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Abstract. Following our first report (A Groisman and V Steinberg 2000 Nature
405 53), we present an extended account of experimental observations of
elasticity-induced turbulence in three different systems: a swirling flow between
two plates, a Couette–Taylor (CT) flow between two cylinders, and a flow in a
curvilinear channel (Dean flow). All three set-ups had a high ratio of the width
of the region available for flow to the radius of curvature of the streamlines.
The experiments were carried out with dilute solutions of high-molecular-weight
polyacrylamide in concentrated sugar syrups. High polymer relaxation time and
solution viscosity ensured prevalence of non-linear elastic effects over inertial
non-linearity, and development of purely elastic instabilities at low Reynolds
number (Re) in all three flows. Above the elastic instability threshold, flows
in all three systems exhibit features of developed turbulence. They include:
(i) randomly fluctuating fluid motion excited in a broad range of spatial and
temporal scales and (ii) significant increase in the rates of momentum and mass
transfer (compared with those expected for a steady flow with a smooth velocity
profile). Phenomenology, driving mechanisms and parameter dependence of
the elastic turbulence are compared with those of the conventional high-Re

hydrodynamic turbulence in Newtonian fluids. Some similarities as well as
multiple principal differences were found. In two out of three systems (swirling
flow between two plates and flow in the curvilinear channel), power spectra of
velocity fluctuations decayed rather quickly, following power laws with exponents
of about −3.5. It suggests that, being random in time, the flow is rather smooth
in space, in the sense that the main contribution to deformation and mixing (and,
possibly, elastic energy) is coming from flow at the largest scale of the system.
This situation, random in time and smooth in space, is analogous to flows at
small scales (below the Kolmogorov dissipation scale) in high-Re turbulence.
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Notation

c passive tracer (dye) concentration
c̄ average concentration
c0 initial concentration of dye
crms root-mean-square of deviations of dye concentration from its average,

divided by the average
d gap width
d/R gap ratio
f frequency
k wave number
K parameter of elastic non-linearity for normal stress driven instabilities

in curvilinear flows (=(d/R)(ηp/η)Wi2)

L system size
Mw average molecular weight
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N number of half-rings in a curvilinear channel
N1 first normal stress difference
p pressure
P power of fluctuations
Pe Peclet number
Q flow discharge rate
r, φ, z cylindrical co-ordinates (radial, azimuthal, axial)
R radius of either a plate in rotating flow between two plates, or inner

cylinder in Couette–Taylor flow
Rg radius of gyration of a polymer
Re Reynolds number (=VL/ν)

tvd viscous diffusion time (=d2/ν)

T torque
Tlam torque in polymer solution flow in a laminar regime
Ts torque measured in a solvent flow
Ta Taylor number (=(d/R)Re2)

Vr radial (spanwise) velocity component, D-diffusion coefficient
Vφ azimuthal (longitudinal) velocity component
Wi Weissenberg number
Wic critical Wi of the elastic instability onset
zb characteristic thickness of boundary layer
γ̇ shear rate
λ polymer relaxation time
η viscosity
ηs viscosity of Newtonian solvent
ηp part of solution viscosity due to polymer molecules
η′ in-phase component of viscosity in an oscillatory test
η′′ out-of-phase component of viscosity in an oscillatory test
ν kinematic viscosity
ρ density
τ stress tensor
τs stress tensor due to Newtonian solvent
τp polymer stress tensor
τw shear stress near a wall
τlam
w shear stress near a wall in a laminar flow

� rotation (angular) velocity

1. Introduction

Turbulence is one of the most fascinating phenomena in nature and one of the biggest challenges
for modern physics. It is common knowledge that the flow of a simple, low molecular, Newtonian
fluid is likely to be turbulent, when the velocity, V , is high, kinematic viscosity of the fluid,
ν, is low and size of the tank, L, is large. All of these factors contribute to a high value
of the Reynolds number, Re = VL/ν. Motion of the Newtonian fluids is governed by the
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Navier–Stokes equation [1]

∂ �V
∂t

+ ( �V �∇) �V = −∇p/ρ + ν
 �V, (1)

where p is the pressure and ρ the density of the fluid. The equation has a non-linear term,
( �V �∇) �V, which is inertial in nature. Re defines the ratio of this non-linear term to the viscous
dissipative term, ν
 �V. When Re is high, the non-linear effects are strong and the flow is likely
to be turbulent. Therefore, turbulence in fluids at high Re is a paradigm for a strongly non-linear
phenomenon in spatially extended systems [1, 2].

Solutions of flexible high-molecular-weight polymers are viscoelastic liquids, and they
differ from Newtonian fluids in many aspects [3]. The most striking elastic property of the
polymer solutions is, probably, the dependence of mechanical stresses in flow on the history of
the flow. So, the stresses do not immediately become zero when fluid motion stops, but rather
decay with some characteristic relaxation time, λ, which can be well above 1 s. When a polymer
solution is sufficiently dilute, its stress tensor, τ, can be divided into two parts, τ = τs + τp.
The first part, τs, is defined by viscosity of the Newtonian solvent, ηs, and rate of strain in the
flow, τs = −ηs[ �∇ �V + ( �∇ �V)T]. Therefore, the equation of motion for a dilute polymer solution
becomes

∂ �V
∂t

+ ( �V �∇) �V = −�∇p/ρ + (ηs/ρ)
 �V − ∇τp/ρ. (2)

Here the elastic stress tensor, τp, is due to the polymer molecules, which are stretched in the
flow, and it depends on the history of the flow. One can see that τp enters the equation of
motion linearly. So the degree of non-linearity of the equation of motion can still be defined
by Re = VLρ/ηs.

The simplest model incorporating the elastic nature of the polymer stress tensor, τp, is a
Maxwell-type constitutive equation [3] with a single relaxation time, λ,

τp + λ
Dτp

Dt
= −ηp[ �∇ �V + ( �∇ �V)T]. (3)

Here Dτp/Dt is a material time derivative of the polymer stress. An appropriate expression for
the time derivative Dτp/Dt has to take into account that the stress is carried by fluid elements,
which move, rotate and deform in the flow. The translational motion implies an advection term
( �V �∇) · τp in an appropriate expression for Dτp/Dt, while the rotation and deformation of the
fluid particles should lead to contributions like ( �∇ �V) · τp or τp · ( �∇ �V) [3]. Therefore, along
with terms linear in τp and �V, some non-linear terms, in which τp is coupled to �V, should
appear in the constitutive relation. A simple model equation for Dτp/Dt, which is commonly
used for description of dilute polymer solutions, is the upper convected time derivative,

Dτp

Dt
= ∂τp

∂t
+ ( �V �∇) · τp − ( �∇ �V)T · τp − τp · ( �∇ �V). (4)

Equations (3) and (4) together with the expression for τs constitute the Oldroyd-B model of
polymer solution rheology [3]. One can see that non-linear terms in the constitutive equations
(3) and (4) are all of the order λ(V/L)τp. The ratio of those non-linear terms to the linear
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relaxation term, τp, is given by a dimensionless expression λ(V/L), which is usually called
the Weissenberg number, Wi. (The relaxation term τp is somewhat analogous to the dissipation
term in the Navier–Stokes equation.)

One can expect mechanical properties of the polymer solutions to become notably non-
linear at sufficiently large Weissenberg numbers. Indeed, quite a few effects originating from
the non-linear polymer stresses have been known for a long time [3]. So, in a simple shear
flow of a polymer solution there is a difference between normal stresses along the directions of
flow and velocity gradient. At low shear rates this normal stress difference, N1, is proportional
to the square of shear rate. When flow lines are curvilinear, it gives rise to a volume force
acting on the liquid in the direction of the curvature, the ‘hoop stress’. Therefore, if a rotating
rod is inserted in an open vessel with a highly elastic polymer solution, the liquid starts to
climb up on the rod, instead of being pushed outwards [4]. This phenomenon is known as ‘rod
climbing’, or the ‘Weissenberg effect’. Furthermore, in a purely extensional flow, resistance
of a polymer solution depends on the rate of extension in a strongly non-linear fashion. There
is a sharp growth in the elastic stresses, when the rate of extension exceeds 1/(2λ), that is at
Wi > 1/2. As a result, apparent viscosity of a dilute polymer solution can increase by up to
three orders of magnitude [5]. Both the Weissenberg effect and the growth of the extensional
flow resistance have been most clearly observed in very viscous polymer solutions and in flows
with quite low Re, when non-linear inertial effects were insignificant.

A natural question arising here is whether there may exist some kind of turbulent flow
produced by the non-linear polymer stresses alone, in the absence of any significant inertial
effects, at low Re. An important step in this direction was made about a decade and a half ago
when purely elastic instabilities were experimentally identified in a rotational flow between two
plates [6] and in the Couette–Taylor (CT) flow between two cylinders [7]. The experiments
were carried out with a Boger fluid [8], a dilute solution of high-molecular-weight polymers in a
viscous Newtonian solvent. The Boger fluids are almost universally used as model viscoelastic
fluids. Their relaxation times can be quite large, reaching seconds or even minutes, while their
rheological properties are semi-quantitatively described by the simple Oldroyd-B model. The
purely elastic instabilities occurred at Wi of order unity and vanishingly small Re. As a result of
the instabilities, secondary vortex flows developed [7], and flow resistance somewhat increased
[6]. The problem of linear stability of the CT flow was also treated theoretically using the
Oldroyd-B model [9]. The analysis showed that the non-linear mechanical properties of the
polymer solution can indeed lead to a flow instability, and a simple mechanism of this purely
elastic instability was proposed.

During the past decade the purely elastic instabilities in the Boger fluids have been the
subject of many theoretical and experimental studies, which are partially reviewed in [10, 11].
After the pioneering work by Larson and co-workers [7, 9], purely elastic instabilities were also
found in other shear flows with curvilinear streamlines. They included the flow between a rotating
cone and a plate and the Taylor–Dean flow [10, 11]. The original theoretical analysis of Larson
et al [9] was refined, and more elaborate experiments were carried out. Some new mechanisms
of flow instability driven by non-linear elastic stresses were suggested for cone-and-plate and
for Taylor–Dean flows. The original mechanism proposed in [7] was verified experimentally
in [12].

Some flow patterns observed above the purely elastic instability threshold in the curvilinear
flows had rather disordered appearance and exhibited chaotic spectra of velocities. So, it was
reasonable to suggest that, under certain conditions, a truly turbulent flow might be excited by
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elastic stresses at vanishingly small Re. This idea was explicitly stated in [13], where the analogy
between elastic and inertial flow transitions was discussed. In fact, irregular flow patterns and
growth of flow resistance in elastic polymer solutions at low Re were observed even before
the purely elastic instabilities were identified [14]. Such flow phenomena were also sometimes
called ‘elastic turbulence’. In all such cases, however, the term ‘turbulence’ was used in a rather
loose fashion, without being given a proper definition. More importantly, no quantitative data on
either flow velocity field or spatial and temporal velocity spectra in those irregular flows were
ever presented.

Although the notion of turbulence is widely used in scientific and technical literature, there
is no unique commonly accepted definition of it. Therefore, turbulent flow is usually identified
by its main features. Turbulence implies fluid motion in a broad range of temporal and spatial
scales, so that many degrees of freedom are excited in the system. There are no characteristic
scales of time and space in the flow, except for those restricting the excited temporal and spatial
domains from above and below. Turbulent flow is also usually accompanied by a significant
increase in momentum and mass transfer. That is, flow resistance and rate of mixing in a
turbulent flow become much higher than they would be in an imaginary laminar flow with the
same Re.

In a recent publication [15] we showed how the first three of these features of turbulence
appeared in the flow of a highly elastic polymer solution at low Re. The experiments were
performed in a swirling flow between two plates with a wide gap, and the phenomenon was called
elastic turbulence. In the present paper, we give a more complete account of our experiments
on the elasticity-driven turbulent flow. We present additional velocity spectra, and distributions
of probabilities of flow velocities and their derivatives. We also show that the elastic turbulence
leads to quite efficient mixing in the flow. Furthermore, we present results of our experiments
on Couette–Taylor (CT) flow and on an open flow in a curvilinear channel (Dean flow), where
we also observed the elasticity-driven turbulence.

The paper is organized as follows. In the next section we discuss some practical problems
concerning the experiment and the polymer solution. In sections 3, 4 and 5 the results on
the swirling flow between two plates, the CT flow and the flow in the curvilinear channel,
respectively, are presented. The results are briefly summarized and discussed in section 6.

2. Experimental considerations

As was suggested in [13], where the CT flow was discussed, there is some analogy between
flow transitions driven by elasticity and inertia. So, the inertially driven Taylor instability occurs
at constant Taylor number [1, 2], Ta = (d/R)Re2, while the elastic instability is controlled by
a parameter K = (ηp/η)(d/R)Wi2 [9, 12], where R is the radius of the inner cylinder, d the
width of the gap between the cylinders in the CT set-up, η the total solution viscosity, and ηp the
polymer contribution to the viscosity, ηp ≡ η − ηs. The Weissenberg number is defined here as
Wi = λ�R/d, where � is the angular velocity of the rotating inner cylinder. (It was referred to
as the Deborah number in some previous studies [9, 12, 13].) The Weissenberg number, which
reflects the non-linearity of the constitutive equations (3) and (4), appears to be analogous to Re,
which expresses non-linearity of the equation of motion. The geometric parameter determining
curvature, the gap ratio, d/R, enters the expressions for both Ta and K. (There is also a
specific term ηp/η, however, which shows the polymer contribution to the solution viscosity
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and naturally appears only in the expression for the parameter K for the elastic instability.) Scales
of time and velocity for the purely elastic flow transition are given by λ and d/λ, respectively.
As was shown in [13] they are analogous to tvd and d/tvd , which define scales of time and
velocity for the inertially driven flow transitions. Here tvd is the viscous diffusion time defined
as tvd = d2/ν.

Nevertheless, along with all those analogies, there are still some important differences
between flow transitions driven by inertia and elasticity. Hence, it is an experimental fact that
any laminar flow of a Newtonian fluid becomes unstable at sufficiently high Re, and all high-Re

flows are turbulent. It includes rectilinear shear flows, such as Poiseille flow in a circular pipe
and plane Couette flow, which are supposed to be linearly stable at any Re. In contrast to it,
purely elastic flow instabilities in shear flows have been observed so far only in systems with
curvilinear stream lines. All these instabilities are supposed to be driven by the hoop stress,
which originates from the normal stress differences. Elastic instabilities also occur in flows of
polymer solutions with open surfaces and in extensional flows through contractions in channels
[10, 16]. A particular feature of the latter flows is that the rate of strain changes along the flow
lines, so that even the basic flow states are not stationary in the Langrangian sense. Instabilities
in those flows are not discussed in this paper.

This difference between the inertial and elastic instabilities may originate, of course, from
the distinct governing equations. There are, however, some purely practical factors that can
explain rather well the lack of observations of purely elastic flow transitions in rectilinear shear
flows. Inertial instabilities in rectilinear shear flows of Newtonian fluids occur at quite high Res.
Those are typically about two orders of magnitude higher than Re at which curvilinear shear
flows with large gap ratios, d/R, become unstable. One may suggest, a priori, that rectilinear
and curvilinear shear flows would have a similar relation between Wi at thresholds of the
purely elastic flow instabilities as well. The problem is, however, that while it is rather easy to
generate high-Re flows with low viscosity Newtonian fluids, it is usually impossible to reach the
corresponding high values of Wi in shear flows of elastic polymer solutions. That is, there always
exist rather severe practical limitations restricting non-linearity in elastic polymer stresses in
shear flows. Their molecular mechanisms have been recently elucidated in a seminal paper by
Chu’s group [17].

Polymer molecules have finite extensibility, and their relaxation time decreases when they
get stretched in a shear flow. This thinning of the relaxation time at high Wi is usually quite
a strong and well-recognized effect. In fact, different variations of the basic Oldroyd-B model
have been specially developed to take into account the shear thinning [3]. Significant decrease
of λ with shear rate, γ̇ , renders growth of the Weissenberg number, Wi = λ(γ̇)γ̇ , much slower
than linear in γ̇ . Substantial stretching of the polymer molecules in the primary shear flow
also reduces their ability for further extension and susceptibility of the elastic stresses to flow
perturbations, which is necessary for the generation of the flow instabilities and secondary vortex
flows [9]. Finally, high shear rates cause mechanical degradation of the polymer molecules.
It leads to permanent reduction of elasticity during experimental runs and decay of λ that
can be very fast at high Wi. For all these reasons, it was very difficult or even impossible to
observe elastic instabilities, when expected values of Wi at the instability threshold were high.
This was the case in curvilinear flows with small gap ratios, d/R [18], and small viscosity
ratios ηp/η [12].

Therefore, in order to maximize the non-linear elastic effects and to get a better opportunity
to observe the elastic turbulence, we had to choose experimental conditions quite carefully [15].
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First, it was important to obtain an elastic instability at a suitably low critical Weissenberg
number, Wic. For that purpose, the gap ratio and the viscosity ratio had to be correspondingly
large. Therefore, we used a polymer solution with a rather large ηp/η of about 1/4. (Further
increase of the polymer concentration and ηp/η was not very efficient, and would also complicate
the solution rheology, including large shear thinning of the solution viscosity.) To have a large
gap ratio with the possibility of variation, we carried out our experiments in a swirling flow
between two plates. The ratios d/R which we used were 0.263 and 0.526. In fact, historically
we first tested a CT flow with d/R = 1/2, but growth of flow resistance in it was significantly
smaller than in the swirling flow set-up, which we studied later (see sections 3 and 4).

Secondly, an appropriate polymer sample for the solution had to be chosen, which would
not suffer major mechanical degradation under experimental flow conditions. Furthermore, the
limit for extensibility of the polymer molecules had to be as high as possible compared with
their typical conformations at the instability threshold. We used polyacrylamide (PAAm) with a
large average weight Mw = 18 000 000 dalton and a broad molecular weight distribution (and
low concentration of polyacrylic acid monomers) supplied by Polysciences (Warrington, USA).
This commercial polymer sample proved to be remarkably stable with respect to mechanical
degradation, which allowed us to reach high values of Wi and to explore strongly non-linear
flow regimes. The high molecular weight of the polymers resulted in a large characteristic
relaxation time, λ, even with solvents of moderate viscosity and a small characteristic stress,
τ0 = ηs/λ. One can learn from the equations (3) and (4) that τ0 sets a scale of the polymer stress,
at which its non-linearity becomes significant. Therefore, the value of τ0 together with ηp/η and
d/R determine the polymer stress τp in the primary shear flow at the instability threshold. It is
rather natural to suggest that when polymer molecules transduce less stress, they are also less
subjected to mechanical degradation. Furthermore, molecular interpretation of the Weissenberg
number in a shear flow is the degree of deformation of polymer molecules from their relaxed
random coil conformations. So, Wi = 1 can be regarded as a characteristic value at which
extension of polymer molecules becomes considerably larger than the size of relaxed coils. By
the same token, extension of a polymer molecule at Wic (the elastic instability threshold) is
supposed to be a fixed multiple of the relaxed coil size (in the former, linear approximation
valid at moderate Wic [17]). High molecular weight and flexibility of a polymer suggests a
large number of Kuhn segments [3, 19] in the polymer chain, and a high ratio between its
contour length (size, when fully extended) and the size (radius of gyration, Rg) of a relaxed
coil. (For a polymer molecule in a good solvent, with Rg ∼ M3/5

w , this ratio should increase
as M2/5

w [19]. We would like to point out here that addition of 1% of NaCl to the solution
significantly reduced Rg.) Therefore, using a higher Mw polymer we increase the ‘reserve’ of
extensibility starting from the typical conformation at Wic. That opens a way to reach flow
dynamics above the elastic instability threshold.

3. Swirling flow between two plates

3.1. Experimental set-up and procedure

The experimental apparatus is schematically shown in figure 1. The polymer solution was held in
a stationary cylindrical cup with a flat bottom (lower plate). A co-axial rotating upper plate was
just touching the surface of the fluid. The cup was mounted on top of a commercial rheometer,
AR-1000 of TA-instruments. The upper plate was attached to the shaft of the rheometer, which
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photo-

detector

CCD
Camera

d

R

R2

mirror

laser
beams

Figure 1. Schematic drawing of the experimental set-up. The set-up consists
of a stationary cylindrical cup with a flat bottom (the lower plate), which is
concentric with the rotating upper plate. A special cover is put above to minimize
evaporation of the liquid.

allowed precise control of its rotation velocity, �, and measurements of the torque, T . The
average shear stress at the upper plate, τw, was calculated using the equation T = τw

∫
r dS,

that gave τw ≡ 3T/(2πR3). (The integration is over the upper plate surface.)
Sidewalls of the cup were machined from a single piece of perspex, which was optically

clear. The cup was circular from the inside and square from the outside in horizontal cross-
section. That allowed measurements of flow velocity in the horizontal plane by a laser Doppler
velocimeter (LDV) with two crossing frequency-shifted beams. By appropriate positioning and
orientation of the beam crossing region, azimuthal (longitudinal) and radial (spanwise) velocity
components, Vφ and Vr, respectively, could be measured at different r and z. Here (r, φ, z)

are cylindrical co-ordinates. The bottom of the cup was machined of stainless steel and the
temperature was stabilized at 12 ◦C by circulation of water below the bottom plate.

A slightly modified version of the set-up was designed to photograph the flow from below
and to observe mixing in the flow. A special cup of the same shape but with a transparent
bottom (lower plate, made of perspex) was attached to the rheometer concentrically with the
shaft but above the rheometer base, and a mirror tilted by 45◦ was placed under the cup, as is
schematically shown in figure 1. The mirror was used both to illuminate the fluid by diffuse
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light and to relay images of the flow to a CCD camera. The camera was equipped with a
regular video lens and mounted horizontally near the rheometer (figure 1). The source of the
diffuse light was an illuminated white screen around the camera. The images were digitized
by an 8 bit 512 × 512 frame grabber. In order to provide thermal stabilization, in this case
the whole rheometer was placed in a thermally isolated box with through flow of temperature
controlled air.

In the basic standard set-up, the radii of the upper plate and of the cup were R = 38 mm
and R2 = 43.6 mm, respectively, and the distance between the plates was d = 10 mm. The
configuration was similar to the devices with rotating flow between two plates used in experiments
on purely elastic instability [6, 11, 18, 20]. Its gap ratio, d/R, was significantly higher, though.
In order to study dependence of flow conditions on the size of the system, two smaller set-ups,
a half-size and a quarter-size, with all the dimensions reduced by factors of two and four,
respectively, were used. Whenever the dimensions of an experimental set-up are non-standard,
it is stated explicitly in the text.

We prepared a stock solution of PAAm (Mw = 18 000 000 dalton by Polysciences) and
used it for the entire course of the experiments. First we dissolved 0.9 g of PAAm powder
and 3 g of NaCl in 275 ml of deionized water by gentle shaking. (Addition of NaCl was
necessary to improve solubility of PAAm.) Next the solution was mixed for 3 h in a commercial
mixer with a propeller at a moderate speed. The idea behind the procedure was to cause
mechanical degradation of PAAm molecules with the highest weights, and to ‘cut’ a high M

tail of the broad molecular weight distribution of the PAAm sample. In a solution with a broad
distribution of polymer molecular weights, the heaviest molecules, that are most vulnerable
to mechanical degradation, may also make a major contribution to the solution’s elasticity. A
possible negative effect of that is a significant degradation of elasticity during experimental runs,
and inconsistency in the results of the experiments. We found empirically that the procedure
of pre-degradation in the mixer leads to substantial reduction of the degradation during the
experiments and to substantial improvement of their consistency [21]. Finally, 9 g of isopropanol
was added to the solution (to preserve it from ageing) and water was added up to 300 g. The
final concentrations of PAAm, NaCl and isopropanol in the stock solution were 3000 ppm,
1% and 3%, respectively.

As a viscous Newtonian solvent for PAAm, we used a solution of 65% sugar (saccharose)
and 1% NaCl in water. The salt was added to fix the ionic contents. Viscosity and relaxation
time were measured with the same AR-1000 rheometer in a temperature-controlled narrow-
gap Mooney–Ewart geometry. The solvent viscosity was ηs = 0.324 Pa s at 12 ◦C. The PAAm
concentration was 80 ppm, see figure 2. Solution viscosity, η(γ̇), was carefully measured in a
broad range of shear rates, γ̇ (figure 2). Viscosity, η, slowly decreased with γ̇ , so that its shear
thinning was about 7% per decade of γ̇ . At a shear rate of γ̇ = 1 s−1, corresponding to the onset
of a purely elastic instability in the standard configuration (see below), η was 0.424 Pa s, and
the viscosity ratio was ηp/η = 0.235. Polymer relaxation time, λ, was measured in oscillatory
tests with a shear rate amplitude of 1 s−1. Components of the apparent viscosity of the solution
in-phase and out-of-phase with the applied shear, η′ and η′′, respectively, were measured in
long series of oscillations in a range of angular frequencies, ω. (Individual series were typically
repeated about 10 times, and average viscosity values were calculated.) The same procedure
was applied then to the solvent, and its viscosity components, η′

s and η′′
s , were calculated as well.

(The latter was nearly zero and it was an important test of virtual absence of inertial effects and
of general applicability of the procedure.) The values for the polymer in-phase and out-of-phase
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Figure 2. Upper curve: dependence of the apparent viscosity, η(γ̇), on shear
rate for an 80 ppm PAAm solution in 65% sucrose and 1% NaCl in water at
12 ◦C (semi-logarithmic co-ordinates).Applied shear rate was gradually increased
during the test. Lower curve shows a similar run for the pure solvent. Inset:
apparent relaxation time, λ, as a function of angular frequency, ω, measured for
shear rate oscillations with an amplitude of 1 s−1.

viscosity were calculated then as η′
p = η′ − η′

s and η′′
p = η′′ − η′′

s . The (frequency-dependent)
relaxation time was calculated as λ(ω) = tan−1(η′′

p/η
′
p)/ω, and λ(ω) at ω → 0, estimated as

3.4 s, was chosen as a representative relaxation time, λ, see inset in figure 2. The diffusion
coefficient for the saccharose molecules was about D = 8.5 × 10−7 cm2 s−1 [22].

In a swirling flow between two plates shear rate is quite inhomogeneous over the fluid
bulk, even when the flow is laminar. So, in the simplest case of a narrow gap, d/R � 1, when
the shear rate is constant along the z-direction, it grows along the radius, from zero at r = 0
to the maximal value of �R/d at r = R. Shear rate averaged over the surface of the upper
plate (and over the fluid volume) is then 2�R/(3d). In our case, when the gap is quite wide
(d/R = 0.263 in the standard configuration) and the sidewalls are close to the upper plate, the
situation is even more complicated. The shear rate becomes strongly non-homogeneous along
z in a large region of space corresponding to r beyond R − d. So, measurements of the ratio
T/� in a laminar flow of a viscous Newtonian liquid gave a value 1.68 times larger than a
value calculated for homogeneous shear along z. (The latter suggestion is not realistic for the
large gap ratio set-up, of course.) This discrepancy is obviously due to a high shear rate layer
near the upper plate at large r. One can see that choice of a representative shear rate becomes
somewhat arbitrary under these circumstances. We decided to consider the simple expression
�R/d as a characteristic shear rate, and to define the Weissenberg number as Wi = λ�R/d.
The Reynolds number was defined as Re = �Rdρ/η.

In order to evaluate growth of flow resistance due to elastic instability and irregular
secondary flow in the system, the average shear stress near the upper plate, τlam

w , in an imaginary

New Journal of Physics 6 (2004) 29 (http://www.njp.org/)

http://www.njp.org/


12 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

laminar shear flow at the same � had to be estimated. The stress, τlam
w , would depend on an

average shear rate, γ̇av, at the upper plate, and on viscosity of the polymer solution, η, at this
shear rate. An appropriate expression for it is τlam

w = η(γ̇av)γ̇av. The average shear rate, γ̇av, was
estimated from measurements of the ratio τw/η0 in laminar flow of a Newtonian fluid with a
large viscosity, η0, at low Re. The shear rate in the laminar flow, calculated as γ̇av = τw/η0, was
proportional to �, being γ̇av = 1.12�R/d in the standard configuration, and it gave a properly
weighted average over the surface of the upper plate.

A suitable parameter characterizing growth of the flow resistance is the ratio of the average
stress at the upper plate, τw (defined as τw ≡ 3T/(2πR3) again), to the stress τlam

w in the laminar
flow at the same �. In Newtonian fluids this ratio generally increases with Re as the flow
becomes increasingly irregular, and the magnitude of τw/τlam

w can be considered as a measure of
strength of turbulence and of the turbulent resistance. In our standard set-up, when a low viscosity
Newtonian fluid is used, τw becomes 30% higher than τlam

w at Re = 70. Therefore, Re = 70 can be
regarded as a characteristic value at which inertial effects in the flow become considerable.

3.2. Observation of elastic turbulence

3.2.1. Flow resistance. The first indication of a strongly non-linear state in the swirling flow
was significant growth of the flow resistance above the elastic instability threshold. Dependence
of τw/τlam

w on the shear rate, γ̇ = �R/d, is shown in figure 3. The shear rate was gradually
increased in time, very slowly (by about 10% h−1) in the transition region, γ̇ = 0.8–1.1 s−1, and
faster below and above it. One can see a sharp transition in flow of the polymer solution (curve 1,
black line), which occurs at γ̇ of about 1 s−1 (corresponding to Wi = 3.5), and it manifests in a
significant increase in τw compared to the laminar flow. Re at the transition point is about 0.3,
so that the inertial effects are quite negligible there. The transition has pronounced hysteresis
(grey line, corresponding to slow reduction of γ̇), which is rather typical for the purely elastic
flow instability [12]. The ratio τw/τlam

w keeps growing with the shear rate and at the highest γ̇

that has been reached the flow resistance is about 12 times larger than it would be in a
laminar flow. In the same range of shear flow rates of the pure solvent, curve 3, the flow
resistance is completely laminar and the ratio τw/τlam

w is unity within resolution of the rheometer
(about 1%).

Growth of the resistance in the polymer solution flow becomes even larger, when the size
of the gap is increased to 20 mm (figure 3, curve 2), and the gap ratio becomes 0.526. Then
the ratio τw/τlam

w reaches a value of 19. For Newtonian fluids in the same flow geometry such
a growth of the flow resistance is found at Re of about 2 × 104. For flow in a circular pipe
this value of τw/τlam

w is reached at Re 	 105, which is usually considered as a region of rather
developed turbulence [1, 2].

Mechanical degradation of the polymers was quite small at shear rates below 1.5 and 1 s−1,
for d = 10 and 20 mm, respectively. The dependence of τw/τlam

w on γ̇ is therefore reproducible in
consecutive runs within about 1%. At higher shear rates, degradation effects became appreciable.
Thus, to ensure consistency of the results, time of measurements at high shear rates had to
be made as short as possible. So, for γ̇ above 1.5 s−1 (curve 1), the shear rate was raised by
about 7% min−1 and the measurement time was not sufficient to average out fluctuations of τw

produced by the flow. Irregular undulations in curves 1 and 2 in figure 3 at high γ̇ are due to
those fluctuations and the short time of averaging.
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Figure 3. The ratio of the average stress at the upper plate, τw, measured in the
flow, to the stress, τlam

w , in imaginary laminar shear flow with the same boundary
conditions, as a function of the shear rate, γ̇ . The curves 1 and 2 are for the
polymer solution flow with the gap d = 10 and 20 mm, respectively. The shear
rate was gradually varied in time. Thin black lines represent increasing γ̇; thick
grey lines represent decreasing γ̇ . Curve 3 is for the pure solvent.

In spite of the short time of the experiments, the solution relaxation time, λ, typically
decreased by up to 10% after runs of the kind shown by the curves 1 and 2. Nevertheless, a
major part of the degradation occurred at the highest shear rates, above 5 s−1 and above 3.5 s−1

for the curves 1 and 2, respectively. Therefore, the results at lower shear rates can be regarded
as quite consistent.

Resistance is an integral characteristic of a flow, and its fluctuations give some information
about flow events on the scale of the whole system. To get information about characteristic
frequencies of the flow on this integral scale, we measured spectra of fluctuations of angular
velocity of the upper plate at constant applied torque T . (AR-1000 is a stress-controlled
rheometer, so it was more feasible to apply a constant torque and monitor rotation velocity,
than to do it the other way around.) Spectra of fluctuations of � at a few T corresponding to
different average shear rates (all above the transition point, γ̇ 	 1 s−1) are presented in figure 4.
Rms of fluctuations of the angular velocity, �rms, were about 4% of its average values, �̄,
for all T . Because of the low rotation rates and low oscillation frequencies, inertial effects
associated with acceleration of the shaft of the rheometer and of the liquid were always quite
small. (I�̇rms was less than 1% of (T/�̄)�rms, where I is the moment of inertia of the system,
and �̇rms is the rms of the time derivative of �.) So, the spectra in figure 4 should reflect time
scales of fluctuations of viscous and elastic stresses in the flow.

As the average shear rate increases, the power of fluctuations, P , increases and characteristic
frequencies become higher (figure 4). The general form of the spectra remains very much the
same, however. There are no distinct peaks, except for instrumental peaks at f , which are
multiples of the average frequencies of the upper plate rotation, �̄/(2π). Furthermore, each
spectrum has a broad region, spanning about a decade in frequencies, where dependence of P on
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Figure 4. Power spectra of fluctuations of the angular velocity, �, of the upper
plate at different applied torques, T . Curves 1–5 correspond to average shear
rates of 1.25, 1.85, 2.7, 4 and 5.9 s−1, respectively (all above the transition point
γ̇ 	 1 s−1, see figure 3). The power, P , of fluctuations is fitted by a power law,
P ∼ f−4.3, for γ̇ = 4 s−1 over about a decade in frequencies, f . Curve 6, taken
with the pure solvent at a shear rate of 4 s−1, shows instrumental noise.

f is close to a power law, P ∼ f−α, with α 	 4.3. (Some increase in the power of fluctuations
at higher f is due to instrumental noise, and it was also measured in laminar flow of the pure
solvent, curve 6 in figure 4.) The power-law dependence implies that flow events on the integral
scale of the system occur in this whole region of frequencies. As was argued above, excitation
of fluid motion in a broad continuous range of frequencies is one of the characteristic features
of turbulence.

3.2.2. Temporal and spatial spectra. Time spectra of fluctuations of flow velocity in a point at
different constant shear rates (all above the elastic instability threshold) are shown in figure 5.
One component of the velocity in the horizontal plane was measured with LDV in the centre of
the set-up, where its average value was zero. The shear rates, γ̇ , for curves 1–5 were the same
as the average shear rates for curves 1–5, respectively, in figure 4. The spectra in figure 5 have
the same general features as those in figure 4. Power of the fluctuations and their characteristic
frequencies increase with γ̇ , but the spectra remain very similar in their appearance. In particular,
the spectra do not have distinct peaks, and do have broad regions of frequencies, where the
power of fluctuations decays according to a power law P ∼ f−α. (Flattening of the curves
at high f is due to instrumental noise; see also discussion of figure 16 below.) Again, for
each spectrum, the power-law-decay region spans about an order of magnitude in f , which
implies excitation of the fluid motion in the whole range of the corresponding temporal scales.
One can see that characteristic frequencies of fluctuations in a point and at the integral scale
(cf figures 4 and 5) are rather close. The exponent, α, is about 3.5, which is rather close to the
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Figure 5. Power spectra of velocity fluctuations in the standard set-up at
different shear rates, γ̇ . The fluid velocity was measured by LDV at the centre
of the flow. Curves 1–5 correspond to γ̇ = 1.25, 1.85, 2.7, 4 and 5.9 s−1,
respectively (all above the transition point γ̇ 	 1, see figure 3). The power,
P , of fluctuations is fitted by a power law, P ∼ f−3.5, for γ̇ = 4 s−1 over about a
decade in frequencies, f .

exponent of 4.3 in figure 4, and much larger than the Kolmogorov exponent of 5/3, found for
velocity spectra of high Re inertial turbulence [1, 2].

A few representative snapshots of the flow viewed from below are shown in figure 6. In
order to visualize the flow, the fluid was seeded with light reflecting flakes (1% of Kalliroscope
liquid). The upper plate was black. So, the bright regions are those where the flakes are oriented
parallel to the upper plate. The patterns of the polymer solution flow above the transition, at
Wi = 6.5 (figures 6(a) and 6(b)) and at Wi = 13 (figures 6(c)–6(e)), look quite irregular and
exhibit structures of different sizes. One can see, however, that the structures tend to have
a spiral-like form, which is probably imposed by the average azimuthal flow and circular
symmetry of the set-up. Furthermore, there is a dark spot in the middle, which appears in most
of the snapshots. It corresponds to the centre of a big persistent toroidal vortex, which has
dimensions of the whole set-up (see also below). Direction of the vortical motion was inwards
near the upper plate, downwards near the centre and outwards near the lower plate. Average
flow velocity along the radial direction was measured by LDV in a few points, and the results
agreed quite well with the presence of the big persistent toroidal vortex. Flow of the pure
solvent at the same shear rate was completely laminar as can be seen from the snapshot in
figure 6(f). It looks quite uniform up to some variation along the radial direction due to varying
shear rate and inhomogeneity along the circumference due to a somewhat uneven (and directed)
illumination.

The visual impression of spatial disorder in the flow at high Wi is confirmed by a more
careful analysis. Figure 7 shows average Fourier spectra of the brightness profiles at Wi = 13
along the diameter and along the circumference at r = 2d. The spectra were averaged over
long series of flow pattern snapshots taken at consecutive moments of time. The wavelength is
measured in units of d, so that the wave number, k, of unity corresponds to a length of 2πd.
The amplitude of fluctuations of the brightness along the circumference does not have any
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Figure 6. Representative snapshots of the flow taken from below. The field of
view corresponds to the upper plate area. The flow was visualized by seeding the
fluid with light reflecting flakes. (a, b) Polymer solution at Wi = 6.5, Re = 0.35;
(c–e) polymer solution at Wi = 13, Re = 0.7; (f) pure solvent at Re = 1.

peak and it exhibits a power-law decay, A ∼ k−1, over almost a decade in the wave-number
domain. This implies that there are no selected wave numbers in the azimuthal direction and
the fluid motion is excited in a broad range of spatial scales. (The plateau at high k may be
due to restricted spatial resolution of the method of visualization that was used.)

The spectrum taken along the diameter shows a general tendency of power-law decay in
even broader range of wave numbers. However, it apparently differs from the azimuthal spectrum
by a series of broad peaks, which may be due to the persistent toroidal vortex discussed above.
The average flow shear rate and the local gap ratio, d/r, vary along the radius, so that the radial
direction is not neutral. Thus, the flow is not structureless and homogeneous along the radial
direction. The visualization of the flow with the light reflecting flakes does not provide direct
information about the fluid velocity field. Therefore, the specific value of the exponent in the
power-law fit in figure 7 does not have any special meaning.

In order to obtain quantitative information about the spatial structure of the fluctuating
velocity field, we explored velocity spectra in various off-centre points, with non-zero average
azimuthal velocity, V̄ φ. Spectra of fluctuations of the radial component of velocity, Vr, at
γ̇ = 4 s−1 (Wi = 13.5) at four different radii are shown in figure 8. All of them were measured
at z = d/2, where z is the distance from the upper plate. Rms of the fluctuations in all four
points were rather close, varying between 0.88 and 0.99 mm s−1. The spectra in figure 8 bear the
same general features of turbulence as the spectra in figures 4, 5 and 7 discussed above. They
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Figure 7. Average Fourier spectra of the brightness profiles taken along the
diameter (thin black line) and along the circumference at a radius of 2d (thick
grey line). The averaging was made over about 20 min of the flow time and
about 2000 snapshots.
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Figure 8. Power spectra of fluctuations of radial velocity, Vr, at γ̇ = 4 s−1

measured at z/d = 0.5 at different radii. Curves 1–4 correspond to r = 0, d/2,

2d and 3d, respectively. The average flow velocities (Vφ, Vr) (in mm s−1) were
(0, 0), (0.13, 0.19), (3.81, 1.17), (6.99, 0.89) for the curves 1–4, respectively.
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do not exhibit distinct peaks, and have broad regions of f , where the power of fluctuations, P

decreases according to P ∼ f−α.
One can learn from figure 8 that as the point of measurement is moved away from the centre,

characteristic frequencies of the fluctuations become higher. The most reasonable explanation
for that will be growth of the average azimuthal velocity, V̄ φ, which was 3.81 mm s−1 and
6.99 mm s−1, at r = 2d and 3d, respectively. So, the fluctuations of the velocity with time at
these two points are mainly due to fluctuations in space, which are advected by the large mean
flow velocity, V̄ φ. Applying the Taylor hypothesis, we can view the spectra in time as spectra
in space, with the relation between the frequency and the wave number given by k = 2πf/V̄ φ.
Then the power-law-decay regions in curves 3 and 4 imply that the fluid motion is excited in
the whole corresponding ranges of k. The ranges of the spatial scales, where the motion is
excited, span about an order of magnitude for both the curves. The exponents α in the power
laws P ∼ f−α (and, so, P ∼ k−α) are again quite large, about 3.6 for r = 2d and about 3.3
for r = 3d. These large values of α imply that the power of fluctuations decays very quickly
as the size of eddies decreases. The main contribution to fluctuations of both velocity and
velocity gradients (the power of the latter should scale as k−(α−2)) should therefore be due to the
largest eddies.

3.2.3. Mixing in the flow. Mixing in the flow was observed using a droplet of black ink added to
the working fluid before rotation of the upper plate was started (figure 9). Using a micropipette,
the droplet was carefully placed near the centre (at r = 0) at about a half of the fluid depth. The
ink was dissolved in a concentrated sugar syrup, to match the density of the droplet with the
density of the working fluid. We used the half-size set-up with R1 = 19 mm, R2 = 21.9 mm
and d = 5 mm. The volume of the working fluid was about 9 ml, and the amount of the ink
was 50 µl. The upper plate was coloured white and the fluid was viewed from below. So,
regions without the ink appeared bright, whereas dark regions corresponded to positions in the
(r, φ) plane, where the total amount of the ink across the fluid layer was large.

Consecutive stages of mixing in the polymer solution are shown in figure 9. Rotation of the
upper plate was abruptly started at t = 0 at a rate of 1 turn per 4.26 s, which corresponded to a
shear rate γ̇ = 5.6 s−1. It took about 1 min for the irregular flow to develop, after the rotation of
the upper plate was started. (Development of the irregular flow was judged by growth of the flow
resistance, which was saturated after about 1 min, cf [23].) So, no significant changes in the ink
distribution occurred during the first 15 s (figure 9). After 30 s, the ink spread over the surface
of the lower plate by the big toroidal vortex discussed above. In the snapshots taken at later
moments in time (60, 90 and 120 s in figure 9) one can see many fine scale structures. Those can be
either due to excitation of the fluid motion at small spatial scales or significant stretching of fluid
elements along their Lagrangian trajectories by randomly fluctuating large-scale eddies. The
contrast of the patterns gradually decreases with time, which indicates progress in mixing.
The pattern in the last snapshot, taken 8 min after the flow has been started, looks completely
homogeneous. From the appearance of the mixing patterns in figure 9, characteristic time
of mixing can be estimated as 120 s, corresponding to about 30 full turns of the upper
plate. The time required for mixing by molecular diffusion without macroscopic flow can be
estimated as dR/D. Substituting for D the diffusion coefficient for the saccharose molecules,
D = 8.5 × 10−7 cm2 s−1, we obtain a diffusion time of about 106 s, which is four orders of
magnitude larger than the mixing time in the flow. (Diffusion time for suspended solid particles
of the black ink could be significantly larger.)
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Figure 9. Snapshots of consecutive stages of mixing of a droplet of ink in
the polymer solution in the half-size set-up, view from below. The area of the
photographs corresponds to the area of the white upper plate. Rotation of the
upper plate at � = 1.47 s−1(γ̇ = 5.6 s−1) was suddenly started at t = 0.

Mixing in the flow of the pure solvent at the same shear rate is shown for comparison
in figure 10. One can see that distribution of the ink remained inhomogeneous even after 9 h,
although the ink became somewhat spread with the time. Re was about 0.5, and there were
some non-vanishing inertial effects in the flow. In particular, centrifugal force gave rise to a
slow fluid motion out of the r–φ plane. This motion had the form of a big toroidal vortex with
outflow near the upper plate and inflow near the lower plate. (So, this vortex spun in a direction
opposite to that of the toroidal vortex produced by the elastic stresses.) The vortical motion
stirred the fluid but it did not really mix it. So, when the set-up was viewed from a side, one
could see that the ink did not get to the toroidal core of the vortex.

Summarizing the experimental results, we conclude that the flow of the elastic polymer
solution at sufficiently high Wi has, indeed, all the main features of developed turbulence that
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t=0
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Figure 10. Snapshots of consecutive stages of mixing of a droplet of ink in the
pure solvent in the half-size set-up, view from below. Rotation of the upper plate
at � = 1.47 s−1 was suddenly started at t = 0.

were stated above. The fluid motion is excited in broad ranges of frequencies and wave numbers,
both spanning about an order of magnitude. The flow is accompanied by a dramatic increase
in the rate of transfer of momentum and mass. By the strength of the turbulent resistance and
by the span of scales in space and time, where the fluid motion is excited, the observed flow
can be compared to the turbulence of a Newtonian fluid in a pipe at Re of about 105. This
apparent turbulent fluid motion in the swirling flow between two plates arises at very low Re,
where inertial effects are negligible, solely because of the non-linear mechanical properties of
the elastic polymer solution. We therefore call the phenomenon elastic turbulence. Distinctions
between the elastic turbulence and the usual inertial turbulence, which is observed in Newtonian
fluids at high Re, are discussed in section 3.4 below.

3.3. Further properties of the flow

3.3.1. Flow structure and velocity profiles. To learn more about the velocity field generated
by elastic turbulence, we measured the average velocity and rms of the velocity fluctuations at
different points. Profiles in the z-direction of the average azimuthal velocity, V̄ , and the rms of
its fluctuations, Vrms, at different flow conditions are shown in figure 11. (It was the standard
set-up.) The measurements were taken at r = 2d, which is rather far from the edge of the upper
plate (R − r = 1.8d). Profile of V̄ in a low Re flow of the pure solvent is almost a straight line
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Figure 11. Curves 1–3: average azimuthal velocity, V̄ along the y-axis on the
left; and curve 4: rms of fluctuations of the azimuthal velocity, Vrms along
the y-axis on the right, as functions of the distance, z, from the upper plate. The
measurements were taken at r = 2d. The average velocities are divided by
the upper plate velocity at r = 2d. Curve 1: polymer solution at γ̇ = 2.7 s−1;
curves 2, 4: polymer solution at γ̇ = 4 s−1 (see figures 3–5 and 8); curve 3: pure
solvent at γ̇ = 4 s−1, Re 	 1.2. The rms of velocity fluctuations in the polymer
solution (curve 4) is multiplied by λ/d to make it dimensionless.

(figure 11, curve 3). The elasticity-driven turbulent flow significantly changes the distribution of
V̄ . It produces a high-shear-rate layer near the upper plate (curve 1), and a low-shear-rate region
near the middle of the gap (at z/d = 0.5). Such a distribution of V̄ is reminiscent of average
velocity profiles in usual high Re turbulence. The perturbation of the V̄ profile becomes stronger
when γ̇ is increased (curve 2). In particular, the slope of the V̄ -curve at small z/d becomes
larger, which obviously corresponds to growth of τw/τlam

w with γ̇ (figure 3).
Fluctuations of the azimuthal velocity (figure 11, curve 4) are small near the upper plate,

reach a maximum at z/d 	 0.25, and start to decrease at larger z. Again, such a distribution
of Vrms along z is reminiscent of velocity fluctuations in turbulent flows of Newtonian fluids
[1, 2]. Rms of fluctuations reaches a value of about 0.5d/λ, so that the rate of deformations
produced by the fluctuating velocity field is of the order of 1/λ. That implies an essentially
non-linear relation between the rate of deformations and the fluctuating elastic stress. (This is
discussed in more detail in the next section.) The maximal rms of the velocity fluctuations at
γ̇ = 4 s−1 was about 1.55 mm s−1, it is about 7.5% of the upper plate velocity (Vmax) at r = 2d

and about 25% of the local value of V̄ .
As one can learn from curves 1 and 2 in figure 11, there is significant asymmetry in

the distribution of the average shear rate, ∂V̄ /∂z, along z. The main decrease in V̄ occurs
near the upper plate. So, at γ̇ = 4 s−1, V̄ /Vmax becomes 0.5 at z/d = 0.12 and at z/d = 0.5
the average velocity is only 0.18Vmax. (The velocity profile near the lower plate could not be
measured because of instrumental restrictions.) The uneven distribution of the shear rate along
the z-direction should create an essentially inhomogeneous profile of N1 along z. Indeed, in

New Journal of Physics 6 (2004) 29 (http://www.njp.org/)

http://www.njp.org/


22 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

a laminar shear flow, we have N1 = 2ηpλγ̇2 = 2τpλγ̇ (where τp is the polymer contribution
to the shear stress). Therefore, the high shear rate near the upper plate should generate large
N1 and large hoop stress there. A result of this large unbalanced hoop stress would be inward
motion of the fluid near the upper plate in the radial direction, which is quite consistent with our
observation of the permanent toroidal vortex discussed above (see figure 6). In fact, the shape
of the V̄ (z) profiles in figure 11, which is strongly asymmetric with respect to the mid-plane
(z = d/2), is also consistent with the picture of a single large-scale toroidal vortex. Indeed,
even a possible increase in the slope of the V̄ (z) profile near the lower plate would not match
the high shear at small z, and the vortical motion in the rz-plane should be mainly driven by
the high hoop stress near the upper plate. In contrast, a symmetric V̄ (z) profile would imply
equally high hoop stress near the upper and the lower plate (and low hoop stress in the middle)
that would produce a pattern of two toroidal vortices on top of each other.

In fact, the turbulent V̄ (z)-profiles of the kind shown by curves 1 and 2 in figure 11
were not always stable, especially at larger gap ratios. So, in a system with d/R = 0.563 at
γ̇ = 2.5 s−1 the high shear rate layer randomly moved between the vicinity of the upper plate
and the vicinity of the lower plate with a typical residence time of a few tens of minutes and a
transition time of about a minute. These fluctuations in the location of the high shear rate layer
were accompanied by inversions of the spinning direction of the big toroidal vortex. When the
main drop of V̄ occurred near the lower plate, it was at its vicinity where the radial flow was
directed inwards. Therefore, the asymmetry of the V̄ (z) profile with respect to the z = d/2
plane (figure 11) is indeed directly related to the large-scale vortical flow.

Big toroidal vortices driven by the hoop stress are actually quite well known to appear
in swirling flows of elastic fluids [3, 24], and inhomogeneity of the shear-rate profile in the
primary laminar flow has long been recognized as their common origin. In our system, this
vortex first arises as a stationary structure at low-shear rates. As can be seen in figure 3 (curve 1
at γ̇ < 0.75 s−1 and curve 2 at γ̇ < 0.4 s−1), the toroidal vortex leads to some increase in
flow resistance even before the transition to the elastic turbulence. As suggested by the first
three snapshots in figure 9, the big toroidal vortex is also the first vortical motion to arise
upon sudden inception of a shear rate, which is above the elastic instability threshold level.
(Further redistribution of the average azimuthal velocity due to development of the turbulent
flow should enhance this large-scale vortical motion.) Hence, we can conclude that transition
to the elastic turbulence in the swirling flow between two plates is mediated by this vortex.
The vortex is always present in the flow, and it probably suffers permanent instability and is
permanently fluctuating, which may be an important mechanism for the production of fluid
motion at smaller scales. The toroidal vortex is providing a smooth, large-scale velocity field,
which is randomly fluctuating in time, and in which the liquid and the stress tensor imbedded
in it are chaotically advected. This type of advection can create variations of stress in a
range of smaller scales, which may cause small-scale fluid motion [25, 26]. (This would be
analogous to generation of small-scale concentration variations in chaotic mixing by large
fluctuating vortices.)

The large-scale vortical flow is a probable reason for low Wi at the elastic instability
threshold, and for the very strong increase of resistance above the transition to elastic turbulence
in the flow between two plates. Indeed, growth of the flow resistance in the CT flow at comparable
Wi (see figure 18) is significantly smaller. This situation is somewhat similar to inertial turbulence
in Newtonian fluids in the same systems. In the swirling flow between two plates, a big toroidal
vortex, which is driven by centrifugal force, causes transition to turbulence at quite low Re and
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Figure 12. ◦, PDF of flow velocity measured at r = 2d, z = d/4 and γ̇ = 4 s−1.
Solid lines represent fits by Gaussians with some skewness; (a) azimuthal velocity,
Vφ and (b) radial velocity, Vr.

provides a route of efficient energy transfer to the turbulent flow. Many instructive pictures of the
toroidal vortex, its evolution and instabilities in inertial, inertia–elastic, and elasticity-dominated
flow regimes in a swirling flow set-up with larger gap ratios can be found in [24].

3.3.2. Velocity statistics in a point. Characteristic probability distribution functions (PDF)
of azimuthal and radial components of the flow velocity in the regime of elastic turbulence
are shown in figure 12. These distributions were obtained from LDV measurements taken
at r = 2d, z = 0.25d at a shear rate of 4 s−1. PDFs of the azimuthal and radial velocity
can be fitted quite well by the functions A1 exp[−(V−V̄ φ)

2/(2a2
1) + 0.032(V−V̄ φ)

3/a3
1]

and A2 exp[−(V−V̄ r)
2/(2a2

2) − 0.017(V−V̄ r)
3/a3

2], respectively. Here V̄ φ = 6.34 mm s−1 and
V̄ r = −1.84 mm s−1 are the average velocities; a1 = 1.55 mm s−1 and a2 = 0.97 mm s−1 are
the rms of fluctuations for the azimuthal and radial components, respectively. One can see that
both the distributions have only minor skewness and are very close to a Gaussian. (Skewness
is probably due to the non-zero average velocity.)

Probability distribution functions for gradients of velocity (rates of deformation) in the
longitudinal and transversal directions, obtained from the same LDV time series, are shown in
figures 13(a) and 13(b), respectively. The rates of deformation are multiplied by the relaxation
time, λ, to make them dimensionless. The velocity gradients were estimated by using the Taylor
hypothesis, with smoothing over a distance of about 1.45 mm. The difference, 
V , between
consecutive velocity readings with even time intervals of 
t = 0.22 s was divided by 
t and
by the average velocity V̄ = (V̄ 2

φ + V̄ 2
r )

1/2 = 6.6 mm s−1. One can see that the distributions of
∂Vφ/r ∂φ and ∂Vr/r ∂φ cannot be fitted by Gaussians. In contrast with the velocity distributions
in figure 12, both the PDFs in figure 13 have well-pronounced exponential tails, which imply
significant intermittency of the velocity gradients. The situation of nearly Gaussian statistics of
velocities and essentially non-Gaussian, strongly intermittent distributions of velocity gradients
is actually quite typical for high-Re inertial turbulence [27]. Hence, the elastic turbulence
resembles high-Re inertial turbulent flows in this respect.
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Figure 13. ◦, PDF of velocity gradients measured at r = 2d, z = d/4 and
γ̇ = 4 s−1. The velocity gradients are made dimensionless by multiplication by
the relaxation time, λ. Solid lines represent Gaussian fits; (a) longitudinal gradient,
∂Vφ/r ∂φ; (b) transversal gradient, ∂Vr/r ∂φ.

3.4. Comparison with inertial turbulence at high Re

3.4.1. Role of the elastic stresses. Along with the apparent similarity in phenomenology
between the elastic and inertial turbulence, there are also quite a few very important differences.
An obvious reason being the difference in the physical mechanisms, which underlie the two
kinds of turbulent motion. Turbulence in Newtonian fluids is observed at high Re, when the
equation of motion (1) is highly non-linear. The non-linear term in equation (1) is connected with
the kinematics of translational motion in a continuous medium and is due to fluid inertia. Elastic
turbulence occurs at low Re, when non-linearity of the equation of motion (equation (2)) is
negligible. The origin of the elastic turbulence is nonlinear dependence of the elastic stresses on
the rate of deformation in flow. (This non-linear dependence is seen very well in the model
constitutive relations (3) and (4).) The latter non-linearity is connected with kinematics of
deformation in a continuous medium, and it is due to the finite relaxation time of polymer
molecules. Therefore, one can suggest that, in the case of the elastic turbulence, it would
be more relevant to study the field of stresses and rates of deformations rather than the
velocity field.

The products of the randomly varying rates of deformation (∂Vφ/r ∂φ and ∂Vr/r ∂φ in
figure 13) and λ can actually be viewed as different estimates for Weissenberg number, Wi′, of
the fluctuating velocity field. The distributions in figure 13 show that Wi′ is rather often above
unity, and the rms of its fluctuations estimated from figure 13(a) is about 0.83. Fluctuations of
the rate of deformation are directly connected with fluctuations of the elastic stresses by the
constitutive relation (see equations (3) and (4)). Since the fluctuating Weissenberg number is
rather high, this connection should be essentially non-linear. Therefore, one can suggest that the
field of τp in the elastic turbulence is highly complex and strongly intermittent. It would certainly
be quite instructive to explore spatial structure and temporal distribution of the elastic stresses,
but there is currently no technique for local measurements of τp in a turbulent flow. On the
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other hand, large-scale properties of the τp field can be inferred from measurements of the total
flow resistance.

As is well known, the high flow resistance in high Re inertial turbulence is due to large
Reynolds stresses. The Reynolds stress tensor is defined by the average values of ρ〈ViVj〉,
where Vi and Vj are different components of flow velocity. In the case of elastic turbulence,
Reynolds stresses are quite small, since Re is low. Indeed, 〈ViVj〉 can be estimated as 2V 2

rms.
Taking Vrms = 1.55 mm s−1, which is the maximal value for rms of the azimuthal velocity
fluctuations at r = 2d and γ̇ = 4 s−1, we obtain a Reynolds stress of 6 × 10−3 Pa, while τw

at the same conditions is about 16 Pa. Therefore, the whole increase of flow resistance in the
elastic turbulence is caused by growth of average elastic stresses [15, 23]. By the same token, the
irregular fluctuations of the total flow resistance in the elastic turbulence, which were discussed
above (figure 4), are due to fluctuations in the τp field at large spatial scales.

Average growth of the polymer stresses can be estimated from the curves in figure 3.
Indeed, by momentum conservation, the stress near the wall should be equal to its average
value in the bulk, τw = τp + τs, τlam

w = τlam
p + τlam

s (we omitted signs of averaging for brevity).
The viscous stress due to the Newtonian solvent, τs, is linearly proportional to the shear rate,
and its average value depends only on the boundary conditions and cannot change as a result
of a turbulent flow [23]. Therefore, we can take τs = τlam

s = (ηs/(η − ηs))τ
lam
p , where η is the

viscosity of the polymer solution measured in a laminar shear flow at a corresponding shear
rate. Then for the ratio of the average polymer stresses in turbulent and laminar flow we obtain
a relation τp/τ

lam
p = (η/(η − ηs))[(τw/τlam

w ) − (ηs/η)]. After plugging in numeric values from
figure 3 (curve 2) and from measurements of η(γ̇) (figure 2) we get ratios of τp/τ

lam
p as high

as 65 at high shear rates. For a set-up with larger d/R and a solution with a smaller polymer
concentration, the ratio of the polymer stresses in turbulent and laminar flows estimated this
way reached a factor of 170 [23].

In molecular theory of polymer dynamics the tensor τp is found to be proportional to
the polymer concentration and to the average tensor of inertia of the polymer molecules,
τp,ij ∼ k〈RiRj〉 (where k is an elasticity coefficient, which remains constant in a linear elasticity
regime). Since elastic energy density of the stretched polymer molecules is given by a quadratic
form of a similar kind, one can suggest linear dependence of the elastic energy on τp. Therefore,
the density of the elastic energy should increase in the turbulent flow by about the same factor
as τp. The density of kinetic energy is proportional to the Reynolds stress and although it
certainly increases with development of the elastic turbulence, it always remains quite small
compared with the elastic energy density. So, we can suggest that the elastic stress, τp,
should be the object of primary importance and interest in the elasticity-driven turbulent flow,
and it may be appropriate to view elastic turbulence as turbulence of the τp field.

The growth of the elastic stresses is also an evidence of significant extension of the polymer
molecules in the flow. The relation τp,ij ∼ k〈RiRj〉 suggests that polymer extension should
grow as

√
τp. Taken together with the data on τp/τ

lam
p , it implies an eight-fold stretching of the

polymer molecules in the turbulent flow beyond their extension in a laminar flow with the same
average shear rate. (For τp/τ

lam
p = 170, the corresponding extension factor is 13.) Significant

extension of the flexible polymer molecules in the turbulent flow environment, inferred here
from the bulk measurements of the flow resistance, has been recently confirmed by direct
visualization of individual polymer molecules in flow [28].

The behaviour of polymer molecules in chaotic and turbulent flows has been a subject of
controversy for long [29], and it deserves special discussion. Dynamics of polymer liquids have
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been most well studied in basic rheometric flows, such as simple shear and extension. In the
former case, τp is usually found to increase slower than linearly with the rate of deformation γ̇

(shear thinning). In the latter case, τp grows faster than linearly with the rate of deformation, ε̇,
and at ε̇ > 1/(2λ), τp can grow by a few orders of magnitude as the total deformation (measured
by the Henky strain,

∫
ε̇ dt) increases. The molecular basis for this behaviour, stretching and

tumbling in the case of a shear flow, and a coil–stretch transition in the case of an extensional flow,
has been clearly demonstrated in the recent experiments by Chu’s group [17, 30]. A turbulent
flow involves a complex three-dimensional velocity field, with the rate-of-deformation tensor
randomly varying in time and space. Therefore, an attempt to fit it directly into the context of
rheometric flows may lead to frustration and confusion.

Being stochastic phenomena, chaotic and turbulent flows are most appropriately treated
statistically. An object of particular interest for polymer dynamics is statistics of deformations
of the fluid elements, in which the polymer molecules reside. Since the size of the polymer
molecules is almost always much smaller than the size of the smallest turbulent eddies, the
velocity field is smooth on the scale of the molecules. At every moment in time it is defined
by some average velocity and a tensor of rate of deformation, �V(�r) = �V0 + (∂Vi/∂rj)(�r − �r0).
Statistics of deformations of a fluid element can be derived from statistics of the tensor ∂Vi/∂rj

in the Lagrangian reference frame moving with the fluid element. The tensor ∂Vi/∂rj is three-
dimensional and in all non-degenerate cases it has a positive eigenvalue, corresponding to
extensional flow along some axis. Rate of the extension and direction of the axis vary randomly
at a time scale, connected with the characteristic time of variations in the flow. A detailed
statistical analysis was first made by Lumley [31] in the early 1970s and was revised and
refined recently [32, 33]. Under quite general assumptions about statistics of ∂Vi/∂rj, it was
shown that a fluid element, which is initially a sphere, becomes an ellipsoid with its longest axis
growing on average as a = a0 exp(αt). The coefficient α is a Lyapunov exponent of divergence of
two closely spaced points in the flow, and the value of α is usually of the order of 〈(∂Vi/∂rj)

2〉1/2.
A somewhat surprising conclusion of the theory is that a generic random flow is on average an
extensional flow in every point, with the rate of extension ε̇ = α and unlimited Henky strain.
Therefore, one should expect the polymer molecules to become strongly stretched by the random
(turbulent) flow, when the Lyapunov exponent α, as given by the statistics of ∂Vi/∂rj, becomes
larger than 1/(2λ). (More refined theory suggests that a significant fraction of the molecules
should become substantially stretched even at lower α due to intermittency in the statistics
[32, 33].) One can see that the extension of the polymer molecules to the regime of elastic
turbulence, taken together with the estimate Wi′ 	 0.8, is in good agreement with the theoretical
predictions [32, 33].

Based on the discussion above, one can suggest the following scenario of development of
elastic turbulence. The polymer molecules are stretched in the primary shear flow that leads to
large elastic stresses, τp. The elastic stresses render the primary shear flow unstable and cause
an irregular secondary flow. The flow acts back on the polymer molecules, stretching them
further, and raising the elastic stresses even more [23]. All this make the flow increasingly
turbulent, until a kind of a saturated dynamical state is finally reached. This state implies some
mutually consistent fields of average stresses and velocities and their fluctuations. Those fields
are connected with each other by the equation of motion and the constitutive relation.

3.4.2. Scaling with set-up size and fluid viscosity. We explored variation of different
characteristics of the elasticity-induced turbulent flow with viscosity of the polymer solution and
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with size of the set-up. It was in sharp contradiction with the general principles of Newtonian
fluid mechanics, but quite in line with the concept of viscoelastic similarity suggested for
purely elastic flow transitions [13]. So, velocity required for excitation of inertial turbulence
in a Newtonian fluid is proportional to viscosity of the fluid. This is connected with the fact
that characteristic inertial time (viscous diffusion time), tvd = d2/ν, is inversely proportional to
viscosity. In contrast, polymer relaxation time, λ, usually grows proportionally to viscosity of
the solvent [3]. When the system gap ratio and the viscosity ratio are both kept constant, purely
elastic transitions should occur at a constant Weissenberg number, Wi = Vλ/L. Therefore,
increase in viscosity of the solvent should lead to transition to elastic turbulence at lower
velocity. To verify whether the PAAm solutions were prepared with the same ηp/η and a
relaxation time larger than 3.4 s, a few other sugar syrups with higher viscosities were used as
solvents. The transition to elastic turbulence in these solutions occurred at the same Wi, indeed,
while the angular velocity of the upper plate and Re at the transition threshold were lower,
scaling as � ∼ 1/ηs and Re ∼ 1/η2

s , respectively. (In fact the situation was very similar to the
case of purely elastic instabilities in CT flow [13].) The dependence of τw/τlam

w on Wi for those
solutions were close to those in curve 2 in figure 3. (In order to obtain a similar dependence,
though, it was important to vary the shear rate slowly, in proportion with the increase in λ.)
Using a very viscous sugar syrup with ηs 	 7.2 Pa s, we prepared a polymer solution with a
relaxation time of about 30 s, and observed a transition to elastic turbulence at � ≈ 0.05 s−1

and Re ≈ 3 × 10−3 [23].
Furthermore, the viscous diffusion time, tvd , is proportional to the square of the size of

the system. Therefore, when the size of the set-up is proportionally reduced, the linear and
angular velocities required for excitation of inertial turbulence should increase as V ∼ 1/d and
� ∼ 1/d2, respectively. In contrast, the polymer relaxation time, λ, does not depend on system
size. Therefore, � (and γ̇) at transition to the elastic turbulence should not depend on the size
of the set-up, as long as its proportions are preserved. A natural scale of stress in the purely
elastic flow regime is given by ηp/λ, and it also does not depend on the size of the system.
(It may depend on ηp/ηs, however.) Therefore transition to the elastic turbulence is expected
to occur at the same characteristic stress, and dependence of τw/τlam

w on Wi is supposed to be
the same for all system sizes.

Figure 14 shows dependence of τw/τlam
w on Wi in a set-up with all the dimensions

proportionally reduced by a factor of four compared with the standard configuration. The
plot looks quite similar to curve 1 in figure 3. One can see that the transition to the elastic
turbulence indeed occurred at the same γ̇ as in the standard set-up, although Re was 16 times
lower. To compensate for lower sensitivity of the rheometer to shear stress due to smaller total
torque, the rate of variation of γ̇ was reduced. This may be the reason for a smaller region
of hysteresis in figure 14 compared with figure 3. The plot in figure 14 also implies that the
transition to elastic turbulence occurred at the same τw and Wi, and dependence of τw on γ̇

was also almost the same as in the standard configuration.
The parameters of the system relevant to the elastic turbulence are d, R, ηp, ηs, λ and �.

(Density of the fluid should be of no importance, since inertial effects are negligible.) There
seems to be no apparent way to construct, out of these parameters, a scale of length other than
the size of the system (with a possible pre-factor depending on ηp/ηs and �λ). It implies that,
when the dimensions of the system, d and R, are proportionally changed, while ηp, ηs, λ and
� are preserved, the turbulent velocity field should remain the same up to linear rescaling with
size of the system.
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Figure 14. Dependence of the upper plate stress ratio, τw/τlam
w (actual polymer

solution flow and a laminar flow with the same boundary conditions, cf figure 3)
on the shear rate for a set-up with dimensions reduced four-fold compared with
the standard configuration of the flow between two plates. Black and grey curves
correspond to increasing and decreasing shear rate respectively.

This suggestion is qualitatively confirmed by the mixing patterns presented in figure 15. The
snapshots in the left column are the same as in figure 9. They show consecutive stages of mixing
of a droplet of ink in a polymer solution upon sudden inception of shear flow. The dimensions
of the system were twice as small as those of the standard configuration. The snapshots in the
right column show mixing in the same polymer solution in a system with dimensions reduced
four-fold compared with the standard configuration. In both cases the area of the snapshots
corresponds to the area of the upper plates. So, the snapshots in the right column are magnified
by a factor of two compared with the snapshots in the left column. (The volume of the ink droplet
added to the solution in the right column was four times smaller than for the left column in
order to match the amount of ink per unit area.) The angular velocities of the upper plates were
the same, � = 1.5 s−1, and so were the shear rates, γ̇ = 5.6 s−1, and the Weissenberg numbers.
However, Re for the right column was four times smaller, Re = 0.125 compared with Re = 0.5
for the left column.

The mixing patterns in figure 15 are irregular in both columns, but the two sequences look
rather similar and make an impression of two realizations of the same stochastic process. So
the transition to the elastic turbulence seems to go similarly in the two systems, and the mixing
seems to progress with about the same characteristic time. This implies that characteristic
velocities of the irregular flow scale linearly with the size of the system and with velocity of the
primary flow. Patterns, which appear in the snapshots taken at equal elapsed times, seem to have
similar sizes and similar contrast levels. This suggests that, in elastic turbulence, characteristic
spatial scales of velocity field are indeed proportional to the size of the system.

Quantitative data on the dependence of the turbulent velocity field on the system size
are obtained from velocity spectra measured at a point with a large mean flow velocity. As it
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Figure 15. Mixing patterns in polymer solution flow in set-ups with flow
between two plates and with dimensions reduced two-fold (left column) and
four-fold (right column) compared with the standard configuration. Photographs
in consecutive rows were taken at equal times elapsed from sudden inception
of the upper plate rotation at � = 1.47 s−1 (γ̇ = 5.6 s−1). Images in the right
column are magnified by a factor of two to match the sizes. The area of the
photographs corresponds to the area of the white upper plate.

was argued above, those measurements provide information about both the power of the velocity
fluctuations and spatial structure of the velocity field. Spectra of fluctuations of the azimuthal
and radial velocity components measured at r = 2d, z = d/4 in the standard and in the half-size
set-ups are shown in figure 16. The shear rate was 4 s−1 (corresponding to Wi = 13.5) in both
the systems, the same as for the spectra in figure 8 and for PDFs in figures 12 and 13.

From the above similarity arguments, fluctuating velocity was expected to scale as d/λ.
Rms of the fluctuations of Vφ and Vr were 1.55 and 0.97 mm s−1, respectively, for the
standard configuration, and 0.78 and 0.48 mm s−1, respectively, for the half-size system. So the
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Figure 16. Power, P , of velocity fluctuations in set-ups with flow between two
plates as a function of frequency, f . Curves 1 and 3 are for the radial velocity
component, Vr, and curves 2 and 4 are for the azimuthal velocity, Vφ. Black
curves (1 and 2) are for the standard set-up, and grey curves (3 and 4) are for a
set-up with two-fold reduced dimensions.

corresponding fluctuation amplitudes in the half-size system were indeed halved. Therefore,
to match spectra in the two systems, the velocity measured in the half-size system was
multiplied by a factor of 2. One can see that, after this velocity rescaling, the spectra of
both Vφ and Vr become very close. The apparent difference at high frequency is due to lower
signal-to-noise ratio in the half-size system. Indeed, one of the main sources of noise in the
LDV measurements is finite size of the crossing region of the laser beams, over which
the measured velocity is averaged. Characteristic velocity gradients (scaling with � and 1/λ)
are expected to be equal in the two systems, and dimensions of the laser beam crossing
region are the same as well. Therefore, the level of the gradient noise should not change when
the size of the system is reduced, whereas the level of the signal (characteristic fluctuating
velocity) decreases.

The average azimuthal velocities were 6.34 and 3.37 mm s−1 for the standard and the half-
size systems, respectively, with their ratio being rather close to 2 again. Therefore, applying the
Taylor hypothesis to the power spectra in figure 16, we conclude that spatial structure of the
velocity fluctuations in the two systems is statistically identical up to rescaling by a factor of
2 in the k-space. Thus, the experimental results in figure 16 provide further, more quantitative
support to the suggestion of simple linear rescaling of the turbulent velocity field with size of
the system at constant � (and ηp, ηs and λ).

3.4.3. Flow at small scales and near walls. The structure of flow at small scales and near
boundaries gives another example of substantial differences between the elastic and inertial
turbulence. It is instructive to summarize some relevant basic facts about the latter first. In
high-Re inertial turbulence, the range of excited spatial scales is restricted from below by the
Kolmogorov dissipation length, l0. It can be estimated from the condition Rel0 	 1 [1, 27], with
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the local Reynolds number, Rel, defined as Vll/ν, where Vl is a characteristic turbulent velocity
difference at the scale l. Since Vl decreases as l becomes smaller (as Vl ∼ l1/3 in Kolmogorov’s
picture of turbulence [1, 27]), Rel decreases faster than linearly with decreasing l. So, the
dissipation length l0 necessarily exists in any inertial turbulent flow.

An issue related to the problem of the smallest excited length scale is the stability of
boundary layers near solid walls. The latter can be most simply approached by introduction of
a local Reynolds number, Re(z) = V̄ (z)z/ν, which is a growing function of distance, z, from
the wall. (The usual convention is to use y for distance from a wall (transverse direction),
and z as a co-ordinate in the spanwise direction, but we would like to stay consistent with
the notation used in figure 11 and cylindrical geometry.) Near a wall the mean flow velocity,
V̄ (z), increases linearly with z, giving Re(z) ∼ z2 at small z. Therefore, Re(z) remains low in
some vicinity of a wall, and the flow is a laminar shear. This laminar shear layer near a wall
(usually called the viscous sublayer) ends at a distance z (decreasing with growth of global Re),
where Re(z) becomes sufficiently large, and the shear flow becomes unstable and turbulent.

Analogously to the inertial turbulence, we can introduce a local Weissenberg number,
Wil = λVl/ l. It does not decrease as l becomes smaller, though. Indeed, the ratio Vl/ l is a
characteristic gradient of the turbulent velocity smoothed over the length l, and it can only grow
as l decreases. Since Wil does not become small at small l, there appears to be no straightforward
way to construct an analogue of the dissipation length, l0, for the elastic turbulence. So, there
may be no macroscopic length setting a lower limit to the range of scales of the turbulent motion.
(Something may change, though, at a scale comparable with size of the polymer molecules or
with their characteristic diffusion length.)

This suggestion is consistent with the plots shown in figure 16. Indeed, the spectra of both
Vφ and Vr in figure 16 have broad frequency ranges where the power of fluctuations decays as
P ∼ f−α. The value of α is close to the values found for the other velocity spectra (figures 5
and 8). The highest frequency in a power-law-decay region corresponds to the smallest spatial
(or temporal) scale, at which the turbulent flow is excited. The power-law-decay regions of the
spectra in figure 16 are cut off at high frequencies by plateaux rather than by abrupt drops,
however. As we argued before, those plateaux appear solely due to the instrumental noise. The
power-law-decay range and the apparent range of excited spatial scales deduced from it become
broader, when the signal-to-noise ratio becomes higher (figure 16). However, this lack of a
cut-off frequency from above does not lead to any kind of high frequency divergence (ultraviolet
catastrophe). Indeed, since α > 3, the total power of the velocity fluctuations is converging
at high f and k, and the same is true for fluctuations of velocity gradients with their power
scaling as P ∼ k−(α−2) in the spatial domain. (We assume again that the Taylor hypothesis
is applicable.)

Similarly to Re(z), one can introduce a local Weissenberg number near a wall, Wi(z) =
λV̄ (z)/z (V̄ (z) here is the difference between the local mean flow velocity and the velocity
at the wall at z = 0), and easily see that it does not become small as z → 0. In fact, we can
learn from the average velocity profiles in the elastic turbulence (figure 11) that the region
near the upper plate corresponds to the highest average shear rate and to the highest Wi(z).
On the other hand, the velocity fluctuations clearly decline near the upper plate (figure 11) and
existence of such a stable high-shear-rate boundary layer in the elastic turbulence may appear
rather puzzling.

A possible mechanism providing stability of the flow near the upper plate is significant
shear thinning of the relaxation time, λ. As was argued above, in the elastic regime, flow
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stability depends on the parameter K = (ηp/η)(d/R)Wi2. Adopting it to the boundary layer, we
can suggest that stability should be defined by a local parameter K(z) = (ηp/η)(z/R)Wi2(z),
where Wi(z) = λ(γ̇)V̄ (z)/z, λ(γ̇) is the shear-rate-dependent relaxation time, and R is the radial
position of the region of interest. We can consider the case of a simple sigmoidal profile, where the
whole growth of the mean flow velocity from zero to V̄ occurs across thin layers of widths zb

near the boundaries. If V̄ , ηp/η and R are all kept constant, we obtain K(zb) ∼ λ2(γ̇)/zb,
where γ̇ =V̄ /zb. Therefore, if the relaxation time decreases with the shear rate, faster
than λ ∼ γ̇−1/2, K(zb) is a decreasing function, and the boundary layer remains stable as
it becomes thinner and the slope, V̄ /zb, increases.

Such fast decays of λ with γ̇ would also suggest that a more global (although radius-
dependent) parameter for the flow between two plates K = (ηp/η)(d/R)[λ(�R/d)�R/d]2

would be decreasing with R, and the elastic instability would be limited to a region of sufficiently
small R. This kind of behaviour was indeed reported for a different polymer solution and a
system with small d/R [20]. In a more general case of shear thinning, with the relaxation time
scaling as λ = λ0γ̇

−α (and α < 1/2), the condition K < Kc (where Kc is a critical value for
instability) is satisfied for V̄ (z) < [(KcηR)/(ηpλ

2
0)]

1/(2−2α)z(1−2α)/(2−2α), which is reminiscent
of the V̄ (z) profiles in figure 11.

Dependence of λ on γ̇ in a shear flow can be inferred from measurements of normal
stress difference, N1. At λγ̇ � 1 it is usually found that N1 = 2ληpγ̇

2 with constant λ and
ηp. Therefore, λ(γ̇) = N1/(2ηpγ̇

2) can be used as an estimate of shear thinned relaxation time
at higher γ̇ . Measuring this way λ(γ̇) for solutions of a few lower molecular weight PAAm
samples we usually found λ ∼ γ̇−α, with α around 0.3 [12]. (Resolution of our rheometer was
not sufficient to measure normal stresses in the solution used in the experiments on the elastic
turbulence at Wi in the range of interest [12].) Therefore the shear thinning may indeed play an
important role in the stabilization of the boundary layer.

Finally, it is worth noting that the whole concept of boundary layers is less straightforward
in the case of elastic turbulence, and the condition of their stability may be less restrictive
than for inertial turbulence. Indeed, in a high Re turbulent flow, characteristic fluctuating
velocity, V ′(z), generated by a flow instability originating at a distance z from a wall scales
as V ′(z) ∼ ν/z, and the boundary layer must become stable at some z, since V ′(z) → ∞
as z → 0. In contrast, characteristic fluctuating velocity generated by an elastic instability
should be proportional to z/λ and approach zero at z → 0.

4. Couette–Taylor flow

4.1. Experimental set-up and results

Experiments were performed to study the Couette–Taylor flow in a small set-up mounted
vertically on the AR-1000 rheometer. The stationary outer cylinder was made of glass, had a
radius R2 = 13.5 mm, was open from above and closed from below by a stainless steel plug
with a flat top, figure 17. The rotating inner cylinder had a radius R1 = 9 mm and was conical
at the bottom with an angle of tan−1(0.5), so that the gap ratio in the cone-and-plate flow at
the bottom was the same as in the annular gap, d/R1 ≡ (R2 − R1)/R1 = 0.5. The cylindrical
surface of the inner cylinder was 72 mm long. Both the cylinders were coaxial with the shaft
of the rheometer and the inner cylinder was attached to it. The working liquid was filled
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Figure 17. Schematic drawing of the Couette–Taylor set-up, mounted on top of
the AR-1000 rheometer. A circular cap with a hole for the rotating shaft, which
covered the glass cylinder from above, is not shown.

above the upper rim of the inner cylinder. In order to reduce evaporation of the fluid from its
open surface, a special cover (vapour trap) was used. The outer cylinder was enclosed in a
thermal jacket with a square cross-section that was made out of plexiglass. The temperature
of the system was set by a fast stream of water pumped through the jacket from a refrigerated
circulating bath. The polymer solution was the same as in the experiments on the flow between
two plates (80 ppm of PAAm in 65% sucrose, 1% NaCl in water), and the experiments were
carried out at the same temperature of 12 ◦C. The characteristic shear rate in the flow was
calculated using γ̇ = �R1/d, and the Weissenberg number was taken to be Wi = λ�R1/d

with λ = 3.4 s.
First, we measured flow resistance in the polymer solution as a function of γ̇ and Wi.

The protocol was very similar to that described above for the flow between two plates. At the
beginning, pure solvent (with a viscosity ηs) was filled into the system, and the torque, Ts,
applied to the inner cylinder was measured as a function of angular velocity, �. The dependence
was linear over the whole range of � explored. The suggested dependence of torque for an
(imaginary) laminar flow of the polymer solution was calculated from it as Tlam = Tsη(γ̇)/ηs.
Then the system was filled with the polymer solution, � was gradually increased starting from
a low point corresponding to Wi = 0.68, and the torque, T , required to drive the actual polymer
solution flow was measured. The ratio of the two torques, T/Tlam, is equal to the ratio of the
average stresses, τ/τlam, in the actual and the imaginary laminar flow of the polymer solution.
It is a quantitative expression of growth of the flow resistance compared with the laminar flow.
The dependence of τ/τlam on Wi is shown in figure 18 (thin black line) for Wi varying over
almost two orders of magnitude. One can see that the resistance ratio τ/τlam is equal to unity
at low values of Wi corresponding to laminar flow in the system. Then at Wi of about 4 an
abrupt transition occurs, and the flow resistance starts growing quickly and non-linearly. Re

at the transition point is quite small, Re = �R1dρ/η = 0.07. Therefore, the transition is of a
purely elastic nature. The non-linear growth of the flow resistance is quite significant; at the
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Figure 18. The ratio of average shear stress in the actual flow of the polymer
solution and the stress corresponding to a laminar flow with the same γ̇ , τ/τlam, as
a function of the Weissenberg number, Wi = λR1�/d. Thin black line: increasing
rotation rate, starting from Wi = 0.7; thick grey line: decreasing rotation rate,
starting from Wi = 7.

highest tested value of Wi, the ratio τ/τlam is more than 4. Undulations of the curve in figure 18
reflect the fluctuating nature of the flow resistance above the transition and are due to limited
integration time during the measurements.

To explore the behaviour of the flow resistance at decreasing shear rate, we carried out
another experiment, where Wi was first set to 7, well above the transition point, and gradually
reduced afterwards. Dependence of τ/τlam on Wi in this run is shown by a thick grey curve
in figure 18. The two curves in figure 18 overlap at Wi above 4.7 and below 1.8, whereas in
the region in between, a well-pronounced hysteresis occurs. This broad region of hysteresis
agrees quite well with previously reported results for Couette–Taylor flow in a purely elastic
regime, which were obtained in a system with a smaller gap ratio and a different PAAm solution
[12, 13]. The plot in figure 18 is quite similar to the dependence of τ/τlam on Wi for the flow
between two plates shown in figures 3 and 14.

The non-linear velocity transition was accompanied by the emergence of a disordered
and randomly fluctuating pattern of vortices on top of the basic shear flow. When visualized
with the light reflecting Kalliroscope flakes, the fluctuating pattern looked similar to the
Disordered oscillations reported before at similar flow conditions in a larger CT system with
d/R1 = 0.2 [12]. To measure the velocity associated with the fluctuating flow we used the LDV
set-up again. Two horizontal laser beams were crossing inside the polymer solution seeded
with polystyrene beads in the middle of the annular gap at r = (R1 + R2)/2 and at about
half height from the bottom. The beams were adjusted in such a way that it was the radial
component of the flow velocity, Vr, perpendicular to the basic shear flow that was measured.
Power spectra of fluctuations of Vr at a few different Wi above the non-linear transition are
shown in figure 19. As Wi is raised, the total power of the velocity fluctuations increases
and fluctuations at higher frequencies are excited. Nevertheless, all four curves share the same
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Figure 19. Power of fluctuations of the radial component of the flow velocity,
Vr, measured at r = (R1 + R2)/2, as a function of frequency, f . Curves 1–4
correspond to Wi = 8.5, 13.6, 21.8 and 35, respectively. Two power-law fits for
curve 4 in different regions are shown to guide the eye.

general appearance: there are two plateau regions at low and high f (the latter is probably be due
to the instrumental noise) and two contiguous regions of a power-law decay in between, with
two different exponents and a distinct inflection point separating them. Although characteristic
frequencies increase with Wi, those exponents are rather close for all four curves, around −1.1
at lower frequencies and around −2.2 in the high-frequency power-law-decay regions. Apart
from the inflection points, none of the curves exhibits any distinct peak. Amplitude of the
velocity fluctuations in all four cases was quite small compared with average flow velocity.
The latter was directed along the circumference (azimuthally) and is equal to about �R1/2.
(See also figure 20 and discussion thereof.) Therefore, the spectra in figure 19 should actually
reflect spatial variation of Vr in the azimuthal direction.

In order to obtain additional information about the fluctuating flow velocity, we used the
same time series to calculate velocity statistics. The PDF of Vr at different Wi are shown
in figure 20. One immediately observes that, although the average velocity is always zero,
the shapes of the distributions are essentially non-Gaussian. Moreover, unlike the velocity
distributions for the flow between two plates in figure 12, PDFs in figure 20 cannot be satisfactory
fitted by skewed Gaussians (functions of the form A exp[−(V − V̄ r)

2/(2a2) + b(V − V̄ r)
3/a3]).

One of the most notable features of the PDFs in figure 20 is the relatively high probability
for large negative values of Vr (‘long tails’ of the distributions at negative Vr), which implies
asymmetry for radial flows inwards and outwards. Although most striking in the curve for
Wi = 5.4, this feature is still quite well expressed at Wi = 35. In fact, the curve at Wi = 5.4 is
also quite similar to a PDF of Vr reported before in the CT flow with d/R1 = 0.2 (see figure
12 in [12]), at comparable Wi in the regime of disordered oscillations. In the latter case, the
asymmetry in the radial velocity distribution was due to an abundance of coherent structures
having a shape of couples of vortices (‘diwhirls’) with a narrow region of intensive radial flow
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Figure 20. Probability distribution functions of the radial component of the
flow velocity, Vr, measured at r = (R1 + R2)/2, at different Wi. Curves 1–4
correspond to Wi = 5.4, 13.6, 21.8 and 35, respectively.

inwards in the middle and slow radial flow directed outwards on the sides of a vortex couple.
Such an asymmetric shape of the diwhirls is closely related to the mechanism of generation of
the elastic instability in CT flow, and it allows efficient pumping of energy from the primary
shear flow into the secondary fluctuating velocity field [12]. Therefore, the asymmetric shapes
of PDFs in figure 20 suggest that the coherent structures of that diwhirl type are present
in the CT flow even at high Wi and may have significant influence on its organization and
statistical properties.

The distribution functions in figure 20 also allow us to find characteristic rates of extension
in the flow in the radial direction, ∂Vr/∂r, and Weissenberg numbers, Wi′ = λ∂Vr/∂r, associated
with them. Indeed, we have got boundary conditions of Vr = 0 and ∂Vr/∂r = 0 at r = R1 and
r = R2. Therefore, ∂Vr/∂r in the bulk can be estimated as 4V rms

r /d, where V rms
r is the rms

of the radial velocity fluctuations. The resulting values of ∂Vr/∂r calculated from PDFs in
figure 20 are then 0.059, 0.071, 0.097 and 0.15 s−1 at Wi of 5.4, 13.6, 21.8 and 35, respectively.
Those values of ∂Vr/∂r correspond to Wi′ of 0.2, 0.24, 0.33 and 0.52, respectively. These
estimated numbers are rather high and are generally consistent with the picture of strong
elongation of the polymer molecules by elements of extensional flow in the fluctuating velocity
field [28], [31]–[33].

4.2. Discussion and comparison with the flow between two plates

Summarizing the results shown in figures 18–20, we conclude that, in the purely elastic regime,
the CT flow behaves similarly to the flow between two plates described in section 3. The
purely elastic non-linear flow transition occurs at Wi = O(1) and (arbitrarily) small Re in both
cases; the transition is rather sharp, has pronounced hysteresis and it is accompanied by a
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significant growth of flow resistance. The fluctuating velocity field above the transition is quite
random for both the flows and its spectra do not exhibit any distinct peaks, cf figures 8 and 19.
Therefore, although characterized less extensively, the CT flow above the non-linear transition
fits quite well the definition of elastic turbulence introduced above.

Nevertheless, the elasticity-induced turbulent flow in the CT system differed from the
turbulent flow between two plates quantitatively, and the turbulent flow effects in the CT
system were less dramatic. Indeed, the non-linear transition in the CT system occurred at Wi ≈ 4
(figure 18), which is higher than critical Wi in the flow between two plates, 3.2 and 2, for
d/R = 0.26 and 0.52, respectively (figure 3). The growth of flow resistance in the CT flow
above the transition was notably smaller than in the flow between two plates—a factor of 4.2
(figure 18) versus factors of 11 and 19 (figure 3) at the highest Wi explored. (However, the
ratio τ/τlam in the CT flow kept growing with Wi, and it was the increasingly fast mechanical
degradation of the polymers that prevented us from raising Wi higher, figure 18.) Characteristic
amplitudes of fluctuating velocity in the CT flow (figure 19) were significantly smaller than
in the flow between two plates (figures 11 and 12), both in terms of d/λ (0.06 versus 0.5
at Wi 	 13) and of the maximal azimuthal flow velocity (0.005 versus 0.075 at Wi 	 13).
This comparison is certainly not quite fair, since Vr in the CT flow is a transversal velocity
component. Hence, it should be best compared with Vz in the flow between two plates, which
was not measured. However, the general tendency appears to be rather clear.

Characteristic estimated rate of extension due to the fluctuating velocity field in the CT
flow was also considerably smaller than in the flow between two plates, 0.24/λ versus 0.83/λ

at Wi 	 13. (We note here again, however, that these estimates were obtained from different
types of data sets, figure 20 versus figure 13.) Nevertheless, even the relatively low value of
the rate of extension in the CT flow is reasonably consistent with the general condition for
it to be of the order of 1/λ to cause significant elongation of the polymer molecules, growth
of the elastic stresses and notable flow resistance increase.

As was already suggested above, more favourable conditions for the development of the
elastic turbulence and stronger turbulent effects in the flow between two plates may be due to
the large toroidal vortex. This vortex, which is driven by the distribution of normal stresses in the
basic shear flow, may provide a major channel for pumping of energy into the turbulent velocity
field. CT flow certainly has a more limiting geometry, without any coherent three-dimensional
large-scale flow of comparable magnitude and with fluid motion confined to the annular gap.
The latter confinement limits possible curvature of flow trajectories and may also make the
general requirement of axial symmetry for excited vortex structures (as dictated by the system
geometry) more severe and restrictive, somewhat impeding development of the turbulence. In
fact, axial symmetry of the vortex patterns is a well-pronounced feature in inertial turbulence in
CT flow even at very high Re [34].

Among all the discrepancies between the elastic turbulence in the CT system and in the
flow between two plates, the principal one appears to be the difference in the decay exponents
in the power spectra of velocity fluctuations (cf figures 5, 8 and 16 versus figure 19). In the
case of the flow between two plates the decay exponents were around −3.5 in both spatial and
temporal domains, while the power spectra in the CT flow had two distinct power-law-decay
regions with significantly lower exponents of −1.1 and −2.2. As shown in section 5 below
(figure 25), velocity spectra in an elastic turbulent flow in a curvilinear channel have regions
of power-law decay as well. The decay exponents are about −3.3, suggesting that it is the CT
flow that behaves ‘abnormally’.
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Figure 21. Schematic drawing of the curvilinear channel showing the inlet, a
region of observation and the outlet.

A clue to the behaviour of the CT flow may be the inflection points of the spectra in
figure 19, which appear at frequencies fc = (0.45 ± 0.05)�/(2π) at all four Wi. These
frequencies are close to average rates of rotation (in revolutions per second) of the fluid
in the measurement point. Together with the non-Gaussian and asymmetric shapes of PDFs in
figure 20, that brings us to a suggestion that the power spectra in figure 19 are significantly
influenced by the axisymmetric coherent structures (possibly of the diwhirl type) discussed
above. Those coherent structures may dominate the low frequency part of the spectra, f < fc,
and also feed into the high frequency part, f > fc (where the ‘original’ power of fluctuations
should be rather low to begin with; see figures 8 and 16), reducing the apparent absolute values
of the decay exponents for f > fc.

5. Flow in a curvilinear channel

5.1. Experimental set-up and procedure

The main motivation for the experiments on flow in a curvilinear channel (Dean flow) was to
carry out detailed quantitative study of mixing in elastic turbulence [35]. It is an open flow that
allows extended continuous experimental runs with reproducible and well-controlled initial
conditions, and easy gathering of extensive data at different stages of mixing. The channel
is schematically shown in figure 21. It had a uniform depth d = 3 mm, was machined in
a transparent bar of perspex, and it was sealed from above by a transparent window. The
channel consisted of a sequence of smoothly connected half-rings with the inner and outer radii
R1 = 3 mm and R2 = 6 mm, respectively; it was square in its cross-section, and had quite a
high gap ratio, d/R1 = 1. The high gap ratio was intended to facilitate development of an elastic
instability at low Wi and of intensive irregular flow above the instability threshold. The channel
had 30 repeating units, 18 mm in length each, see figure 21.

The liquids to be mixed were fed into the channel by two identical syringe pumps
through two separate tubing lines, always at equal discharge rates. Chemical composition of
the two liquids was always identical as well, with the only difference of a small concentration,
c0 = 2 ppm, of a fluorescent dye (fluorescein) added to one of them. They were prepared from the
same stock of a carefully filtered liquid, which was divided into two equal parts. A small amount
of a concentrated solution of the dye was added to one part, while the other part was diluted by an
equal amount of pure water. (Each of the liquids was carefully mixed afterwards.) This method
of preparation provided very good matching of densities and refraction indices of the liquids.
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Figure 22. Photographs of the flow taken with the laser sheet visualization
(figure 21) at different N. The field of view is 3.07 mm × 2.06 mm, and
corresponds to the region shown in figure 21 (rotated 90◦ counterclockwise).
Bright regions correspond to high concentration of the fluorescent dye. (a) Flow
of the pure solvent at N = 29; (b–d) flow of the polymer solution at Wi = 6.7
and at N = 8, 29, 54, respectively.

The channel was illuminated from a side by an argon-ion laser beam converted by two cylindrical
lenses to a broad sheet of light with a thickness of about 40 µm in the region of observation. It
produced a thin cut in the three-dimensional mixing pattern, parallel to the top and bottom of the
channel at a half of the channel depth.

Fluorescent light emitted by the liquid in the direction perpendicular to the beam and to
the channel plane was projected on to a CCD array by a camera lens and digitized by an 8-bit,
512 × 512 frame grabber. Using homogeneous solutions with different amounts of the dye, we
found intensity of the fluorescent light captured by the camera to be linearly proportional to
the dye concentration. Therefore, concentration of the dye was evaluated from the fluorescent
light intensity. (The liquid without the dye appeared completely dark (figure 22) and signal
from it was below the noise level of the camera.)

The flow was always observed near the middle of a half-ring on the side from which
the laser beam was coming. So, the number, N, of a unit (figure 21) counted from the inlet
was a natural linear co-ordinate along the channel. Since the total rate of liquid discharge,
Q, was constant, N was also proportional to the average time of mixing. In order to observe
further stages of mixing (corresponding to N > 30), we carried out a series of experiments,
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where the liquids were pre-mixed before they entered the channel. A shorter channel of the
same shape was designed for this purpose and put before the entrance to the original one. In
multiple calibration experiments we found good matching between states of mixing at N = 2
with the pre-mixer and at N = 27 without it [35]. Therefore, for the experiments with the
pre-mixing, a number of 25 was added to the actual co-ordinate along the channel to calculate
the effective N.

Flow velocity was measured directly with the aid of the LDV set-up. Because of the small
width of the channel, a special effort was made to obtain high spatial resolution by reduction of
the region of space, where the two laser beams crossed, and reduction of distance between the
interference fringes. Focusing lenses with a small focal length (about 25 mm) were used, and
the angle between the beams was raised to about 90◦ in the air (and about 60◦ in the liquid).
As a result, the region of the beam crossing was brought down to 15 × 15 × 40 µm, and the
distance between the fringes was 0.44 µm.

We used the same polymer solution as in the experiments on the flow between two
plates and on the CT flow. (It was 80 ppm of PAAm, 65% sugar, 1% NaCl in water.) This
time, however, the experiments were made at room temperature, 22.5 ± 0.5 ◦C. So, the solvent
viscosity was ηs = 0.153 Pa s, and viscosity of the solution was η = 0.198 Pa s at a shear
rate γ̇ = 4 s−1. The relaxation time, λ, estimated from phase shift between the stress and the
shear rate in oscillatory tests with a shear rate amplitude of 3 s−1, was 1.4 s. An estimate
for the diffusion coefficient of the dye was given by that for the saccharose molecules,
D = 8.5 × 10−7 cm2 s−1. The characteristic shear rate and the Weissenberg number in the
flow were estimated as γ̇ = (2Q/d2)/(d/2) = 4Q/d3 and Wi = λ(4Q/d3), respectively. Re

was calculated to be Re = 2Qρ/(dη).

5.2. Results

Re in the flow was always quite small, reaching only 0.6 for the highest Q that we
explored. Therefore, flow of the pure solvent always remained laminar and no mixing occurred
(figure 22(a)). The boundary separating the liquid with and without the dye was smooth and
parallel to the direction of the flow and only became somewhat smeared due to molecular
diffusion as the liquid advanced downstream. Flow of the polymer solution was laminar and
stationary up to a value of Q corresponding to Wic = 3.2 (and Re = 0.06), at which an elastic
instability occurred. This instability led to irregular flow and fast mixing of the liquids.

A few typical mixing patterns at different N in the polymer solution above the instability
threshold are shown in photographs in figures 22(b)–(d). More insight about the structure and
evolution of the mixing patterns can be obtained from space–time diagrams. Representative
diagrams taken at Wi = 6.7 at four different N are shown in figure 23. Brightness profiles along
a single line going perpendicularly to the channel near the middle of a half-ring (a horizontal
line going through the middle of a snapshot in figure 22) were captured even at time intervals
of 80 ms and plotted from top to bottom. The diagrams in figure 23 share the same chaotic
appearance and show features at comparable scales, but they lose contrast as the liquid advances
downstream and gets progressively mixed.

As is illustrated by the space–time diagrams in figure 23, mixing in the polymer solution
flow above the instability threshold was a random process calling for statistical analysis [35].
A simple parameter characterizing homogeneity of the mixture is an rms of deviations of
the dye concentration from its average value, c̄ = c0/2, divided by the average value itself,
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Figure 23. Representative space–time diagrams of the polymer solution flow at
Wi = 6.7 taken at different positions, N, along the channel.

crms = 〈(c − c̄)2〉1/2/c̄. A small value of crms means high homogeneity and good mixing of the
liquids. At the channel entrance, where the two injected liquids are perfectly separated, crms is
unity, and it should become zero for a perfectly mixed liquid.

Dependence of crms on Wi near the exit of the channel, at N = 29, is presented in figure 24.
Statistics of the dye concentration was evaluated from space–time diagrams similar to those in
figure 23. However, regions near the walls of the channel with widths of 0.1d were excluded
from the statistics, because of possible image aberrations. In a stationary flow regime
(Wi below 3.2), when the concentration profile did not change with time, the brightness
profiles were measured over short time intervals (about 100 s). In the regime of an irregular
flow, however, the profile of concentration was strongly fluctuating. So, in order to obtain
representative statistics of c, the measurements of the brightness profile were taken during
quite long intervals of time (about 20–30 min), which typically corresponded to the total liquid
discharge of about 103d3.

The plot in figure 24 is somewhat analogous to those in figures 3 and 18, which show the
dependence of the flow resistance on Wi. Indeed, the decrease in crms is an integral result of
mass transfer produced by the irregular flow in the channel, just as growth of the flow resistance
is an integral characteristic of increase of momentum transfer in the elastic turbulence. At Wi

below 2, dye distribution patterns in the polymer solution were similar to those in the solvent
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Figure 24. Dependence of crms (normalized rms of concentration deviations
from the average) on the Weissenberg number, Wi, measured near the channel
exit at N = 29 (semi-logarithmic co-ordinates).

(figure 22(a)) with crms close to unity. Some decrease in crms at low Wi is due to the large
residence time and diffusional smearing of the boundary between the liquids.

At Wi of about 2, reduction of crms from 1 to about 0.9 occurred, which was the result of
a transition in the flow. Although this transition produced rather complex spatial distribution
of the dye (data not shown), the patterns were stationary and mixing was rather minor. This
transition probably related to the onset of stationary vortices with vorticity directed along the
mean flow, as it was predicted in [36]. Recently, those vortices have been observed directly
using particle image velocimetry [37] (see also below). The most striking feature of the plot
in figure 24 is certainly an abrupt drop in crms at Wic = 3.2, where the irregular motion of the
liquid set in. It is worth noting here that since the mixing and reduction in crms is a cumulative
effect of stirring and diffusion in the flow starting from the inlet, the actual value of crms

above the transition is defined by the distance from the inlet. On the other hand, the onset of
the fluctuating flow occurred rather consistently along the whole channel, and we expect Wic
to be virtually independent of the channel length, when the latter is sufficiently large.

We studied the dependence of crms on N at Wi = 6.7, corresponding to highest homogeneity
of the mixture near the channel exit (figure 24), and found crms to decay exponentially with
the distance from the inlet with a characteristic decay length 
N of about 15 segments [35].
One can learn from figure 24 that, if Wi is raised above 6.7, crms starts to increase again. The
most plausible explanation for this is saturation of growth of the velocity fluctuations together
with reduction of the residence time in the flow at growing Wi (and average flow velocity,
V̄ = Q/d2). If the ratio between fluctuating and average flow velocities remains constant, while
they both increase, the stirring in the flow remains the same, but there is less time available
for molecular diffusion, and homogeneity is reduced as a result of it. This situation can be
qualitatively described by growth of the Peclet number, Pe = V̄ d/D. It was recently found
for the flow of a polymer solution in a channel of the same shape and at similar Wi, that the
characteristic length 
N increases as Pe0.25 [38]. This suggests that crms should start increasing
with Wi once the growth of the velocity fluctuations is slowed down.
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Figure 25. Power, P , of fluctuations of velocity in the middle of the channel at
N = 12 as a function of frequency, f . The spectra in the polymer solution flow
at Wi = 6.7 for the velocity components along and across the mean flow are
shown by curves 1 and 2, respectively. Curve 3 shows velocity spectrum across
the mean flow for the pure solvent at the same Q.

Typical time of mixing in the channel at Wi = 6.7 was found to be 3–4 orders of magnitude
shorter than the diffusion time, d2/D, for the small molecules of fluorescein [35]. Dependence
of the efficiency of mixing at the optimal flow conditions (for the 80 ppm solution it was
Wi = 6.7; figure 24) on the concentration of the polymers was surprisingly weak (although Wic
grew fast, as the polymer concentration was decreasing). So, for a solution with the polymer
concentration of 10 ppm (η/ηs = 1.03), crms of as low as 0.29 could be reached at N = 29. (It
was measured at Re = 0.065, where inertial effects were still negligible.) Excitation of irregular
flow and active mixing was observed down to a polymer concentration of 7 ppm.

Figure 25 shows power spectra of fluctuations of longitudinal and transversal components of
the velocity in the polymer solution at Wi = 6.7. The measurements were done at N = 12, near
the middle of the half-ring in the middle of the channel. A spectrum of the velocity fluctuations
in the flow of the pure solvent at the same Q, giving just instrumental noise, is shown for
comparison. The mean velocity was V̄ = 6.6 mm s−1; the rms velocity of fluctuations, Vrms,
was 0.09V̄ and 0.04V̄ in the longitudinal and transversal directions, respectively. Measuring
the transversal velocity component in a few off-centre positions, we found non-zero averages,
which typically persisted for a few minutes and changed their sign rather randomly in time.
This situation can be explained by the presence of persistent longitudinal vortical structures in
the flow. These vortices should be filling the whole channel cross-section, with their vorticity
direction randomly jumping between parallel and anti-parallel to the mean flow. Those vortices
may first appear at Wi = 2 but remain stationary below Wic = 3.2.

To measure resistance as a function of the flow rate, we used a micro-fabricated channel
with the same proportions but with a 30 times smaller segment size [39]. It had d = 100 µm,
R1 = 100 µm, R2 = 200 µm and consisted of 46 segments. The polymer solution had the
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Figure 26. Ratio of a pressure drop across the channel in the polymer solution
flow, 
P , to a pressure drop for a laminar flow, 
Plam, as a function of the rate
of liquid discharge, Q (in semi-logarithmic co-ordinates).

same concentration of 80 ppm by weight of the same PAAm sample. However, the Newtonian
solvent was significantly thinner, containing 35% of sucrose and 1% NaCl, and having a
viscosity of 4.2 × 10−3 Pa s at the room temperature of 22 ◦C. The polymer solution viscosity
was η = 5.6 × 10−3 Pa s at γ̇ = 50 s−1.

The flow was driven by a difference of hydrostatic pressures, 
P , applied between the
inlet and outlet. The dependence of the flow rate, Q, on 
P was measured using an in situ
compensation technique [40] (see details in [39]). Figure 26 shows the resistance ratio

P/
Plam as a function of Q, where 
Plam is the pressure difference expected in a laminar
flow for a liquid with a viscosity, η(γ̇), at the same Q. (Average γ̇ was calculated as 4Q/d3

again.) One can see a distinct transition and an onset of non-linear growth of the flow resistance
at Q ≈ 8.5 nl s−1, corresponding to γ̇ = 34 s−1 and Re ≈ 0.017. The low value of Re suggests
that the transition is of a purely elastic nature. Relaxation time, λ, of the polymer solution was
low and could not be measured directly. For the purpose of estimation we can assume λ ∼ ηs

and plug into this relation the values for the more viscous solution used in the table-top channel,
λ = 1.4 s at ηs = 0.153 Pa s. Then we get λ = 0.04 s and Wi = 1.3 at the instability threshold
for the current solution, which is in reasonable agreement with the results in figure 24. As Q

increases to 60 nl s−1 (corresponding to Wi 	 9), the flow resistance growth reaches a factor
of 2.8, which is comparable with the CT flow, although significantly lower than in the flow
between two plates.

5.3. Discussion

The experimental results in figures 24 and 26 show that, above the elastic instability threshold,
the flow of the polymer solution in the channel exhibits two major features of turbulent flows: a
significant increase in the rate of mixing and in the flow resistance. Furthermore, solid evidence
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for the turbulent character of the flow is given by the power spectra of fluctuating velocity in
figure 25. The spectra of both longitudinal and transversal velocity components do not exhibit
any distinct peaks and have broad regions of a power-law decay with a power of about −3.3.

Since the power spectra in figure 25 were measured at a point with a high mean flow velocity
(10 times higher than the characteristic fluctuating velocity), we can use the Taylor hypothesis
and argue that the spectra in figure 25 actually reflect the spatial structure of the flow. Then
the power-law-decay region can be transferred to the spatial domain, with the power of the
velocity fluctuations scaling as P ∼ k−3.3 with the wave number, k. The absence of peaks in
the spectra in figure 25 and significant extension of the frequency region, where P follows the
power law, are strong evidence of fluid motion in a broad range of spatial scales and of the
turbulent character of the flow. We also notice here that an exponent of −3.3 in figure 25 is very
close to those measured in the flow between two plates (figures 5, 8 and 16), which varied from
−3.3 to −3.6 depending on the position. So, one can suggest that decay of the power of the
velocity fluctuations with an exponent around −3.5 is a rather general feature of the elasticity-
induced turbulent flows. It, however, does not appear in the radial velocity spectrum of the CT
flow (figure 19), probably because of abundance of the coherent axisymmetric structures (see
section 4.2).

The functional form of the velocity power spectra, P ∼ k−3.3, deduced from figure 25,
suggests that the fluctuations of velocity gradients scale as k−1.3. An integral of k−1.3 diverges
at k → 0 and converges at k → ∞. It means that the main contribution to the fluctuations
of the velocity gradients and the velocity differences at all scales comes from the biggest
eddies, having dimensions of the whole system (diameter of the channel). This conclusion
has an immediate implication for mixing in the flow: it should result in the same type of
patterns and in functionally the same statistics as in the case of a completely homogeneous
flow, �V(�r, t) = �V0(t) + (∂Vi(t)/∂rj)(�r − �r0), randomly varying in time.

Such a flow is a realization of the so-called Batchelor regime of mixing [41], and the
problem of statistics of a tracer (dye) distribution in it has been solved analytically recently
[42]–[44]. The Batchelor regime occurs at small scales (below the Kolmogorov dissipation
scale [1, 27]) in the usual, high Re turbulence, and it is rather difficult to realize in a
laboratory otherwise. Therefore, the elastic turbulent flow in the channel provided a very
convenient experimental system for a quantitative study of mixing in this regime [35]. The
experimental results on correlation functions and PDF of dye concentration, and on their
dependence on time of mixing agreed very well with the theoretical predictions [35]. A
practical message of the experiments is that very viscous liquids can be efficiently mixed in
curvilinear channels at very low flow rates by adding high-molecular-weight polymers at very
low concentrations. This method of mixing, we believe, can find some industrial and laboratory
applications [45].

6. Concluding remarks

We studied flows of dilute solutions of a flexible high-molecular-weight polymer in three different
flow set-ups, which shared the same feature of high curvature of the flow lines, quantitatively
expressed in large gap ratios, d/R. High viscosity of the solvent and long polymer relaxation
times ensured an elasticity-dominated-flow regime, where effects of the non-linear constitutive
relation between polymer stress and rate of deformation prevailed over the inertia-related
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non-linearity of the Navier–Stokes equation. As a result, all flow transitions were induced by
the non-linear elasticity, for Wi of the order of unity and at very low Re. In all three systems, a
flow above the instability threshold was randomly fluctuating in time and space, and exhibited
some or all of the main features of turbulence: fluid motion excited in a broad range of spatial
and temporal scales, and significant increase in the rates of momentum and mass transfer (flow
resistance and mixing). The extent of the flow resistance growth varied rather substantially
between the systems (factors of 20, 4.2 and 2.8 for the flow between two plates, the CT flow,
and the flow in the curvilinear channel, respectively) and so did the exponents in the power-
law-decay regions of the velocity spectra (from −3.3 to −3.6 for the flow between two plates,
−1.1 and −2.2 for the CT flow, and −3.3 for the curvilinear channel). We suppose, however,
that all the experimental findings are fitting rather well to the same general framework of a
phenomenon which we call elastic turbulence.

Observation of the elastic turbulence and investigation of its properties have been greatly
facilitated by the choice of the systems with large d/R, where the elastic instability occurs at
low Wi, and by the choice of the high molecular weight polymer, which is only moderately
extended (compared with its full contour length) at the instability threshold. Nevertheless, we
believe that elements of the elastic turbulence should generally appear in three-dimensional
flows of polymer solutions at high Wi and low Re. Possible realizations of this regime may range
from flows of polymer melts in industrial reactors to small scale flows in drag reducing aqueous
polymer solutions. Dependence of the elastic turbulence-onset conditions on the parameters of
the system and on the properties of the polymer solution (discussed in section 3.4.2) implies
that by using polymer solutions with sufficiently high elasticity, one can excite turbulent motion
at arbitrary low velocities and in arbitrary small tanks. (In some cases it may be the only way
to produce a chaotic flow, which may be needed for fluid mixing.) Irregularly fluctuating flows
showing multiple features of the elastic turbulence have been recently demonstrated in a rotating
flow between two plates with a 300 µm gap [28] and in a 100 µm thick curvilinear channel
[39]. An apparent restriction is, however, that the size of the tank still has to be large compared
with the size of the polymer coils.

Recently, there have been some serious advances in the theory of random flows of polymer
solutions in both high and low Re regimes [25, 26, 32, 33]. In particular, the following explanation
was proposed for the shapes of velocity spectra seen in figures 5, 8, 16 and 25 [26]. Fast decay of
the fluctuation power with k implies a velocity field, where the main contribution to deformation
and stirring (stretching and folding) at all scales comes from a randomly fluctuating velocity
field at the largest scale of the system. Therefore, it is suggested that the leading mechanism
for generation of small scale (high k) fluctuations in the elastic stress is advection of the fluid
(which carries the stress) in this fluctuating large-scale velocity field. Hence, the fluctuating
velocity field and stress tensor can both be decomposed into large- and small-scale components,
and the leading mechanism for the generation of the small-scale (high k) portions is advection
by the fluctuating large-scale flow. (The theory considers the elastic stress tensor to be passively
advected in a random velocity field, which is analogous to the concept of a passively advected
vector in the magnetic dynamo theory [26].) The small-scale velocity fluctuations are a product
of the small-scale stress fields. The elastic stresses are mainly pumped by the large-scale flow
field, and the smaller scale stress fields created by the advection are permanently decaying
because of the polymer relaxation. These simultaneously occurring advection and relaxational
decay of τp result in a quick decay of τp fluctuations at large k, which should produce P ∼ k−α

velocity spectra with α > 3. The current understanding of the elastic turbulence still remains
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quite incomplete, however, and this phenomenon certainly awaits further detailed experiments
and numerical simulations.
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