

Outside region 1B, the plasmon is damped, i.e. it has a nonzero decay rate γ . This can be
clearly seen in figures 2 and 5. In the upper row of figure 5, we plot the exact plasmon dispersion
for two different values of ε0 and indicate the point at which the collective excitation becomes
damped. The lower row shows the decay rate as obtained from equation (21).

Finally, it is interesting to note that the combination of the linear dispersion relation
for quasiparticles (electrons above (or holes below) the Fermi energy) and the plasmon
dispersion makes it impossible for a quasiparticle of energy h̄ω to decay into a plasmon
with q � ω/vF. Hence, plasmons with infinite lifetime do not contribute to the lifetime of
quasiparticles.
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Figure 6. Display of the different regions characterizing the susceptibility
behaviour. Regions are limited by straight lines ω = vFq (solid), ω = vFq − 2µ

(dashed) and ω = 2µ − vFq (dotted), where we set h̄ = 1.

5. Acoustic phonons and sound velocity

We now calculate the dispersion and the decay rate of acoustical phonons in graphene. We treat
the electrons in the π-band of graphene as quasi-free electrons, while all the other electrons are
assumed to be tightly bound to the carbon nuclei, thus forming effective ions with a positive
elementary charge. In the absence of screening by the conduction electrons, the ions oscillate at
their plasma frequency due to the long range nature of the Coulomb interaction. The collective
modes of the combined electron–ion plasma can be obtained from the zeros of the total dielectric
function εtot(q, ω), which is obtained by summing the contributions from ions and electrons [20]:

εtot(q, ω) = εel(q, ω) + εion(q, ω) − 1 = ε0 − vq[Pel(q, ω) + Pion(q, ω)]. (23)

Here, Pel, εel are the polarization and the dynamical dielectric function of the electrons as
given in equations (9) and (16), while Pion, εion are the corresponding quantities for the ions.
In the calculation of Pion(q, ω) we assume that the ions have a quadratic energy dispersion
E = h̄2k2/2M where M denotes the ion mass. The ionic charge density is two positive charges
per unit cell, so that the Fermi wavevector of the ions is k′

F � (8π/Ac)
1/2, where Ac = 3

√
3a2/2

denotes the area of the hexagonal unit cell in real space [12]. This value of k′
F is exact for field

effect doping and approximate for chemical doping.
In the calculation of Pion we assume that, for all relevant frequencies, we can take

ω 
 h̄k′
Fq/M. In the case of acoustic phonons this assumption is equivalent to vs 
 h̄k′

F/M �
1.3 × 10−4vF, where vs denotes the sound velocity. This relation is fulfilled for all meaningful
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dopings as shown below. In this regime the ion polarization is real and given by

Pion(q, ω) = k′
F

2
q2

4πMω2
= 2E0q

2

h̄2ω2
, (24)

where we defined E0 = h̄2/MAc � 7 × 10−5 eV. We note that E0 is of the order of the ion
confinement energy.

We may estimate the dispersion and the decay rate of the acoustical phonons by inserting
equation (23) into (21). For finite doping µ > 0, the acoustic phonons at long wavelengths
lie in the region 1A of figure 6 (defined by ω < vFq < 2µ/h̄ − ω), where ReP(1)(q, ω) =
−gµ/2πh̄2v2

F. In this regime the phonon dispersion is easily obtained

ωph =
(

4παE0

ε0h̄vFq + gαµ

)1/2

vFq. (25)

To be consistent with the precondition ω < vFq the expression in the square root has to be smaller
than one. This sets a lower limit to the values of the chemical potential for which equation (25)
is valid. The sound velocity vs and the decay rate γ may be derived from equations (21) and
(25) in the limit of low q. We obtain

vs =
√

ξ vF, γ = ξvFq

2
√

1 − ξ
, (26)

with ξ = 4πE0/gµ.
Some additional remarks on the validity of equation (25) go in place. We have already said

that, for q → 0, it only applies provided ξ < 1. We also wish to note that the acoustical phonons
are only well-defined if their frequency is much larger than their decay rate, i.e. if ωph/γ 
 1.
Since ωph/γ = 1 for ξ = 4/5, we conclude that the notion of acoustic phonons is justified for
ξ � 1, which corresponds to µ 
 4πE0/g � 2.2 × 10−4 eV.A detailed discussion of acoustical
phonons for ξ > 1 is left for future work.

We have assumed initially that vs 
 h̄k′
F/M � 1.3 × 10−4vF. According to equation (26)

this results in ξ 
 1.7 × 10−8, or equivalently, µ � 108E0, which is always fulfilled.
We finish this section by estimating the sound velocity of a typical graphene sample.

Assuming a concentration of ‘conduction-band’ electrons of nel = 1010–1012 cm−2 we get
µ � 10−2–10−1 eV. We note that this corresponds to ξ � 2–20 × 10−3, so that equations (25) and
(26) are applicable, resulting in vs � 0.05–0.14 vF � 4–12 × 104m s−1 and γ � 10−3–10−2 vFq.
These results suggest a significant enhancement of the sound velocity, as compared to normal
metals, where vs � √

m/2MvF � 10−2vF. The low polarizability of the conduction electrons
leads to a poor screening of the oscillations of the charged ions. On the other hand, in a
semiconductor with a gap larger than the typical acoustic phonon frequencies, the electrons
follow adiabatically the ions. In that case, the lattice vibrations can be described as oscillations
of neutral particles.

6. Conclusions

In this article we have derived a compact and closed expression for the dynamical polarization
of graphene within the RPA approximation. The obtained result is valid for arbitrary wavevector,
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frequency and doping. As particular cases, we have derived the long wavelength limit q → 0
and the static limit ω → 0. We have employed the RPA polarization to calculate several physical
quantities of interest in doped graphene. Firstly, we have studied the static Friedel oscillations
of the induced charge(spin) density in the presence of a charged(magnetic) impurity. We have
found that, although the charge density does show oscillations around an average value, it does
it without changing sign. The reason for this remarkable behaviour is that Friedel oscillations
superpose on the dominant TF induced density, with both contributions decaying at long distances
r with the same power law r−3.

The dynamical polarization has been used to calculate the dispersion relation and the decay
rate of plasmons and acoustic phonons. Like in the 2DEG case, the plasmon frequency shows a√

q-behaviour in the long wavelength regime. We have determined the region in the (q, ω) plane
where the plasmon is stable, as well as the decay rate in the regime where it is not.

The dispersion of acoustical phonons has been shown to be strongly dependent on the
chemical potential. In particular, we have found that the sound velocity approaches the Fermi
velocity at low doping. However, the same limit shows an increase in the decay rate of acoustic
phonons due to electron–hole pair excitation.

Although we have focused on applications of the RPA calculation to the case of doped
graphene, some aspects of the low-frequency, long-wavelength dynamics of pure graphene appear
to be intriguing and worth studying further.
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Appendix. Calculation of the polarization

In the following, we present some major steps of the calculation of the polarization. We restrict the
discussion to ω > 0 since P(1)(q, −ω) = [P(1)(q, ω)]∗. In all of the appendix, we set vF = h̄ = 1,
so that in the appendix µ = kF.

A.1. Imaginary part

The imaginary part of the functions χ±
D(q, ω) defined in equation (5) has the following form

Imχ
β

D(q, ω) = − g

4π

∫ D

0
dk

∑
α=±

α Iαβ(k, q, ω),

Iαβ = k

∫ 2π

0
dϕ fβ(k, q)δ[ω + α(k − β|k + q|)],

New Journal of Physics 8 (2006) 318 (http://www.njp.org/)

http://www.njp.org/


13 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

The ϕ-integration yields

Iαβ =
[
(2αk + ω)2 − q2

q2 − ω2

]1/2 {
�(β)�(q − ω)�

(
k − q − αω

2

)

+�(−β)�(ω − q)�(−α)

[
�

(ω + q

2
− k

)
− �

(
ω − q

2
− k

)]}
,

which is always real. The final k-integration can now simply be performed. We obtain for µ = 0

ImP
(1)
0 (q, ω) = g

4π

∫ �

0
dk

∑
α

αIα −(k, q, ω) = − gq2

16
√

ω2 − q2
�(ω − q). (A.1)

In order to present the result for µ > 0, we introduce the real functions f(q, ω), G>(x), G<(x)

f(q, ω) = g

16π

q2√|ω2 − q2| ,

G>(x) = x
√

x2 − 1 − cosh−1(x), x > 1,

G<(x) = x
√

1 − x2 − cos−1(x), |x| < 1. (A.2)

For the additional term at finite doping given by equation (7), we obtain in the language of
figure 6

Im
P(1)(q, ω) = − g

4π

∫ µ

0
dk

∑
α,β

αIαβ(k, q, ω) = f(q, ω) ×




G>( 2µ−ω

q
) − G>( 2µ+ω

q
), 1A

π, 1B
−G>( 2µ+ω

q
), 2A

−G<(ω−2µ

q
), 2B

0, 3A
0. 3B

A.2. Real part

The Kramers–Kronig relation valid for the retarded function ReP(1)
0 (q, ω) reads

ReP(1)
0 (q, ω) = 1

π

∞∫
−∞

dω′ ImP
(1)
0 (q, ω′)

ω′ − ω
= − gq2

16
√

q2 − ω2
� (q − ω). (A.3)

For finite doping we rewrite equation (7) as

Re
P(1)(q, ω) = g

4π2

∫ µ

0
dk k

∫ 2π

0
dϕ

∑
α=±

2k + αω + q cos ϕ

(k + αω)2 − |k + q|2 .

This integral is calculated directly such that the Kramers–Kronig relation is not needed,
here. The ϕ-integration yields

Re
P(1) = −gµ

2π
+

g

8π2

∑
α=±

∫ µ

0
dkJa(k, q, ω), (A.4)
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where Jα(k, q, ω) is given by

Jα = 2π

[
(2αk + ω)2 − q2

ω2 − q2

]1/2 {
�(q − ω)�

(
q − αω

2
− k

)
+ �(ω − q)

×
[
�(α) + �(−α)

(
�

(
ω − q

2
− k

)
− �

(
k − ω + q

2

))]}
.

We thus get in the language of figure 6

Re
P(1)(q, ω) = −gµ

2π
+ f(q, ω) ×




π, 1A

−G>( 2µ−ω

q
) + G>( 2µ+ω

q
), 1B

−G<(ω−2µ

q
), 2A

G>( 2µ+ω

q
), 2B

−G<(ω−2µ

q
) + G<( 2µ+ω

q
), 3A

G>( 2µ+ω

q
) − G>(ω−2µ

q
). 3B

A.3. Analytic representation

Concerning the analytic representation of the results given in equation (9), we note the following
properties (see e.g. [22])

�(x − 1) cosh−1(x) = ln
(
x +

√
x2 − 1

)
,

�(1 − x2) cos−1(x) = −i ln
(
x + i

√
1 − x2

)
,

cos−1(−x) = π − cos−1(x).

Thus the functions G>(x), G<(x) can be comprised by the single function G(x) =
x
√

x2 − 1 − ln(x +
√

x2 − 1) where

G(x) =
{
G>(x) ; x > 1,

iG<(x) = −i[π + G<(−x)] ; |x| < 1.
(A.5)

We also note the relation f(q, ω) = |F(q, ω)|, where f(q, ω) is the real function defined in
equation (A.2) while F(q, ω) is the complex function introduced in equation (8).
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