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Abstract. We consider the additivity of the minimal output entropy and the
classical information capacity of a class of quantum channels. For this class of
channels, the norm of the output is maximized for the output being a normalized
projection. We prove the additivity of the minimal output Renyi entropies with
entropic parameters α ∈ [0, 2], generalizing an argument by Alicki and Fannes,
and present a number of examples in detail. In order to relate these results to
the classical information capacity, we introduce a weak form of covariance of
a channel. We then identify various instances of weakly covariant channels for
which we can infer the additivity of the classical information capacity. Both
additivity results apply to the case of an arbitrary number of different channels.
Finally, we relate the obtained results to instances of bi-partite quantum states for
which the entanglement cost can be calculated.
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1. Introduction

The study of capacities is at the heart of essentially any quantitative analysis of the capabilities to
store or transmit quantum information. This includes the case of transmission of quantum states
through noisy channels modelling decohering transmission lines, such as fibres or waveguides
in quantum-optical settings. Capacities and entropic quantities characterizing the specifics of a
given quantum channel come in several flavours: for each resource that is allowed for, one may
define a certain asymptotic rate that can be achieved. A question that is of key interest here—and
a notoriously difficult one—is whether the respective quantities are generally additive. In other
words, if we encode quantum information before transmitting it through a quantum channel, can
it potentially be an advantage to use entangled inputs over several invocations of the channel?
This question is particularly interesting for two central concepts characterizing quantum
channels: the minimal output entropy and the classical information capacity.

The classical information capacity specifies the capability of a noisy channel to transmit
classical information encoded in quantum states [1, 2]. The question of the classical information
capacity is then the one of the asymptotic efficiency of sending classical information from sender
to receiver, assuming the capability of encoding data in a coherent manner. This capacity is one of
the central notions in the study of quantum channels to assess their potential for communication
purposes. The minimal output entropy in turn is a measure for the decoherence accompanied with
invocations of the channel. It specifies the minimal entropy of any output that can be achieved by
optimizing over all channel inputs [3]. The conjectures on general additivity of both quantities
have been linked to each other, in that they are either both true or both false [4]–[6].

The purpose of this paper is to investigate the additivity properties of a class of quantum
channels for which the output norm is maximized if the output state is (up to normalization)
a projection. For such channels, we prove additivity of the minimal output α-entropies in the
interval α ∈ [0, 2]. This further exploits an idea going back to Alicki and Fannes in [7] and
Matsumoto and Yura in [8]. For all weakly covariant instances of the considered channels, the
additivity is shown to extend to the classical information capacity. Both additivity results are
proved for the case of an arbitrary number of different channels. So on the one hand, this paper
provides several new instances of channels for which the additivity of the minimal output entropy
and the classical information capacity is known. On the other hand, it further substantiates the
conjecture that this additivity might be generally true. Finally, following the ideas of [5], we relate
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the obtained additivity results to the additivity of the entanglement of formation, for instances of
bipartite quantum states. We will begin with an introduction of basic notions and related results
in section 2 and the characterization of the considered class of quantum channels in section 3.

2. Preliminaries

Consider a quantum channel, i.e., a completely positive trace-preserving map T : S(Cd) →
S(Cd) taken to have input and output Hilbert spaces of dimension d. The minimal output entropy
of the channel, measured in terms of the Renyi α-entropy [9], is given by

να(T ) := inf
ρ

(Sα ◦ T )(ρ), Sα(ρ) := 1

1 − α
log tr[ρα], (1)

α � 0. The α-Renyi entropies are generalizations of the von Neumann entropy defined as
S(ρ) = −tr[ρ log ρ], which is obtained in the limit α → 1. Therefore, we consistently define
S1(ρ) := S(ρ). Physically, να can be interpreted as a measure of decoherence induced by the
channel when acting on pure input states. The minimal output α-entropy is said to be additive
[10] if for arbitrary N ∈ N

1

N
να(T

⊗N) = να(T ). (2)

It is known that additivity of να does not hold in general for α > 4.79 [11]. For smaller values
of α, however, no counterexample is known so far and in particular in the interval α ∈ [1, 2],
where the function x �−→ xα becomes operator convex, additivity might be conjectured to hold
in general.

The classical information capacity of a quantum channel can be inferred from its Holevo
capacity [1]. The Holevo capacity of the channel T is defined as

C(T ) := sup

[
S

(
n∑

i=1

piT(ρi)

)
−

n∑
i=1

pi(S ◦ T )(ρi)

]
, (3)

n � d2, where the supremum is taken over pure states ρ1, . . . , ρn ∈ S(Cd) and all probability
distributions (p1, . . . , pn). The classical information capacity is according to the Holevo–
Schumacher–Westmoreland theorem [1, 2] given by

CCl(T ) := lim
N→∞

1

N
C(T

⊗N), (4)

so is the asymptotic version of the above Holevo capacity. Unfortunately, as such, to evaluate
the quantity in equation (4) is intractable in practice, being in general an infinite-dimensional
non-convex optimization problem. However, in instances where one can show that

1

N
C(T

⊗N) = C(T ), (5)

for all N ∈ N, then equation (3) already gives the classical information capacity. That is, to
know the single-shot quantity in equation (3) is then sufficient to characterize the channel with
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respect to its capability of transmitting classical information. A stronger version of the additivity
statements in equations (2) and (5) is the one where equality is not only demanded for N instances
of the same channel but for N different channels

⊗N

i=1 Ti. We will refer to this form of additi-
vity as ‘strong additivity’.

The additivity of the Holevo capacity in the sense of the general validity of equation (5)
or the additivity of the minimal output entropy is one of the key open problems in the field of
quantum information theory—despite a significant research effort to clarify this issue. In the
case α = 1, the two additivity statements in equations (2) and (5) were shown to be equivalent in
their strong version in the sense that if one is true for all channels (including those with different
input and output dimensions), then so is the other [4]–[6]. For a number of channels, additivity
of the minimal output entropy for α = 1 [7], [12]–[15], [17]–[19] and additivity of the Holevo
capacity [16]–[21] are known. For integer α, the minimal output α-entropy is more accessible
than for values close to 1 [22, 23]. Notably, for the case α = 2, a number of additivity statements
have been derived [24], and the minimal output entropy can be assessed with relaxation methods
from global optimization [25]. For covariant channels, one can indeed infer the additivity of the
Holevo capacity from the additivity of the minimal output von Neumann entropy [26]. In fact,
as we will discuss in section 5, a much weaker assumption already suffices for this implication.

A paradigmatic and well-known representative of the class of channels we consider in this
paper is the Werner–Holevo channel [11], which is of the form

T(ρ) = 11d − ρT

d − 1
. (6)

This channel serves as a counterexample for the additivity of the minimal output α-entropy for
α > 4.79. However, for να with α ∈ [1, 2] and for the Holevo capacity, additivity has been proven
in [7, 8]. In the following we will generalize these additivity results to a much larger class of
channels.

3. Characterization of the class of quantum channels

We will consider a class of channels with a remarkable property: for this class of quantum
channels, one can relate the problem of additivity of the minimal output entropy to that of
another Renyi-α entropy. The first key observation is the following:

Lemma 1 (Basic property). Let T be a quantum channel for which

να(T ) = νβ(T ), α > β � 0. (7)

Then the additivity of the minimal output α-entropy implies the additivity for the minimal output
β-entropy.

Proof. This statement follows immediately from the fact Sα(ρ) � Sβ(ρ) for all ρ ∈ S(Cd) and
all α � β � 0 [27], and the inequality chain

νβ(T ) = να(T ) = 1

N
να(T

⊗N) = 1

N
inf
ρ

(Sα ◦ T
⊗N)(ρ) � 1

N
inf
ρ

(Sβ ◦ T
⊗N)(ρ), (8)

for N ∈ N. Since on the other hand νβ(T ) � νβ(T
⊗N)/N equality has to hold in

equation (8). ��
New Journal of Physics 7 (2005) 93 (http://www.njp.org/)
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Surprisingly, the property required in equation (7) does not restrict the channels to the extent
that only trivial examples can be found. Quite to the contrary, a fairly large class of channels has
this property. A simple example of a class of channels for which condition (7) is satisfied is the
generalization of the Werner–Holevo channel:

Example 1. Consider a channel T : S(Cd) → S(Cd) of the form

T(ρ) = 11d − M(ρ)

d − 1
, (9)

where M : S(Cd) → S(Cd) is a linear, trace-preserving positive map (not necessarily a
channel) which has the property that there exists an input state leading to a pure output state.
Then for all α > 0

να(T ) = log (d − 1). (10)

Proof. Let us first note that ρ �−→ tr[(11d − ρ)α] is convex for any α � 1 and concave for
0 � α < 1. Hence, the sought extremum over the convex set of all states is attained at an
extreme point, i.e. a pure state. Moreover, all pure states will give the same value. Exploiting
this together with the fact that there exists an output under M which is pure, and inserting into
Sα(ρ) = (log tr[ρα])/(1 − α) yields equation (10). ��

The class of channels in example 1 has the property that να(T ) is independent of α and
therefore condition (7) is trivially satisfied. However, it is not yet the most general class of
channels for which να is constant. In fact, all quantum channels fulfilling this condition can
easily be characterized. This will be the content of the next theorem, which will make use of a
lemma that we state subsequently. The following channels are the ones investigated in this paper:

Theorem 1 (Characterization of channels). Let T : S(Cd) → S(Cd) be a quantum channel.
Then the following three statements are equivalent:
1. The minimal output α-entropy is independent of α. That is, for all α > β � 0 we have

να(T ) = νβ(T ).

2. The channel is of the form

T(ρ) = 11d − mM(ρ)

d − m
, (11)

where M is a positive, linear and trace-preserving map for which there exists an input state
ρ0 such that mM(ρ0) is a projection of rank m.

3. The maximal output norm supρ ‖ T(ρ) ‖∞ is attained for an output state being a normalized
projection.

Proof. 1 → 2: Since in general R
+ 	 α �−→ Sα(ρ) is a non-increasing function for all ρ ∈

S(Cd), there exists a state ρ0 which gives rise to the minimum in να for all values of α. Then, by
lemma 2, T(ρ0) has to be a projection except from normalization. In particular, supρ ‖ T(ρ)‖∞�
‖T(ρ0)‖∞= 1/m0, where m0 := rank(T(ρ0)). This means that the map M0 : S(Cd) → S(Cd)

defined as

M0(ρ) := 1

m0
11d − T(ρ) (12)
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is positive and has the property that M0(ρ0) is except from normalization a projection of rank
m = d − m0. Due to the fact that T is trace-preserving, the map M : S(Cd) → S(Cd),

M(ρ) := m0

d − m0
M0(ρ), (13)

is also trace-preserving. Hence, the channel T has indeed a representation of the form claimed
above.

2 → 3: We want to argue that supρ ‖11 − mM(ρ)‖∞ is attained if R := mM(ρ) is a
projection. To this end, note that R is an element of the convex set

C := {r � 0 | tr[r] = m, r � 11}, (14)

whose extreme points are projections of rank m. Remember further that the maximum of a convex
function (as the largest eigenvalue of a positive matrix) over a closed convex set is attained at an
extreme point. When optimizing over the entire set C, the maximum is thus attained for R being
a projection of rank m, which is indeed accessible due to the assumed property of M.

3 → 1: This follows immediately from R
+ 	 α �−→ Sα being a non-increasing function

together with the fact that for any normalized projection ρout, Sα(ρout) = log rank(ρout) is
independent of α. ��
Lemma 2. Let ρ ∈ S(Cd) be a state for which Sα(ρ) = Sα′(ρ), for some α′ > α � 0. Then ρ is
except from normalization a projection and for all β � 0 we have

Sβ(ρ) = log rank(ρ). (15)

Proof. The function R
+ 	 β �−→ Sβ(ρ) is a convex and non-increasing function [27]. Hence,

the assumption in the lemma immediately implies that Sβ(ρ) = Sα(ρ) =: c for all β � α, i.e.

tr[ρβ] = 2c(1−β), (16)

for all β � α. Taking the βth root on both sides and then the limit β → ∞ leads to 2−c =‖ ρ ‖∞
and thus

tr[(ρ/‖ρ‖∞ )]β =‖ρ‖−1
∞ . (17)

Considering again the limit β → ∞ yields that the multiplicity of the largest eigenvalue of ρ

is equal to ‖ρ‖−1
∞ , such that ρ has indeed to be a normalized projection. ��

4. Additivity of the minimal output entropy

For a class of channels of the form in theorem 1, we find the additivity of the minimal output
α-Renyi entropy for α ∈ [0, 2]. We exploit lemma 1 for these channels in the simple case, where
α = 2 and β ∈ [0, 2]. What then remains to be shown is the additivity of the minimal output
2-entropy. This can, however, be done in the same way as has been done in [7] for the specific
case M(ρ) = ρT , except that more care has to be taken due to the fact that the involved projections
are not necessarily one dimensional.
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Theorem 2 (Strong additivity of the minimal output entropy). Consider channels T1, . . . , TN of
the form in equation (11) such that

⊗N

i=1 Mi is a positive map. Then the minimal output α-entropy
is strongly additive for all α ∈ [0, 2], i.e.

να

(
N⊗

i=1

Ti

)
=

N∑
i=1

να(Ti) =
N∑

i=1

log (di − mi) (18)

for Ti : S(Cdi) → S(Cdi) as in equation (11).

Proof. We can express with Ti(ρ) = (11di
− miMi(ρ))/(di − mi), the action of the tensor product

channel T := ⊗N
i=1Ti as

T(ρ) =
N∏

i=1

1

dj − mi

∑
�⊂{1,...,N}

(ω�⊗11�C)
∏
k∈�

(−mk), (19)

where �C denotes the complement of �, ω := (M1⊗ · · · ⊗MN)(ρ), and ω� denotes the reduced
density matrix of ω with respect to the systems labelled with �. Hence, we obtain

tr[(T(ρ))
2] =

N∏
i=1

1

(di − mi)2

∑
�,�′⊂{1,...,N}

∏
k∈�

∏
l∈�′

(−mk)(−ml)tr[ω
2
�∩�′]

∏
k∈(�∪�′)C

dk

=
N∏

i=1

1

(di − mi)2

∑
�⊂{1,...,N}

tr[ω2
�]

∑
�⊂�C

∑
�′⊂�C\�

∏
k∈�∪�

(−mk)
∏

l∈�′∪�

(−ml)
∏

j∈�C\�\�′
dj

=
N∏

i=1

1

(di − mi)2

∑
�⊂{1,...,N}

tr[ω2
�]

∏
k∈�

m2
k

∏
j∈�C

(dj − 2mj).

Now, exploiting the subsequently stated lemma 3, we have tr[ω2
�] �

∏
i∈� m−1

i and thus

tr[(T(ρ))
2] �

N∏
i=1

1

di − mi

. (20)

Together with the fact that ν2(Ti) = log (di − mi), this means finally that we obtain

ν2(T ) �
N∏

i=1

log (di − mi) =
N∑

i=1

ν2(Ti) � ν2(T ), (21)

implying by lemma 1 the claimed additivity in the entire interval α ∈ [0, 2]. ��
Lemma 3. Let Mi : S(Cdi) → S(Cdi), i = 1, . . . , N, be trace-preserving linear maps, for which
there exist positive numbers mi ∈ N such that ρ �→ (11di

tr[ρ] − miMi(ρ)) is completely positive.
If in addition

⊗N

i=1 Mi is a positive map, then

∀ρ ∈ S(C
∏

idi) : tr


((

N⊗
i=1

Mi

)
(ρ)

)2

 �

N∏
i=1

m−1
i . (22)
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Proof. Let M∗
i be the adjoint map defined by tr[M∗

i (A)B] = tr[AMi(B)]. Then the complete
positivity condition is equivalent to the validity of

(M∗
i
⊗11di

)(P12) � 11di

mi

⊗ tr1[P12] (23)

for all positive operators P12 ∈ S(Cd2
i ). In order to apply this inequality, we exploit some of

the properties of the flip operator Fd : |	〉⊗|
〉 �→ |
〉⊗|	〉 for |
〉, |	〉 ∈ C
d . Recall that

tr[A2] = tr[(A ⊗ A)Fd] and F
T2
d = ∑d

i,j=1 |i, i〉〈j, j|. Hence,

tr


((

N⊗
i=1

Mi

)
(ρ)

)2

 = tr

[[
ρ ⊗

( ⊗
i

Mi

)
(ρ)

][ ⊗
i

(M∗
i

⊗ 11di
)(Fdi

)
]]

(24)

= tr

[[
ρ ⊗

(( ⊗
i

Mi

)
(ρ)

)T ][ ⊗
i

(M∗
i

⊗ 11di
)(F

T2
di

)
]]

(25)

� tr

[
ρ⊗

(( ⊗
i

Mi

)
(ρ)

)T

] ∏
j

mj
−1 (26)

=
∏

j

mj
−1. (27)

��
Lemma 3 and therefore theorem 2 require the assumption that

⊗
i Mi is a positive map.

Although the presented proof depends on this property, at present we do not know of any channel
of the form in equation (11) for which equation (22) is not valid. In fact, all the following examples
are such that Mi = �i ◦ θ, where each �i is completely positive and θ is the transposition. For
all these cases,

⊗
i Mi is evidently positive.

Obviously, theorem 2 implies in particular that for any channel T : S(Cd) → S(Cd) of the
considered form, we have for all α ∈ [0, 2]

1

N
να(T

⊗N) = να(T ). (28)

As mentioned earlier, the most prominent example of channels in the considered class is the
Werner–Holevo channel itself for which M(ρ) = ρT . For this channel, the additivity of
the minimal output entropy has been shown in [8], and with inequivalent methods in [12, 28]. The
following list includes further instances of channels for which we find additivity of the minimal
output entropy as a consequence of theorem 2. As stated above, all examples are such that the
corresponding M is a concatenation of a completely positive map and the transposition.

Example 2 (Stretching). For ω being a pure state, consider

M(ρ) = λρT + (1 − λ)ω, m = 1. (29)

Complete positivity is a consequence of this channel being a convex combination of
the completely positive Werner–Holevo channel and the channel ρ �−→ (11d − ω)/(d − 1).
Obviously, ρ0 = ωT leads to a normalized projection at the output.
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Example 3 (Weyl shifts). Consider the set of unitaries Wi = ∑d

j=1 |j + i mod d〉〈j| and take

M(ρ) = 1

d

d∑
i=1

Wiρ
T W

†
i , m = 1. (30)

Complete positivity of the respective channel T follows from the fact that it is a composition of the
Werner–Holevo channel with another completely positive map. The state ρ0 with 〈i|ρ0|j〉 = 1/d

for all i, j = 1, . . . , d is an example for an appropriate pure input state for which M(ρ0) = ρ0.

Example 4 (Pinching). Let {Pi} be a set of orthogonal projections yielding a resolution of the
identity, i.e.,

∑
i Pi = 11d . Then take

M(ρ) =
∑

i

Piρ
T Pi, m = 1. (31)

Again the respective channel T is a composition of two completely positive maps and thus itself
completely positive. Moreover, any pure state ρ0 for which ρT

0 is in the support of any Pi gives
rise to a normalized projection at the output of T .

So far the examples were restricted to the case m = 1. The following examples show
explicitly that all larger values of m are possible as well:

Example 5 (Casimir channel for a reducible representation). This example is based on a
Casimir channel T ′ : S(C4) −→ S(C4) (see section 5) for a reducible representation of SU(2),

T ′(ρ) =
3∑

i=1

AiρA
†
i , (32)

where Ai = (4/3)1/2π(Ji), with

π(J1) = i
2 (|2〉〈3| + |4〉〈1| − |1〉〈4| − |3〉〈2|) , (33)

π(J2) = i
2 (|3〉〈1| + |4〉〈2| − |1〉〈3| − |2〉〈4|) , (34)

π(J3) = i
2 (|1〉〈2| + |4〉〈3| − |2〉〈1| − |3〉〈4|) . (35)

The operators π(J1), π(J2) and π(J3) form the generators of a four-dimensional reducible
representation of the Lie algebra of the group SU(2). As an example for m = 2, consider the
channel

T(ρ) = 3T ′(ρ) + ρ

4
. (36)

This map is clearly completely positive by construction. We find M to be given by

M(ρ) = 114/2 − T(ρ). (37)

An appropriate input ρ0 for which the output is a two-dimensional projection M(ρ0) = (|3〉〈3| +
|4〉〈4|)/2 up to normalization is given by

ρ0 = (|1〉〈1| + i|1〉〈4| − i|4〉〈1| + |4〉〈4|)/2. (38)
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Finally, M is a positive map, as it can actually be written as a transposition θ, followed by a
completely positive map �, that is, M = � ◦ θ. To show that this is indeed the case, consider

(M ⊗ id)(�T1) = 114

2
⊗114

4
− 3

4
(T ′ ⊗ id)(�T1) − 1

4
�T1 � 0, (39)

where � is the maximally entangled state with state vector |�〉 = 1
2

∑4
i=1 |i, i〉.

Example 6 (Shifts and pinching). Let Wk be defined as in example 3 and K ⊂ {1, . . . , d}:

M(ρ) = 1

|K|
∑
k∈K

d∑
i=1

|i〉〈i|(W†
k ρWk)|i〉〈i|, m = |K|. (40)

In fact, T is an entanglement-breaking channel (cf [13, 20]) which can be written as

T(ρ) = 1

d − |K|
d∑

i=1

〈i|ρ|i〉
∑

k∈{1,...,d}\K
W

†
k |i〉〈i|Wk. (41)

Example 7 (Coarse graining). For C
d = C

n ⊗ C
D, consider

M(ρ) =
∫

U(D)

dU
( n⊕

i=1

U
)
ρT

( n⊕
i=1

U
)†

, m = D, (42)

where the integration is with respect to the Haar measure.

The averaging operation in M may physically be interpreted as a coarse graining of an operation,
which is only capable of resolving n blocks of size D within a d = n · D dimensional system. In
order to prove that the above M leads to an admissible and for n > 1 not entanglement-breaking
channel, let us first note that we may, after a suitable reshuffle, equivalently write

M(ρ) =
∫

dU(11n ⊗ U)ρT (11n ⊗ U)† = ρT
n

⊗ 11D

D
, (43)

where the tensor product is that of C
d = C

n ⊗ C
D and ρT

n is the reduction of ρT with respect to
the first tensor factor C

n. Obviously, M is positive, trace-preserving and for ρ0 with 〈i|ρ0|j〉 =
1/d, we obtain a normalized projection of rank D. Complete positivity of T is equivalent to

(T ⊗ id)(�) � 0, (44)

where |�〉 = (1/
√

d)
∑d

i=1 |i, i〉 is again the state vector of a maximally entangled state �.
Exploiting again that the latter is related to the flip operator F|i, j〉 = |j, i〉 via partial
transposition, i.e. �T2 = F/d, we obtain

(T ⊗ id)(�) =
(

11d2

d
− 1

d
Fn⊗11D2

) /
(d − D), (45)

where Fn is the flip operator on C
n ⊗ C

n. Since the latter has eigenvalues ±1, the channel defined
as above is indeed completely positive. In order to prove that T is not entanglement breaking,
it is sufficient to show that the partial transpose of equation (45) is no longer positive, which is
true since the negative term picks up an additional factor n.

Finally, additivity of the minimal output entropy holds for any channel for which there
exists a pure output state, leading to a vanishing output entropy. In this case additivity of the
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minimal output entropy in the form of equation (2) is evident. However, strong additivity within
the considered class of channels is still a non-trivial result. This applies in particular to instances
of the 3 and 4-state channels of [29] and the class of so-called diagonal channels, for which
strong additivity was proven recently in [30]:

Example 8 (Diagonal channels). Consider T : S(Cd) → S(Cd) with

T(ρ) =
K∑

k=1

AkρA
†
k, (46)

where Ak, k = 1, . . . , K, are all diagonal in a distinguished basis.

5. Classical information capacity

So far we have considered the minimal output entropy of quantum channels and their additivity
properties. It turns out that for a large subset of the considered channels, including all the
discussed examples 3–8, one can indeed infer the additivity of the Holevo capacity as well. On
the one hand, for each covariant instance of a quantum channel from which we know that the
minimal output entropy is additive, we can conclude that the Holevo capacity is also additive
[26]. For example, this argument applies to the Werner–Holevo channel itself. One the other
hand, a quantum channel does not necessarily have to be covariant for a very similar argument
to be valid. Subsequently, we will restate the result of [26] using weaker assumptions. The main
difference is that for a given channel, one may exploit properties of the state for which the output
entropy is minimal. This is particularly useful in our case at hand, where these optimal input states
can always be identified in a straightforward manner. We will first state the modified proposition
in a general way, and then apply it to the channels at hand of the form as in theorem 1.

Theorem 3 (Strong additivity for the classical information capacity). Let T : S(Cd) → S(Cd)

be a quantum channel for which the minimal output von-Neumann entropy is additive, and let
{ρi} be a set of input states for which the minimal output entropy is achieved. If for any probability
distribution {pi} and ρ := ∑

i piρi, we have that

(S ◦ T )(ρ) = sup
ρ

(S ◦ T )(ρ) (47)

holds, then the Holevo capacity C(T ) is additive and the classical information capacity is
given by

CCl(T ) = (S ◦ T )(ρ) − ν1(T ). (48)

Moreover, if the assumptions are satisfied by an arbitrary number of different channels {Tk}among
which we have strong additivity of the minimal output entropy, then C(

⊗
k Tk) = ∑

k C(Tk).

Proof. Let us first consider the Holevo capacity of a single channel. Obviously, C(T ) is always
upper bounded by the maximal minus the minimal output entropy. Due to the assumed properties
of the set {ρi} this bound is, however, saturated and we have

C(T ) = sup

[
S
(∑

j

pjT(ρj)
)

−
∑

j

pj(S ◦ T )(ρj)

]
= (S ◦ T )(ρ) − ν1(T ). (49)
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In other words, the supremum in C(T ) can be calculated separately for the positive and the
negative part. Now consider the expression C(

⊗
kTk). If we again separate the two suprema, then

by the assumed strong additivity the maximum of the negative part is attained for product inputs.
The same is true for the positive part, since the entropy satisfies the sub-additivity inequality
S(ρAB) � S(ρA) + S(ρB). Hence, by evaluating the suprema separately, we obtain an upper bound
which coincides with the sum of the achievable upper bounds for the single channels. ��

In practice, one is often in the position to have a channel which is weakly covariant on an
input state ρ0 which minimizes the output entropy. That is, there are unitary (not necessarily
irreducible) representations π and � of a compact Lie group or a finite group G, such that for
all g ∈ G

T(π(g)ρ0π(g)†) = �(g)T(ρ0)�(g)†; (50)

in addition the image of the group average of ρ0 under T is the maximally mixed state. That is,
in the case of a finite group

1

|G|
∑
g∈G

�(g)T(ρ0)�(g)† = 11d

d
, (51)

where we have to replace the sum by an integral with respect to the Haar measure if G is a
compact Lie group. The optimal set of states {ρj} in theorem 3 is then taken to be the set of
equally distributed states {π(g)ρ0π(g)†} (i.e. pg = |G|−1 for all g ∈ G for a finite group). In fact,
the discussed examples 3–8 are of this weakly covariant form.

Obviously, quantum channels which are covariant with respect to an irreducible
representation of a compact Lie group always have the required properties. For instance, for the
d-dimensional Werner–Holevo channel, one may take for the group G = SU(d), the defining
representation π, and the conjugate representation �. Note, however, that the property of the
channel required by theorem 3 is significantly weaker than covariance.

To construct new instances of quantum channels for which the additivity of the classical
information capacity is found, let us consider the above-mentioned examples. To start with
example 3, we know that the state ρ0 with elements 〈i|ρ0|j〉 = 1/d for i, j = 1, . . . , d is an
optimal input. To construct an appropriate group G, consider the set of unitaries,

Uj :=
d−1∑
l=0

e
2πilj

d |l〉〈l|, j = 1, . . . , d. (52)

It is straightforward to show that

T(Ujρ0U
†
j ) = UjT(ρ0)U

†
j , (53)

1

d

d∑
j=1

UjT(ρ0)U
†
j = 11d

d
. (54)

That is, by virtue of theorem 3 the channel in example 3 has a classical information
capacity of

CCl(T ) = log(d) − log(d − 1). (55)
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Example 4 can be treated in a similar fashion. Let us choose the basis in which the projections
are diagonal, and take ρ0 = |1〉〈1|. Obviously, we have that

T(Wiρ0W
†
i ) = WiT(ρ0)W

†
i , i = 1, . . . , d, (56)

1

d

d∑
i=1

WiT(ρ0)W
†
i = 11d

d
, (57)

where the Wi are again the unitary shift operators, again forming an appropriate finite group
G. The classical information capacity is given by CCl(T ) = log (d) − log (d − 1). Note that the
same argument using shift operators, leading to a classical information capacity of CCl(T ) =
log (d), can be applied to the class of diagonal channels of example 8. This result of a maximal
classical information capacity is no surprise, however, as one can encode classical information
in such a way that information transmission through the channel is entirely lossless.

Then, example 5 is another example of a channel with additive Holevo capacity. This
becomes manifest as a consequence of the fact that every Casimir channel [31] based on some
representation of SU(2), is covariant under the respective representation. Such Casimir channels
are convenient building blocks to construct a large number of channels with additive Holevo
capacity. So let us consider for G = SU(2), a d-dimensional representation π of G [32]. The
generators of the associated Lie algebra are denoted with Jk, k = 1, 2, 3. In a mild abuse of
notation, we will denote with π(Jk) the generators of the Lie algebra of the group SU(2) in the
representation π. The respective Casimir channel is given by

T(ρ) = 1

λπ

3∑
k=1

π(Jk)ρπ(Jk), (58)

where normalization follows from the Casimir operator

3∑
k=1

π(Jk)
2 = λπ11d. (59)

For irreducible representations π of SU(2), we have that λπ = (d − 1)(d + 1)/4. The covariance
of the resulting quantum channels can be immediately deduced from the structural constants
of the Lie algebra specified as

[Ji, Jj] = iεi,j,kJk, i, j, k ∈ {1, 2, 3}. (60)

by making use of the exponential mapping into the group SU(2). Casimir channels T : S(Cd) →
S(Cd) with respect to a d-dimensional representation π as in equation (58) are covariant in the
sense that

T(π(g)ρπ(g)†) = �(g)T(ρ)�(g)† (61)

for all states ρ, where � is either the defining or the conjugate representation of SU(2).
For d = 3, for example, we reobtain the Werner–Holevo channel. Then, in example 5 as an

example of a Casimir channel with respect to a reducible representation, we find that the channel
is covariant with respect to this reducible representation. This channel is covariant with respect to
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the chosen representation π of SU(2). Moreover, we may start from the optimal input state ρ0 as
specified in the example, leading to an output T(ρ0) = (|3〉〈3| + |4〉〈4|)/2. We can generate then
an ensemble of states that averages to the maximally mixed state, assuming the Haar measure.
That is, we have that∫

g∈SU(2)

dg π(g)T(ρ0)π(g)† = 114

4
. (62)

To be very specific, with Ux := exp(ix2π(J2)) exp(ix1π(J1)) exp(ix3π(J3)), x =
(x1, x2, x3) ∈ R

3, this average amounts to∫ 4π

0
dx1

∫ π

0
dx2

∫ 2π

0
dx3

sin(x2)

16π2
UxT(ρ0)U

†
x = 114

4
. (63)

Therefore, we again conclude that the classical information capacity is given by CCl(T ) =
log (4) − log (2) = 1.

In a similar way, the above coarse graining channel can be shown to exhibit an additive
Holevo capacity. Here, M(ρ) can be written as in equation (42). Therefore, the reducible
representation of SU(n) corresponding to

V ⊗ 11D, V ∈ SU(n) (64)

can be taken as the group appropriately twirling the output resulting from the optimal input.
This argument leads to an additive Holevo capacity such that the classical information capacity
becomes

CCl(T ) = log(d) − log(d − D). (65)

These examples give substance to the observation that quite many channels of the above
type can be identified for which the classical information capacity can be evaluated. At this
point, indeed, one may be tempted to think that all of the above channels have an additive Holevo
capacity. While we cannot ultimately exclude this option, it is not true that theorem 3 can be
applied to all channels of the form as in theorem 1. A simple counterexample is provided by
example 2, where only a single optimal input state exists, namely ρ = ωT , such that theorem 3
cannot be applied.

6. Note on the entanglement cost of concominant bipartite states

Finally, we remark on the implications of the results for the additivity of the entanglement of
formation. In [5], the additivity of weakly covariant channels has been directly related to the
additivity of the entanglement of formation [33]

EF(ρ) = inf
n∑

i=1

pi(S ◦ trB)(ρi), (66)

where the infimum is taken over all ensembles such that
∑n

i=1 piρi = ρ. The entanglement cost,
in turn, is the asymptotic version,

EC(ρ) = lim
N→∞

1

N
EF(ρ

⊗N). (67)
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This entanglement cost quantifies the required maximally entangled resources to prepare an
entangled state: it is the rate at which maximally entangled states are asymptotically necessary
in order to prepare a bipartite state using only local operations and classical communication. In
contrast to the asymptotic version of the relative entropy of entanglement [34], which is known
to be different from the relative entropy of entanglement, for the entanglement of formation no
counterexample for additivity is known. Moreover, additivity of the entanglement of formation
for all bipartite states has been shown to be equivalent to the strong additivity of the minimal
output entropy and that of the Holevo capacity [4].

For the channels considered above, the construction in [5] can readily be applied, yielding
further examples of states for which the entanglement cost is known, beyond the examples in
[5, 8, 35]. The construction is as follows: from the quantum channel T : S(Cd) → S(Cd), one
constructs a Stinespring dilation, via an isometry U : C

d → C
d ⊗ C

K for appropriate K ∈ N.
For any bipartite state ρ ∈ S(Cd ⊗ C

K) with carrier on K := UC
d which achieves

C(T ) = (S ◦ tr1)(ρ) − EF(ρ), (68)

we know that

EC(ρ) = EF(ρ) = ν1(T ). (69)

The following state is an example of a state with known entanglement cost constructed in this
manner.

Example 9 (state with additive entanglement of formation). Let the state vectors from K ⊂
C

4 ⊗ C
4 be defined as K = span(|ψ1〉, . . . , |ψ4〉), with

|ψ1〉 = (i(|1, 4〉 + |2, 3〉 − |3, 2〉) + |4, 1〉)/2 (70)

|ψ2〉 = (i(−|1, 3〉 + |2, 4〉 + |3, 1〉) + |4, 2〉)/2 (71)

|ψ3〉 = (i(|1, 2〉 − |2, 1〉 + |3, 4〉) + |4, 3〉)/2 (72)

|ψ4〉 = (i(−|1, 1〉 − |2, 2〉 − |3, 3〉) + |4, 4〉)/2. (73)

Then EC(ρ) = EF(ρ) = 1, where

ρ = (|ψ1〉〈ψ1| + · · · + |ψ4〉〈ψ4|)/4. (74)

In just the same fashion, a large number of examples with known entanglement cost can be
constructed from the above quantum channels.

7. Summary and conclusions

In this paper, we investigated a class of quantum channels for which the norm of the output
state is maximized for an output being a normalized projection, with respect to their additivity
properties. We introduced three equivalent characterizations of this class of quantum channels.
For all channels of this type, which satisfy an additional (presumably weak) positivity condition,
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one can infer the additivity of the minimal output von Neumann entropy from the respective
additivity in the case of the 2-entropy. Several examples of channels of this type were discussed
in quite some detail, showing that a surprisingly large number of quantum channels is included
in the considered class. Finally, we investigated instances of this class of quantum channels with
a weak covariance property, relating the minimal output entropy to both the classical information
capacity. This construction indeed gives rise to a large class of channels with a known classical
information capacity.
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