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Abstract. We demonstrate the efficient generation of triggered photon pairs
by placing a single quantum dot (QD) into a micropillar cavity. Photon cross-
correlation measurements between biexciton and exciton decay reveal a bunching
effect under pulsed excitation due to the cascaded nature of the emission.
No polarization correlation between the exciton and biexciton emission is
observed. Furthermore, the emission mode structure of the pillar microcavities is
investigated within a theory-experiment comparison where calculations are based
on an extended transfer matrix method. Efficient mode confinement perpendicular
to the emission direction leads to a series of transverse modes combined with
enhanced QD emission. For the photoluminescence (PL) intensity of QDs in
pillar microcavities (0.6 µm diameter), an enhancement factor of 40 was found
in comparison to the PL intensity of QDs in bulk semiconductors, reflecting the
enhanced photon collection effect out of the cavity structure.
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1. Introduction

Recently, quantum dots (QDs) have been used to demonstrate single photon emission [1]–[3].
Single photons and correlated photon pairs on demand are particularly useful for future
applications in quantum information technology, e.g. quantum cryptography and quantum
computation [4]. The great advances in nanotechnologies make it possible to fabricate low-
dimensional structures where both electrons and photons are confined. On the one hand, QDs
offer several advantages as a source of single photons; they have large oscillator strengths, narrow
spectral linewidths, long-term stability and can be easily integrated in a device structure. On the
other hand, only very few of the emitted photons escape in any given direction due to the high
refractive index contrast between the semiconductor containing the dots and the air. This problem
can be solved, however, by embedding the dots in an appropriate microcavity [5, 6]. In quantum
optical devices, microcavities can guide the emitted photons from QDs in a desired direction. In
practice, the emission energy of the QD should be in resonance with a mode of the microcavity
to achieve high collection efficiency.

Investigations of the photon statistics have been performed for various types of
semiconductor microcavities. For example, Michler et al [1] have achieved single-photon
emission in a microdisk, Pelton et al [5] and Moreau et al [6] have demonstrated the efficient
generation of single photons using a single QD in a micropost cavity. In addition, radiative
quantum cascades between biexcitons (XX) and excitons (X) have been studied on single
QDs embedded in bulk materials [7, 8, 10, 11] and microdisk structures [9]. Furthermore, the
polarization correlation properties of such photon pairs from an individual InAs QD [7, 10] and
a CdSe QD [11] have been reported.

This paper is organized as follows: our investigated pillar microcavity sample and the
experimental procedure are briefly described in section 2. The study of pillar microcavities is
performed in section 3: we will discuss the pillar microcavity modes within a theory–experiment
comparison for larger diameter pillars. We also demonstrate the emission of single QDs from
smaller diameter pillars. The luminescence intensity from a QD in bulk and in a pillar microcavity
is compared. At the end of this section we will show a two-photon density matrix in which an
experimental study of the polarization cross-correlations of photon pairs emitted by a biexciton–
exciton cascade from a single QD in a pillar microcavity structure is presented. The conclusions
are given in section 4.

2. Sample structures and experimental set-up

The investigated pillar microcavity sample was grown by molecular beam epitaxy (MBE) on a
(100)-oriented undoped GaAs substrate, with a buffer layer of 0.4 µm.A schematic representation
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Figure 1. Schematic representation of the sample structures under investigation.
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Figure 2. Scanning-electron microscope (SEM) micrograph of AlAs/GaAs
pillars fabricated by electron beam lithography and dry etching.

of the sample structure is shown in figure 1. A GaAs cavity layer is sandwiched between
the bottom and top distributed Bragg reflectors (DBRs), which consist of 23- and 20-period
AlAs/GaAs layers, respectively. Each DBR pair consists of a 79-nm-thick AlAs and a 67-
nm-thick GaAs layer. A 1.4 nm thick single layer of self-assembled (In, Ga)As/GaAs QDs is
used as the active region and is inserted at the centre of the cavity. The QD surface density is
≈3 × 1010 cm−2. Pillar microcavities with different diameters ranging from 0.2 up to 6.0 µm and
spaced 400 µm apart were fabricated by electron beam lithography and dry etching. Figure 2
illustrates a scanning electron microscope (SEM) micrograph of typical AlAs/GaAs pillars. In
this picture two different pillar sizes are visible, the larger structure has a diameter of 6 µm and
the smaller one has a diameter of 0.3 µm with a height of 3.4 µm (only three layers of the bottom
DBR have been etched away). The pillar sidewalls are nearly vertical with only small damages
appearing next to the top surface.

Our experimental set-up consisted of a combined low-temperature (4 K) micro-
photoluminescence (µ-PL) set-up and a Hanbury-Brown and Twiss (HBT) set-up [12] for
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photon correlation measurements. The sample was mounted in a He-flow cryostat which
can be moved by computer-controlled xy-linear translation stages thus allowing for scanning
across the sample with a spatial resolution of 50 nm. The QDs were excited by a Ti:sapphire
laser either operating in continuous wave (cw) or pulsed mode (�tpulse ≈ 2 ps pulse width at
frep = 76.2 MHz). To preferably pump the InGaAs QD layer and also effectively suppressing
contributions from the GaAs barrier, the laser was tuned to 868 ± 2 nm in the wetting layer
continuum thus resulting in an almost background-free QD signal as will be shown in the
following. For the excitation of our sample structure the laser light was focused to a spot
diameter of ≈10 µm in a steep angle (30◦) geometry using a lens-equipped optical fibre set-up.
A microscope objective (a numerical aperture NA = 0.5) was then used to collect the QD
emission. The collected luminescence was then either spectrally filtered by a 1 m monochromator
equipped with a charge coupled device (CCD) for PL measurements or sent directly to our HBT
set-up for investigations on photon statistics. The HBT consisted of a 50/50 non-polarizing beam
splitter, two acousto-optic tunable filters (AOTFs) and two single-photon counting avalanche
photodiodes (SAPDs) each providing a time resolution of ∼700 ps. The SAPDs output signals
were used to trigger the start and stop channels of a time-to-amplitude converter (TAC) the output
of which was stored in a PC-based multichannel analyser (MCA). In this way, a histogram n(τ)

of photon correlation events as a function of the time delay τ = tstop − tstart was recorded. In
our experiments, an electronic delay of 28 ns was added on the stop channel thus allowing to
record negative as well as positive values of τ. The AOTFs were placed inside the two optical
arms of the HBT set-up, where each filter could be used to select a specific emission line within
the overall spectral range from 900 to 1000 nm (filter bandwidth �λ ≈ 1.1 nm). The selected
spectral window of detection, however, in most cases appeared to be significantly larger than
the typical measured (resolution limited) linewidths of individual QDs (∼0.04–0.06 nm) in our
sample.

3. Results and discussions

Within a theory–experiment comparison we have studied the emission properties of
semiconductor QDs in pillar microcavities of different nominal diameters. Especially for larger
pillars the typically huge number of enclosed QDs emitting an inhomogeneously broadened
PL spectrum (due to their size distributions) provide an ‘built-in’ light source to investigate the
mode structure of the surrounding cavities. To allow for a comparison of our experimental results
with theory, the mode structures of the pillar microcavities were determined from a solution of
vector Maxwell equations for a three-dimensional geometry under the assumption of an ideal
cylindrical pillar symmetry. In the present model, the surface roughness and the finite etching
depth were not taken into account. Following Burak and Binder [13] we expand the electric and
magnetic field in each pillar layer (≡disk) with respect to the modes of a cylindrical optical
waveguide. In the numerical computation a finite number N of modes in each waveguide is
considered. The expansion coefficients of neighbouring layers are related due to the continuity
of the transverse components of the electric and magnetic fields at the layer interfaces. Therefore,
a relation between the fields for the topmost and the lowermost pillar layer can be finally
expressed in terms of a 2N × 2N transfer matrix. It is worth noting that conventional 2 × 2
transfer matrices can only be applied to one-dimensional geometries and therefore describe only
the mode structure in the longitudinal direction (i.e. perpendicular to the layers). In contrast
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Figure 3. (a) Calculated 2D transverse electric field patterns corresponding to
various pillar modes in the theoretical (solid line) and experimental (dashed
line) 6 µm pillar spectra in (c). The degeneracy of each mode is indicated (e.g.
2× ≡ two-fold). (b) Spectrally resolved 1D charge-coupled device image of the
6 µm pillar mode structures. (d), (e) Theoretical (——) and measured (- - - -)
cavity spectra for decreasing pillar diameters of 5 and 4 µm, respectively.

with that, the generalized transfer-matrix method also provides the transverse mode structure.
The method is exact as long as all waveguide modes are included in the expansions. However,
for practical reasons, waveguide modes which are unbounded in the transverse direction are
ignored. This approximation is justified for pillars with large diameter because radiation in the
transverse direction is negligible in this case. On top of this approximation, Burak and Binder
[13] propose a so-called common-mode approximation where only waveguide modes with the
same mode numbers are coupled across interfaces. We have found that results with and without
the common-mode approximation are almost identical for larger pillar diameters (�2 µm). For
this situation it justifies earlier investigations [14] based on a decoupling of TE and TM modes.

In figure 3(a) the full calculated transverse electric field patterns for the various modes of a
6 µm diameter pillar structure are shown which correspond to the peaks in the calculated (solid
line) and measured (dashed line) cavity spectra in figure 3(c), respectively. For comparison, in
figure 3(b), the spectrally resolved CCD image of these 6 µm cavity modes as obtained under
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pulsed excitation is given. Considering the CCD image to represent an one-dimensional (1D) ‘cut’
through each individual mode pattern, a high degree of consistency becomes obvious. Starting
from the fundamental pillar mode (figure 3(a)) at ∼913.4 nm, revealing a centre-peaked field
pattern, a ring-structured distribution of increasing diameter is expected for higher modes. In
fact, this effect is reflected in the 1D CCD images where a pronounced peak splitting is revealed
for higher modes. Also, from a comparison of the energetic mode spacing (see figure 3(c)) good
agreement with the theory (solid line) is found, thus confirming the peaks’ nature as different
transverse modes in the micropillar.

Since the cavity was grown in a wedge-like shape, various positions on the wafer correspond
to different resonance wavelengths. Accordingly, the thickness of the spacer and mirror layers
was adjusted in the calculations (with an unchanged thickness ratio of various layers) to match
the experimental position of the resonance wavelength for the fundamental mode (first peak
from the right). For the refractive indices of various materials nGaAs = 3.52, nAlAs = 2.92, and
nInAs = 3.6 were used. To find good agreement with regard to the spacing between peaks we
have chosen a slightly larger diameter pillar of 6.2 µm (figure 3(c)). The fundamental mode is
two-fold-degenerate due to different azimuthal quantum numbers (see figure 3(a)). In contrast
with that, the second peak from right consists of a two-fold-degenerate mode and two almost-
degenerate single modes. The third peak from right accommodates two modes each of which is
two-fold-degenerate. The fourth peak is two-fold degenerate. The fifth peak consists of two modes
each of which is two-fold degenerate. The degeneracy of all contributing modes is reflected in
the height of the corresponding peaks in the calculated spectrum. Note that the different heights
of the experimental peaks reflect the distribution of underlying inhomogeneously broadened QD
emission centred around the fundamental mode. The calculated quality factor Q ∼ 30 000 for
the fundamental mode exceeds the experimental value (Q ∼ 10 000) since surface roughness
and finite etching depth are not considered in the calculations. Figures 3(d) and (e) illustrate the
calculated spectra for nominal pillar diameters of 5 and 4 µm (solid lines) and the corresponding
experimental results. Again, for the 5 µm (4 µm) pillar only a slight correction of the diameter
to 5.1 µm (3.9 µm) was necessary to achieve agreement with the experimentally observed peak
spacing. For decreasing pillar diameter, the whole spectrum shifts to smaller wavelengths and
the mode spacing increases. These characteristics are consistent with two well-known principles
(see e.g. [15]): (i) the wavelength of the fundamental mode decreases with diameter D; and
(ii) the spacing between resonant wavelengths increases monotonically for decreasing diameter
(approximately as D−2). In addition to surface roughness, the experimentally observed reduction
of the cavity Q factor for decreasing pillar diameter is due to less efficient confinement in the
transverse direction which leads to a leaking of the field out of the cavity and subsequently to
propagating modes in the plane perpendicular to the main emission direction. Both effects are
not included in the generalized transfer-matrix theory [13].

The well-resolved experimental mode structure in figure 3 indicates that the inhomo-
geneously broadened PL from a large number of QDs in the micropillars supports the displayed
modes. For an QD surface density of ∼3 × 1010 cm−2 in our sample, the 6 µm diameter pillar
contains ∼8500 QDs. We estimate that around 200 QDs spectrally match the fundamental mode.
For a given surface density of QDs, the smaller diameter micropillars contain a reduced number
of QDs and, hence, a decreasing number of emission lines spectrally match the cavity modes.
In addition, the quality factor decreases and the linewidth of the mode broadens. For example,
a quality factor of Q ∼ 10 000 was measured for the 6 µm pillar whereas a reduced value of
∼8000 was found for a 2 µm pillar of our sample (not shown).
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Figure 4. Photoluminescence spectra from pillars with diameters of (a) 0.6 µm
and (b) 0.3 µm performed under pulsed laser excitation. Peak energies are given
in eV.

To access individual QD emission, PL measurements were performed on smaller diameter
pillars.As an example, typical spectra of 0.6 and 0.3 µm are illustrated in figure 4. In each case the
spectra are dominated by a pair of PL lines which were assigned to excitonic (X) (1.3643 eV 4(a)/
1.3651 eV 4(b)) and biexcitonic (XX) emission (1.3614 eV 4(a)/1.3617 eV 4(b)) due to their
linear or superlinear dependence on excitation power, respectively. As will be proven in the
following, in either case, these line pairs originate from the same single quantum dot. The
origin of the PL lines located between X and XX is not known, but could be originated from
a charged exciton transition of the same QD or a further excitonic transition from a different
QD. Note that it was impossible to resolve the mode structure for the 0.6 and 0.3 µm pillars
even under high optical pumping power densities [6] of 2.3 kW cm−2 energetically above
the GaAs barrier (laser at 1.55 eV). Therefore, the cavity Q factor could not be determined.
However, the calculations discussed above verify that with decreasing pillar diameter the mode
spacing increases. For example, in a 0.9 µm diameter pillar (not shown) the separation of the
fundamental and first-excited transverse mode is 29 nm and the minimum mode spacing of
the next higher modes is 3 nm. This suggest that the sharp lines in figures 4(a) and (b) which
exhibit a wavelength separation of ∼2 nm emerge from the same cavity mode. This implies that
the estimated Q-factor to be �450.

Figure 5 shows the cw laser power dependence of the X (closed triangles) and the XX
(squares) intensities from the 0.6 µm pillar microcavity, and the typical X intensity observed
from a QD in a bulk semiconductor (open triangles). Note that under cw laser excitation,
the measurements reveal the same excitonic transitions with identical photon energies as were
observed using pulsed laser excitation (figure 4(b)). Both X lines show an approximately linear
power dependence, whereas the XX line shows a superlinear increase with a slope of 1.7. At high
cw excitation powers all lines reveal a saturation behaviour. However, the maximum XX intensity
is higher than the X intensity as the exciton state of the dot can capture a second electron–hole
pair before the emission of the X photon [16]. An enhancement of the PL intensity by a factor
of ∼40 was found for X and XX in a pillar microcavity when compared with the PL intensity
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Figure 5. Continuous-wave laser power dependence of the X (XX) intensities
from a 0.6 µm diameter QD located in a pillar microcavity X (�), XX ( ), and
in a bulk semiconductor (�).

of X in a bulk semiconductor. This behaviour could be understood based on two factors: (i) the
exciton transition is mainly coupled into the cavity mode by the Purcell effect and/or (ii) the
enhanced photon collection effect out of the cavity structure. Signatures of the Purcell effect
can be obtained under cw excitation from a comparison of the onset of the PL saturation at high
excitation powers of a QD in bulk and a QD in a pillar cavity [17]. This type of analysis relies on
the assumptions that the free space exciton lifetime of these QDs is equal and that the pumping
rate for the two QDs is the same. The lifetime of the QD in the pillar cavity depends critically
on the location of the QD. A near sidewall location could lead to a significant increase in the
radiative lifetime [18]. Since we have no information about the location of the QD inside the
pillar cavity and cannot exclude slightly different excitation efficiencies, we were not able to
determine a reliable estimate of the Purcell factor.

Autocorrelation measurements have been performed to demonstrate single-photon
generation under pulsed excitation of QDs in pillar microcavities with different pillar diameters.
For instance, figure 6 shows the measured unnormalized correlation function n(τ) of the
fundamental mode of the 6 µm pillar (figure 6(a)) and of the XX QD emission from the
0.3 µm pillar (figure 6(b)). The corresponding PL spectra are shown in figures 3(c) and 4(b),
respectively. The correlation peak areas are related to the conditional probability of detecting a
second photon (on the stop) after the first photon has already been detected during the excitation
cycle. The measured n(τ) of both pillars exhibit peaks at integer multiples of the repetition period
Trep = 13.12 ns, indicating a locking of the photon emission to the pulsed excitation.As expected,
for the 6 µm pillar diameter all correlation peaks have the same areas which is expected for a
Poissonian light source. This is due to the fact that many QDs contribute independently to the
mode emission. In contrast with the 6 µm pillar, the central peak at τ = 0 ns of the 0.3 µm pillar
is significantly suppressed, demonstrating the single-photon nature of the emitted light. However,
for a perfect single-photon emitter g2(0) = 0. In our case, g2(0) = 0.28 for the central peak of
the 0.3 µm pillar does not reach its theoretical value of zero. This is caused by the presence of a
weak uncorrelated background originating mainly from the wetting layer and leaky modes.

In the following we performed polarization-dependent cross-correlation measurements on
the XX-X photon pairs of the 0.6 µm diameter pillar following the procedure outlined in [19].
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Figure 6. Autocorrelation measurements under pulsed laser excitation obtained
from (a) a fundamental mode of 6 µm diameter pillar (PL spectrum in figure 3(c))
and (b) the XX photon of 0.3 µm diameter pillar (PL spectrum in figure 4(b)).

The aim of this was to obtain the entire two-photon density matrix and determine the nature of
the polarization relationship between these photons by using quantum state tomography. The PL
spectrum is shown in figure 4(a). The technique of quantum tomography allows experimental
reconstruction of two-photon polarization state density matrices from polarization measurements
[20]. Linear polarization analyzers consisting of a λ/2 waveplate in combination with polarizing
beam splitters were used to specify the detected angle of polarization. In addition, a λ/4
waveplate was used to translate any circular polarization into a linear base of detection. Photon
correlation histograms of four selected polarization combinations in pulsed excitation obtained
at a power density of 200 W cm−2 are compiled in figure 7. Two histograms represent linear
polarization (Hstart

XX H
stop

X = HH and V start
XX H

stop

X = VH) and the other two (Rstart
XX R

stop

X = RR and
Rstart

XX L
stop

X = RL) were obtained under circular polarization, respectively. The histograms exhibit
a series of peaks, separated by integer multiples of the laser repetition period. Note that counts
in the central peaks (τ = 0 ns) occur only if both photons are detected following the same laser
pulse, whereas contributions to the histogram side peaks at nonzero time intervals (τ = mTrep,
m = ±1, ±2, . . .) originate from photon pairs detected after different excitation cycles [10].
The zero delay signal is higher than the other peaks, which reflects an enhanced probability of
detecting a X photon after a XX photon. Thus, the observed bunching effect clearly indicates the
cascaded emission of the XX–X photon pairs. The areas of the central peaks (τ = 0) ns are similar
for the selected polarization configurations. This means that in the chosen measurement basis, no
polarization correlation exists between the XX and X photons. To obtain the entire information on
the polarization in all directions, we measured the complete set of 16 linearly independent states
and calculated the two-photon density matrix [19]. The states were measured using the following
polarization combinations: HH , HV , VH , VV , RH , RV , DV , DH , DR, DD, RD, HD, VD, VL,
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Figure 7. Cross-correlation measurements from a 0.6 µm diameter pillar of XX
(start) and X (stop) photons recorded under pulsed laser excitation at 868 nm for
different polarization configurations: (a, b) in linear basis (HH and VH), (c, d) in
circular basis (RR and RL). Notations are: horizontal H , vertical V , right circular
R = (H − iV)/

√
2, and left circular L = (H + iV)/

√
2.

HL andRL, where the first and the second letters refer to the XX and X polarizations, respectively.
The polarizations are defined as follows: horizontal H , vertical V , diagonal D = (H + V)/

√
2,

right circular R = (H − iV)/
√

2 and left circular L = (H + iV)/
√

2. Each of the 16 zero delay
peak areas was normalized with respect to the total sum of the τ = 0 ns signals obtained from
the first four measurements (i.e. HH , HV , VH and VV ) [19, 20]. We found

ρ̂ =




0.2621 −0.0043 − 0.0192i 0.0053 − 0.0025i −0.0175 + 0.0349i

−0.0043 + 0.0192i 0.2391 0.0385 − 0.0507i −0.0172 + 0.0265i

0.0053 + 0.0025i 0.0385 + 0.0507i 0.2399 −0.0095 − 0.0160i

−0.0175 − 0.0349i −0.0172 − 0.0265i −0.0095 + 0.0160i 0.2589




.

The real part of the normalized two-photon density matrix obtained from the experimental
data is shown in figure 8 (left). The on-diagonal components display values of ρHH,HH = 0.262,
ρHV,HV = 0.239, ρVH,VH = 0.240 and ρVV,VV = 0.259, whereas the off-diagonal components
are extremely small. To understand these results we have calculated the two-photon density
matrix for unpolarized light; the graphical representation of this matrix is shown in figure 8
(right). The results are similar to our measured data. Thus, for our investigated sample, almost
no polarization correlation between the cascaded XX–X photon pairs was found. Note that a
similar observation has already been reported for a single QD inside a microdisk structure [9].
They measured the polarization dependence of the X–XX photon cross-correlation under cw
excitation, where no polarization correlation between XX and X emission was observed. The
explanation given was that the spin decoherence for QDs is responsible for the total lack of
polarization correlation. In other recent works, signatures of a polarization correlation from
single InAs [7, 10] and CdSe [11] QD emission have been reported. Although, in each case,
the cross-correlation measurements performed under pulsed excitation revealed a high but non-
perfect collinear correlation degree of η ≈ 65% (InAs) (derived from data in [7]), ≈84% (InAs)
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Figure 8. The real part of two-photon polarization density matrix describing
the XX and X photons of 0.6 µm diameter pillar from the experimental data
(PL spectrum in figure 4(b)) (left) and the calculated unpolarized state (right)
using linear tomography.

(derived from data in [10]), and �85% (CdSe) [11] between XX and X, respectively, which is due
to an asymmetry-induced exciton fine structure. Decoherence effects are expected to originate
from carrier and/or phonon scattering processes, thus resulting in a transition [21] from the
(X)high = (+1) − (−1) to (X)low = (+1) + (−1) exciton state and vice versa, where (+1) and
(−1) are the total electron–hole momentum sub-states of the ‘bright’ exciton. This would cause
a polarization flip of the X photons with respect to the XX decay. The polarization and the fine
structure splitting are controlled by the final states of the XX recombination, i.e. the eigenstates
of the single exciton [22]. It could also be true in our sample that the lack of polarization
correlation between XX and X is related to the spin relaxation of excitons. This implies that
the spin relaxation time is significantly shorter than the exciton lifetime, thus cancelling out any
initial polarization correlation. Furthermore, slight deviations of the involved excitonic states
from ‘pure’ (X)high and (X)low eigenstates cannot be excluded. In such cases, the superposition
of different polarizations should strongly complicate the identification of a significant linear
and/or circular polarization correlation. Finally, we cannot exclude polarization destroying light
scattering effects inside and in the vicinity of our nano-structured cavity which could contribute
to the polarization loss.

4. Conclusion

We have demonstrated the possibility of using the biexciton–exciton radiative cascade of a
single QD in a pillar microcavity to efficiently generate triggered photon pairs. Under pulsed
excitation, the cross-correlation function of the biexcitonic and excitonic photons show a clear
bunching effect due to the cascaded emission of the XX–X photon pairs, whereas no polarization
correlations between the biexciton and exciton emission were observed. Due to the enhanced
photon collection effect out of the cavity structure an increase in the photoluminescence (PL)
intensity by a factor of ∼40 was found when compared with the corresponding PL intensity in a
bulk semiconductor. Furthermore, the light emission from pillar microcavities was investigated
within a theory–experiment comparison. Separated narrow mode structures have been well
resolved, thus revealing quality factors Q of up to 10 000 for larger pillar diameters.
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