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Abstract. A detailed analysis of the energy transfer system between ExB
turbulence and zonal flows is given. Zonal flows, driven by the ExB Reynolds
stress of the turbulence, are coupled to pressure disturbances with sinusoidal
poloidal structure in toroidal geometry through the geodesic curvature. These
pressure ‘sidebands’ are nonlinearly coupled not only back to the turbulence,
but also to the global Alfvén oscillation whose rest state is the Pfirsch–Schlüter
current in balance with the pressure gradient. The result is a statistical equilibration
between turbulence, zonal flows and sidebands, and additionally the various
poloidally asymmetric parallel dynamical subsystems. Computations in three-
dimensional flux surface geometry show this geodesic transfer effect to be
the principal mechanism which limits the growth of zonal flows in tokamak
edge turbulence in its usual parameter regime, by means of both control tests
and statistical analysis. As the transition to the magnetohydrodynamic (MHD)
ballooning regime is reached, the Maxwell stress takes over as the main drive,
forcing the Reynolds stress to become a sink.

New Journal of Physics 7 (2005) 92 PII: S1367-2630(05)92310-0
1367-2630/05/010092+45$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:bds@ipp.mpg.de
http://www.njp.org/


2 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Contents

1. Introduction—flows, turbulence and sidebands 2
2. The drift Alfvén model DALF3 4
3. Zonal flows and geodesic coupling 7
4. Zonal flow and sideband dynamics 9

4.1. The geodesic acoustic oscillation . . . . . . . . . . . . . . . . . . . . . . . . . 12
5. Zonal flow and sideband energetics 12
6. Computational results 15

6.1. 2D results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2. 3D results—isolating geodesic coupling . . . . . . . . . . . . . . . . . . . . . 23
6.3. 3D results—energetics and statistics . . . . . . . . . . . . . . . . . . . . . . . 31

7. Conclusions—drive and saturation of zonal flows 37
7.1. Drive of self-generated zonal flows . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2. Saturation of self-generated zonal flows . . . . . . . . . . . . . . . . . . . . . 38
7.3. Zonal flow damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.4. Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Appendix A. Notes on computational methods 40
Appendix B. Illustration of the Reynolds stress and geodesic transfer processes 42
References 44

1. Introduction—flows, turbulence and sidebands

The interaction between turbulence at medium to small scales and flows at larger scales is a
topic of currently general interest to research in the dynamics of magnetized plasmas [1]–[9].
The usual situation of a gradient-driven turbulence in these plasmas is a competition between a
dynamically incompressible ExB flow perpendicular to the magnetic field and a self-consistent
response in the parallel direction [10]. This basic picture remains even in the core, where parallel
dynamics render the electrons adiabatic [11], but the dynamics of the ion temperature continue
to give rise to toroidal ion temperature gradient (ITG)-driven turbulence [12].

The large scale ExB flows with which the turbulent eddies interact are the zonal flows: the
result of the flux surface (‘zonal’) average of the electrostatic potential. The interaction is largely
through the Reynolds stress, with the energy transfer direction preferentially from the turbulence
to the flows [2]. This gives the physical manifestation of the basic argument that an externally
imposed ExB shear should lead to faster decorrelation of smaller-scale turbulent eddies and
hence suppression of turbulence [1]. The correlation length, however, has no energetic relevance
as the main point is the tendency of the eddies to pass energy to the background flow as they are
tilted by the flow.

The Reynolds stress process is a variant of the more general inverse energy cascade
tendency from smaller to larger scales in two-dimensional (2D), incompressible turbulence [13].
In detail, it proceeds through a statistical instability through which the zonal vorticity (ExB
shear) due to the turbulence starts as random, but then self-amplifies, as localized regions of
a given sign of vorticity intensify a Reynolds stress of the same sign in the same place and
time. This instability, demonstrated in gyrokinetic computations [14], has been treated as a
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modulational instability [15], that is, a direct transfer to the flow, seeded by the flow itself, rather
than a local cascade. In the case of imposed ExB shear, the turbulence suppression has been
shown in drift-wave computations to proceed energetically [3]. Imposed ExB shear which is
time-dependent was also studied as a model for the flows which occur self-consistently; the
efficiency of turbulence suppression was found to degrade if the frequency of the flow shear was
comparable to or greater than the frequencies of the turbulence [17]. Large scale gyrokinetic
computations have shown the emergence of self-generated zonal flow shear layers to be very
important in limiting the radial scale of the turbulence and consequently the resulting transport
[5]. Their importance in fusion research lies in the fact that zonal ExB flow (electric field) shear
is believed to underlie the transition and maintenance of the H-mode operation of tokamak
confinement [18].

In toroidal geometry, the ExB flow is compressible, which is a weak effect on either
magnetohydrodynamics (MHD) [19] or the turbulence [20] but a strong effect on the flows
[21, 22]. Due to the variation of a toroidal magnetic field with the major radius (B ∼ R−1), a
zonal flow is faster on the outboard side of the torus and slower on the inside. The resulting
compression gives a conservative energy transfer with the ‘sideband’ modes of the pressure
(varying with the sine of the poloidal angle). The most basic manifestation of this coupling
between flows and pressure is the geodesic acoustic oscillation [23], whose natural frequency is√

2cs/R times numerical factors in general, where cs = √
Te/Mi is the isothermal electron sound

speed. It was recognized that this oscillation would be quite slow compared to the turbulence,
which is broadband up to a maximum of cs/L⊥, given that the profile scale length L⊥ is much
smaller than R [8, 9]. Under these conditions, the dynamics of the interaction between turbulence
and zonal flows should change character.

Recently, it has been shown that the tendency of fully resolved drift-wave turbulence [24]
to spontaneously generate zonal flows is very robust in slab geometry if the flow evolution
is not somehow suppressed [25], much the same as in the core ITG case [4, 5]. In high-
resolution computations in toroidal geometry, however, self-generation of a strong ExB shear
layer was not found [26]. The toroidicity was found by a control test against sheared slab
geometry, both in three dimensions, to be the agent preventing this scenario [27]. The cause
was found to be the ‘geodesic transfer effect’, which is the combination of the conservative
transfer of free energy from zonal flows to pressure sidebands, and the nonlinear damping of
those sidebands [9]. It is important to note in the above context that these effects of geodesic
curvature have not been part of many otherwise sophisticated computations to date, since the
ExB flow is often taken as incompressible. These toroidal effects were present before [28], but
their significance was only recognised later [8, 9]. In the most sophisticated core turbulence
computations to date, self-generated zonal flows are found to modulate the turbulence rather
than suppressing it [29], and the geodesic oscillation per se was not found to dominate the zonal
flow frequency spectrum [30]. Both results are consistent with the findings for edge turbulence
in [9, 26].

Herein, the energetics of this interaction is studied in detail. The main points of this study
are (1) dynamics in the zonal flow/sideband system, (2) the energy theorem for the zonal
flow/sideband system and (3) energetic interaction with the turbulence, focusing upon (4) the
role of the geodesic transfer effect as the principal mechanism constraining zonal flow self-
generation at edge turbulence parameters. The following sections present the basic model used
in the analysis and computations, the general analysis of the interaction between zonal flows and
sideband modes and the computational results. Both two 2D and 3D results are shown, making
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the contrast between an unopposed Reynolds stress flow drive in the 2D case and the statistical
equilibration between zonal flow and pressure sideband free energy in the toroidal 3D case. The
statistics of the zonal flow energetics is then presented.

The geodesic curvature transfer mechanism is found to be the principal agent limiting the
self-generation of zonal flows by turbulence in any situation, where (1) the Landau damping
is relatively weak, (2) the electron density ExB nonlinear advection is relatively strong and
(3) plasma pressure is insufficient to reach the nonlinear ideal MHD regime; in other words,
in any relevant regime of tokamak edge turbulence. The zonal flow energetics in this situation
is characterized by a balance between ExB Reynolds stress acting as a drive and the geodesic
transfer mechanism acting as a sink. Most of the zonal flow energy passes through pressure
sidebands and then into parallel currents through the adiabatic response in the electron parallel
dynamics. This is the global Alfvén oscillation whose rest state in a relaxation scenario is the
Pfirsch–Schlüter current in balance with the pressure gradient. Dissipation of this oscillation by
resistivity provides much of the ultimate sink.

As the ideal MHD regime is entered, more effects are introduced: the Maxwell stress,
tending to cancel the Reynolds stress as more of the overall energy resides in shear
Alfvén component of the system [42], and the increased free energy in the global Alfvén
oscillation, tending to disrupt all the balances since the throughput of energy becomes larger
than that in the Reynolds stress. This is experimentally unrealistic, but of physical interest
nevertheless.

As the core regime is approached (passing electrons becoming adiabatic), the basic geodesic
frequency becomes faster relative to the turbulence since (1) the turbulence is a weak turbulence
controlled by a narrow set of modes at relatively long wavelength and (2) the scale ratio R/L⊥
is not very large. Moreover, the dominant sideband-damping mechanism becomes ion Landau
damping [31, 32]. Initial computations with an electromagnetic gyrofluid model [26], modified
to properly conserve free energy at all levels of finite gyroradius in the non-dissipative processes,
indicate that the geodesic transfer effect continues to function even in this regime [33], although
detailed analysis at the level presented herein is left for future work. Recent experimental work
as well as two very recent theoretical efforts are briefly commented upon in the conclusions
(section 7).

2. The drift Alfvén model DALF3

This study uses the same model as in [9], the isothermal version of the drift Alfvén model
described in detail in [28]. Standard drift ordering is taken [34]. The geometry is that of a
globally consistent flux tube, in which although fluxtube ordering is used [35], the parallel
boundary condition is the same as that on the entire flux surface for every Fourier component
or toroidal mode [36]. The shifted metric model is used to properly represent the slab-mode
structure if this occurs [37]. Computations are set up as in [38]. The equations are normalized
with standard gyro-Bohm forms: time to L⊥/cs, perpendicular spatial dimensions to ρs and the
parallel dimension to qR, where c2

s = Te/Mi and ρ2
s = c2MiTe/e

2B2 following electron mobility
and ion inertia, and L⊥ is the perpendicular profile scale length and 2πqR is the parallel field
line connection length. Relative amplitudes are scaled with an additional factor of δ = ρs/L⊥,
so that an amplitude of φ̃ = 1 in normalized units signifies eφ̃/Te = δ in physical units. The
equations for the four dependent variables (vorticity �̃, electron pressure p̃e, parallel current J̃‖
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and parallel ion velocity ũ‖) are

d�̃

dt
+

τi

B2
(∇∇φ) :(∇∇p̃e) = B∇‖

J̃‖
B

− (1 + τi)K(p̃e), (1)

dp̃e

dt
+ vE · ∇pe = B∇‖

J̃‖ − ũ‖
B

+ K(φ̃ − p̃e), (2)

β̂
∂Ã‖
∂t

+ µ̂
dJ̃‖
dt

= ∇‖(pe + p̃e − φ̃) − CJ̃‖, (3)

ε̂
dũ‖
dt

= −(1 + τi)∇‖(pe + p̃e) + µ‖∇2
‖ ũ‖, (4)

with consistency relations (Ampere’s law and polarization)

−∇2
⊥Ã‖ = J̃‖, (5)

1

B2
∇2

⊥W̃ = �̃ (6)

for the field potentials (electrostatic potential φ̃ and magnetic potential Ã‖), where W̃ = φ̃ + τip̃e

is the total ion flow stream function. Action of vE · ∇ or ∇‖ upon pe represents the gradient
forcing terms and d/dt = ∂/∂t + vE · ∇ is the ExB advective derivative. The second term on the
left-hand side of equation (1) results from the gyroviscous cancellation upon advection [39, 40],
which is also implicit in the appearance of d/dt in equation (4). The quantities τi, β̂, µ̂, C, ε̂ and
µ‖ are constant parameters, discussed below.

The geometry is described in terms of a field aligned flux tube geometry under the shifted
metric treatment, with coordinates {x, y, s} representing the radial, perpendicular drift and parallel
directions, noting that s is a projection of the parallel direction onto the poloidal angle [37]. The
simple sheared flux surface model is used, neglecting all finite aspect ratio effects except for the
existence of the curvature operator K. Hence, the divergence of the ExB velocity is represented by
K(φ̃), while the ExB velocity appearing in the advection terms is divergence free. The normalized
magnetic field strength is

B = 1. (7)

The ExB and parallel derivatives are

vE · ∇ = ṽx
E

∂

∂x
+ ṽ

y

E

∂

∂y
and ∇‖ = bs ∂

∂s
+ b̃x ∂

∂x
+ b̃y ∂

∂y
, (8)

with contravariant components

ṽx
E = −∂φ̃

∂y
and ṽ

y

E = ∂φ̃

∂x
. (9)

for the ExB velocity and

b̃x = β̂
∂Ã‖
∂y

, b̃y = −β̂
∂Ã‖
∂x

and bs = 1 (10)
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for the magnetic field. Action by vE · ∇ and ∇‖ in the {x, y} drift plane represent the ExB
and magnetic flutter nonlinearities, respectively. The background gradient is in the negative
x-direction,

∇pe = − pe

L⊥
∇x. (11)

The manifestation of magnetic shear is a series of shifts in the y-coordinate while taking
derivatives in the s-coordinate,

2hs

∂f

∂s
(x, y, sk) = f(x, y − 
, sk+1) − f(x, y + 
, sk−1), (12)

where hs is the (equidistant) node spacing in s, and the shifts are given by


 = hsŝx, (13)

where ŝ is the standard parameter representing the magnetic shear. This follows from the fact
that the coordinate system is defined separately at each location in s, such that perpendicular
operators are always evaluated with an orthogonal metric. In terms of a concentric circular model
for a tokamak with minor radius and poloidal and toroidal angles {r, θ, ζ}, the coordinates are
defined at a reference flux surface r = a as

x = r − a, yk = a

qa

[q(θ − θk) − ζ], s = θ (14)

separately at each poloidal location θ = θk, with shear ŝ = d log q/d log r and with x and yk

normalized to ρs and s defined on [ − π, π]. The index k on the y-coordinate is understood
throughout, though it is suppressed for clarity.

The perpendicular Laplacian operator is given at s = θk by

∇2
⊥ = ∂2

∂x2
+

∂2

∂y2
. (15)

The curvature operator, which will play a prominent role in this study, is given at s = θk by

K = Kx ∂

∂x
+ Ky ∂

∂y
= ωB

(
sin s

∂

∂x
+ cos s

∂

∂y

)
(16)

defining {Kx, Ky} as a vector, where ωB is a parameter nominally equal to 2L⊥/R. The breakdown
of this into the geodesic curvature and interchange forcing effects is different from a simple split
into Kx and Ky, however, as discussed in the next section.

The parameters controlling the parallel electron dynamics are

β̂ =
(

cs/L⊥
qR/vA

)2

, µ̂ =
(

cs/L⊥
qR/Ve

)2

, C = 0.51νe

cs/L⊥
µ̂, (17)

where Ve is the electron thermal velocity given by V 2
e = Te/me, νe is the conventional collision

frequency and the 0.51 comes from the parallel resistivity [41]. The sound waves are controlled
by ε̂ = (cs/L⊥)2(qR/cs)

2, just the square of the parallel/perpendicular scale ratio, and damped by
parallel ion viscosity, µ‖, which in this model functions as a substitute for ion Landau damping.
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Additionally, τi = Ti/Te is the background ion/electron temperature ratio, ŝ gives the magnetic
shear and the curvature operator is scaled with ωB, which can be set independently (slab geometry
is ωB = 0). The standard case is a set of nominal parameters corresponding to a typical tokamak
edge for a neutral, single component deuterium plasma, with

β̂ = 2, µ̂ = 5, C = 7.65, ωB = 0.05, ε̂ = 18350, τi = 1, ŝ = 1 (18)

roughly reflecting physical parameters:

Te = Ti = 80 eV, ne = ni = 4.5 × 1013 cm−3, B = 2.5 T, R = 165 cm,

a = 50 cm, L⊥ = 3.65 cm, Mi = MD = 3670me, q = 3. (19)

Cold ion cases are recovered by setting τi = 0. We leave µ‖ = 0 for most cases, but then use
it to check for the role of parallel sound wave damping on the overall statistical saturation of
the zonal flow/sideband system.

3. Zonal flows and geodesic coupling

In a simple 2D system, there are only the two coordinates {x, y} and hence Fourier components,
or ‘modes,’ with wavenumbers {kx, ky}. The directions are distinguished by the gradient and the
interchange forcing in the x-direction, both working through a finite ∂/∂y. The most important
linear instabilities in either slab or interchange models with ωB = 0 or ωB > 0, respectively, will
usually have kx � ky, ideally forming radial plumes with kx = 0. Turbulence, by contrast, acts
through the isotropic nonlinearities and hence tends to produce eddies with kx ∼ ky with both
finite and of either sign. The zonal flow modes are the ones with kx �= 0, with either sign, but
with ky = 0. The Reynolds stress is given by

RE = ṽx
Eṽ

y

E =
(
−∂φ̃

∂y

) (
∂φ̃

∂x

)
(20)

and is therefore mostly a result of the eddies. However, if the 2D spectrum in wavenumbers
is statistically isotropic, the average of RE will vanish although there will generally be strong
positive and negative samples. Dividing φ̃ into the ky = 0 and ky �= 0 parts, the energy transfer
between them can be shown to be the zonal vorticity (two x-derivatives of the zonal φ̃) times
the zonal Reynolds stress [2]. Each eddy component {kx, ky} contributes to the transfer through
its contribution to the ky = 0 component of RE and the zonal vorticity. Hence, if a zonal flow
is allowed to simply tilt the vortices according to the sense in which it is sheared, the resulting
distribution of RE indicates that energy is transferred from eddies to the zonal flow, amplifying
the latter. From a random initial phase, the part of the distribution in which zonal flows and the
zonal Reynolds stress are aligned will self-amplify and the turbulence will tend to suppress itself
by transferring its energy to the zonal flows. This result is well known and will be illustrated in
section 6.1, below.

In three dimensions, the zonal flow mode is the flux surface average, with both ky and k‖
wavenumbers zero. It is important to note that in a tokamak magnetic field, parallel is not toroidal
and perpendicular is not poloidal. In terms of the poloidal and toroidal mode numbers {m, n}, the
(unnormalized) drift direction and parallel wavenumbers in a simple torus are given by ky = nq/r
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and k‖ = (m − nq)/qR. Indeed, the flux tube coordinate system represents the poloidal angle
with the parallel coordinate. Nevertheless, once the y-direction is averaged, isolating the ky = 0
component, the field aligning and even the shifts in equations (12) and (13) do not enter, and an
average over first y and then s is the same as a flux surface average. The new modes in the 3D
model are those with ky = 0 but still k‖ is finite, that is, n = 0 but m �= 0. These are axisymmetric
structures called ‘sidebands’, coupled to the zonal modes by the curvature operator K, which has
the sinusoidal structure in equation (16).

The action of K upon the dynamical variables incorporates both geodesic and interchange
curvature. Often these are referred to as simply the parts which act through finite ∂/∂x or ∂/∂y;
in other words, Kx or Ky. The geodesic coupling effect, however, refers to the action of K solely
upon the axisymmetric part (∂/∂y hence ky = 0). The ky = 0 modes are those which cannot carry
transport, since for them the radial velocity ṽx

E vanishes. Both the zonal mode and the sidebands
are included in this set; they must be considered together because of the fact that the (sin s)
structure of Kx couples them, so that they conserve energy as a unit [43]. The split between
geodesic and interchange curvature components for the turbulence (ky �= 0) depends on the
coordinate system (specifically, whether the shifted metric treatment is used), and so the entirety
of the action of K upon the part with ky �= 0 is referred to as the ‘interchange forcing’effect. These
modes collectively are the eddies which can carry transport. When geodesic coupling produces
an energy transfer of a particular sign, it is then referred to as the geodesic transfer effect.

In a 3D sheared slab model, K vanishes but the sidebands are still coupled to the rest of the
system by the nonlinearities, such that when in a local 2D drift plane the energy is transferred to
the ky = 0 component, and the entire spectrum in k‖ is excited; not all of the transfer goes directly
into the zonal mode. Those portions with finite k‖ feel the adiabatic response ∇‖(p̃e − φ̃), so that
much of their energy is dissipated. In a 3D model, this results in a somewhat weaker zonal flow
drive than in 2D, such that it becomes very important to keep enough computational resolution
in order to find the level of suppression of the turbulence—generally, the fact that the vorticity
acts most strongly near ρs scales becomes the most important reason that ρs must be resolved
using a proper computation [38]. With the Reynolds (and Maxwell) stress unopposed, saturation
of the flow/turbulence system can only occur through nonlinear self-balance. The usual result
for either 2D or 3D slab cases is a small Maxwell stress and a balance in the Reynolds stress
taking opposite signs in the long and short wavelength regions in the spectrum, the same as in
the case of externally applied flow shear [3].

In a toroidal 3D model, however, this changes. Although the low-frequency motion remains
dynamically incompressible, quasi-static compression results from the ExB motion in the
inhomogeneous magnetic field due mostly to the 1/R dependence of B. Energy which does
transfer nonlinearly into the zonal mode is now transferred through the geodesic curvature to the
sidebands; the zonal flow is the zonal mode of ∂φ̃/∂x and therefore is subject only to action by Kx

(here, it is useful to note that ∂/∂x commutes with the flux surface average as well as with poloidal
dependences of quantities such as Kx). Physically, the zonal flow is a perpendicular rotation of
the entire flux surface and a finite zonal vorticity indicates that this rotation is sheared. Due to
the fact that the magnetic field is weaker on the outboard side of the torus, the flow is faster there
and so there is a divergence on the top and bottom of the torus. This finite divergence of the ExB
velocity excites a sinusoidal disturbance in p̃e by compressional work; hence, there is a coupling
to the pressure which is ±1 in the poloidal mode number. The coupling is conservative, however,
so that the first result is simply an oscillation between the zonal φ̃ and the k‖qR = ±1 sidebands
of p̃e, in other words, the geodesic acoustic oscillation [23].
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The significance this has for the interaction between the turbulence and zonal flows is
that the oscillation as a conservative system forced by turbulence will tend towards a statistical
equipartition of free energy between the two components of the oscillation. That part of the free
energy residing in the sidebands is subject to dissipative Alfvén dynamics through the adiabatic
response (∇‖J̃‖ and ∇‖p̃e), and ‘diffusive mixing’, which is a nonlinear interaction with the
turbulence itself, tending to transfer energy from larger to smaller scales through the unsteady
ExB advection vE · ∇p̃e. For the edge situation, L⊥ � qR, i.e. the coupling to MHD sound
wave activity is relatively weak. A balance will result in which every piece of the dynamical
system is statistically stationary. For the turbulence, it is struck between gradient drive and a
combination of resistive Alfvénic dissipation and nonlinear transfer to subgrid scales as a sink.
For the zonal flows, it is between the Reynolds stress as a drive and the geodesic transfer as a
sink. For the pressure sidebands, it is between the geodesic transfer as a drive and a combination
of the resistive Alfvén dynamics and diffusive mixing as a sink.

The only question is: how strong does the zonal flow amplitude and energy become before
this balance is reached? Indeed, one could skeptically ask whether a balance is reached at all
with a finite Reynolds stress drive. In other words, should the zonal flow statistical instability
saturate with the large flow levels of the slab model, with low-k⊥ Reynolds stress transferring
from flows to turbulence and high-k⊥ Reynolds stress transferring the other way, with direct
cascade through p̃e and inverse cascade through φ̃ making up the connections? Or should this
geodesic transfer mechanism become so effective as to limit the zonal vorticity to levels too small
to suppress the turbulence at all? We will find that the answer is closer to the second possibility,
with a drastic difference between the slab and toroidal cases, and even between slab and toroidal
cases modified such that the geodesic coupling effect is inserted into or removed from the model.
To demonstrate this we need the computations, but before presenting them we will introduce the
theory of all these coupling mechanisms in general, since there are many pathways among all
the various degrees of freedom: one degree of freedom per mode per dependent variable, and
more than one transfer pathway per degree of freedom.

4. Zonal flow and sideband dynamics

The theory of the zonal flow/sideband system follows from the dynamical equations (1–4).
We will consider the degrees of freedom with ky = 0, both the zonal mode and the sidebands.
There are six relevant degrees of freedom: the zonal averages of the two state variables and the
sideband modes of all four variables. We define the electron parallel flow, the total perpendicular
flow potential and vorticity,

v‖ = u‖ − J‖, W = φ + pi → φ + τipe, � = ∇2
⊥W (21)

and the total pressure and electron force potential,

p = pe + pi → (1 + τi)pe and he = pe − φ or p − W (22)

and we note that in the free energy under drift ordering, the thermal energy is proportional
to (1 + τi) times p2

e . We consider the profile together with the disturbance and drop the ‘tilde’
symbol, so that

pe ← p̃e − x. (23)
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This results in the Pfirsch–Schlüter equilibrium being treated self-consistently.
The averaging conventions are angle brackets for the zonal average

〈f 〉 =
∮ ∮

ds dy f (24)

and braces for the radial domain average used in the energetics

{f } =
∮

dx f (25)

We note that 〈· · ·〉 annihilates ∂/∂y and ∂/∂s and commutes with ∂/∂x. Particularly, only the
geodesic piece survives the zonal average over a curvature term; moreover, only it survives the
zonal average of any function of s times a curvature term.

The key assumption usually made in studies of rotation is that the sidebands are assumed
to be in quasi-static equilibrium, and the zonal quantities are assumed to vary on the slow
transport timescale, with the turbulence appearing as a set of forcing terms [31, 32]. Herein,
the computational results are used to diagnose what actually takes place, as the action of the
turbulence is too complicated to be solved analytically. The phases of the four sideband modes
are suggested by the action of K upon the two zonal modes. The sideband evolution equations
are found by multiplying the state variable equations (1) and (2) by sin s and the flux variable
equations (3) and (4) by cos s and then taking the zonal averages. The zonal evolution equations
are found by taking the zonal averages of equations (1) and (2). In each case, it is important to keep
the forcing terms provided by the turbulence. In the algebra, it is useful to recast the nonlinear
terms as divergences, e.g. vE · ∇p → ∇ · (pvE) or ∇ · (vE · ∇)∇⊥W → (∇∇) :(vE∇⊥W). The
components of the ExB velocity are given in equation (9), and the drift direction ion flow is given
by ũy = ∂W/∂x. The components of the magnetic field are given in equation (10).

The sideband dynamical equations are

∂

∂t
〈� sin s〉 = − ∂2

∂x2

〈
ṽx

Eũy sin s
〉
+

∂2

∂x2

1

β̂
〈b̃xb̃y sin s〉 − 〈J‖ cos s〉 − ωB

2

〈
∂p

∂x

〉
, (26)

∂

∂t
〈(β̂A‖ + µ̂J‖) cos s〉 = − ∂

∂x
〈µ̂J‖ṽx

E cos s〉 + 〈(p − W) sin s〉

+

〈
cos s b̃x

(
∂pe

∂x
− ∂φ

∂x

)〉
− C〈J‖ cos s〉, (27)

∂

∂t
〈pe sin s〉 = − ∂

∂x
〈(peṽ

x
E + v‖b̃x) sin s〉 + 〈v‖ cos s〉

− ωB

2

〈(
∂p

∂x
− ũy

)
(1 − cos 2s)

〉
, (28)

ε̂
∂

∂t
〈u‖ cos s〉 = − ∂

∂x

〈
ε̂u‖ṽx

E cos s
〉 − 〈

cos s b̃x

(
∂p

∂x

)〉
− 〈p sin s〉 − µ‖〈u‖ cos s〉. (29)
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If a quasi-static balance is assumed, then the first of these gives the Pfirsch–Schlüter current
equilibrium and the second gives the associated electric field, assuming an MHD limit in which
φ � pe in the sidebands, i.e. the part with ∇‖ �= 0. We will find, however, that the MHD limit is
not a good assumption, and that the ‘two fluid’ terms—principally the adiabatic response terms,
∇‖pe in Ohm’s law and ∇‖J‖ in the pressure equation, but also the diamagnetic flow compression
term, K(pe) in the pressure equation—play a strong role even in the sideband balances.

The zonal evolution equations are

∂

∂t
〈�〉 = − ∂2

∂x2
〈ṽx

Eũy〉 +
1

β̂

∂2

∂x2
〈b̃xb̃y〉 − ωB

∂

∂x
〈p sin s〉, (30)

∂

∂t
〈pe〉 = − ∂

∂x

〈(
peṽ

x
E + v‖b̃x

)〉
− ωB

∂

∂x
〈sin s(p − W)〉. (31)

If for a moment, we neglect the turbulence altogether and assume that the sidebands are in
quasi-static balance, we would find that

〈J‖ cos s〉 = −ωB

2

〈
∂p

∂x

〉
, (32)

〈(p − W) sin s〉 = C〈J‖ cos s〉, (33)

〈u‖ cos s〉 = ωB

2
〈ũy〉, (34)

〈p sin s〉 = −µ‖〈u‖ cos s〉 (35)

for the sidebands, and hence

∂

∂t
〈�〉 = −µ‖

ωB
2

2
〈�〉, (36)

∂

∂t
〈pe〉 = C

ωB
2

2

∂2

∂x2
〈p〉 (37)

for the zonal quantities. In other words, Pfirsch–Schlüter transport for the pressure and rotation
damping is due to parallel viscosity. In the computations, we may therefore determine the role
of dissipative flow damping effects by setting µ‖ to finite values or to zero. In most cases we will
have µ‖ = 0, so that nonlinear processes which can disturb the sideband balances are necessary
for the zonal vorticity (hence flow shear) to find statistical equilibrium in the presence of a robust
Reynolds stress drive. A small residual 〈u‖ cos s〉 always remains as a result of finite numerical
dissipation, without which the computations cannot be managed. It is ensured, however, that this
dissipation is <0.01 in normalized units, noting that L⊥/qR ∼ 0.01 is usual.
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4.1. The geodesic acoustic oscillation

The geodesic acoustic oscillation is visible in equations (28) and (30), if we integrate one factor
of ∂/∂x and drop the surface terms in equation (30) in the two partial time derivatives and
the two curvature terms multiplied by ωB. Displaying just these terms, the dynamical system
reads

∂

∂t
〈ũy〉 = −ωB〈p sin s〉, (38)

∂

∂t
〈p sin s〉 = 1 + τi

2
ωB〈ũy〉. (39)

Starting with a zonal flow 〈ũy〉, the compression on top and bottom of the torus gives rise to
the pressure sideband 〈p sin s〉. The associated diamagnetic current itself has a finite quasi-static
toroidal compression with a zonal component. This is balanced by a polarization current which
keeps the total current divergence free. The MHD Lorentz force resulting from this polarization
current acts to decelerate the zonal flow. It is a triviality that this restoration is due to the
polarization current, since by definition the diamagnetic current balances the pressure gradient
and therefore does not accelerate the plasma, and the parallel current does not contribute to the
J × B Lorentz force.

The natural frequency in normalized units is ωB

√
(1 + τi)/2, or in physical units

(1/R)
√

2(Te + Ti)/Mi, wherein we note c2
s = Te/Mi. For edge turbulence this is rather slow

compared to the native drift frequency cs/L⊥, since R/L⊥ is of the order of 50 in the edge
region. The initial reaction of the turbulence to a sudden change in parameters is typically faster
than 0.01cs/L⊥ (i.e. it is manifest within about 100 in normalized time units). This is robust
enough for the turbulence to be sensitive to the geodesic acoustic oscillation, not only as a
whole, but also during the peak and trough phases of a single oscillation. The turbulence is
therefore able to interact nonlinearly with the oscillation. Ultimately, as we will find out, not
only the the nonlinear terms in both equations (28) and (30) but also the two-fluid adiabatic
response effects directly coupling 〈p sin s〉 to 〈J‖ cos s〉 are very important as source and sink
effects in the oscillation system, to the extent that the oscillation per se is not important to the
turbulence and zonal flow interaction. The energy transfer channels, on the other hand, are.

5. Zonal flow and sideband energetics

Each degree of freedom in the dynamics has its own contribution to the overall free energy. The
energetics for the turbulence in the driftAlfvén dynamical system is described in detail elsewhere
[16, 28, 38]. In the present case, we have the two zonal modes, 〈�〉 and 〈p〉, evolving according
to equations (30) and (31), and the four sideband modes, 〈φ sin s〉 and 〈p sin s〉 and 〈J‖ cos s〉 and
〈u‖ cos s〉, evolving according to equations (26)–(29). The ExB energy is given by the domain
average of −W × ∂�/∂t, the thermal free energy and sound wave energy are given similarly
by (1 + τi)p × ∂p/∂t and ε̂u‖ × ∂u‖/∂t, and the magnetic and electron parallel kinetic energies
combine into the electron parallel energy, given by the domain average of J‖ × (β̂A‖ + µ̂J‖).
The various modes ({ky, k‖} pairs) contribute separately to these quadratic forms. Surface terms
resulting from integration of ∂/∂x by parts are neglected.
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The zonal flow energy evolves according to

∂

∂t

{
〈ũy〉2

2

}
=

{
〈�〉

[〈
ṽx

Eũy
〉 − 1

β̂
〈b̃xb̃y〉

]}
− ωB{〈ũy〉〈p sin s〉}. (40)

This shows two nonlinear drive/depletion terms, depending on their statistically average sign
and a coupling term, which is also of indeterminate sign and could either act as a drive or a
depletion. The first term is the Reynolds and Maxwell stress. For a shear Alfvén mode structure,
these stresses cancel [42], although in general there is an imbalance even when the Maxwell
stress is finite. The Reynolds stress mechanism is usually a drive, due to the statistical zonal flow
instability. The drive is positive when the zonal vorticity 〈�〉 is positively correlated with the
zonal Reynolds stress 〈ṽx

Eũy〉. The last term in equation (40) quantifies the geodesic coupling.
If the net drive due to the nonlinear terms is positive, energy can only leave the zonal flow by
means of this effect. If the effect is to transfer energy out of the zonal flow in a net sense, it is
referred to as geodesic transfer. The zonal flow energy can only be transferred to the pressure
sideband.

The pressure sideband energy evolves according to

∂

∂t
{(1 + τi)〈pe sin s〉2} = 2

{〈
∂p

∂x
sin s

〉
〈(peṽ

x
E + v‖b̃x) sin s〉

}
+ ωB{〈p sin s〉〈ũy(1 − cos 2s)〉}

+ 2{〈p sin s〉〈u‖ cos s〉} − 2{〈p sin s〉〈J‖ cos s〉} − ωB

{
〈p sin s〉

〈
∂p

∂x
(1 − cos 2s)

〉}
. (41)

Five terms are listed on the right-hand side. As in the case of equation (40), all have indeterminate
sign. The first term gives the nonlinear coupling to the turbulence (ky �= 0) modes, referred to
as diffusive mixing if the transfer is preferentially out of the pressure sideband. The second
term, arising from the toroidal compression of the ExB velocity, gives the geodesic coupling
to the zonal flow, and since it appears in both equations (40) and (41) with opposite sign, we
identify it as a conservative transfer effect between them. The third term gives the sound wave
coupling to the parallel flow sideband. The last two terms give the adiabatic coupling to the
parallel current sideband and the diamagnetic compressional coupling to the thermal background.
The factor of cos 2s arises from sin2 s and gives the coupling to the second sideband. These
k‖qR = 2 modes are found in the computations to be quite negligible, however, and we will not
consider them further. Energy leaving the pressure sideband can go basically anywhere else in
the system. An important condition governing this is for the Pfirsch–Schlüter current balance
given by equation (32) to be broken. If so, then a flow (vorticity) sideband is driven, as seen in
equation (26).

The flow energy sideband evolves according to

∂

∂t

{〈ũy sin s〉2
} = 2

{
〈� sin s〉

[
〈ṽx

Eũy sin s〉 − 1

β̂
〈b̃xb̃y sin s〉

]}

+ 2
{〈W sin s〉〈J‖ cos s〉} + ωB

{
〈W sin s〉

〈
∂p

∂x

〉}
. (42)
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The first term is the sideband of the Reynolds/Maxwell stress and the second and third terms give
the MHD part of the global Alfvén oscillation, just the imbalance in the Pfirsch–Schlüter current
correlated with the flow potential sideband 〈W sin s〉. These give the Alfvénic coupling to the
parallel current sideband and the diamagnetic compressional coupling to the thermal background.
The Pfirsch–Schlüter balance can therefore only be broken in a statistically stationary state
(with ∂/∂t annihilated by short-term temporal average) by the sideband component of the
Reynolds/Maxwell stress.

The electron parallel energy sideband representing 〈J‖ cos s〉 evolves according to

∂

∂t

{
〈J‖ cos s〉〈(β̂A‖ + µ̂J‖) cos s〉

}

= 2

{〈
∂J‖
∂x

cos s

〉 〈
µ̂J‖ṽx

E cos s
〉}

+ 2

{
〈J‖ cos s〉

〈
cos sb̃x

(
∂pe

∂x
− ∂φ

∂x

)〉}

+2
{〈

J‖ cos s
〉 〈p sin s〉} − 2

{〈J‖ cos s〉 〈W sin s〉} − 2C
{〈J‖ cos s〉2

}
. (43)

The first two terms are nonlinear ExB diffusion and magnetic flutter effects, usually found in the
computations to be subdominant. The last three terms give the adiabatic and Alfvénic coupling
to the pressure and vorticity sidebands (note the same terms with opposite sign in equations (41)
and (42)) and the resistive dissipation, respectively. The coupling between 〈J‖ cos s〉 and both
〈W sin s〉 and 〈p sin s〉, noting that p − W is he = pe − φ, completes the energetic description
of the global Alfvén oscillation. Its rest state is the Pfirsch–Schlüter current balance, towards
which it is damped by resistivity. The sideband Reynolds/Maxwell stress is required (equations
(26) and (42) to disturb this balance. If this occurs, zonal flow energy may be ultimately damped
by resistivity, after being transferred through the pressure sideband by geodesic curvature and to
the current sideband by adiabatic coupling. It is most important to note that this can only occur
in a two-fluid model, since this adiabatic coupling process is absent in an MHD model.

In edge turbulence, the parallel ion flow (sound wave) sideband is found in the computations
to be weak, since k‖cs is much slower than the turbulence and even (since q � 3) slower than the
geodesic acoustic oscillation. However, its energy equation is needed to close the system except
for coupling to the turbulence. The sound wave sideband energy evolves according to

∂

∂t

{
ε̂
〈
u‖ cos s

〉2} = 2

{〈
∂u‖
∂x

cos s

〉 〈
ε̂u‖ṽx

E cos s
〉} − 2

{〈
u‖ cos s

〉 〈
cos s b̃x

(
∂p

∂x

)〉}

−2
{〈p sin s〉 〈

u‖ cos s
〉} − 2µ‖

{〈
u‖ cos s

〉2}
. (44)

Comparing with equation (41) we find the sound wave transfer to the pressure sideband
(penultimate term on the right-hand side). The other three terms on the right-hand side are the
damping effects: nonlinear ExB diffusion and magnetic flutter, and parallel viscous damping. In
this model µ‖ represents a substitute for ion Landau damping.

There still remains the background thermal reservoir, given by the zonal pressure itself,
whose gradient is the ultimate source for everything that transpires in this system. The evolution
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of the associated zonal pressure free energy is given by

(1 + τi)
∂

∂t

{〈pe〉2

2

}
=

{〈
∂p

∂x

〉
〈(peṽ

x
E + v‖b̃x)〉

}
+ ωB

{
〈p sin s〉

〈
∂p

∂x

〉}
− ωB

{
〈W sin s〉

〈
∂p

∂x

〉}
.

(45)

The first term is the direct drive of the turbulence, which self-adjusts to take energy out of
the profile [44]. The other two terms are the geodesic coupling channels to the pressure and
flow potential sidebands, respectively through toroidal compression of the diamagnetic and ExB
flows.

The six equations (40)–(45) give the energetics of the complete dynamical system
represented by zonal flows, the pressure and flow, the current and sound wave sidebands, and the
thermal background, respectively. Since this is an electromagnetic system, the parallel electron
dynamics has a magnetic inductive part (equation (3)). For even moderate β̂ within the range
of µ̂, the magnetic part is larger because of the extra factors of k2

⊥ in Ampere’s law (equation
(5)). Relaxation of the associated energy yields the Pfirsch–Schlüter current, which constantly
adjusts itself on Alfvén timescales to a zonal pressure gradient whose changes are much slower.
Nevertheless, the turbulence is able to pry this resistive ‘Alfvén clamp’ open sufficiently to
cause some of the zonal flow/sideband energy to be dumped there. On parallel sound wave
timescales, the parallel ion flow sideband and the pressure sideband would tend to keep each
other in equilibrium with the zonal flow, if there were no turbulence.

The turbulence drives the zonal flow via Reynolds stress at a broad range of frequencies,
keeping the zonal flow and pressure sideband at finite levels, with the (statistical) damping
going through the turbulence, sound waves and the global Alfvén oscillation associated with
the Pfirsch–Schlüter current. The principal energetic flow path is p → p̃ → �̃ → 〈�〉 →
〈p sin s〉 → 〈J‖ cos s〉, through the gradient drive, adiabatic coupling, Reynolds stress, geodesic
transfer and adiabatic transfer to the global Alfvén oscillation, which is resistively dissipated.
Some of the energy in 〈p sin s〉 goes directly back to the turbulence via diffusive mixing of the
pressure sideband and through sound waves to ion dissipation channels. The computations are
required to determine the relative importance of all these processes.

6. Computational results

We will illustrate the functioning of all the elements in the zonal flow/sideband energy theorem
with both 2D and 3D computations. The 2D case is useful as a pure control case illustrating
the role of the Reynolds stress in the transfer of energy between the turbulence and the zonal
flow mode, the role of the coupling mechanisms between the state variables in setting up the
Reynolds stress/vorticity correlation, and the process of pure saturation in the Reynolds stress.
The 3D model is used in both slab and toroidal forms; the slab version simply sets ωB → 0.
The difference between the 3D slab and toroidal cases is found to be severe, but mostly due
to the presence or absence of the geodesic coupling effect, which we define here as the ky = 0
component of the curvature operator. If this is put into the slab case or taken out of the toroidal
case, the overall role of the zonal flows is found to be switched. The presence of the geodesic
coupling effect is thereby found to inhibit the self-generation of large amplitude zonal flows.
We note especially that this manipulation of the geodesic coupling effect is independent of the
presence or absence of the interchange forcing effect, which is the action of the curvature on the
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ky �= 0 component, that is, the turbulence itself. We therefore fully isolate the effect of geodesic
coupling within the overall toroidal model.

It must be understood that these control tests do not involve dissipation or damping effects,
but merely the subtraction of one or more energy transfer channels, as is clear upon examination
of the equations describing the energetics, as they appear in section 5.

Further, we examine the statistics of the energy transfer processes, finding a displaced
Gaussian for the probability distribution function (PDF) in most cases. The Reynolds stress
drive and the geodesic transfer effect are found to have unambiguous directional tendencies,
with the mean about two or three standard deviations away from zero in each case. Ultimately,
the finding is that the principal saturation mechanism of self-generated zonal flows in toroidal
geometry is the geodesic transfer effect. The ultimate sink of the pressure sideband energy
is more subtle, with the indication being in favour of resistive damping of the global Alfvén
dynamics to which the zonal flow/sideband system is coupled via the two-fluid adiabatic
response.

6.1. 2D results

The role of the various 3D phenomena are better understood when compared to a relatively simple
2D model, in which the basic precepts of the current zonal flow theoretical scenarios all function
as predicted. We do this using a variant of the Wakatani–Hasegawa dissipative coupling model
for collisional drift-wave turbulence [10]. The relevant curvature terms are added, noting that in a
2D model they represent purely interchange forcing. Other than this, the perpendicular dynamics
of the state variables is the same as in the DALF3 model, facilitating separate assessment of the
role of parallel dynamics and geodesic curvature in the latter. In the same language as for the
DALF3 model, the equations are

(
∂

∂t
+ vE · ∇

)
�̃ = −D(p̃e − φ̃) − K(p̃e), (46)

∂p̃e

∂t
+ vE · ∇(pe + p̃e) = −D(p̃e − φ̃) + K(φ̃ − p̃e), (47)

with the vorticity given by

�̃ = ∇2
⊥φ̃ (48)

with D a constant parameter representing the parallel electron dynamics, with pe under vE · ∇
representing the background gradient,

pe = −ωpx (49)

(ωp is a switch, always set to unity except in appendix B), and with the curvature operator given
solely by the interchange part,

K = ωB

∂

∂y
. (50)
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The terms involving D are done as in [46]; otherwise, numerical scheme is the same one as
outlined for the 3D models in appendix A. Maintaining the accuracy, every term is evaluated
explicitly, including the dissipative coupling, so that values of D are limited to 0.1 and smaller.
It is important here [47] to set D = 0 for the ky = 0 mode,

D(f ) = D
∑
ky �=0

f(x, ky)e
ikyy (51)

since this allows for zonal flows (the use of D for ky �= 0 follows from the non-vanishing of k‖
for finite ky on closed flux surfaces [36]). We start with a random phase distribution for p̃e at
RMS level of 3.0 (see [24] for details), with φ̃ = 0. The grid is 64 × 256 nodes in {x, y} over
a domain of Ly = 4Lx = 80π, and the boundaries are periodic. For cases with D = 0, we also
start φ̃ = p̃e with �̃ set as in equation (48). The numerical hyperdiffusion coefficient (appendix
A) was set to ν⊥ = 0.01. All runs were taken for t = 1000, at which time snapshots were taken
(unless otherwise indicated). Statistical quantities were averaged over 500 < t < 1000 with 50
samples. The timestep was 0.05 except for cases with D = 0.1, for which it was 0.005.

The main point of this section is the functioning of the self-generation process for the zonal
flows, specifically the the Reynolds stress/vorticity correlation. It is found to require coupling
between p̃e and φ̃, as the control case with D = ωB = 0 found no zonal flow generation but
merely the emergence of coherent vortices in the decaying 2D flow field [48], and the passive
advection of the total p̃e + pe. It is interesting to note that this numerical scheme is sufficiently
well constructed to capture the coherent (isolated, spatially intermittent) vortex formation process
even with a 64 × 64 grid resolution.

Cases with D = {0.00, 0.01, 0.1}, with ωB = {0, 0.05, 0.1, 0.2, 0.3} were examined. In all
cases except D = 0 with ωB > 0, saturation at a finite turbulence and zonal flow amplitude was
found. The suppression of the turbulence due to the flow was found to progress faster and remain
deeper with the D = 0.1 cases than with D = 0.01. The saturation of the flows was always due
to a balance in the Reynolds stress process between high- and low-ky spectral regions, with
numerical dissipation for kyρs > 1 accounting for up to 30% of the flow sink. We define

RE =
∫

dV 〈�̃〉 〈
ṽx

Eṽ
y

E

〉
and RE(ky) =

∫
dx〈�̃〉[vx(ky)

∗vy(ky)], (52)

where 〈· · ·〉 denotes the average over y. The flow generation process starts with RE > 0 as
the initially random distributions of 〈�̃〉 and 〈ṽx

Eṽ
y

E〉 statistically align. As the zonal vorticity
amplitude increases, it begins to drive the low-ky component in the same ‘Kelvin–Helmholtz
assisted drift wave’ process described in [3] for externally applied flow vorticity. At a particular
amplitude of 〈�̃〉, the two spectral regions balance, tending towards RE = 0. This is the basic
saturation process for the zonal flow vorticity in this geometry.

The Reynolds stress process itself requires coupling between φ̃ and p̃e, as shown by the
D = ωB = 0 case which did not result in significant zonal vorticity. The increased effect found
with increasing D suggests a role for the adiabatic coupling: the zonal flow simply tilts p̃e in the
direction of the flow shear, with a sign sense such that if φ̃ were equal to p̃e then the Reynolds
stress energy transfer would be directed from the eddies to the zonal flow. In the absence of
coupling, this has no effect on φ̃ and hence no role in the Reynolds stress. But with finite D, the
electron dynamics forces φ̃ to follow the structure of p̃e, leaving the eddies in an energy losing
relationship to the zonal flow. The interchange forcing has a similar but less direct effect, by
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Figure 1. Time traces of amplitudes and transport for the 2D dissipative coupling
model with D = 0.1, with and without zonal flow (ZF) effects. Domain averages
of p̃2

e/2, φ̃2/2, �̃2/2 and p̃eṽ
x
E are denoted by An, Ap, Aw and Qe, respectively.

The ZF effect is clearest in the larger Ap while all others are smaller.

tending to force φ̃ to appear similar to p̃e but lag phased π/2 behind, such that the correlation
〈p̃eṽ

x
E〉 is positive (with the gradient in the direction of −∇x).
We show these phenomena for the simplest cases with D = 0, 0.01 and 0.1 and with ωB = 0.

For D = 0.1, roughly commensurate with the 3D situation with k‖qR = 1 and C = 10, the
Reynolds stress process for zonal flow generation and turbulence suppression is already very
effective. The stages in the process are visible in the time traces of the ExB energy, the pressure,
potential and vorticity squared amplitudes, and the transport as shown in figure 1. These quantities
are respectively given by

Ee = 1
2 |∇⊥φ̃|2, An = 1

2 p̃
2
e, Ap = 1

2 φ̃
2, Aw = 1

2�̃
2, Qe = p̃eṽ

x
E, (53)

each averaged over the spatial domain. All of Ap, Ee and Aw represent φ̃, but Ap reflects mostly
large scale flows and Aw mostly the turbulence, with Ee somewhat in between, due to the factors
of ∇⊥. The turbulence is very robust and rapidly approaches saturation, but just as quickly the
Ap signal rises and then the Aw and Qe signals sharply drop and never recover. The fact that Ap

remains while Aw is reduced shows that φ̃ concentrates towards the largest scales. This is the
basic signature of spin-up-and-suppress in the time traces. The value for Qe was 0.565 ± 0.0744.
A control case, in which elimination of zonal flows is done by setting the ky = 0 component of
vE · ∇�̃ to zero, found 2.73 ± 0.149, yielding a zonal flow suppression factor of nearly 5. By
contrast, the respective values for D = 0.01 were Qe = 5.12 ± 0.609 and 5.82 ± 1.97, showing
little suppression.

The spatial morphology of φ̃ and p̃e at late times is given in figure 2 for D = 0.1 with and
without zonal flow effects. The flow layers and corresponding tilting of the pressure disturbances
in the nominal case are clearly visible, as is their absence in the case without zonal flows. The
cases with zonal flow effects for D = 0 and 0.01 are shown in figure 3. For D = 0.01 the zonal
flow effects are not clearly visible although they are left present in the model. For D = 0 a few
large eddies with mostly radial flow are seen. The vorticity field is shown for all four of these
cases in figure 4, in which the coherent vortices are seen for D = 0, a still intermittent field is
seen for D = 0.01, but then the vorticity fills space for D = 0.1 whether or not zonal flows are
allowed. The qualitative difference brought by the adiabatic coupling is obvious.
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Figure 2. Spatial morphology of the electrostatic potential and pressure for the
2D dissipative coupling model at t = 1000 and D = 0.1, with and without zonal
flow (ZF) effects. The ZF shear layers are clearly visible in the nominal case and
dominate the activity. Only half of the y-domain is shown.

Figure 3. Spatial morphology of the electrostatic potential and pressure for the
2D dissipative coupling model at t = 1000 with D = 0.01 and D = 0, showing
the weakness of ZF effects for weak adiabatic coupling. Contrast with figure 2.
Only half of the y-domain is shown.

For D = 0.1 at late times the profiles (zonal averages) of φ̃, ṽ
y

E and �̃ are shown in
figure 5. The sinusoidal shear layers are visible in all of them, and especially in the zonal
vorticity it is clear that the shear in the flow layers is stronger than the disturbances on the
curves which represent the turbulence. The profiles and 2D morphology together show that the
physical state at late times is one of zonal flows with sharply suppressed turbulence.
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Figure 4. Spatial morphology of the vorticity for the 2D dissipative coupling
model at t = 1000 with cases as indicated. With D = 0 the classic coherent
vortices emerge. For larger D these disappear and very small vortices fill the
spatial domain, whether or not zonal flow activity is present. The full y-domain
is shown.

Figure 5. Profiles (averages over y) of the electrostatic potential, ExB velocity
and ExB vorticity, respectively, for the 2D dissipative coupling model at t = 1000
with zonal flow (ZF) effects. Even in the vorticity profile, the zonal flow layers
are stronger than the disturbances due to the turbulence.

The spectra of the Reynolds stress energy transfer, given by RE(ky), are shown for the case
with D = 0.1 in figure 6, compared to the basic 3D slab case discussed in the next section. The
plot is log–log, shown for both positive and negative values, and ky is in units of ρ−1

s . The result
is that energy is transferred from eddies to flows at high ky, indicating suppression of turbulence,
but from flows back to eddies at low ky, indicating energetic drive of large scale flow rolls. The
zonal flow energy saturates when its shear becomes sufficient to create this long-wavelength drive
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Figure 6. Spectra of the Reynolds stress energy transfer (RE, labelled ‘E’) from
eddies at each ky to the zonal flow, shown on log scales for both positive and
negative values, for the nominal cases of the 2D and 3D slab models (the 3D
cases are discussed in the next section). For the 3D case, the Maxwell stress
transfer (RM , labelled ‘M’) is also shown. The saturation mechanism for zonal
flow generation at finite adiabatic coupling levels is for turbulence suppression
at higher ky to be balanced by turbulence drive at lower ky as the flow amplitude
increases to statistical equilibrium.

region for the turbulence. The form of these curves is similar, indicating the same mechanism in
both 2D and 3D slab cases. Previously, turbulence in the presence of prescribed ExB flow shear
was found to exhibit this juxtaposition of drive and suppression regions if the flow shear was
strong enough [3]. Both results are mutually consistent. The three dashed lines on the horizontal
axis from left to right indicate the positions where 10, 20 and 50%, respectively, of the total
positive part of the spectrum is accumulated. This demonstrates the importance of the ky ∼ 1
region to the positive part of RE, that is, the region in which the flows are driven by the eddies,
even though most of the turbulence energy is closer to ky ∼ 0.1.

Of interest is the physical state in the phase during which the zonal flows are generated.
This is very early, corresponding to about t < 100 in the time traces. A clear illustration of the
emergence of the Reynolds stress flow drive is given by the profiles 〈�̃〉 and 〈ṽx

Eṽ
y

E〉 at t = 40,
shown separately and together in figure 7. While these separately have either sign with roughly
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Figure 7. The zonal vorticity and Reynolds stress, and their product, shown
as functions of x. The product is overwhelmingly positive, showing the strong
correlation between these two quantities which forms the Reynolds stress transfer
process.

Figure 8. Changing morphology during the phase of maximum suppression by
the growing zonal flows. The pressure disturbance sheets associated with the
turbulence eddies tilt in the direction of the sheared flow layers, indicative of the
Reynolds stress transfer process. Only half of the y-domain is shown.

equal probability, their product RE is dominantly positive. This shows that the energy transfer
proceeds from the eddies to the flows everywhere in the domain. The zonal flows emerge visibly
somewhat later but are clearly visible by t = 70, as shown in figure 8.A time trace of RE confirms
that it is robustly active throughout the phase during which the flows are generated and the
turbulence is suppressed. At late times, RE is small, offset solely by the action of hyperdiffusion
upon 〈�̃〉, and the zonal flow energy is saturated.

In the 2D model, then, the spin-up-and-suppress scenario works in detail as described by
the theory [2], but only so long as one or both of the coupling processes (D or ωB) are present.
The physics of this situation is therefore quite different from purely hydrodynamic cases of
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spontaneous flow generation, so the universality of particular mechanisms as often cited [6] is
questionable. The morphology and profile information give a clear picture of the appearance one
finds when zonal flows dominate the turbulence although both are saturated at finite levels, and
it is useful as a control when we turn to the 3D cases. The zonal flow shear (vorticity) amplitude
saturates by the low- and high-ky spectral regions of the Reynolds stress/vorticity correlation
coming into balance. We also find this balance in the 3D slab case. But in toroidal geometry, the
geodesic transfer effect enters first, as we will presently show.

6.2. 3D results—isolating geodesic coupling

Before the actual diagnosis of the physics as done for the 2D cases and as suggested by the
zonal flow energy theorem in section 5, we give a more basic demonstration of its effect using
the presence/absence test. The two basic cases are a toroidal and a slab model, given by the
nominal parameter set in equation (18), with ωB = 0 for the slab case. A modified slab case is
formed by putting the geodesic coupling effect into the slab model. A modified toroidal case
is formed by taking this effect out of the toroidal model. We then have four cases, with and
without the geodesic coupling effect and also with and without the interchange forcing present
in both toroidal models. This test augments the one done previously with a different numerical
scheme [9].

These four 3D cases are initialized equally: a random phase distribution for p̃e at RMS
level of 3.0 in {x, y} and Gaussian envelope exp(−(8s/3π)2) aligned to the magnetic field in
s, screened from the x-boundaries by a relative decrement of exp(−(x ± Lx/2)2/9), with the
other dependent variables set to zero; the turbulence follows from the gradient driving and the
adiabatic response [28]. The grid is 64 × 256 nodes in {x, y} over a domain of Ly = 4Lx = 80π,
and 16 nodes in s over a domain of one connection length (−π < s < π). The boundaries are
Dirichlet in x, periodic in y, and pseudo-periodic following global consistency and the shifted
metric treatment in s as detailed in [37].

The time traces of the four cases at a single set of parameters, displayed in figure 9, shows
the basic result of isolating these curvature effects. For the four cases, the time traces of An,
Ap, Aw and Qe are given, respectively representing p̃2

e/2, φ̃2/2, �̃2/2 and p̃eṽ
x
E, averaged

over all grid nodes in the 3D domain. Due to the adiabatic response, φ̃ generally tracks p̃e

for the ky �= 0 modes, so large differences in Ap and An are a convenient way to track the
zonal flows in these time traces. As in the 2D cases, Aw most directly tracks the turbulence.
The clearest finding from the appearance of these traces is that the two cases with the geodesic
coupling effect present saturate well, while those which lack this effect continue to evolve
at relatively late times (t > 2000). The numbers and diagnostics quoted below are averaged
over the interval 2000 < t < 4000 for all cases except for those without geodesic curvature,
for which the interval was 6000 < t < 8000. They are in gyro-Bohm units, so that Ap = 2.0
would imply an RMS amplitude level of eφ̃/Te = ρs/L⊥, and Qe = 1.0 would imply a transport
diffusivity of χGB = ρ2

s cs/L⊥. In terms of this nominal parameter set, these are ρs/L⊥ = 0.0142
and χGB = 0.45 m2 s−1, respectively.

In the basic toroidal case, the turbulence and the flow amplitude reach statistical saturation
at a robust transport level, measured at An = 10.3 ± 0.172, Aw = 0.703 ± 0.052 and Ap =
12.7 ± 3.12, while the transport stabilizes at Qe = 1.01 ± 0.117. These figures set the baseline
against which the other cases are assessed. The time traces show that the native turbulence
saturation time (neglecting sound wave and zonal flow energy) is relatively short, 
t < 500.
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Figure 9. Time traces of amplitudes and transport for the 3D basic toroidal
and slab cases, the modified toroidal case with no geodesic coupling effect and
the modified slab case with the geodesic coupling effect, testing against both
interchange and geodesic curvature as explained in the text. Domain averages
of p̃2

e/2, φ̃2/2, �̃2/2 and p̃eṽ
x
E are denoted by An, Ap, Aw and Qe, respectively.

The two cases without geodesic curvature find the strongest zonal potential
amplitude.

In the basic slab case, the turbulence saturates in much the same way, but the flow amplitude
continues to build and eventually the whole reaches statistical quasi-saturation (evolving with
the flow amplitude) at a substantially lower transport level, measured at An = 3.84 ± 0.17,
Aw = 0.495 ± 0.015 and Qe = 0.556 ± 0.021, with the flow amplitude at Ap = 322 ± 5.9,
saturating only well after t = 4000. The principal difference between the slab and toroidal cases
is this behaviour of the flows.

The modified slab case finds a result with the same character as in the basic toroidal case: fast
saturation, robust turbulence, moderate flow amplitude, robust transport level, measured at An =
4.65 ± 0.34, Aw = 0.447 ± 0.015, Ap = 4.60 ± 0.43 and Qe = 0.528 ± 0.026, respectively.
The change from the basic slab case to this one shows that the geodesic coupling introduced
alone is decisively able to saturate the zonal flow level.

The modified toroidal case finds a result with the same character as in the basic slab
case: slow saturation, weakened turbulence, strong flow amplitude, weakened transport level,
measured at An = 4.14 ± 0.21, Aw = 0.515 ± 0.017, Ap = 469 ± 13 and Qe = 0.574 ± 0.026,
respectively. The change from the basic toroidal case to this one shows that geodesic coupling
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Figure 10. Profiles (zonal averages, over y and s) of the electrostatic potential
for the four cases in figure 9. The two cases without geodesic curvature (slab and
mod tor) find high-amplitude sinusoidal potential layers.

is not only able to but required to saturate the flow amplitude at the low levels Ap < 100 seen
generally in all the basic toroidal cases (at the various β̂ and C discussed below).

The profiles at t = 4000 (at t = 8000 for the slab and modified toroidal cases) of φ̃ and �̃,
averaged over all nodes in y and s, are given in figures 10 and 11, respectively. The vorticity profile
directly measures the shear in the zonal flow. We find the results corresponding with the time
traces above: the basic slab case and the modified toroidal cases are the ones with much stronger
zonal flow level, with a single sinusoidal structure in φ(x) also seen in 3D periodic/unsheared
slab cases [49]. Whether the end state of the zonal flow shows a single radial layer or more of
them is found to be a delicate result of both boundary treatment and parameters. Particularly,
more electrostatic (lower β̂) and more adiabatic cases (lower β̂ and lower C) show narrower
zonal flow layers and more of them.

The spectra in terms of ky of the four cases are shown in figure 12. They are all similar,
broadband primarily within the range 0.1 < kyρs < 1.0, with the energy collecting towards the
longer wavelengths, the transport intermediate and the zonal Reynolds stress drive at shorter
wavelength. The entrophy spectrum is flat nearly to kyρs = 1. The fluctuation free energy is
made up of four pieces, one for each dependent variable, following the ExB energy (|∇⊥φ|2),
the thermal free energy (p̃2

e), the magnetic and electron kinetic energy (β̂|∇⊥Ã‖|2 + µ̂J̃2
‖) and the

sound wave kinetic energy (ε̂ũ2
‖), each divided by 2 and averaged over the grid nodes. The ky

spectrum is the contribution due to each ky component to the total [28]. The transport is similar,
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Figure 11. Profiles (zonal averages, over y and s) of the ExB vorticity for the
four cases in figure 9. The two cases without geodesic curvature (slab and mod
tor) find high-amplitude sinusoidal shear layers.

computed for p̃eṽ
x
E, and the zonal Reynolds stress drive (cf next section) is the zonal vorticity

times the zonal Reynolds stress 〈ṽx
Eṽ

y

E〉. The transport curves turn downward at slightly lower
ky for the cases without geodesic coupling (strong flows), following the energetic suppression
of the shortest wavelengths by the flow shear (cf [3]). Otherwise, the forms are the same. The
predominance in each signal of a different region in the spectrum reflects the nonlinear nature
of the turbulence.

The nominal case, with both interchange and geodesic curvature effects, shows a peak near
kyρs = 0.1 superposed upon the rest of the broadband spectrum. This is a nonlinearly supported
MHD mode, as diagnosed below. The region kyρs < 0.125 is found to account for 20% of the
total transport, and either kyρs < 0.35 or 0.15 < kyρs < 0.55 for 50% of it.

It is important to note the strong contribution of the smaller scales to the zonal Reynolds
stress drive, and to compare that to the spectrum of p̃2

e (which is very similar to φ̃2 for kyρs < 1).
This is a very nonlinear situation to which any discussion of a dominant mode or linear instability
is poorly posed.

The parallel envelope structure (cf [38]) show the basic toroidal and slab forms, and in
this case the presence or absence of geodesic coupling has no effect; only interchange forcing
does. But the otherwise similarity of the basic toroidal and modified slab cases show that this
‘ballooning’ signal is not germane to the actual dynamics of the turbulence.

The correlation lengths of p̃e show a response to the zonal flows. For the x and y

directions {λx, λy}, they are {5.25, 7.08} for the basic toroidal case, {2.73, 3.37} for the basic
slab case, {3.67, 4.44} for the modified slab case and {2.70, 3.54} for the modified toroidal case,
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Figure 12. Spectra of the total fluctuation free energy (‘e’), turbulent transport
(‘n’) and squared ExB vorticity (‘w’), showing their activity at predominantly
varying wavelengths in these nonlinear systems. The feature near kyρs = 0.1 is
an MHD mode driven both nonlinearly by the ExB cascade dynamics and linearly
by interchange forcing. It carries about 20% of the total transport. The drift wave
region kyρs > 0.2 is similar for all four cases.

respectively. The stronger zonal flows reduce the scale of motion approximately isotropically,
with the larger scale interchange driven range in the basic toroidal case seen in the spectra
suppressed for the modified toroidal case and absent for the slab cases.

The morphology in the four cases is shown in figure 13. Only half of the y-domain is shown.
The basic slab case shows dominance of the shear layer in the potential, with p̃e noticeably tilted
into the y-direction. The basic toroidal case shows a faint shear, but its vorticity is not larger
than that of the turbulence, which is why a strong amount of suppression does not occur. The
cases show strong or weak shear layers according to whether geodesic coupling is absent or
present, respectively. The shear levels of these weaker flows are comparable to the dynamical
frequencies of the turbulence (about 0.1cs/L⊥). The Ap time traces (cf figure 9) for the weaker
flows show them to be short-lived, comparable to the correlation time of the turbulence (about
6L⊥/cs). These are the zonal flows which remain as part of the turbulence, leading in fact to
moderate suppression but allowing it to remain at a robust amplitude. By contrast, the flow layers
in the cases without geodesic coupling persist for the length of the run, and hence are more like
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Figure 13. Spatial morphology of the electrostatic potential and pressure
disturbances for the four cases in figure 9. The two cases without geodesic
curvature (slab and mod tor) find clear flow shear layers which cause the pressure
disturbances to tilt with the zonal flow. The other two cases find nearly isotropic
turbulence only marginally affected by the flows, and potential amplitudes
comparable to the turbulence.

mean flows even though they are self-generated. The basic toroidal case also shows the large
scale interchange driven range in the superposition of large 2 < kyLy < 4 structures upon the
turbulence. This is the spatial manifestation of the MHD component mentioned above.

The average ExB energy transfer spectra [38], in terms of k⊥ defined as k2
⊥ = k2

x + k2
y (since

the perpendicular metric is unit diagonal), are shown for the four cases in figure 14. These are the
time-averaged contribution of each {kx, ky} component to the three transfer terms in the vorticity
equation: nonlinear three wave transfer within the ExB energy through the eddy Reynolds stress,
mainly linear transfer against the magnetic energy through the parallel currents, and strictly
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Figure 14. Energy transfer spectra for the four cases, showing average transfer
into ExB eddies at the given k⊥ due to polarization nonlinearity (‘e’), parallel
currents (‘j’) and interchange curvature (‘k’). Interchange curvature is absent for
slab cases, but the curves show how large it would be if it is switched on. The ‘e’
and ‘j’ curves show the basic drift-wave turbulence dynamics. For k⊥ρs > 0.2 the
polarization current is responsible for maintaining energy transfer into the ExB
eddies through the parallel current, indicating the basic drift-wave mechanism
maintaining the turbulence. The interchange forcing represented by the curvature
enters into the toroidal case for k⊥ρs ∼ 0.1.

linear transfer against the thermal free energy through the overall curvature term (interchange
forcing). Only the contributions not involving the ky = 0 modes are shown. Note that for the two
slab cases, the interchange forcing is zero, but the green lines show where the result would fall if
the interchange curvature suddenly switched on. The modified slab case is important as a control
case against the interchange forcing: the similarity of the other two forms shows that the main
process maintaining flows and currents in the turbulence is the nonlinear slab drift wave physics,
and that the presence or absence of interchange curvature forcing has no effect. So in general, in
the basic toroidal cases, the interchange curvature is a perturbative effect adding to the general
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Figure 15. Frequency spectra of the zonal potential and zonal flow for the nominal
case (left) and the modified toroidal case with geodesic coupling removed (right).
The geodesic acoustic oscillation natural frequency is 0.05/

√
2 in these units.

Broadband activity up to 0.05 is seen but the mean flow component (ω = 0) is
dominant. With no geodesic coupling present, the mean-flow component acts
nearly alone.

drift wave turbulence, producing ballooning but not affecting either dynamics or otherwise mode
structure.

The frequency spectra of the zonal potential and zonal flow for the basic and modified
toroidal cases is shown in figure 15. In both cases the zero frequency component is most
prominent, but the presence of the geodesic coupling leads to activity up to about the nominal
geodesic oscillation frequency of 0.035. It is important to note that no single coherent mode is
dominant (and also that one might be misled in that direction by a linear–linear plot; cf [30]).
The prominence of the frequency peak varies case by case (with parameters as discussed below),
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however, and a strong peak is not a necessary signal for the role of geodesic coupling. The
zonal vorticity is forced upon by the turbulent Reynolds stress at all frequencies, and this is
reflected in the noisy nature of the zonal potential frequency spectrum. With the zonal flow
reflecting somewhat smaller scales due to the extra k⊥ factor, the geodesic frequency peak is
less pronounced. So although the geodesic transfer effect is clearly active energetically, this
will not always result in a frequency peak visible by experimental diagnosis. The absence of
such an observation does not therefore conclude the absence of the geodesic effect, even if the
diagnostics should be able to discern between the signatures shown in figure 15. On the other
hand, the activity of all frequencies except zero is sharply reduced in the absence of geodesic
curvature.

Having performed presence and absence tests on both geodesic coupling and interchange
forcing effects, we find that the main qualitative difference in drift Alfvén turbulence between
slab and toroidal geometry is not interchange forcing, which produces linear instabilities, but
geodesic coupling, whose role is to statistically saturate the zonal flows, hence act as geodesic
transfer. Whether this effect actually enters with a pronounced geodesic acoustic oscillation is
not central to the zonal flow result: the main point is that the geodesic coupling is effective
in holding the zonal flow vorticity to levels not greater than that of the turbulence, and hence
prevent the emergence of strong self-generated flow layers with enough vorticity to suppress the
turbulence.

6.3. 3D results—energetics and statistics

In this part we diagnose the energetics of the zonal flow/sideband system using the results
of the analysis of section 5. Only the ‘basic toroidal’ cases are considered, i.e. those with all
terms present in the equations. The emphasis is on the variation of β̂, i.e. how electromagnetic
the adiabatic response of the parallel electron dynamics becomes [28]. Nominally, this sets in
when β̂ = 1, which is when the drift and Alfvén transit frequencies cs/L⊥ and vA/qR are equal.
However, the competition is between the electron inertia/resistivity and the inductive electric
field in Ohm’s law. This compares β̂ to µ̂, that is, the traditional comparison between the electron
dynamical beta (βe = c2

s /v
2
A) and the mass ratio (me/Mi). But due to Ampere’s law relating Ã‖

to J̃‖, the mass ratio enters in combination with an extra factor of k2
⊥ρ2

s , so in the context of
turbulence the electromagnetic induction begins for β̂ rather lower than either unity or µ̂. For
linear waves there is a partial cancellation between ω and the diamagnetic frequency ω∗ (in
normalized units the latter is just ky), but for the turbulence ω has a broad distribution even
for each individual wave, and so effects must be investigated using the computations. For the
turbulence, the electromagnetic influence starts even at the lowest β̂ values which are affordable
by an explicit computation. As β̂ rises, a narrow range of modes with MHD character with
kyρs ∼ 0.1 is superposed upon the drift wave turbulence with roughly 0.2 < kyρs < 1. The scale
of motion of both components is independent of β̂, and below the transition there is little effect
on either turbulence or transport. For β̂ωB > 1, the MHD component takes over and the drift
wave component loses significance. In other words, this is not a linear boundary even though the
transition is rather abrupt. The zonal flow energetics, however, starts changing somewhat before
this boundary, as shown below.

In the diagnostics presented below, the zonal average 〈· · ·〉 is over the grid nodes in y

and s, and the radial average {· · ·} is over the grid nodes in x. All statistical results are averaged
over the time interval 2000 < t < 4000.
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Figure 16. Time traces of the three terms in the zonal flow energy equation,
representing the Reynolds (RE) and Maxwell (RM) stress and geodesic (TG)
transfer effects. The Reynolds stress and geodesic coupling are in approximate
balance.

For the nominal case with β̂ = 2, µ̂ = 5 and C = 7.65, we show in figure 16 the zonal
Reynolds stress drive RE = {〈�̃〉〈ṽx

Eṽ
y

E〉}, the geodesic transfer TG = −ωB{〈ṽy

E〉〈p sin s〉} and
the zonal Maxwell stress drive RM = −β̂−1{〈�̃〉〈b̃xb̃y〉} as in equation (40). The time traces of
RE and TG show a very robust signal with unequivocal sign, and are close to balance, while RM

is small in both average and standard deviation. The signals are very unsteady, which is why it is
necessary to carry these runs to t = 4000. The burst-like appearance is deceptive, however, as the
probability distribution functions for these two quantities sampled in time, shown in figure 17,
has a mainly Gaussian shape, although shifted about three standard deviations away from zero.
Sampled in both x and t, however, both quantities show strong power-law tails to the positive
side. These results confirm the basic energy transfer path for the zonal flows: they are driven by
the Reynolds stress and depleted by the geodesic curvature effect.

The pressure sideband energy theorem is more complicated however. Not all of the energy
goes back to the turbulence, nor is it dissipated by MHD sound waves. Recall that the zonal
flow and sideband energy is energetically coupled to the global Alfvén oscillation. This goes into
and out of the pressure sidebands through the ‘geodesic diamagnetic coupling’ and ‘adiabatic
coupling’given by the last two terms in equation (41), respectively; both are inherently non-MHD
processes. It is necessary to measure all the terms in equation (41) for a complete accounting. We
find that this global Alfvén dynamics has comparable energy transfer to the geodesic acoustic
dynamics. Energy enters the pressure sidebands via geodesic transfer and geodesic diamagnetic
coupling at about equal rates, and it exits mostly by adiabatic coupling into the magnetic sideband
energy. In this case, the nonlinear decoupling gets randomized by all the Alfvén dynamics—
it is robustly active but averages close to zero. The other terms, including the sound waves,
second sideband (sin 2s) pieces and the magnetic flutter, are smaller. The transfer into and
out of the pressure sideband energy is the result of all the terms in equation (41), as follows
(all ×10−3): diffusive mixing, out to turbulence: −0.67 ± 1.48; geodesic coupling, in from zonal
flow energy: 3.00 ± 0.89; parallel MHD compression, out to sound wave sideband: −0.28 ±
0.08; adiabatic coupling, out to current sideband: −1.45 ± 0.45; diamagnetic compression,
in from zonal pressure: 0.56 ± 0.28; and dissipation in edge diffusion layer: −0.70 ± 0.29.
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Figure 17. Probability distributions of the Reynolds stress (RE) and geodesic
transfer (TG) effects, compared to Gaussians with the same SD. Sampled in time
as zonal averages, the signals are all statistically one-way. Sampled in both x and
t, the distributions show strong tails to the positive side.

Transfer to the second sideband (cos 2s) via diamagnetic compression is small: 0.009 ± 0.013.
The discrepancy from 100% is well within the error bars and consistent with saturation over
the finite time of 4000L⊥/cs for the run. A test run with the edge diffusion applied to the zonal
pressure only instead of all ky = 0 modes found that most of this 0.70 went into an increase of
the adiabatic transfer to J̃‖ and about 20% into diffusive mixing back to the turbulence.

The next piece is the magnetic sideband energy, in equation (43). The nonlinear terms are
found to be small and the only input is adiabatic transfer from the pressure sideband (+1.45 ±
0.451), with the energy exiting through Alfvén coupling to the flow sideband (−0.581 ± 0.394)
and resistive dissipation (−0.866 ± 0.234). As expected, this component is in a nearly quasi-
static balance, although the standard deviations are about one-third of the total throughput.

The next piece is the flow sideband energy, in equation (42). In a slowly decaying
equilibrium, this component is maintained by the Pfirsch–Schlüter current balance, driven
by diamagnetic compression and damped by Alfvén transfer to the magnetic sideband. With
the turbulence present, however, the global Alfvén dynamics reacts to it, so that the sign of
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Figure 18. Dependence upon the driftAlfvén parameter (β̂) and the collisionality
(C) of the Reynolds (RE) and Maxwell (RM) stress and geodesic (TG) transfer
effects. The nominal ideal and resistive MHD boundaries are β̂ > 20 and C > 20,
respectively. Below these boundaries, the drift wave regime finds a balance
between RE and TG, which extends into the resistive MHD regime albeit with
larger error bars, following the more vigorous turbulence controlled by fewer ky

modes at larger scale. Into the ideal MHD regime, both TG and RM change sign
and RE is forced to be negative. The balance RE + RM = 0 which would hold
for shear Alfvén waves is broken by TG, whose changes appear to control these
transitions, although RM is the largest driving effect for β̂ � 20.

these transfer effects is reversed: energy enters from the pressure sidebands through the Alfvén
coupling (+0.581 ± 0.394), and leaves to the thermal background via diamagnetic compression
(−0.185 ± 0.380), and to the turbulence through the Reynolds stress sideband (−0.263 ± 0.362).
The Maxwell stress sideband is very small (−0.015 ± 0.055).

The sound wave sideband is maintained by the small fraction of the energy exiting the
pressure sideband through parallel MHD compression (+0.280 ± 0.081), which is dissipated
mostly linearly by the artificial dissipation given by ν‖, which in this case acts in place of µ‖
which was set to zero. Diffusive mixing (−0.083 ± 0.023) accounts for the rest.

The zonal pressure drives the turbulence by diffusive mixing (−962 ± 106, much more
robust than all the zonal flow/sideband dynamics), and drives the global Alfvén oscillation
in a net sense (−0.561 ± 0.277 for diamagnetic compression to the pressure sidebands and
+0.185 ± 0.308 in from the flow sidebands). The magnetic flutter transport is small and negative,
with the transfer to the zonal pressure (+0.123 ± 0.079) much smaller than the ExB drive of the
turbulence. It is interesting to note that the resistive dissipation which allows the magnetic
sideband to take energy out of the flow/sideband system also results in the pressure and flow
sidebands being driven by the zonal pressure—the sidebands are non-adiabatic. But the transfer
is forced by the energy leaving the zonal flows for the pressure sidebands, which causes the
adiabatic transfer to be so large, which reverses the sign of the pure Alfvén part of the overall
global Alfvén oscillation.

It is very interesting to know how the main zonal flow drive and depletion rates scale with
parameters, especially β̂ but also C. This scaling is shown in figure 18, for the zonal Reynolds
stress drive RE, the geodesic transfer TG and the zonal Maxwell stress drive RM , the latter given
by β̂−1{〈�̃〉〈b̃xb̃y〉}, as in equation (40). For all collisionality regimes, the basic roles remain
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unchanged: RE is positive, TG negative and RM for β̂ = 2 remains weak. For C > 10 the strength
of these effects increases, mostly due to the increasing strength of the turbulence itself, but also
due to the increasing impact of the longer wavelengths. The error bars are larger in this regime,
following the increased intermittency when fewer ky modes are involved in the energetics. Note
that the nominal resistive ballooning (MHD) boundary is CωB = 1, which for this choice of
ωB = 0.05 is C = 20.

The dependence upon β̂ is more complicated: as β̂ rises, the first thing to change is the
geodesic transfer itself, approaching zero and then changing sign at β̂ between 7 and 10. The RM

appears abruptly at β̂ = 10, but clearly after the observed changed in TG, suggesting the latter
is driving the changes. A third regime is reached when for β̂ = 20 and above RM changes sign
and becomes the principal zonal flow drive, while RE is forced to change sign and become the
sink. This pattern of changes suggests RM is now driving the changes. Note that the nominal
ideal ballooning (MHD) boundary is β̂ωB = 1, which for this choice of ωB is β̂ = 20.

We next consider the Reynolds and Maxwell stress spectra, shown with respective labels
‘E’ and ‘M’ in figure 19 for the nominal case with β̂ = 2 and a ‘high beta’ case with β̂ = 10. The
nonlinear interaction of the vorticity itself is limited to scales near ρs by the adiabatic response
[50, 51], and even when the electrons are not adiabatic the parallel dynamics selectively
constrains the longer wavelengths (the reason the drift wave nonlinear instability loses influence
at the longest wavelengths). The Reynolds stress of the drift wave part of the spectrum
(about kyρs > 0.2) is influenced by these effects. Measuring this spectrum by considering the
contribution of each ±ky pair to RE, we find that it indeed peaks very near ρs. Summing the
Fourier components, we find that half of the Reynolds stress drive is done in the spectral range
kyρs > 0.675, and 80% of it is done in the range kyρs > 0.45.

Analysis of simpler models suggests that for large enough β̂ we should see RM arise and
cancel RE [42]. This follows the fact that shear Alfvén waves transport no momentum (for them
the cancellation is exact). Indeed for β̂ � 10 we find a substantial fraction of the energy going
into Alfvén waves, since the parallel structure of φ̃ (squared amplitude versus s) becomes flat
while that of p̃e becomes strongly ballooned—by contrast the CωB > 1 regime shows a more
conventional ballooning structure in both these state variables. The form of the spectra of RE

and RM indicates this cancellation tendency even when RM � RE, showing that it is a basic
part of the drift wave mode structure. As β̂ is increased to 10 the cancellation becomes affective.
For β̂ = 2 the total positive part of RE is 0.00234 and the total negative part of RM is 0.00015.
For β̂ = 10 the total positive part of RE is 0.00271 and the total negative part of RM is 0.00280.

But for the controlling effects of TG in the intermediate regime and the fact that RM rises
past the level necessary to cancel RE, we have to look elsewhere. Quantitative analysis of the
Pfirsch–Schlüter Alfvén system shows where: before the Maxwell stress cancellation becomes
effective, the two main transfer channels describing the Pfirsch–Schlüter current balance in the
flow sideband energy (equation 42) change sign. It indicates that with rising beta the turbulence
begins putting more energy into the global Alfvén dynamics than the Pfirsch–Schlüter current
drive does. Now the (measured) transfer path is eddy turbulence into zonal flows (Reynolds
stress), into magnetic disturbances (Maxwell stress) as well as the pressure sideband (geodesic
transfer), from the latter into the magnetic sideband (adiabatic coupling), from the latter into the
flow sideband (Alfvénic coupling), and hence backing into the thermal background (sideband
geodesic coupling), and finally from there into the pressure sideband (diamagnetic coupling).
Ultimately, this causes the main geodesic transfer (the one affecting the zonal flow energy) to
back up, eventually changing sign and causing the less intuitive effects in figure 18.
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Figure 19. Reynolds (RE, labelled ‘E’) and Maxwell (RM , labelled ‘M’) stress
spectra, shown on log scales for both positive and negative values, for two values
β̂ = 2 and 10. The notation is as in figure 6, to whose 2D and 3D slab cases these
ones should be compared. There is a clear tendency for the Alfvén cancellation
between RE and RM , with the relative amplitude varying with β̂. At moderate
β values, the Maxwell stress for both the slab and toroidal cases follows the
Reynolds stress, although RM is smaller. In the toroidal cases, RE does not self-
saturate as in the slab cases. For moderate β̂, the geodesic transfer balances a
continued robust RE, and for larger β̂ the Maxwell stress enters quantitatively.
At the entrance to the MHD regime (β̂ = 20), the Reynolds/Maxwell stress
cancellation is effective, but then the energetics is taken over by the Pfirsch–
Schlüter current sideband system.

An important result of the strengthening electromagnetic character in the adiabatic response
is that the immediacy and coherence of the coupling between φ̃ and p̃e is lessened [28, 52]. The
efficiency of RE is weakened, because it depends on (1) tilting of pressure disturbances by the
zonal flow shear, (2) the adiabatic response forcing the potential disturbances to assume the same
structure as p̃e, and therefore (3) the associated ExB eddies finding themselves in an energy-
losing arrangement vis-à-vis the flows. Strictly hydrodynamic Reynolds stress in the absence
of adiabatic coupling is very weak by comparison to what transpires in drift wave turbulence.
In other words, the correlation between the zonal vorticity and the zonal Reynolds stress is
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Figure 20. Dependence upon the driftAlfvén parameter (β̂) and the collisionality
(C) of the turbulent transport, to be contrasted with figure 18. The transport trend
with C is reflected in the transfer effects, showing amplitude similarity in all the
processes. The rising trend for β̂ � 10 corresponds to the qualitative changes in
the transfer effects seen in figure 18. At these parameters, the robustness of the
Alfvén activity causes the stiffness of the adiabatic coupling to break down.

most strongly established when the adiabatic coupling is instantaneous. The importance of zonal
flows in transport is shown in the scaling with β̂ for cases with and without zonal flow drive
(implemented by setting the zonal component of ∂�̃/∂t to zero), shown in the transport curves
in figure 20. The onset of the MHD regime, is reflected in the rise of Qe as β̂ > 10. In the MHD
regime, the zonal flow effect (the difference between the solid and dashed curves in the left
frame) weakens noticeably. But the changes in TG with β̂ can only be explained by looking at
the other transfer channels in the zonal flow/sideband energetics. The transport trend with C is
shown in the left frame, indicating by comparison to figure 18 that the strength of RE and TG

mostly follows that of the turbulence itself.
Putting these diagnostics together, we find that even for nominal parameters well below

the MHD beta limit the turbulence is robustly electromagnetic enough to knock the Pfirsch–
Schlüter currents out of equilibrium so that their involvement in the energetics is comparable to
the zonal flows and geodesic acoustic dynamics. Moreover, the drift wave component dominates
the overall Reynolds stress zonal flow drive. One could not have obtained these results with an
MHD model, nor with one which does not clearly resolve the drift scale.

7. Conclusions—drive and saturation of zonal flows

This study has focused upon drift Alfvén turbulence and zonal flows under tokamak edge
conditions in which direct dissipation mechanisms in the perpendicular dynamics are very weak.
In gyro-Bohm units, the collisional dissipation mechanisms in the electrons scaling with ρ2

eνe are
of order 10−3 and if warm ions are considered the dissipation in the ions scaling with ρ2

i νi are of
order 10−2. These are comparable to or smaller than the numerical dissipation required to maintain
statistical saturation in the turbulence with a perpendicular grid spacing comparable to the drift
scale, ρs. In these computations, these collisional dissipation mechanisms are therefore neglected.
Moreover, parallel viscosity, which with the small values of L⊥/qR would be comparable to or
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smaller than the numerical parallel dissipation. Zonal flow damping is therefore forced to go
either through the nonlinear cascade dynamics in the variables other than the vorticity (hence φ̃),
or resistive dissipation in the Alfvén dynamics. The spurious damping problems brought up in
the context of core turbulence [7, 32] are therefore avoided. The principal findings of the study
are as follows.

7.1. Drive of self-generated zonal flows

The zonal flow energy theorem is unambiguous as to the possible transfer channels by which
energy can enter the zonal vorticity, hence flow shear. In both slab and toroidal models, the
Reynolds stress drive, the correlation between zonal vorticity and zonal Reynolds stress, is
found to be robust and responsible for the rise and maintenance of the zonal flows. Almost
all of this drive is in the drift wave part of the spectrum, with the median kyρs approximately
0.7. This has been found to be a robust result, even given that the upwind method [26] used
in [9] has been found to overestimate the Reynolds stress. Adiabatic coupling of the electron
pressure and electrostatic potential through parallel currents is found to greatly strengthen the
operation of the Reynolds stress mechanism: flow shear tilts p̃e structures, the adiabatic response
forces φ̃ to assume a similar orientation, resulting in the ExB eddies losing energy to the flow.
Further details are in the statistics: with no zonal flow, the zonal Reynolds stress PDF is random,
nearly Gaussian. Fluctuations in the zonal vorticity are also random. Where they correlate, the
zonal flow energy is increased in the same locations. Where they anti-correlate, the zonal flow
energy decreases. A positive correlation therefore develops naturally, much in the same way that
a positive transport develops in the presence of a density gradient but in the absence of other
forcing mechanisms [44]. The zonal flow energy is prevented from growing without bound, by
the following saturation mechanisms.

7.2. Saturation of self-generated zonal flows

The zonal flow energy theorem finds that only two saturation mechanisms are possible, if the
Reynolds stress is a drive: Maxwell stress or geodesic curvature. In slab geometry at the same
moderate beta values (β̂ωB < 1 for the toroidal cases), the Maxwell stress is relatively weak and
the geodesic curvature is absent. The zonal flows can only saturate if the Reynolds stress drive
self adjusts to zero. In slab geometry, that is what happens: the flow amplitude grows to sufficient
amplitude that the flow shear drives the turbulence at longer wavelength (kyρs ∼ 0.1). This is
the same result found earlier in simpler but still well-resolved drift wave models [3]. In toroidal
geometry, however, the geodesic transfer mechanism always sets in before the zonal flows become
so strong—the Reynolds stress drive remains robust, as it is measured to do in experiments
[53]–[55]—but it is balanced by geodesic curvature and therefore the zonal flow energy and
shear stop growing. In situations of experimental interest to edge turbulence (β̂ωB < 1 and C > 1
and ωB < 0.1), this balance always establishes itself and hence the geodesic transfer mechanism
is the principal mechanism of zonal flow saturation. The Maxwell stress remains interesting
however: it always has the required spectral form to cancel the Reynolds stress even when it is
too weak to do so. For β̂ = 10, the Maxwell/Reynolds stress cancellation becomes effective,
but this is also the effective beta limit. In actual experiments it remains possible that since the β

limit is higher (due to finite aspect ratio and shaping [26]), there might be a window between the
β values of stress cancellation and ideal ballooning onset, but this should be considered with a
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full gyrofluid model (required to resolve ρi as well as ρs) and with a detailed tokamak geometry
and is left to the future. Within the present model, the saturation of zonal flows by the geodesic
transfer mechanism has also been found to be robust enough to prevail in both the earlier and
present numerical schemes.

7.3. Zonal flow damping

The saturation mechanism found from the zonal flow energy theorem itself is the geodesic
transfer, but for this to work the pressure sidebands must also be in balance, between the energy
incoming from the zonal flows through geodesic transfer and some sink mechanism. In this
tertiary process, the two numerical schemes have indeed differed. It was [9] found that nonlinear
diffusive mixing was stronger. But the results herein have shown that more energy (about half the
total) leaves the pressure sidebands via adiabatic coupling to the current sideband and is ultimately
dissipated through resistivity, and the rest goes through diffusive mixing and a somewhat smaller
part through sound waves which are ultimately also depleted through diffusive mixing. The part
of the sideband energetics involved in the adiabatic coupling also involves drawing energy in from
the background through diamagnetic compression. The turbulence/zonal flow/sideband system
is therefore in energetic contact with the global geodesic Alfvén mode, which if allowed to relax
undisturbed would result in the Pfirsch–Schlüter current. The sideband Ohm’s law is indeed
in close balance between the three linear terms: adiabatic and Alfvénic parallel dynamics and
resistive dissipation. The vorticity sideband energy equation shows that the sideband Reynolds
stress can upset the Pfirsch–Schlüter current balance sufficiently that the pressure sidebands can
use the current sidebands as a sink. The Arakawa–Karniadakis scheme of [56] used herein is
indeed superior, and where the results in [9] using the upwind scheme of [26] differ with the
present ones, the latter are judged to be the more likely correct.

7.4. Other considerations

The drive and saturation mechanisms of the zonal flow energy itself are unambiguous, as found
by their PDFs which show mean values of about 2–3 SD from zero. When the less realistic
high β MHD regime is entered, the result is not as clear—first the overall drive is weakened,
and second there is much more energy throughput in the global Alfvén dynamics than in the
zonal flow/sideband system itself, so that the latter is no longer in control of the entire sideband
dynamics. The average signs of both the Reynolds stress and the geodesic transfer are found
to be reversed for β̂ωB > 1, but the SD is now larger than the mean, and certainly no energetic
transfer quantity outside the zonal flow energy equation has been found to have an unambiguous
sign. One can take the position that the MHD equilibrium itself breaks down since the shear
Alfvén dynamics is no longer able to maintain the sideband balances. Even Ohm’s law is
seriously disturbed in this regime. It may be physically interesting to pursue this further, but
it is nevertheless an unrealistic regime.

It remains of interest what happens when the edge situation is in more of an ITG than a
drift-wave regime, which occurs when ηi = ηe � 2 according to the mode-structure signatures
[38]. This is left to future work with the gyrofluid model, since the fluid model cannot treat it
with this numerical scheme (the virulent cascade dynamics found when the ExB inverse cascade
breaks down due to gyroviscosity forces the use of artificial dissipation values which are so high
that the drift wave dynamics is no longer correctly reproduced). Some situations of experimental
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interest do however exhibit steeper density gradients, and even cold ions [57], though, so the
present analysis is directly relevant there. It remains that a significant fraction of edge turbulence
computational work is done with models even simpler than DALF3 and with strongly insufficient
resolution, and perhaps with flawed numerical schemes. In this context, then, the considerations
raised by the present work are very germane.

In terms of experimental interpretation, it is important to note that the circumstantial
observation of the Reynolds stress process, experimentally [53–55] or even computationally
[58], and even the finding as herein that it energetically drives zonal flow self-generation, do
not imply that transport barriers observed in tokamaks to be coincidental with strong ExB flow
shear [59] are actually caused by the Reynolds stress process. We have found herein that this
process is balanced in toroidal geometry by the geodesic transfer effect, with the zonal vorticity
held at moderate levels even in the face of robust Reynolds stress drive. The explanation for the
actual formation of transport barriers involving ExB flow shear in tokamaks requires additional
components, perhaps arising from the details of the equilibrium shear layer, as has been argued
before [16, 26].

Recent experimental evidence of geodesic acoustic oscillations [60]–[62] provide an
interesting signpost that the geodesic compression of ExB flows is active, even if the oscillation
itself (which is purely conservative) does not imply the presence or absence of the geodesic
transfer effect on zonal flows.

A recent paper has looked at the zonal flow energetics in the core [63]. However, it does not
contain enough toroidal modes in its calculations to allow the possibility of the Reynolds stress
to have a different spectrum than the turbulence itself as it usually does. The low resolution
in turn forced the use of a very unrealistic value of a/ρs = 80, with an active region of only
0.6a = 48ρs, that is, even less than the present edge turbulence computations. Finally, the use
of background profile functions in the curvature terms caused the geodesic coupling process
not to conserve energy (radially dependent profile functions do not commute with Kx). These
processes are subtle and involve a high degree of scale separation. Computations which keep
and resolve realistic scales are necessary. With present day resources, this also requires the use
of field-aligned coordinates, as in these computations and those in [5].

Parallel to this paper is also an analysis of this problem by Naulin et al [64], which is in
apparent disagreement with some of these results, especially at high β. That part of the problem is
very delicate however, and the discussion in appendix A is germane. Specifically, the dissipation
is too large at this resolution unless hyperviscosity is used, and the high-k⊥ and -k‖ dissipation
should be applied to all quantities advected by the ExB velocity, not just the density/pressure
and vorticity. However, the desired application is to plasmas which do not exhibit turbulence
at the level of what could be called disruptions; that is, the regime of interest is below the β

values at which large-scale MHD ballooning is excited, and in this regime the results are in
agreement.

Appendix A. Notes on computational methods

Some notes concerning the computations in both the 2D and 3D models are necessary, as
convergence of the zonal flow phenomena has been found much more subtle than that of the
transport and turbulence mode structure itself. The reason is that while the drift wave nonlinear
instability involves the entire range roughly 0.1 < kyρs < 1.0 [38], the zonal Reynolds stress
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is contained to a narrower region closer to kyρs = 1. Moreover, the zonal flow self-generation
process through the Reynolds stress/vorticity correlation depends critically upon the underlying
properties of the bracket structure describing the quadratic nonlinearities in the equations. We
require a scheme which (1) is stable to hyberbolic advection phenomena, including waves,
(2) confines the numerical dissipation to the smallest scales, and (3) leaves the numerical
dissipation coefficients fixed when the parameters are changed.

The upwind method used in the previous computations with this model, specifically in [9]
and outlined in [26], has been found generally problematic on this problem, mainly owing to
its overestimation of the Reynolds stress but also in the dependence of the zonal flow transfer
mechanisms upon the β̂ parameter, especially when entering the MHD regime (β̂ωB > 1, the
usual MHD ballooning criterion). An alternative method is available and is generally well-
behaved [56]. For the Poisson bracket structure of the nonlinearities, e.g. vE · ∇Pe, where
Pe = p̃e + pe, which can be written as

vE · ∇ = ∂φ̃

∂x

∂Pe

∂y
− ∂φ̃

∂y

∂Pe

∂x
(A.1)

(and similarly for magnetic nonlinearities using −β̂Ã‖ in place of φ̃), the spatial discretization
is one by Arakawa which preserves the symplectic structure [65]. Linear derivatives, ∂/∂s and
K, are evaluated with centred differences. As in the upwind scheme, the combination p̃e + pe is
always discretized together. The time step is a third-order expansion derived by Karniadakis et al,
using both the dependent variables and the right-hand sides of the equations, thus incorporating
all mixed derivatives in the Taylor expansion to specified order [66]. This time step scheme is
stable for waves, which removes the objection to the standard predictor–corrector methods (with
derivatives done with either Fourier transforms or centred differences) which motivated the use
of the upwind scheme in the first place.

In the equations, the only dissipation is resistivity (CJ̃‖) and parallel viscosity (µ‖). These
are however insufficient to contain 3D turbulence, due to the vigorous cascade through vE · ∇p̃e

[38]. Classical and neoclassical dissipation coefficients are too small to do this unless the physical
dissipation range wherein ρ2

eνek
2
⊥ > ω is resolved. The range which must be resolved is down to a

grid node spacing of hx = hy = ρs, for which k⊥ρs > 1. This is to provide a dissipation-free range
all the way down to k⊥ρs = 1. With the upwind scheme, the dissipation is part of the scheme
and moreover increases for more vigorous turbulence. This work has found it necessary not
only to keep the dissipation coefficients constant with parameters, since the nonlinear processes
affecting the zonal flows always reach the high-k⊥ range, but also to use a hyperdiffusion for
the perpendicular coordinates, thereby narrowing the dissipation range necessary to provide
saturation. Dissipation in the s coordinate is also necessary, as the direct cascade by vE · ∇p̃e

also acts through k‖ [67]. This is effected by adding the following dissipation operators to d/dt:

d

dt
→ d

dt
+ ν⊥∇4

⊥ − ν‖
∂2

∂s2
, (A.2)

where the ν⊥ and ν‖ terms are implemented in explicit form, but ordered in the scheme in the
same way as implicit step parts are done in [66]. The values for every case to be computed are
ν⊥ = 0.01 and ν‖ = 0.003. This means that the artificial dissipation for every degree of freedom
for which k⊥ρs < 0.9 is less than 10−2. Such a strictness in resolution is probably unprecedented
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in a set of 3D drift wave computations. It is very important to add the artificial dissipation to
d/dt, which includes vE · ∇, but not ∂/∂t. This means the dissipation never acts directly upon
the fields φ̃ and Ã‖, but only upon the fluid variables, �̃, J̃‖, p̃e and ũ‖.

Furthermore, the edge dissipation incorporated to maintain the background gradient is not
applied to �̃ but only to the ky = 0 components of p̃e, that is, not only upon the turbulence, but
also not upon the zonal flows. The only boundary dissipation used is the simple damping of the
ky = 0 component of p̃e in an edge layer of Gaussian shape centred upon each boundary in x,
with 1/e width of 1/10 the domain size, with damping coefficient 0.1. Aside from the terms in
equation (A.2), no additional diffusive term is added for this profile maintenance.

It is important to note that these dissipation effects are to be understood as part of the
numerical scheme, not the equations themselves. The problem being solved is the one with
physical dissipation coefficients (such as ρ2

eνe as a diffusivity), but in the actual limit in which
these are arbitrarily small [24], in the same spirit as high Reynolds number turbulence in
hydrodynamics. It would be undesirable to give these coefficients vastly unrealistic values and
then take them seriously as processes when in physical fact they are not active at all for k⊥ρs ∼ 1
and k‖qR ∼ 1 with realistic parameters.

This method confirmed the basic result of [9], namely the geodesic transfer effect as the
saturation process for zonal flow self-generation in experimentally relevant parameter regimes
for tokamak edge turbulence, but the secondary details have changed, with nonlinear dissipation
effects (diffusive mixing) not decisively dominant but concurrent with the processes in the
parallel dynamics. For the pressure sidebands therefore, we find that resistive dissipation through
the global Alfvén oscillation is an important part of the overall dynamics. The present
result is judged to be the more reliable because of the superior properties of the numerical
scheme.

Appendix B. Illustration of the Reynolds stress and geodesic transfer processes

This paper shows that the use of control cases is very helpful when diagnosing the various
mechanisms entering in such complicated systems as 3D drift Alfvén turbulence—not only for
the turbulence itself, as in [38], but also for its interaction with zonal flows. The process by which
the Reynolds stress operates can only be elucidated by restricting to the simple 2D model, and
switching the adiabatic coupling alternatively in and out of the computation, as in section 6.1.
Similarly, identification of geodesic coupling as the process by which zonal flows are saturated
is only decisive once the two pieces of the curvature operator (geodesic: acting upon ky = 0
modes, interchange: upon ky �= 0 modes) are separated with the double control test as given in
section 6.2.

What we examine in this appendix is animations of these control tests which make these
processes clear at the intuitive level. We take the standard 2D model from section 6.1 with D = 0
and 0.1, and for each D with ωn = 0 and 1, with all cases run to t = 1000. This will serve to
show the role of parallel dynamics in setting up the zonal flows, and the relative lack of a role
for the background gradient. We then take the 0 < t < 1000 segments of the standard 3D model
from section 6.2 with the parameter set in equation (18), with and without the geodesic coupling
terms, watching the differences in the zonal flow morphology.

The first animation (D0w0, same format as in figures 2–4) shows the spatial morphology
of the turbulence for D = 0 and ωn = 0. Here, we find as in previous work the emergence
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of coherent structure in the vorticity [48], and the dynamical alignment between vorticity and
passively advected density disturbances [68]. Not only to provide a baseline for the physics, this
serves to demonstrate the capability of the numerical scheme in what would have been thought
of even in 1984 as a relatively low-resolution computation. The only reason the resultant mean
flows are found in the x-direction is the domain aspect ratio of Ly/Lx = 4.

The second animation (D0w1) shows the result of the gradient by setting D = 0 and ωn = 1.
Obviously the flows and vortices do not change, since there is still no back reaction from the
density disturbances. The density however shows large scale disturbances being carved out of
the gradient, with much of the small-scale manifestation being in the thinness of the sheets at
the boundary of the disturbances.

The third animation (D003w0) shows the effect of the adiabatic coupling alone by setting
D = 0.03 and ωn = 0. The zonal flows form most rapidly in this case. The fourth animation
(D003w1) shows the combined result of the gradient and adiabatic coupling by setting D = 0.03
and ωn = 1. Now, the turbulence is continually forced, with energy flowing into the ExB eddies
in the energy containing spectral range [24]. This actually competes with the Reynolds stress
mechanism in the ExB energetics—this value of D is the borderline case. With too little adiabatic
coupling there is no zonal flow formation and stronger turbulence, while with more coupling
(D = 0.1, in section 6.1) there is much more zonal-flow effect. The dominant mechanism in
the zonal-flow formation is clearly the adiabatic coupling: tilting of density disturbances, then
parallel dynamics forcing the potential disturbances (hence the eddies) to have the same shape as
the density disturbances, with the Reynolds stress according to this mechanism always having the
sign required to transfer energy from eddies to zonal flows (the zonal vorticity and the Reynolds
stress are positively correlated, cf equation (40)).

We now turn to the 3D cases. The fifth animation (nogd) shows the first 1000L⊥/cs of the
case without the geodesic curvature effect, turning the K ‘curvature terms’ off for the ky = 0
component of all the variables (same format as in figure 13). With the parallel dynamics in the
form of electromagnetic shear Alfvén waves and not merely dissipative coupling, the zonal flows
are still found to form prominently.

The sixth animation (nominal) shows the nominal case with all terms having their expected
form. Zonal flow layers are now observed to come and go. As found in section 6.2, this is due
to the geodesic curvature, the only change between these last two animations. This test confirms
that the presence of interchange curvature for both these cases is not decisive. It is important
to note that the geodesic oscillation is forced at a broad range of frequencies, most of which
are faster than the natural oscillation frequency of

√
2cs/R (corresponding to a period of about

200 in these units). This is why a coherent oscillation is not observed. Also, the slowness of the
oscillation means that the turbulence mostly experiences the zonal flows as static, so that it is
able to send energy into them. The energy then passes either nonlinearly back to the turbulence
or resistively into the global shear Alfvén oscillation related to the Pfirsch–Schlüter current, as
diagnosed in section 6.3.

The interplay between the larger eddies and the flows is shown by the 3D structure of the
potential in the last two animations. The seventh animation (nominal3d) shows the nominal
case, and the eighth (nogd3d) shows the case without the geodesic curvature effect. The latter
shows much more dominance by the zonal component, while the nominal case shows the zonal
component coming and going as part of the turbulence. Hence, zonal flows act as modulators of
turbulence and not as a suppression mechanism [29].
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