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Abstract. Quantum dot (QD)-based semiconductor optical amplifiers offer
unique properties compared with conventional devices based on bulk or quantum
well material. Due to the bandfilling properties of QDs and the existence of a
nearby reservoir of carriers in the form of a wetting layer, QD semiconductor
optical amplifiers may be operated in regimes of high linearity, i.e. with a high
saturation power, but can also show strong and fast nonlinearities by breaking
the equilibrium between discrete dot states and the continuum of wetting layer
states. In this paper, we analyse the interplay of these two carrier populations in
terms of a simple rate equation model. Based on the steady-state and small-signal
properties of the model, we analyse and discuss the optical modulation response
and the four-wave mixing properties of QD semiconductor optical amplifiers, in
particular emphasizing the role of ultrafast gain dynamics.
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1. Introduction

It has been demonstrated over the past few years that the use of quantum dot (QD) active
material may improve the properties of semiconductor lasers [1, 2] as well as semiconductor
optical amplifiers (SOAs) [3]. Early predictions on the performance of QD based opto-electronic
devices [4] emphasized the expected increase in differential gain compared with conventional
bulk or quantum well (QW) materials, leading to expectations of very high-speed devices, as well
as the possibility to accurately control the emission spectrum. However, the growth of QD-active
material with control of the size of the QDs has turned out to be problematic. Self-organized
crystal growth techniques have advanced, but the resulting materials are still characterized by a
low confinement factor and relatively large degree of inhomogeneous broadening. This has been
exploited to fabricate widely tunable devices [5], but renders the devices more bulk-like, e.g.
leading to a relatively low differential gain. Also, the injection efficiency into the dots may be
low, due to a reduced phase space for the capture processes.

Despite these problems, QD-active materials have resulted in lasers with record-low
threshold current densities [6] and SOAs with record-high output powers [3, 7]. The main reason
for these improvements is that only few states exist in each of the QDs (at least for the electrons)
and population inversion is reached for a relatively low degree of pumping. Also, the internal loss
can be very small for active waveguides based on QD material [8, 9]. As for SOAs, the wetting
layer (WL), upon which the dots are formed due to strain, turns out to have a very important role,
since it acts as a carrier reservoir that tends to reduce the effects of saturation otherwise seen in
bulk or QW devices.

In this paper, we theoretically analyse the dynamics of QD SOAs, emphasizing the interplay
between the active dot states and the WL. We base our analysis on a relatively simple model,
with the advantage that simple, in some cases analytical, results may be obtained. The model
is appropriate for understanding the consequences of having a large population of carriers in
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Figure 1. Schematic representation of the 2LREM: (a) symbols used in the model
and (b) use of the model when applied to a QW operated at the bandedge.

the WL, which couples to discrete QD populations on a picosecond time-scale, while at the
same time the two carrier populations undergo recombination processes, stimulated emission
and pumping. It turns out that many of the effects seen can be qualitatively understood as the
dynamics of a bulk system with a large, and to some extent controllable, degree of spectral hole
burning (SHB).

We first introduce the model (section 2) and discuss the static properties of the system
(section 3). A general small-signal analysis of the system is then undertaken (section 4) and
applied to analyse the optical modulation response (section 5) as well as the four-wave mixing
(FWM) properties (section 6).

2. The model

A simple model of a QD amplifier, which still retains most of the unique properties of QDs, is the
two-level rate equation model (2LREM). The model, which includes one QD carrier population
and one WL population, is illustrated schematically in figure 1(a). The density of states (DOS)
for the QD states, ρG, is approximated by a delta function representing the optically active QD
states and ρG is thus expressed in units of states per unit volume. The WL is approximated as
a narrow QW with only a single conduction band bound state. Consequently, the WL DOS is
represented by a step function of height ρW (in units of states per unit energy per unit volume).
Both ρG and ρW are normalized with respect to the volume of the active region V. The delta
function DOS, ρG, accounts for the optically active fraction of the QD ground states (GSs).
Thus, for an inhomogeneously broadened ensemble, only QDs with a ground state transition
energy within the homogeneous linewidth, γH , of the injected signal at E0

G will interact directly
with the signal. The homogeneous linewidth in QD devices at room temperature is of the order
of 5 meV [10]. ρG is approximated as

ρG = nlD3DεG

γH

ηFWHM
G

, (1)

where ηG
FWHM is the FWHM of the inhomogeneous broadening of the GS transition, nl the number

of QD layers in the device, D3D the 3D dot density of a single dot layer with respect to the volume
V and εG the degeneracy of the GS of a single dot, which is 2 due to spin. In this approximation,
the majority of the inhomogeneous broadening of the GS transition is assumed to arise from
inhomogeneous broadening of the electron states. The presence of any QD state other than the
GS is ignored and no intradot relaxation is therefore included in the model. The QD states are
separated from the WL band edge by the energy �EG

W = EC,0
W −E0

G.
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Due to the larger hole mass and resulting smaller state spacing we assume that the dynamical
properties are limited by electron dynamics and that the hole dynamics can be neglected. We
therefore account explicitly only for the electrons in the model. However, a large hole mass
means that the inversion of the system is very different from the ideal device where both electron
and hole masses are small. This effect is included by assuming overall charge neutrality of the
system and assuming that the holes of the system are in quasi-thermal equilibrium with each
other at all times. This approximation is discussed later in more detail.

The rate equations governing the time evolution of the electrons in this system are

dNW

dt
= I

qV
− NW

τW

− fW
0 (1 − fG

e )
ρG

τC

+
fG

e (1 − fW
0 )ρG

τesc

, (2)

dfG
e

dt
= fW

0 (1 − fG
e )

τC

− fG
e (1 − fW

0 )

τesc

− fG
e

τG

− ĝL

VρG

(fG
e + fG

h − 1)
PG

h̄ω0
, (3)

where I is the injected current, NW the carrier density of the WL, which is also normalized
with respect to the volume V, τG and τW are the spontaneous recombination times of the QD
GS and WL respectively, fe

G and fh
G are the electron and hole filling fractions of the QD states

respectively, ĝ is the maximum modal gain, L the length of one section of the amplifier, PG the
optical power of the signal injected at the centre of the GS transition and fe

G the electronic GS
occupation probability. The remaining parameters are described in the following.

The electron occupation probability at the edge of the WL, f0
W , is related to the WL carrier

density by

fW
0 = 1 − exp

(
− NW

kBTρW
e

)
, (4)

which is found by assuming a Fermi distribution of the carriers in the WL, solving for the WL
Fermi energy and evaluating the Fermi function at the WL band edge.

The capture time, τC , and the escape time are related through detailed balance considerations.
Thus, assuming thermal equilibrium, we derive the following relation:

τesc = τC exp

(
�EW

G

kBT

)
. (5)

Capture is in this model described by a simple time constant, but the rate could also be modelled
by a polynomial taking phonon [11] and Auger-assisted [12] processes into account [13].

The QD hole-state filling fraction, fh
G, may be evaluated by using a bulk DOS for the hole

states. Clearly, this is only a good approximation for large, bulk-like QDs, but even for small
dots the approximation results in a physical scaling of the number of hole states compared with
electron states and thus also a correct behaviour regarding the filling of dot states with current.
The DOS of the QD holes, ρh

D, is thus expressed as

ρD
h = 1

2π2

(
2mh

h̄2

)3/2 √
E − ED

V , (6)

where mh is the hole mass and EV
D the location of the lowest QD hole state. The WL DOS for the

holes, ρh
WL is a traditional step function for a QW with a single bound state with the lowest state

located at EV
WL.
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The Fermi energy of the valence band, EF,V , which is needed to evaluate fh
G, is found by

assuming charge neutrality for the device as a whole. The following equation is thus solved
for EF,V :

fG
e ρG + NW =

∫ ∞

ED
V

[
VD

0 ρD
h (E)

ρG

εG

+
VW

V
ρWL

h (E)

]
1

1 + exp((E − EF,V )/kBT )
dE, (7)

where V0
D is the volume of a single dot and VW is the volume of the WL.

To evaluate the hole occupation probability for a given carrier density we specify the valence
band energy, EV

G involved in the GS transition. The hole occupation probability is then found as

fG
h = 1

1 + exp((EG
V − EF,V )/kBT )

. (8)

The above equations describe the carrier dynamics at any specific point along the amplifier
length. To describe correctly the overall device parameters (e.g. device gain or the saturation
by amplified spontaneous emission), a propagation equation for the light intensity is needed.
However, for the present purpose, such an equation is not required and therefore not given at this
point. For the purpose of four-wave mixing (FWM) discussed in the last section of the paper, a
propagation equation for the optical field is given.

The model may also be used to model a QW device simply by using different parameter
values. This is illustrated in figure 1(b), where the optically active states (those previously denoted
as the QD states) are located at the band edge of the QW (the previous WL), corresponding to a
QW device operated at the band edge. In this case, the energy splitting, �EG

W , is set to zero and the
number of active states per volume, ρG, is equal to the WL DOS multiplied by the homogeneous
linewidth, γH , i.e. ρG = 2ρe

WγH . When modelling a QW device, the conditions EV
D = EV

WL and
V0

D = 0 are used, when evaluating the valence band occupation probability fh
G. The resulting

model of a QW is similar to the local density model used for bulk and QW devices to model
SHB [14].

For a description of more elaborate QD models see [7, 15].

3. Continuous wave (CW) properties of QD amplifiers

The above set of equations can be solved for the steady state assuming a CW signal, and the
solution is

PG = ρGV

g0

(
fW

0

τC

− fG
e

(
1

τG

+ γG

))
h̄ω0, (9)

where

fG
e = 1

γGρG

(
NW

τW

− I

qV
+ fW

0

ρG

τC

)
, (10)

g0 = ĝL(fG
e + fG

h − 1), (11)

γG = fW
0

τC

+
1 − fW

0

τesc

. (12)

New Journal of Physics 6 (2004) 178 (http://www.njp.org/)

http://www.njp.org/


6 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

 T=200K
 τ

W
=0.5ns

 Ref.
 ∆EW

G
=50meV

 mW

h
=0.44m

0

 QW

N
or

m
al

iz
ed

 m
od

al
 g

ai
n

Current density, J [kA/cm2]

Figure 2. Normalized modal gain versus current density, calculated with the
2LREM for five different QD devices and a single QW for comparison.
The parameter values used for the QD devices are listed in table A.1, with
the exception of the parameters noted in the legend, and in table A.2 for the
QW case.

From these equations we can gain insight into both the filling of the active states with current
and the saturation power locally in a QD device. Many of the unique properties of QD amplifiers
can be understood from these basic properties.

3.1. Filling of the active states

Figure 2 shows the normalized modal gain, corresponding to the inversion factor, fe
G + fh

G − 1,
as function of current density for different QD devices and a single QW device. In all QD cases
the same general parameter values are used (listed in table A.1), except for one parameter which
is varied. For the QW device the parameter values given in table A.2 are used.

For the reference QD case (solid red line) the inversion is seen to increase nearly linearly
with a large slope for small current densities, but then gradually starts to saturate as the active
states become filled. The same fundamental behaviour is observed for the QW case (short dashed
blue line), except that a much higher current is needed to reach the same level of inversion. The
main reason for this difference is the higher density of active states in the QW case due to the
higher DOS of a QW compared with the QD (when normalized with respect to the same volume).
Another important difference is that the confinement energy of the QD states with respect to the
WL ensures a small overlap between the carrier distribution function and the WL states at low
currents, where the quasi-Fermi energy is far below the WL band edge for both electrons and
holes. In contrast, for a QW device (or a bulk device), there is always a large number of states
close to the active states and filling is therefore essentially controlled by these neighbouring
states.

The coupling between the bound QD states and the carrier reservoir in the form of the WL
states is essentially determined by the confinement energy relative to the thermal energy. This
is illustrated by the green dashed line in figure 2, where the temperature is lowered from 300
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to 200 K and by the dot-dashed cyan line where the conduction band confinement energy has
been reduced from 100 to 50 meV. Clearly, a smaller separation between the active states and the
reservoir relative to thermal energy leads to a stronger coupling of the two carrier populations
and the filling of the QD states becomes more ‘QW-like’. To obtain a linear filling of the active
states at room temperature it is therefore necessary to have deeply confined QD states.

For a device with a strong coupling to WL states, it is clear that the properties of the WL have
a strong influence on the QD properties. This is illustrated by the black dotted line in figure 2,
which shows the result of increasing the spontaneous recombination time of the WL from 0.2 to
0.5 ns. This effectively lowers the rate of carrier loss through the WL, which results in a more
effective filling of the QD states.A high rate of recombination in theWL may be caused by defects,
Auger recombination, or by amplified spontaneous emission (ASE). Especially, recombination
due to defects in the WL has been shown to limit the performance of QD devices [16]–[19].

Also the effective carrier masses of the WL are important for the inversion of the QD states.
Increasing the effective hole mass of the WL to 0.44m0 results in a dramatic reduction of the
QD inversion rate as illustrated by the black dot-dot-dashed line in figure 2. The large hole mass
means that a much larger fraction of the carriers have to remain in the WL even at low current
densities, which effectively increases the current needed to invert the QD states. This effect has
been demonstrated experimentally by Matthews et al [20], who showed severe limitations of the
obtainable modal gain of QD SOAs at room temperature and ascribed it to the reduction of the
inversion with current due to a high effective hole mass in the WL.

The measured inversion of QD SOAs as function of current at room temperature reported
in the literature, varies substantially and ranges from the slow filling reported by Matthews et al
[20] to almost linear filling and sharp saturation reported by Borri et al [21]. Rapid and linear
filling of the active states and corresponding sharp saturation is one of the unique properties of
QD SOAs compared with higher dimensional devices.

The slopes of the curves in figure 2 are proportional to the differential gain in each case. It
is thus clear that for the same QD device two distinctly different regimes exist. At low inversion
(LI), the differential gain is high and more or less constant over a large current interval. For full
inversion, however, the differential gain is very small and approaches zero for increasing current.
Clearly this means that the two regimes are suited for different purposes. The low inversion (LI)
regime allows for a large nonlinearity whereas the high inversion (HI) regime allows for minimal
saturation effects and linear amplification.

3.2. Saturation power

The saturation power is the central parameter of an amplifier, which influences both the linear
and non-linear properties strongly. It is defined as the optical power which reduces the modal
gain to half of the unsaturated gain, i.e. gsat(PG = Psat) = g0(PG = 0)/2.

For bulk and QW devices, the saturation power can be calculated in the case where the gain
is assumed to scale linearly with carrier density (see e.g. [22]) with the result (notation modified):

Psat = h̄ω0
A

g′τeff
, (13)

where A is the effective gain cross section, g ′ = dg/dN is the differential modal gain, and τeff the
effective carrier lifetime. Typical values for the saturation power in bulk and QW amplifiers are
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Figure 3. Calculated saturation power as a function of current density for a QD
SOA and a QW SOA. The limiting saturation power at HI and LI, calculated with
(15) and (17) are indicated with black dotted lines. Parameter values used are
listed in tables A.1 (QD) and A.2 (QW).

0–10 dBm. This expression can be used to analyse the behaviour of the saturation power in the
QD case and understand the essential differences between devices of different dimensionality.

In the case of QD amplifiers, the saturation power can be found from (9), which is valid
for the unsaturated (PG = 0) as well as the saturated case with a finite optical power. In general,
the equations cannot be solved analytically but approximations for the saturation power can be
found in two limiting cases.

Figure 3 shows the saturation power as a function of current density for a QD and a QW
device. For the QD device, the saturation power is nearly constant at small current densities,
which we denote as the LI limit. For higher current densities, the saturation power increases
approximately linearly with current. At current densities above a few kA cm−2, the saturation
power saturates in the HI limit. In comparison, the saturation power of the QW SOA (blue dashed
line) is larger than for the QD device in the LI limit, which persists up to more than 100A cm−2.
For current densities higher than those shown in the figure, the saturation power of the QW
device does eventually also saturate in the HI limit corresponding to SHB, but due to the short
time-constant for carrier–carrier scattering used (τC = 0.1 ps), a very high optical power can be
sustained before SHB sets in.

It should be pointed out that the model ignores all types of carrier loss such as leakage current
and the current density required to reach these high saturation powers is thus underestimated.
Especially, effects like Auger recombination and other types of carrier loss will limit the
achievable inversion and thus also the maximum saturation power. Nonetheless, if we assume
that the same level of inversion can be achieved in the two types of devices (e.g. corresponding
to the 1 kA cm−2 point on the curve), it is clear that QD device will exhibit a larger saturation
power than the QW device.

The point where the saturation power starts to increase with current corresponds roughly to
the transparency point for the QD device, since the WL carrier density is increased significantly
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as the quasi-Fermi level of the device approaches the WL band edge. The WL states thus act as
carrier reservoir for the QD states and the filling of this reservoir ensures that a higher rate of
stimulated emission can be supported before the gain is saturated. An increased inversion of the
WL also corresponds to a decrease of the differential gain of the QD state as seen in figure 2.
Since the saturation power scales linearly with the differential gain in all cases, the increase of
the saturation can be viewed simply as a result of the decreasing differential gain.

To determine the parameters governing the saturation power in the LI and HI limits, we will
derive approximate expressions for the saturation power in these limits. Using (9) the saturation
power in the LI can be expressed as

PLI
sat = ρGV h̄ω0

ĝL

(Nsat
W /τWρG) + (fG

e,sat/τG)

1 − fG
e,sat − fG

h,sat

, (14)

where fe,sat
G , fh,sat

G and NW
sat are the saturated values of the QD electron and hole occupation

probability and the corresponding WL carrier density. Since, in this limit, the unsaturated
inversion factor is equal to −1, the saturated inversion factor in the denominator of (14) must be
equal to −0.5. The LI saturation power, Psat

LI , can thus be found as

PLI
sat = 2ρGV h̄ω0

ĝL

(
Nsat

W

τWρG

+
fG

e,sat

τG

)
. (15)

The term in parentheses corresponds to the total carrier recombination rate per QD:

Rrec = Nsat
W

τWρG

+
fG

e,sat

τG

≈ fsat

τeff

. (16)

The value of the equivalent saturated carrier density per dot, fsat, depends on the distribution of
the generated electrons among the QD and WL states. Thus, for a device with large confinement
energy, most of the carriers will remain in the QD and fsat ≈ fe,sat

G and τeff ≈ τG. For a device with
a small confinement energy, however, most electrons will enter the WL before quasi-equilibrium
is reached and therefore fsat ≈ NW

sat/ρG and τeff ≈ τW . In any case, fsat in this limit is simply a
number accounting for the effect of the redistribution of carriers and τeff is a weighted effective
carrier lifetime.

With this knowledge it may be seen that the expression in (15) actually matches the bulk
expression apart from a factor of 2fsat when the differential gain is identified as g ′ = ĝ/ρg and
the cross section as A = V/L. The extra factor 2fsat actually corresponds to a modification of the
differential gain. Thus a large value of fsat, corresponding to weakly confined dots, leads to a
decrease in the differential gain and strong confinement increases the differential gain.

In the HI limit, both the QD states and the WL band edge are completely filled. In this limit, a
high optical power is needed to saturate the gain and under the influence of the resulting high rate
of stimulated emission, the quasi-equilibrium between carriers in the WL and in the QD, present
under weak inversion, breaks down. For a sufficiently high current density we can therefore
assume f

G

e,sat = 0.5, f
W

0,sat = 1 and f
G

h,sat = 1, since only electrons are allowed to deviate from
quasi-equilibrium between the QDs and the WL. Inserting these values into (9), the saturation
power under high inversion is found as

PHI
sat = ρGV h̄ω0

ĝL

1

2

(
1

τC

− 1

τG

)
. (17)
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The GS carrier lifetime may be neglected since it is normally much larger than the capture
time and in this limit the gain saturation is solely determined by dot-WL hole burning. The
amplification process is thus completely limited by the transport time into the active states and
the saturation power cannot be increased any more by further increase of the bias current. It is
interesting to note that the saturation power in the low and HI regimes are governed by similar
expressions, where the only difference is that the GS carrier lifetime is replaced by the capture
time from the barrier into the dots. Since the capture time is usually much smaller than the carrier
lifetime, this means that the saturation power at high inversion will be much larger than at low
inversion.

The record for saturated output power of an SOA is currently held by a QD SOA [3],
which showed saturation powers of 19–24.5 dBm depending on the signal wavelength. These
values agree reasonably with the values found in the HI limit (see figure 3). From the above
discussion it is clear that the ability to increase the quasi-Fermi levels far above the active QD
states and thus use the WL and barrier as carrier reservoirs in the amplification process, gives QD
devices considerable advantages over bulk and QW devices. However, a lack of pattern effects for
powers above the saturation power is also important for exploiting the high output power when
amplifying data signals. Where bulk and QW SOA show large pattern effects when operated
beyond this point, the QD SOA realized by Akiyama et al show minimal pattern dependence as
the saturation point is approached. This effect has been theoretically addressed in detail in [23].

4. Small signal analysis

To gain insight into the dynamical properties of QD amplifiers we perform a small signal analysis
of the rate equations (2)–(3).

A harmonically modulated optical signal, with modulation frequency 	, is assumed to be
injected into the amplifier at the wavelength corresponding to the GS transition. In the small-
signal regime, the GS and WL carrier populations follow the modulation:

PG = PG + 1
2(�PGei	t + �P∗

Ge−i	t), (18)

where �PG is the complex amplitude of the modulation and PG is the average value. Furthermore,
the WL band edge and GS hole occupation probabilities, f0

W and fh
G, are linearized as fW

0 =
f

W

0 + f ′
W(�NWei	t + �N∗

We−i	t)/2 and fG
h = f

G

h + f ′
h,G(�fG

e ei	t + �fG∗
e e−i	t)/2, where

f ′
W = dfW

0

dNW

∣∣∣∣
f

W

0

and f ′
h,G = dfG

h

dfG
e

∣∣∣∣
f

G

h

. (19)

The analytical expression for these derivatives are lengthy and therefore not written explicitly
here. Inserting these linearizations in the rate equations (2)–(3) and solving for the steady state
solution yields a separate set of equations for the CW and harmonic components.

The CW part of the solution is identical to (9), and the relations between the complex
modulation amplitudes of the signal and the carrier populations are found as

�̃NW = �̃f
G

e

ρGγG

j	 + γW

, (20)

�̃f
G

e = �̃PG

h̄ω0ρGV

g0( j	 + γW)

	2 − j	γ1 − γ2
, (21)
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with

γ1 = γW + γG + γst (22)

γ2 = γWγst +
γG

τW

(23)

and

γst = 1

τG

+
ĝL

VρG

PG

h̄ω0
(1 + f ′

h,G), (24)

γW = ρGV

[
f ′

W(1 − f
G

e )

τC

+
f

G

e f ′
W

τesc

]
+

1

τW

(25)

and γG is defined in (12).
These equations can be used to evaluate the dynamic properties of a QD amplifier when

interacting with a modulated optical signal. Assuming that the gain of the device oscillates at
the frequency of the incoming optical signal we can write the amplitude of the induced gain
modulation as �̃g = ĝ(1 + f ′

h,G)�̃f
G

e . From this we can define the optical modulation response,
i.e. the amplitude and phase of the gain modulation relative to the amplitude and phase of the
optical signal as

�̃g

�̃PG

= ĝ(1 + f ′
h,G)

�̃f
G

e

�̃PG

= ĝ(1 + f ′
h,G)

h̄ω0ρGV

g0(j	 + γW)

	2 − j	γ1 − γ2
. (26)

Before investigating the properties of the optical modulation response further, we will
decompose the above expression in order to simplify the analysis:

�̃g

�̃PG

= 1 + f ′
h,G

h̄ω0ρGV

ĝg0

RCDP − RSHB

(
γW + jRCDP

	 − RCDP
− γW + jRSHB

	 − RSHB

)
, (27)

with the roots given as

RCDP = j

2
(γ1 −

√
γ2

1 − 4γ2) ≈ j
γ2

γ1
, (28)

RSHB = j

2
(γ1 +

√
γ2

1 − 4γ2) ≈ jγ1. (29)

Here, γ1
2 � γ2 has been assumed, which is a good approximation under normal operating

conditions. Each of these roots are related to a physical mechanism. The first, RCDP, describes
the gain modulation arising from a change in the overall carrier density of the device, i.e. carrier
density pulsation (CDP). The second root, RSHB, describes the gain modulation arising when the
quasi-equilibrium between the QD and WL carrier populations is broken, i.e. SHB or dot-barrier
hole burning. The modulation response is thus a sum of an equilibrium component (CDP) and a
non-equilibrium component (SHB), with separate characteristic times for the two components.
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Figure 4. Absolute size of the optical modulation response versus modulation
frequency for a QD and a QW SOA for a current of 2 kA cm−2 and an average
optical power of 15 dBm. The short-dashed line depicts the CDP component,
and the long-dashed line the SHB component. Parameter values are given in
tables A.1 (QD) and A.2 (QW).

5. Optical modulation response

5.1. Size of the modulation response

The optical modulation response under different operating conditions can be used to gain insight
into the signal processing properties of QD SOAs.

The absolute sizes of the optical modulation response of a QD and a QW SOA are depicted
in figure 4 as a function of the modulation frequency of the optical signal, 	, when the average
optical power is PG = 15 dBm. For the QD device, which corresponds to the reference device
in figures 2 and 3, the modulation response is seen to be nearly constant for frequencies up to
1012 s−1. For both devices, the CDP and SHB components of the total response are shown. For the
QD device, the CDP component is seen to be much weaker than the SHB component, reflecting
the fact that for the applied current density of 2 kA cm−2, the QD device is strongly inverted with
a quasi-Fermi level above the WL band edge, resulting in only a weak QD GS gain modulation
when the total carrier density of the device is changed. The characteristic frequency for the CDP
component is in this case of the order of 1010 s−1, corresponding to the inverse effective carrier
lifetime with a significant contribution from the high rate of stimulated emission due to the high
power level of PG = 15 dBm. The limit to the SHB component is approximately 5 × 1011 s−1,
which corresponds to the inverse of a capture time of 2 ps.

For the QW SOA, which is biased with the same current density, the CDP dominates
completely for frequencies below 1012 s−1. Due to the combination of a shorter effective
carrier lifetime and a higher modal gain, resulting in a higher rate of stimulated emission, the
characteristic frequency of the CDP component is almost an order of magnitude higher than that
for the QD case. For the QW device at this current density, the quasi-Fermi level is only slightly
above the WL band edge where the optical signal is injected, which results in a very efficient gain
modulation, when the total carrier density is changed. This is the reason for the more efficient
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Figure 5. Absolute size of the low-frequency (	 ≈ 0) modulation response versus
average optical power, PG, for the QD and the QW devices at a current density
of 2 kA cm−2 (left) and 10 kA cm−2 (right). Parameter values in tables A.1 (QD)
and A.2 (QW) have been used.

CDP gain modulation of the QW device compared with the QD device. At the same time, the
SHB component is suppressed, since the short carrier–carrier scattering time of 0.1 ps used for
the QW device allows for a rapid establishment of thermal equilibrium between the two carrier
populations, effectively limiting the size of any spectral hole created by the optical signal.

The presence of a flat low-frequency plateau of the modulation response indicates the
absence of pattern effects for signals with bit rates below the limiting frequency of the device.
The presence of the strong CDP component for the QW device means that the CDP characteristic
frequency becomes the limiting frequency for this device under these operating conditions. In
contrast, the very limited CDP component for the QD device implies that the device can operate up
to a significantly larger bit rate without introducing pattern dependence. Obviously, the sensitivity
to fluctuating average power of the signal is also important, but as is shown in the following, it is
possible to minimize the power sensitivity of QD SOAs by operating below the saturation power
of the device.

Despite the simplicity of the rate equations, the resulting modulation response is surprisingly
complex and the behaviour changes significantly under different operating conditions, which is
illustrated by figure 5. The figure depicts the size of the low-frequency-modulation response,
i.e. 	 � RCDP, as a function of the average optical power, PG, for the QD and QW considered
previously for current densities of 2 kA cm−2 (left) and 10 kA cm−2 (right). Clearly, the change
in current density results in a qualitatively different behaviour of the two devices.

For the low current density of 2 kA cm−2, the response of the QD device is seen to be
dominated by the SHB component. At low optical powers the response of the QD SOA is nearly
independent of the optical power, reflecting the high inversion of the device, which suppresses
the CDP gain modulation. Eventually, as the optical power approaches the saturation power of
19 dBm (see figure 3), the carrier density of the device is reduced and the quasi-Fermi level
approaches the QD states, which allows for a more efficient CDP gain modulation. For optical
powers beyond this point the device is forced towards transparency and, therefore, the amplitude
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of the gain modulation decreases quickly. At these high optical powers, equilibrium between
the QD and WL states cannot be retained and, as a consequence, the modulation is also in this
regime dominated by the SHB component.

The QW device is oppositely dominated by the CDP component for all optical powers at the
current density of 2 kA cm−2. The device is not fully inverted at this current density and the CDP
is, therefore, highly effective in modulating the gain. At the same time, the fast carrier–carrier
scattering time of 0.1 ps results in a small amplitude of the SHB component for all optical power
levels. Also in this case, optical power levels above the saturation power of 10 dBm, leads to a
rapid decrease of the modulation efficiency.

The higher current density of 10 kA cm−2 does not change the picture much for the QD
device, except by lowering the CDP component even further (it is not visible in the figure).
For the QW SOA, however, the situation is very different. The saturation power is increased to
18 dBm and for optical power levels below this value the response is now dominated by the SHB
due to the increased inversion, which suppresses the CDP component. Around the saturation
power, however, the CDP component increases sharply and starts to dominate, which leads to a
peak of the modulation response.

As evident from (26), the modulation response is proportional to the modal gain of the
device and, as a result, the QW will have an advantage in this respect due to the higher modal
gain. However, the difference can be compensated by increasing the device length. This should
be taken into account when comparing the modulation efficiency for different devices.

The dependence of the modulation response on the average signal power is of importance
for the pattern dependence of an amplifier. Thus, for both linear and nonlinear applications, it
is important that the amplification or modulation properties do not change depending on the
signal. The regimes of low optical power in figure 5, where the modulation response is constant
are thus ideal in this respect. However, often a high signal power is desired. As a result, there
is often a trade-off between pattern dependence and optical power. The high saturation power
and SHB nature of the gain modulation of a QD SOA means that it can operate at high power
levels without introducing pattern dependence, compared with the QW device. Furthermore, the
SHB effect is operative to higher modulation frequencies than the CDP effect and, as a result, a
QD SOA should be able to operate at higher speeds than a QW or bulk device where the gain
modulation is mainly based on the CDP effect.

Pump–probe spectroscopy is an often used experimental technique to characterize the
dynamic gain properties of active devices. Measurements on QD devices have shown different
behaviour depending on the device and the operating conditions, varying from the observation
of complete gain recovery in less than 1 ps [21] to a recovery including a significantly slow
component determined by the effective carrier lifetime of the device [24, 25]. This difference can
be understood from the above discussion of the optical modulation response. The fast component
in the gain recovery thus corresponds to the SHB component in the response, whereas the slow
component of the gain recovery corresponds to the CDP component. As seen in figure 5 the
relative amplitude of the CDP and SHB components depends strongly on the bias current and
average optical signal power. A fast and complete gain recovery therefore requires a device
which is operated under high inversion, where the quasi-Fermi levels are far above the active QD
states, corresponding to operating close to the bandedge in a bulk or QW amplifier. A fast and
complete gain recovery in a QD SOA, therefore, does not in itself indicate a fast device capable
of high-speed signal processing since the overall recovery of the device is still determined by
the effective carrier lifetime [13], similar to the case of bulk and QW devices.
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Figure 6. Phase of the total gain modulation and individual components relative
to the optical signal phase for a current density of 2 kA cm−2 and optical power
of 15 dBm. The dot-dot-dashed lines depict the phase difference between the
modulation of the QD and WL carrier densities. Parameter values are listed in
tables A.1 (QD) and A.2 (QW).

5.2. Phase of the modulation response

The angle, φG, of the optical modulation response describes the phase of the gain modulation
relative to the incoming optical field. Similar to the amplitude of the response, the phase behaviour
is basically determined by the roots of the denominator of (26) given in (28) and (29). The phases
of the two components (CDP and SHB) are thus given as

tan φCDP = − 	

RCDP
and tan φSHB = − 	

RSHB
. (30)

Furthermore, there is a phase difference between the modulation of the carrier densities in the
QD states and in the WL. The relative phase can be found from (20) as

tan(φG − φW) = 	

γW

, (31)

where φW is the phase of the WL carrier density modulation relative to the optical signal.
The relative phases corresponding to the examples shown in figure 4, are illustrated in

figure 6. In all cases, the gain modulation has a phase of π relative to the signal at low-modulation
frequencies, which reflects the fact that both devices at this current density are above transparency,
i.e. an increase in photon number decreases the gain. For the QD device the CDP component
has little influence on the total phase, φG, due to the small amplitude of this component relative
to SHB component. For the QW case, however, both components are important at different
frequencies, which is seen to lead to a fluctuating phase. Eventually, for frequencies above the
inverse capture time (carrier–carrier scattering time in the QW case), the gain is not able to keep
up with the rapid modulation and is forced π/2 out of phase.
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Figure 7. Schematic illustration of the relation between the pump, probe and
FWM signal. The detuning frequency is here defined as 	 = 	1 − 	0.

6. Four-wave mixing

6.1. A simple model

A CW pump and a CW probe signal are assumed to be injected into the QD SOA simultaneously,
with complex field amplitudes A0(z) and A1(z), and central optical frequencies 	0 and 	1,
respectively. The corresponding electric fields at the input facet are

E0(z = 0, t) = A0(0)ei	0t and E1(0, t) = A1(0)ei	1t . (32)

The beating of these two electric fields will generate a gain and index grating in the amplifier
and a third signal, the FWM signal, with frequency 	2 = 2	0 − 	1 and an amplitude A2 will
be generated (figure 7). The sum of the three fields at any point along the amplifier can be
written as

E(z, t) = A0(z)e
i	0t + A1(z)e

i	0tei	t + A2(z)e
i	0te−i	t, (33)

where 	 = 	1 − 	0. If the electric fields are normalized to have units of square root optical
power, the total optical power can be found as

PG(0, t) = |E(0, t)|2, (34)

≈ PG(z) + 1
2(�̃PG(z)ei	t + �̃P

∗
G(z)e−i	t), (35)

with PG(z) = |A0(z)|2 + |A1(z)|2 + |A2(z)|2, and �̃PG(z) = 2A∗
0(z)A1(z) + 2A0(z)A

∗
2(z). All

terms oscillating at frequency 2	 have been neglected. The input power is seen to consist of a CW
component, PG, and a harmonic component with amplitude �̃PG, and frequency 	.

If the amplitude of the pump beam is much larger than any of the other two signals, the
modulation of the optical signal becomes much smaller than the CW component, and the results
of the small signal analysis in section 4 can be used. As a result, the response of the carrier
density of the QD GS and the WL to the optical modulation can be used directly from (20) and
(21) in the analysis.
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In a retarded frame of reference, the propagation of the field envelope is governed by
the equation [22]:

dA

dz
= 1

2
(g − αWG)A, (36)

where αWG is the waveguide loss and we have assumed the linewidth enhancement factor to
be negligible, i.e. no refractive index grating is included in this simple model. Low linewidth
enhancement factors have been reported for QD devices [26, 27]. The simple description used
here means that effects such as carrier heating, two-photon absorption, and the Kerr effect are
not included in the model.

Inserting the expression for the GS gain and the slowly varying amplitude expressing the
sum of the three optical fields:

g = g + 1
2[�̃g exp(i	t) + �̃g exp(−i	t)], (37)

A = A0 + A1 exp(i	t) + A2 exp(−i	t), (38)

in the propagation equation and separating the terms depending on the oscillating frequency,
three equations are obtained:

∂A0

∂z
= χ0A0 + χ1A2 + χ2A1, (39)

∂A1

∂z
= χ1A0 + χ0A1, (40)

∂A2

∂z
= χ2A0 + χ0A2, (41)

with

χ0 = 1

2

(g0

L
− αWG

)
, (42)

χ1 = 1
4�̃g, (43)

χ2 = 1
4�̃g

∗
, (44)

where g0 is defined in (11) and �̃g in (26).
The propagation equations for the field are solved by discretization of the amplifier into a

number of sections of length Ls, where all parameters are assumed constant over each section.
The solution for a single step of the amplifier is found as

A0,s+1 = A0,se
χ0,sLs +

χ1,sA2,s + χ2,sA1,s

χ0,s

[eχ0,sLs − 1], (45)

A1,s+1 = A1,se
χ0,sLs +

χ1,sA0,s

χ0,s

[eχ0,sLs − 1], (46)

A2,s+1 = A2,se
χ0,sLs +

χ2,sA0,s

χ0,s

[eχ0,sLs − 1], (47)

where all subindices s indicate the connection to a specific amplifier section.
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Figure 8. Calculated FWM output power versus detuning frequency for three
different bias current densities. The device length is 4.6 mm and the remaining
device parameters can be found in table A.1.

From this set of equations the evolution of the three signals in the direction of propagation
can be found.

A similar, but more complete theoretical treatment of FWM properties can be found
in [28].

6.2. FWM results

For a device with no coupling between gain and index changes, the interaction between the three
signals is solely determined by the optical modulation response of the device. This can be seen in
figure 8, which shows the FWM output power, P2

out, as a function of detuning for three different
current densities. The assumption of a negligible linewidth enhancement factor means that the
FWM efficiency does not depend on the sign of the detuning. The pump and probe input powers
are fixed at 0 and −10 dBm, respectively. In all three cases the device length is 4.6 mm, which
corresponds to a small signal gain of 20 dB under full inversion.

For the lowest current density of J = 100A cm−2 (blue short-dashed line), the FWM output
power is very low since the gain is low at this current. A relatively strong CDP component is
visible at detunings smaller than 5 × 109 s−1. This small value is caused by a long effective carrier
lifetime resulting from the low rate of stimulated emission in this case. Also, the SHB component
is limited to a lower detuning of approximately 1 × 1011 s−1, due to an effective capture time
significantly above the minimum of 2 ps, since the WL band edge is not fully populated at this
current density.

When the current density is increased, a larger FWM signal is generated due to the higher
modal gain and at the same time the effective carrier lifetime and capture times decrease. The
HI of the WL means that the CDP component is suppressed relative to the SHB component and
for the highest current density of J = 5 kA cm−2 no CDP component is visible. It is clear that the
current density has a large impact on both the qualitative and quantitative behaviour of FWM in
these devices.
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Figure 9. Output power of the pump (P0), probe (P1), and FWM (P2) signals and
conversion efficiency as a function of the pump input power for a 4.6 mm long
QD amplifier biased at two different current densities. The detuning is assumed
low, 	 ≈ 0. The remaining device parameters can be found in table A.1.

Figure 9 shows the output power levels of the three signals P0 (pump), P1 (probe), and P2

(FWM signal) as a function of pump input power for two different current densities. The input
power of the probe is in all cases fixed relative to the pump input power as P1

in = P0
in/10. The fact

that the probe input power grows proportionally to the pump input power means that the generated
FWM power increases monotonically with pump power, since the increased gain saturation at
high pump powers is counteracted by the higher probe powers considered. No optimum pump
power is thus found in this case. However, when looking at the conversion efficiency (green lines
in figure 9), which is defined as P2

out/P1
in, it is clear that a maximum exists relative to the pump

input power. For small pump input powers the conversion efficiency increases quadratically with
pump power, but for high pump powers the gain saturation limits the conversion efficiency.
The reduction of the modulation efficiency for optical power levels significantly larger than the
saturation power is seen in figure 5.

From figure 9, the effect of increasing the current density from 500A cm−2 to 5 kA cm−2

is seen to be an increase of the small signal gain from 15 to 20 dB. Another effect is that the
saturation power is increased, which leads to significantly higher output powers of the pump and
the probe signals. The increase by approximately 5 dB of these two signals could be expected
to result in a 15 dB increase of the FWM signal in the regime with unsaturated gain, but this
is clearly not the case. The explanation for this is that for the higher current density the gain
modulation efficiency of the device is reduced somewhat at high optical power levels, as can
be seen by comparing the high and low current examples in figure 5 for the QD device. This
reduction counteracts the increase of the optical power of the pump and probe signals, resulting in
only a modest increase of the FWM power. However, the increased saturation power means that
for pump input powers higher than 0 dBm, a significant advantage is gained regarding conversion
efficiency.

We will finally make a comparison to experimental FWM results on QD SOAs reported by
Akiyama et al [29]. We thus modify the parameter values of the model to resemble more closely
the device used in those experiments. We use the following values: nl = 10, �EG

W = 50 meV
and τC = 1 ps. The device length is assumed to be 25 mm, which results in a device gain of
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Figure 10. Comparison of FWM in a QD and a QW SOA regarding output power
in the FWM signal as a function of detuning frequency. Device parameters are
given in the text.

14 dB at the GS transition for a current density of 1 kA cm−2. These values have been estimated
from the available information on the experimental device and no fitting of parameters has been
performed.

The resulting FWM output power, shown in figure 10 as a function of detuning frequency
�f = 	/2π, contains a CDP component, which is approximately 5 dB higher than the SHB
component. The absolute value of the FWM signal is close to the experimental result in [29] and
the qualitative behaviour is similar, except for the sharp drop at 1 THz in the experimental data.
This drop-off is most likely caused by the effect of polarization dephasing an effect not included
in the present model.

The red dashed line shows the calculated FWM output power for a QW SOA. The parameter
values used in this case are listed in table A.2; as before, no index grating is included and the
current density is 2 kA cm−2. The FWM power is slightly smaller than that for the QD SOA at
the peak and starts to decrease at a rate of 20 dB dec−1 above a detuning frequency of 2 GHz.
At a detuning frequency of 200 GHz, the SHB component results in a plateau at −40 dBm.
The SHB component is much weaker in the QW case compared with the QD SOA due to the
shorter capture time of 100 fs, determined by the carrier–carrier scattering. It is clear that for the
operating conditions and device parameter values used here, the QD SOA shows significantly
higher conversion efficiency, especially at the higher frequencies.

Comparing with the −20 dB dec−1 line shown in figure 10 the QD FWM power can in
some sense be viewed as decreasing by less than 20 dB dec−1, since the SHB component creates
a shoulder on the curve with higher conversion efficiency. An alternative interpretation is that
the maximum detuning frequency is much larger and the −20 dB dec−1 line should therefore be
moved further out for a fair comparison. It should also be pointed out that even for bulk SOAs,
a decay of less than 20 dB dec−1 is found experimentally [30] and the QD result is therefore not
unique in this regard.

From the modelling results presented here, the enhanced SHB component in the gain
modulation for a QD device is found to be a likely explanation for the good FWM performance
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Table A.1. Model device parameters of a QD SOA.

Parameter Value Parameter Value

W 3 µm me 0.026m0

L 1 mm mh 0.0742m0

H 2004 nm T 300 K
τs 1 ns N2D 4 × 1010 cm−2

τW 0.2 ns nl 3
τC 2 ps γH 5 meV
εG 2 V0

D 2.3 × 10−24 m3

ĝ 12 cm−1 �EG
W 100 meV

ηG
FWHM 40 meV αWG 2 cm−1

EV
D 0 meV EV

G 42 meV
EV

WL 118 meV

Table A.2. Model device parameters of a QW SOA.

Parameter Value Parameter Value

W 3 µm me 0.026m0

L 1 mm mh 0.0742m0

H 200 nm T 300 K
τG 0.2 ns nl 3
τW 0.2 ns γH 5 meV
τC 0.1 ps V0

D 0 m3

εG 2 �EG
W 0 meV

ĝ 95 cm−1 αWG 10 cm−1

EV
D 0 meV EV

G 0 meV
EV

WL 0 meV

found experimentally. In the simple model used here, only a single bound QD state is included,
but the presence of several QD states and complex relaxation mechanisms could be expected
to broaden the SHB shoulder due to the participation of multiple carrier relaxation processes
instead of just a single one. This would bring the modelling results to resemble even closer the
experimental results.

7. Conclusion

We have introduced a simple rate equation model to describe the interplay between discrete
states of a quantum dot structure and a nearby reservoir of states in the form of a wetting layer.
In spite of its simplicity, the model accounts for the main processes governing the dynamics of
quantum dot semiconductor optical amplifiers. By analysing the steady state and the small-signal
properties of the system, we show that the bandfilling properties of the combined dot-wetting
layer system to a large degree govern the CW saturation properties of quantum dot semiconductor
optical amplifiers. On the other hand, the fast dynamics of quantum dot devices depend critically
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on the degree of non-equilibrium between the dot and wetting layer states and the time scale
on which the two populations equilibrate. The main parameters affecting this interplay are
identified, and the consequences for the optical modulation response and the FWM properties are
investigated.
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Appendix. Parameter values

The parameter values are chosen to represent a ‘typical’ example of each device and they are
presented in tablesA.1 andA.2. The values chosen for the QD device are appropriate to the device
presented in [21]. Device parameters not available from this reference have been estimated from
similar devices in the literature. The values for the QW device are chosen to illustrate the main
differences between QD and QW devices, i.e. a faster capture time (corresponding to a faster
equilibration of a spectral hole), higher modal gain and faster carrier recombination.
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