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Abstract. The effects of curvature on the structure, electronic and optical
properties of isolated single-walled carbon nanotubes are studied within a
symmetry-adapted non-orthogonal tight-binding model using 2s and 2p electrons
of carbon. The symmetry-adapted scheme allows reducing the matrix eigenvalue
problem for the electrons to diagonalization of 8 × 8 matrices for any nanotube
type. Due to this simplification, the electronic band structure of nanotubes with a
very large number of atoms in the unit cell can be calculated. Using this model,
the structure of 187 small- and moderate-radius nanotubes is optimized. It is
found that the deviations of the optimized structure from the non-optimized one
are large for tube radii smaller than 5 Å. The band structure and the dielectric
function of 101 small- and moderate-radius nanotubes are calculated. The optical
transition energies for these nanotubes are derived from the dielectric function and
plotted versus tube radius. It is shown that the structural optimization introduces
small changes to the transition energies obtained within the non-orthogonal tight-
binding model. The transition energies for the optimized structure within this
model agree well with the available ab initio data for a few nanotube types. On
the other hand, the results for the former deviate widely from those used for
nanotube characterization in π-band tight-binding model especially for small-
radius tubes. The derived transition energies can be used for the assignment of
nanotube absorption spectra and for the selection of nanotube types for which the
Raman scattering is resonant.
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1. Introduction

The discovery of the carbon nanotubes in 1991 [1] and the speculations about their amazing
electronic properties [2]–[4] directed much attention to their experimental and theoretical study.
In the simplest case, a nanotube consists of a single graphitic layer and is termed a single-walled
carbon nanotube (or, for brevity, a nanotube). A nanotube can be viewed as a long strip of a
graphene sheet rolled up into a seamless cylindrical surface and can be characterized uniquely
by a pair of non-negative integer numbers (L1,L2). Nanotubes with diameters equal to or greater
than that of C60 are either metallic (zero-gap semiconducting) of the armchair type (L1 = L2),
or small- or moderate-gap semiconductors (L1 �=L2). In [2] it is shown that all armchair
tubes are metallic in the presence of curvature and stable against a spontaneous symmetry
breaking to far below room temperature. Hamada et al [3] used the graphene sheet model
introduced in [2] together with all-valence tight-binding (TB) calculations for zigzag nanotubes
(L1 �= 0, L2 = 0) to show that nanotubes other than armchair should be either small- or moderate-
gap semiconductors. Saito et al [4] applied the graphene sheet model in π-band tight-binding
(π-TB) calculations to predict that nanotubes with L1 − L2 which is equal to a multiple of 3
are metallic instead of small-gap ones. Extensive band structure calculations for nanotubes were
carried out using an all-valence TB approach and a first-principles all-electron density-functional-
theory approach within the local density approximation (LDA) [5] based on a symmetry-adapted
scheme [6]. Detailed plane-wave ab initio pseudopotential LDA calculations of small-radius
insulating nanotubes [7] showed that strongly modified low-lying non-degenerate conduction
band states are introduced into the band gap due to σ∗–π∗ rehybridization. As a result, the LDA
gaps of some tubes are lowered by more than 50% and the tube (6, 0) previously predicted to
be semiconducting within the all-valence TB models is shown to be metallic. Similar effects
were observed in the electronic properties of carbon nanotubes with polygonized cross sections
calculated within a plane-wave ab initio pseudopotential LDA approach [8]. Recently, in an
extensive ab initio LDA study of nanotubes with radii between 5 and 7.5 Å, a shift of the electron
eigenenergies up to ∼0.1 eV relative to the results of the π-TB model was predicted [9].

The optical properties of nanotubes have been treated exclusively withinπ-TB models within
the gradient approximation for the matrix elements of the linear momentum. The selection rules
for allowed dipole transitions were first discussed by Ajiki and Ando [10] in the study of the
low-energy optical absorption due to interband transitions as a probe of the Aharonov–Bohm
effect. π-TB calculations of the plasmons and optical properties of carbon nanotube systems
were presented by two groups [11, 12]. The polarized optical conductivity was calculated for
a number of nanotubes with radii between 4 and 8 Å within an all-valence TB model [13]
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based on a symmetry-adapted scheme which is essentially the one introduced in [5]. Ab initio
calculations of the dielectric function were carried out for a (5, 7) nanotube [14] and for three
small-radius nanotubes: (3, 3), (5, 0) and (4, 2) [15, 16]. Among the various computed quantities,
the optical transition energies are of great importance for the nanotube characterization since
they can be of help for the assignment of the optical absorption spectra of nanotube samples.
The predictions of the π-TB models have been widely used for these purposes [17]. However,
the π-TB models cannot reproduce satisfactorily the electronic structure and optical properties
of small-radius nanotubes. Recently, a π-TB model with a chirality- and diameter-dependent
nearest-neighbour hopping integral was used to relate well-resolved features in the UV–VIS–
NIR spectra of individual nanotubes to electronic excitations in specific tube types [18]. The
precise computation of the optical properties of nanotubes requires the implementation of more
realistic approaches. The ab initio calculations are hindered by the large number of atoms in the
unit cell of most nanotubes. An alternative approach can be to use a well-tuned non-orthogonal
TB model (see e.g. [3]–[5, 13, 19]) based on a symmetry-adapted scheme that will allow one to
handle nanotubes with a large number of carbon atoms in the unit cell (see e.g. [5, 13, 20, 21]).

Here, results of structural optimization and calculation of the electronic band structure and
dielectric function of a large number of nanotubes, carried out within a symmetry-adapted non-
orthogonal tight-binding model, are presented. First, the main relations between the structural
parameters of nanotubes are introduced in section 2. The symmetry-adapted non-orthogonal
tight-binding model is presented in section 3. The optimized nanotube structure of all nanotubes,
the obtained electronic band structure and the dielectric function for three small-radius nanotubes,
as well as the transition energies for all armchair and zigzag nanotubes are given in section 4.
The conclusions are presented in section 5.

2. The nanotube structure

The ideal single-walled carbon nanotube can be viewed as obtained by the rolling up of an infinite
strip of a graphene sheet into a seamless cylinder [3]–[5]. The seamlessness of the tube means
coincidence of lattice points connected on the sheet by a lattice vector L1a1 + L2a2 (a1 and a2

are the primitive translation vectors of the sheet, L1 and L2 are integer numbers, L1 � L2 � 0).
This ideal nanotube can be specified uniquely by the pair of indices (L1, L2). We recall that a
two-atom unit cell can be mapped onto the entire graphene sheet by the use of two primitive
translation vectors. Similarly, a two-atom unit cell can be mapped onto the entire tube by use
of two different screw operators (see figure 1) [6]. By definition, a screw operator {Si | ti} (i =
1, 2) executes a rotation of the position vector of an atom at an angle ϕi about the tube axis with
a rotation matrix Si and a translation of the position vector at a vector ti along the tube axis. Thus
the equilibrium position vector x(lk) of the kth atom in the lth cell (l = (l1, l2)) can be obtained
from the position vectors of the atoms in the zeroth unit cell x(k) ≡ x(0k) (k = 1, 2) as

x(lk) = {S1 | t1}l1{S2 | t2}l2x(k) = S
l1
1 S

l2
2 x(k) + l1t1 + l2t2. (1)

We adopt the abbreviated notation S1(l) = S
l1
1 S

l2
2 and t(l) = l1t1 + l2t2 and rewrite equation (1)

in the form

x(lk) = {S(l)| t(l)}x(k) = S(l)x(k) + t(l). (2)
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Figure 1. Illustration of the two different screw operations that can be used to
map a pair of atoms O and O′ onto the entire tube. The screw operations bring to
coincidence atom O with atom A (or B) on rotation at an angle ϕ1 (or ϕ2) around
the tube axis and translation at a distance t1 (or t2).

In a similar way, one of the atoms in the two-atom unit cell can be mapped unto the other atom
by use of a screw operation defined by an angle ϕ′ and a translation vector t′.

The primitive rotation angles and the primitive translations of the two types of screw
operations can be found from the translational periodicity and rotational boundary conditions

N1ϕ1 +N2ϕ2 = 0, (3)

L1ϕ1 + L2ϕ2 = 2π, (4)

N1t1 +N2t2 = T, (5)

L1t1 + L2t2 = 0. (6)
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Here T is the primitive translation vector of the nanotube.N1 andN2 are integer numbers defining
T on the graphene sheet and are given by the relations

N1 = (L1 + 2L2)/d, (7)

N2 = −(2L1 + L2)/d. (8)

The integer number d is equal to the highest common divisor d ′ of L1 and L2 if L1 −L2 is not a
multiple of 3d ′ or d is equal to 3d ′ if L1 − L2 is a multiple of 3d ′. Using equations (3)–(6), one
obtains

ϕ1 = 2πN2/Nc, (9)

ϕ2 = −2πN1/Nc, (10)

t1 = (L2/Nc)T, (11)

t2 = − (L1/Nc)T. (12)

Here, the total number of atomic pairs in the unit cell, Nc, is given by

Nc = N1L2 −N2L1 = 2(L2
1 + L1L2 + L2

2)/d. (13)

The position vectors of the atoms of the tube can be written as x(nlk) = x(lk) + nT, where the
integer number n labels the translational unit cells and l labels the two-atom unit cells in each
translational unit cell.

A nanotube can be characterized alternatively by its radius R and chiral angle (or wrapping
angle) θ which is the angle between the tube circumference and the nearest zigzag of C–C bonds,
0◦ � θ < 30◦ [3]. For the ‘rolled-up’ structure these quantities are given by

R =
√

3(L2
1 + L1L2 + L2

2)aC–C/2π, (14)

T = 2
√

3πR/d, (15)

θ = tan−1(
√

3L2/(L2 + 2L1)), (16)

where aC–C is the C–C bond length in graphene. The ‘rolled-up’ structure is useful when the
nanotube structure cannot be optimized, as is the case with some tight-binding models using fixed
parameters. However, in other tight-binding models with explicit dependence of the parameters
on the interatomic separations and in all ab initio models of the electronic structure one should
optimize the nanotube structure. In the simplest case, only the bond lengths and valence angles
for the two atoms in the two-atom unit cell are varied in the optimization procedure preserving
the translational and the screw symmetry of the tube. Thus, R, T , ϕ′, and t′ can be considered
as independent structural parameters. For the optimized structure the above relations between
R, T and θ, and L1, L2 will generally no longer hold. It is worth noting that, if the translational
symmetry condition is not imposed, the chiral tubes can loose their translational symmetry upon
optimization. The error due to imposing this condition (see equation (28)) is expected to be small
because of the usually large number of atoms in the unit cell of most chiral tubes.
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3. The symmetry-adapted non-orthogonal tight-binding model

The electronic band structure of a periodic structure is usually obtained by solving the one-
electron Schrödinger equation

[
− h̄2∇2

2m
+ V(r)

]
ψk(r) = Ekψk(r), (17)

where m is the electron mass, V(r) the effective periodic potential, ψk(r) and Ek are the one-
electron wavefunction and energy depending on the wavevector k. This equation can be solved
by representing ψk(r) as a linear combination of basis functions ϕkr(r)

ψk(r) =
∑
r

ckrϕkr(r). (18)

In the tight-binding approach, the ϕs are constructed from atomic orbitals centred at the atoms.
Let us denote by χr(R(l)− r) the rth atomic orbital centred at an atom with position vector R(l)
in the lth unit cell. Bloch’s condition for the basis functions ϕ is satisfied for the following linear
combination of χs:

ϕkr(r) = 1√
N

∑
l

eik·R(l)χr(R(l)− r), (19)

whereN is the number of unit cells in the system. In the case of graphene, the lattice parameters
are equal (a = b) and therefore R(l) = l1a1+ l2a2 = la. Then, one can introduce a dimensionless
wavevector k = (k1, k2) and rewrite equation (19) as

ϕkr(r) = 1√
N

∑
l

eik·lχr(R(l)− r). (20)

After substitution of equation (20) in equation (17), the electronic problem for graphene is
transformed into a matrix eigenvalue problem.

In the case of nanotubes, one can still use the equations above. However, the number of
atoms in the unit cell of some nanotubes can be very large, leading to a large-size matrix equation
for the electronic problem. We notice, however, that any nanotube has a screw symmetry, which
allows one to use only a two-atom unit cell for the electronic problem [6]. To implement explicitly
the screw symmetry, we start with symmetrized wavefunctions, which satisfy a modified Bloch’s
condition under screw operations with any l. Wavefunctions with such a property have the form

ϕkr(r) = 1√
N

∑
lr′

eik·lTrr′(l)χr′(R(l)− r), (21)

where k = (k1, k2) is an yet undefined two-component wavevector of the nanotube and Trr′(l) are
appropriate rotation matrices rotating a given atomic-type orbital to the same orientation with
respect to the nanotube surface for all atoms. It is straightforward to verify that a screw operation
transforms a symmetrized wavefunction into itself up to a Bloch exponent.
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Substituting equation (21) in equation (17), we obtain∑
r′
ckr′Hkrr′ = Ek

∑
r′
ckr′Skrr′ , (22)

where

Hkrr′ =
∑
lr′′

eik·lHrr′′(l)Tr′′r′(l), (23)

Skrr′ =
∑
lr′′

eik·lSrr′′(l)Tr′′r′(l), (24)

and

Hrr′(l) =
∫

drχr(R(0)− r)Ĥχr′(R′(l)− r), (25)

Srr′(l) =
∫

drχr(R(0)− r)χr′(R′(l)− r). (26)

The quantities Hrr′(l) and Srr′(l) are the matrix elements of the Hamiltonian Ĥ and the overlap
matrix elements, respectively. The vectors R(l) and R′(l) are position vectors of atoms in the lth
two-atom unit cell.

The wavevector components k1 and k2 can be determined by imposing the rotational
boundary and translational periodicity conditions which yields the relations

k1L1 + k2L2 = 2πl, (27)

k1N1 + k2N2 = k, (28)

where k is the one-dimensional wavevector of the tube (–π � k � π) and the integer number
l labels the electronic energy levels with a given k (l = 0, 1, . . . , Nc − 1). From equations (27)
and (28) we obtain k1 and k2

k1 = (2πN2l− L2k)/Nc, (29)

k2 = (L1k − 2πN1l)/Nc. (30)

The substitution of equations (29) and (30) into equations (21)–(24) yields

ϕklr(r) = 1√
N

∑
l

ei(α(l)l+z(l)k)Trr′χr′(R(l)− r), (31)

∑
r′
cklr′Hklrr′ = Ekl

∑
r′
cklr′Sklrr′ , (32)

Hklrr′ =
∑
lr′′

ei(α(l)l+z(l)k)Hrr′′(l)Tr′′r′(l), (33)

Sklrr′ =
∑
lr′′

ei(α(l)l+z(l)k)Srr′′(l)Tr′′r′(l), (34)
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where l runs over the indices of the two-atom unit cells in the translational unit cell. The quantities
α(l) and z(l) are given by

α(l) = 2π(l1N2 − l2N1)/Nc, (35)

z(l) = (L1l2 − L2l1)/Nc. (36)

The set of linear algebraic equations (32) has non-trivial solutions for the coefficients c only for
energies E which satisfy the characteristic equation

‖Hklrr′ − EklSklrr′‖ = 0. (37)

The solutions of equation (37),Eklm, are the electronic energy levels; the energy bands are labelled
by the composite index lm (m = 1, 2, . . .). The corresponding eigenvectors cklmr are determined
from equation (32).

The symmetry-adapted approach to the calculation of the electronic band structure of
nanotubes has the important advantage of a large reduction in the computational time. Indeed,
the calculation of the band energies for a given k needs time scaling as the cube of the size of the
two-atom eigenvalue problem (83 for 4 electrons per carbon atom) times the number of two-atom
unit cells Nc. On the other hand, a straightforward calculation of the same band energies will
require time scaling as the cube of the size of the 2Nc-atom eigenvalue problem, i.e. (8Nc)3. The
presented symmetry-adapted approach has been applied to the vibrational eigenvalue problem
[20, 21] and can be used in the calculation of any property of a nanotube within a microscopic
model.

The total energy of a nanotube (per unit cell) is given by

E =
occ∑
klm

Eklm +
1

2

∑
i

∑
j

φ(rij), (38)

where the first term is the band energy (the summation is over all occupied states) and the second
term is the repulsive energy, consisting of repulsive pair potentials φ(r) between pairs of nearest
neighbours. The increase of the total energy (per carbon atom) when a graphene strip is folded
into a nanotube is the strain (or folding) energy Est:

Est = E/(2Nc)− EGr/2, (39)

where EGr is the total energy of graphene per unit cell.
For the structural optimization of a nanotube one needs the band and the repulsive

contributions to the forces acting on the atoms. The band contribution to the force in α direction
on the atom with a position vector R(0) is given by the Hellmann–Feynman theorem

Fα =
occ∑
klm

∂Eklm

∂Rα(0)
=

occ∑
klm

∑
rr′
c∗
klmr

∂(Hklrr′ − EklmSklrr′)

∂Rα(0)
cklmr′ . (40)

The repulsive contribution is the first derivative of the total repulsive energy with respect to the
position vector R(0).
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The imaginary part of the dielectric function in the random-phase approximation is given
by [22]

ε2(ω) = 4π2e2

m2ω2

∑
l′clv

2

2π

∫
dk|pkl′cklv,µ|2δ(Ekl′c − Eklv − h̄ω), (41)

where h̄ω is the photon energy, e the elementary charge and m the electron mass. The sum is
over all occupied (v) and unoccupied (c) states. pkl′cklv,µ is the matrix element of the component
of the momentum operator in the direction µ of the light polarization

pkl′cklv,µ =
∫

drψ∗
kl′c(r)p̂µψklv(r). (42)

Substituting the one-electron wavefunctions given by equations (18) and (31) in equation (42),
one obtains the non-zero matrix elements

pkl′cklv,µ = fll′µ
∑
rr′
c∗
kl′cr′cklvr

∑
lr′′

e−i(α(l)l+z(l)k)pr′r′′,µ(l)Trr′′(l), (43)

where

prr′,µ(l) =
∫

drχr(R(0)− r)p̂µχr′(R
′(l)− r). (44)

For z-axis along the tube axis, the quantities fll′,µ are given by

fll′x = fll′,y = (δl′,l+1 + δl′,l−1)/2, (45)

fll′,z = δll′ . (46)

Equations (45) and (46) express the selection rules for allowed dipole optical transitions, namely,
optical transitions are only allowed between states with the same l for parallel polarization and
between states with l and l′ differing by 1 for perpendicular polarization (compare with [10]).
Further on, from Maxwell’s relation ε= ñ2 (ñ is the complex refractive index), the refractive index
n= Re ñ and the extinction coefficient κ= Im ñ are readily obtained. The relations α= 2ωκ/c
(c is the light velocity in vacuum) and R = |(ñ− 1)/(ñ + 1)|2 allow one to derive the absorption
coefficient α and the reflection coefficient for normal incidence R.

Let us consider a single pair of valence and conduction bands with maximum and
minimum separated by a direct gap Ecv corresponding to an allowed optical transition v → c.
Assuming that the matrix elements pcv,µ are independent of k, it is straightforward to show that
the contribution to ε2 from these bands is given by

ε2 = 2πe2

m2ω2

√
2m∗

cv

h̄2
|pcv,µ|2 1√

h̄ω − Ecv
. (47)
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Here m∗ is the reduced effective mass for the two bands. Alternatively, for a pair of valence and
conduction bands with minimum and maximum separated by energy Ecv one obtains

ε2 = 2πe2

m2ω2

√
2m∗

cv

h̄2
|pcv,µ|2 1√

Ecv − h̄ω
. (48)

In the general case, the graph ε2(ω) will consist of two types of spikes close in form to those
described by equations (47) and (48). From the derivation of the latter two equations it is clear
that the electron density of states (DOS) versus ω will have the same two types of spikes.

4. Results and discussion

The parameters of the non-orthogonal tight-binding (nTB) model are taken from a density-
functional-based study [23]. In the case of graphite, these parameters showed excellent
performance in the calculation of the equilibrium lattice parameter and the cohesive energy.
The tight-binding electronic structure of graphene corresponds well to the ab initio results for
the valence and conduction bands in the energy region (–3, 3)eV (the Fermi energy is set to zero).
The calculated energy separation between the π and π∗ bands at the M point of the Brillouin
zone of graphene was 4.9 eV which agrees with the ab initio LDA result of ∼4.4 eV [16] while
the π-TB value was ∼5.9 eV [4]. This implies that the optical properties of graphene should be
reproduced with the same accuracy up to ∼6 eV. The same reliability region should be valid for
carbon nanotubes as well.

Here, the structure of 187 nanotubes with radii R in the range from 2 to 15 Å andNc < 400
is optimized within the nTB model. The optimization is carried out under the constraint that all
atoms lie on a cylindrical surface and R, T , ϕ′ and t′ are considered as independent structural
parameters. The total energy and the forces on the atoms of the two-atom unit cell are calculated
with a tube-dependent number of k points Nk for which these quantities converge. For example,
Nk = 60 for the tube (3, 3) andNk = 30 for the tube (9, 9). It was found thatNk decreases nearly
proportionally to 1/Nc. It is clearly seen in figure 2 that, upon optimization, the nanotubes widen
laterally and shorten in length, which has as a consequence a decrease of the chiral angle. This
effect depends on the nanotube chirality. Armchair tubes have the smallest increase in radius and
almost zero shortening and largest decrease in the chiral angle. Zigzag nanotubes have largest
increase in the radius and medium shortening (the chiral angle is zero by definition). Chiral
nanotubes have a moderate increase in the radius, largest shortening and medium decrease of
the chiral angle. The trend of change of the structural parameters corresponds to the ab initio
results for several nanotubes in [16, 24, 25]. For example, we obtain an increase in the radius for
tubes (4, 4) and (10, 10) of 1.6 and 0.3% compared to 1.2 and 0.2% [24]. For tubes (5, 0), (3, 3)
and (4, 2) with non-optimized radii of 1.96, 2.03 and 2.07 Å, we obtain optimized radii of 2.05,
2.12 and 2.14 Å that are in fair agreement with the ab initio results 2.04, 2.10 and 2.14 Å [16],
and 2.06, 2.12 and 2.17 [25]. The maximum values of the changes in R, θ and T are 0.1 Å, 1◦,
0.4 Å, and the relative changes are 5, 4 and 1%, respectively. The optimized nanotube structure is
characterized with non-equal bond lengths and bond angles for atoms in the two-atom unit cell.
The differences between the optimized and non-optimized structures decrease with the increase
in radius and can be ignored for radii larger than about 5 Å. It is interesting to compare the strain
energy calculated in the present model (figure 3) with the ab initio results [24]–[27]. Fitting the
strain energy versus radius with Est = C/R2 [28] we obtain C = 2.133 eV Å2 per atom which
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Figure 2. Absolute changes of the radius R, chiral angle θ and primitive
translation T for all nanotubes with radii between 2 and 15 Å and Nc < 400
upon optimization. It is clearly seen that the nanotubes widen laterally, shorten
in length and the chiral angle decreases.

agrees well with 2.20 eV Å2 per atom (tubes (3, 3) to (9, 9)) [26], 2.00 eV Å2 per atom (tubes (8, 8)
to (12, 12)) [27], 2.00 eV Å2 per atom (tubes (4, 4) to (10, 10)) [24], 2.05 eV Å2 per atom (tubes
(4, 4) to (10, 10), (10, 0), (8, 4)) [24], 2.1 eV Å2 per atom (ten tubes with 1.7 Å<R< 2.5 Å) [25].

The calculated electronic band structure of three small-radius nanotubes (5, 0), (3, 3) and
(4, 2) within the nTB and π-TB models is shown in figure 4. It is seen that the nTB band
structure of these tubes deviates considerably from the π-TB one. Similar to the ab initio
band structure [15, 16], the large curvature of these tubes leads to large σ∗–π∗ rehybridization
which modifies the nTB band structure with respect to that of π-TB [7, 15, 16]. In particular,
nanotube (5, 0) is metallic contrary to the predictions of π-TB. The crossing of the bands at the
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Figure 3. Calculated strain energy of all nanotubes as in figure 2. The line is the
best fit of the obtained points with a power law C/R2. The inset shows the same
points in a log–log scale.

Figure 4. Calculated electronic band structure of nanotubes (5, 0), (3, 3) and
(4, 2) in the energy range between −4 and 4 eV with respect to the Fermi energy.
Dotted lines are results from the π-TB model with transfer integral γ0 = 2.75 eV.

New Journal of Physics 6 (2004) 17 (http://www.njp.org/)

http://www.njp.org/


13 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 5. Left: calculated dielectric function ε2 of nanotubes (5, 0) (dotted line),
(4, 2) (dashed line) and (3, 3) (solid line), for parallel polarization (upper panel)
and perpendicular polarization (lower panel) in the energy range from 0 to 6 eV.
Right: electronic band structure of nanotube (3, 3) close to the Fermi energy EF .
The arrows indicate the optical transitions giving rise to peaks of ε2.

Fermi level in nanotube (3, 3) is at k ≈ 0.25π instead of at k = (2/3)π. Nanotube (4, 2) has an
indirect band gap of ≈0.83 eV which is twice as small as the direct gap of the π-TB model but
is a little larger than the ab initio value [15, 16].

The calculated imaginary part of the dielectric function of nanotubes (5, 0), (3, 3) and
(4, 2) within the nTB model for parallel and perpendicular polarization in the energy range from
0 to 6 eV is shown in figure 5. The form of the peaks follows approximately equations (47)
and (48). The peaks in the spectra for parallel polarization originate from minima and maxima
of occupied and unoccupied bands with the same quantum number l. For example, peak A1 in
figure 5 can be associated with an optical transition between a maximum of an occupied band
of ∼ −2 eV and a minimum of an unoccupied band of ∼1 eV of tube (3, 3). These minima and
maxima give rise to spikes in the electronic density of states of the nanotubes. The peaks in
the spectra for perpendicular polarization originate from minima and maxima of occupied and
unoccupied bands as well as from states on parallel parts of occupied and unoccupied bands
with quantum numbers l and l ± 1. For example, peaks B1 and B2 come from such transitions
near the crossing point of the bands at the Fermi level; peak B3 comes from states near the
Brillouin zone boundary; peak B4 is due to transitions between minima and maxima of bands
at the zone centre. The calculated transition energies for the three tubes (5, 0) (1.0, 1.2 eV),
(3, 3) (2.9 eV), and (4, 2) (1.85, 1.96 eV) correspond well to the ab initio results 1.2, 2.9 and
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1.9 eV [16]. This is an indirect evidence for the applicability of the used density-functional-
theory-based non-orthogonal tight-binding model to the optical properties of carbon nanotubes.
It should be noted that the depolarization effects are not accounted for in the calculation of
ε2 for perpendicular polarization. On the other hand, the small lateral size of the nanotubes
can lead to strong depolarization effects and to significant reduction of the dielectric function
[10]. The precise inclusion of the depolarization effects is expected to result in corrections
to the calculated dielectric function for perpendicular polarization mainly in the peak height.
The importance of the knowledge of the dielectric function for both parallel and perpendicular
polarizations has been underlined recently in a cross-polarized resonant-Raman study of
nanotubes [29].

The electronic band structure and the imaginary part of the dielectric function for parallel
light polarization are calculated within the nTB model for a large number of small-radius
nanotubes. These quantities can be illustrated by means of the band gap and the optical transition
energies. The band gaps are equal to the lowest transition energies for parallel polarization
of almost all semiconducting tubes. Exceptions are some very-small-radius tubes where the
rehybridization effects lead to indirect band gaps (e.g. tubes (4, 2), (5, 1), etc.). The nTB band
gaps for the non-optimized (nTB1) and optimized (nTB2) structures of all zigzag tubes with
2 Å<R< 15 Å are given in figure 6 and are compared with π-TB results. First of all, small
band gaps appear in all zigzag tubes that are predicted to be metallic by the π-TB model. It is
seen in figure 6 that, in the case of zigzag tubes (6 + 3n, 0), the curvature-induced gaps for the
optimized structure are larger than for the non-optimized one. The band gaps derived here for
optimized zigzag tubes (6, 0), (9, 0), (12, 0) and (15, 0) are 0.45, 0.127, 0.046 and 0.025 eV
respectively. For comparison, the results for the gaps of all-valence TB models with parameters
fitted to experimental data are 0.20 and 0.04 [3], 0.05 and 0.07 eV [7] for tubes (6, 0) and
(9, 0); 0.18 and 0.08 for tubes (6, 0) and (9, 0) [19]. The LDA gaps are (tube (6, 0) is found to
be metallic): 0.17 eV for tube (9, 0) [7], 0.093, 0.078 and 0.028 eV for tubes (9, 0), (12, 0) and
(15, 0) [30]. The gaps measured by scanning tunnelling spectroscopy for tubes (9, 0), (12, 0) and
(15, 0) are 0.080, 0.042 and 0.029 eV [31]. It is clear that the gaps calculated here correspond
well to the LDA and the experimental values, together with those of other TB models. The band
gaps of semiconducting zigzag tubes (5 + 3n, 0) and (7 + 3n, 0) are smaller than those of the
π-TB model. Upon optimization within the nTB model, the band gaps are modified and the
changes being largest ≈0.5 eV in the limit of very small radii. Therefore, although the effect of
structural optimization is smaller than that of σ∗–π∗ rehybridization, the former is not always
negligible and structural optimization is necessary for higher reliability of the derived optical
transition energies.

Finally, the optical transition energies for all 101 nanotubes with 2 Å<R< 8 Å andNc < 400
are derived from the dielectric function calculated for the optimized nanotube structure within
the nTB model. It is clear from figure 7, where the transition energies are presented in comparison
with the energies of theπ-TB model, that the predictions of these two models deviate significantly
for small tube radii. It is seen that the curvature-induced rehybridization effects are largest
for small radii and decrease with increase in tube radius. For very small radii of ≈2 Å, the
π-TB results overestimate the nTB transition energies up to ≈0.5 eV. For moderate radii, the
π-TB results are upshifted by about ≈0.1 eV. By ab initio LDA calculations similar shifts of
≈0.1 eV were obtained for nanotubes with radii in the range 5 Å<R< 7.5 Å [9]. The transition
energies determine the conditions for resonant Raman scattering in nanotubes. Most of the
characterizations by Raman scattering have been based on the use of the predictions of a π-TB

New Journal of Physics 6 (2004) 17 (http://www.njp.org/)

http://www.njp.org/


15 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0.0

0.5

1.0

1.5

2.0

2 4 6 8 10 12 14
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.5

1.0

1.5

E
ne

rg
y 

(e
V

)

TUBES (5 + 3n, 0), n = 0, 1, ..., 11
 nTB2
 nTB1
 π-TB

 

E
ne

rg
y 

(e
V

)

Radius (Å)

TUBES (6 + 3n, 0), n = 0, 1, ..., 11 
 nTB2
 nTB1

E
ne

rg
y 

(e
V

)

TUBES (7 + 3n, 0), n = 0, 1, ..., 10 
 nTB2
 nTB1
 π-TB

Figure 6. Calculated band gaps within the nTB model (nTB1: half-filled symbols;
nTB2: filled symbols) versus tube radius R for all zigzag nanotubes in the
range 2 Å<R< 15 Å in comparison with π-TB results for transfer integral
γ0 = 2.75 eV (open symbols).

model [4]. The calculations here show that the effects of the nanotube curvature on these energies
have to be taken into account even for tubes with moderate radii.

5. Conclusions

The optimized structure, the electronic band structure and the dielectric function of a large
number of small- and moderate-radius single-walled carbon nanotubes are studied within a non-
orthogonal tight-binding model. The model is based on a symmetry-adapted scheme, which
allows for significant reduction of the size of the matrix electronic eigenvalue problem. It is
shown that the calculated electronic band structure of three small-radius nanotubes agrees well
with ab initio simulations up to several eV above the Fermi energy and exhibits large differences
with the π-TB results. Secondly, the dielectric function of many nanotubes is calculated within
the random-phase approximation for energies up to 6 eV. The derived transition energies differ
from the π-TB energies due to curvature effects. These differences are large for small radii and
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Figure 7. Calculated optical transition energies within the nTB2 model (filled
symbols) for all nanotubes with radii between 2 and 8 Å and Nc< 400 in
comparison with π-TB results for transfer integral γ0 = 2.75 eV (open symbols).

decrease with increase in tube radius. The obtained transition energies versus nanotube radius can
be used for the determination of the conditions for resonant Raman scattering from nanotubes.

Acknowledgments

This work was partly supported by a scholarship from the Belgian Federal Science Policy Office
for promoting the S&T cooperation with Central and Eastern Europe, a NATO Collaborative
Linkage Grant and a Marie-Curie Intra-European Fellowship. Stimulating discussions with
L Henrard and A Rubio are acknowledged.

References

[1] Iijima S 1991 Nature 354 56
[2] Mintmire J W, Dunlap B I and White C T 1992 Phys. Rev. Lett. 68 631
[3] Hamada N, Sawada S and Oshiyama A 1992 Phys. Rev. Lett. 68 1579

New Journal of Physics 6 (2004) 17 (http://www.njp.org/)

http://www.njp.org/


17 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[4] Saito R, Fujita M, Dresselhaus G and Dresselhaus M S 1992 Phys. Rev. B 46 1804
[5] Mintmire J W, Robertson D H and White C T 1993 J. Phys. Chem. Solids 54 1835
[6] White C T, Robertson D H and Mintmire J W 1993 Phys. Rev. B 47 5485
[7] Blase X, Benedict L X, Shirley E L and Louie S G 1994 Phys. Rev. Lett. 72 1878
[8] Charlier J-C, Lambin Ph and Ebbesen T W 1996 Phys. Rev. B 54 R8377
[9] Reich S, Thomsen C and Ordejón P 2002 Phys. Rev. B 65 155411

[10] Ajiki H and Ando T 1994 Physica B 201 349
[11] Lin M F and Shung K W-K 1994 Phys. Rev. B 50 17744
[12] Tasaki S, Maekawa K and Yamabe T 1998 Phys. Rev. B 57 9301
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