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Abstract. The cross sections for the photodetachment from a weakly bound
positronium negative ion Ps− below the threshold for the formation of Ps(n = 4)
are calculated using the hyperspherical close-coupling method, and are compared
with the corresponding spectra for the H− ion. Detailed resonance structures in
the spectra near the Ps(n = 2, 3 and 4) thresholds are reported for the first
time. The off-resonance cross section below the Ps(n = 2) threshold differs
appreciably from that obtained by a variational calculation (Ward et al 1987 J.
Phys. B: At. Mol. Phys. 20 127), but agrees well with the recent close-coupling
calculations with a B-spline expansion (Igarashi et al 2000 Phys. Rev. A 61
032 710). The resonance energies and widths of the 1Po symmetry are generally
in good agreement with the results of the complex-coordinate rotation calculation.

1. Introduction

The positronium negative ion, Ps−(e+e−e−), is one of the systems in which three particles
with equal mass interact through Coulomb potentials. As other much weaker interactions are
neglected, similar systems such as µ+µ−µ− and p̄pp should show, essentially, the same physics
as Ps− because the non-relativistic Hamiltonian of these systems exactly scales with mass. In
other words, the Schrödinger equation for these systems takes exactly the same form if the energy
and length scaled with the mass are used. The Ps− ion has only one bound state of symmetry 1Se

with an extremely small binding energy ε0 of 0.012 005 07 a.u. (atomic units) [1]. Its existence
was experimentally confirmed [2] and the decay rate was measured to be 2.09 ± 0.09 ns−1 [3],
which is in good agreement with theoretical predictions.
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The Ps− ion is also one extreme example of two electrons bound simultaneously to a particle
with a unit positive charge. The other extreme is the negative hydrogen ion H− (and its isotopes
D− and T−). It would be of great interest to elucidate the change in the dynamics of the bound,
continuum and resonance states of these systems as the mass of the positively charged particle
decreases from the proton down to the positron.

Whereas no experimental measurement has been carried out for Ps− photodetachment or
e− + Ps scattering, Ps beams have recently become available and direct measurements of the
total cross sections of the Ps scattering by simple atomic and molecular systems have been
reported [4]. Thus, the experimental studies of the continuum states of the Ps− system may be
plausible in the near future.

Theoretically, some studies have been made on the dynamics of the Ps− system. In
particular, Ward et al [5] calculated variationally the e− + Ps elastic and Ps− photodetachment
cross sections below the threshold for Ps(n = 2), although the cross sections in the resonance
region below this threshold were not shown in detail. Bhatia and Drachman [6] and Ermolaev
and Mandal [7] obtained the cross sections of Ps(n = 1) production by photodetachment of
Ps− by model calculations that are valid only in a narrow energy region near the detachment
threshold. Botero and Greene [8] made a semi-quantitative estimation of the resonances
(of 1Po symmetry) in the photodetachment cross sections near the Ps(n = 2) threshold by
an adiabatic treatment in the hyperspherical-coordinate representation. Resonances of 1Po

symmetry were also studied using the complex-coordinate rotation method with Hylleraas-type
basis functions [9]–[12]. This method was extended for other symmetries; see [12] and references
therein. Recently, Igarashi et al [13] used a close-coupling method with a B-spline expansion
and calculated the off-resonance Ps− photodetachment cross section below the Ps(n = 2)
threshold.

It is now generally recognized that the hyperspherical coordinate system is much more
appropriate for the study of the dynamics of strongly correlated three-body systems than the
conventional independent-particle coordinate system. The pioneering work by Macek [14]
and subsequent studies of two-electron atoms [15, 16] clearly indicated the usefulness of
adiabatic hyperspherical potentials, or the potential energy curves drawn as functions of the

hyper-radius ρ =
√
r21 + r22 (with the radial coordinates r1 and r2 of the two electrons), in

understanding the physics of the bound and resonance states both visually and numerically
in analogy with adiabatic molecular potential curves. A great improvement in the numerical
accuracy was achieved by taking the non-adiabatic coupling into account; the close-coupling
method in terms of hyperspherical coordinates, or the hyperspherical close-coupling (HSCC)
method, was found to be a powerful tool for studying strong electron–electron correlation
effects in two-electron systems such as He and H− [15, 16]. It has been successfully
applied to the calculations of photoionization and photodetachment cross sections; see, for
example, [17, 18]. It would be interesting to see the applicability of the HSCC method to the
Ps− system, and to compare the photodetachment cross sections between Ps− and H−. In
fact, we applied the HSCC method to S- and P-wave elastic scattering and the ortho-to-para
Ps conversion process in electron collisions with Ps in a previous publication [19]. S-wave
scattering of electrons by Ps was also treated by Zhou and Lin [20] by the use of the HSCC
method.

In this work, we calculate the cross sections σ(h̄ω;n) for photodetachment

h̄ω + Ps− → e− + Ps(n) (1)
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for photon energies below the Ps(n = 4) production threshold, and obtain resonance parameters
of the 1Po symmetry from the continuum calculations. Atomic units are used throughout this
paper unless otherwise stated.

2. The HSCC method

We first define two sets of Jacobi coordinates (ri, Ri) (i = 1, 2), where ri is the position vector
of the ith electron ei measured from the positron, and where Ri is the relative-distance vector
from the centre of mass of the electron–positron pair to the other electron. The hyper-radius ρ
is defined by

ρ2 = 2
3R

2
i + 1

2r
2
i (2)

which turns out to be the same for i = 1 and for i = 2. Here, the coefficient of a half is the reduced
mass of Ps and the coefficient of two-thirds is the reduced mass between Ps and the remaining
electron. In the following, the internal motion of Ps− is described, not in terms of the Jacobi
coordinates, but in terms of ρ and five angular coordinates (r̂i, R̂i, φi ≡ tan−1{(

√
3/2)ri/Ri}),

denoted collectively by Ω. The total Hamiltonian H of the system Ps− is divided into a part
stemming from the kinetic-energy operator in ρ and the rest, had, which is adiabatic in ρ. Thus
we have

H = −1
2

(
d

dρ2 +
5
ρ

d
dρ

)
+ had(ρ; Ω) (3)

with

had =
Λ2

2ρ2 + V (ρ,Ω) (4)

where V (ρ,Ω) is the sum of all the Coulomb interactions in Ps−. The operator Λ is the five-
dimensional grand angular momentum in Ω [14], whose square may be written as

Λ2 = − 1
sin2 φi cos2 φi

(
d

dφi

sin2 φi cos2 φi
d

dφi

)
+

L2
Ri

cos2 φi

+
L2

ri

sin2 φi

(i = 1, 2) (5)

in terms of the angular-momentum operators LRi
and Lri

conjugate to the angles R̂i and r̂i.
The adiabatic channel functions {ϕµ} and the adiabatic potentials {Uµ(ρ)} are the

eigenfunctions and the eigenvalues of the adiabatic Hamiltonian had, which contains ρ as the
adiabatic parameter:

had(ρ; Ω)ϕµ(ρ; Ω) =
(
Uµ(ρ) − 15

8ρ2

)
ϕµ(ρ; Ω). (6)

As ρ→ ∞, ϕµ describes a fragmentation limit e− + Ps and Uµ approaches the energy of this Ps.
In the HSCC method the total wavefunction Ψ(ρ,Ω) is expanded in the form

Ψ(ρ,Ω) =
∑
µ

ρ−5/2Fµ(ρ)ϕµ(ρ; Ω). (7)

Substitution of this expansion into the Schrödinger equation of the total system leads to coupled
radial equations(

−1
2

d2

dρ2 + Uµ(ρ) − E
)
Fµ(ρ) +

∑
ν

VµνFν(ρ) = 0 (8)
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where Vµν represents the non-adiabatic coupling following from the differential operators on the
right-hand side of (3) [21]. The procedure for solving the radial coupled equations is essentially
the same as for the muon-transfer problem treated in [21].

The solutions in the hyperspherical coordinates are matched with the asymptotic solutions
in the Jacobi coordinates at some point ρ = ρM . For these asymptotic solutions for ρ ≥ ρM ,
we use a dipole representation [22] in which the continuum electron is described as a particle
moving in the dipole field of the excited Ps atom, just as was done in [18].

The adiabatic channel functions ϕµ in (6) are calculated by a variational method using a
trial function for the 2S+1L symmetry with basis functions

(cosφ1)l2r1
l1+ne−αr1YL

l1l2
(r̂1, R̂1) + (−1)S(cosφ2)l2r2

l1+ne−αr2YL
l1l2

(r̂2, R̂2). (9)

The angular function YL
l1l2

(r̂i, R̂i) is a simultaneous eigenfunction of L2
ri

, L2
Ri

, and (Lri
+LRi

)2

with eigenvalues l1(l1 + 1), l2(l2 + 1), and L(L + 1), respectively. In the present calculation,
18 s, 16 p, 14 d, and 12 f orbitals (with l1 = 0, 1, 2, and 3) are used, with all possible l2 values
that couple with these l1 and produce the right value of L.

The photodetachment cross section σ(h̄ω;n) is calculated from the dipole matrix element
〈Ψf (n)|D|Ψi〉. Here, D is the dipole operator in the length or velocity form, Ψi the initial
bound state of the 1Se symmetry, and Ψf the final continuum state of the 1Po symmetry with the
boundary condition appropriate for the production of Ps(n) in the electron emission. The HSCC
method is used consistently for calculating both the bound and the continuum wavefunctions.

3. Results and discussion

The wavefunctions for the initial and the final states are calculated using all the channel functions
associated with e− + Ps(n = 1–4) in the asymptotic region. The obtained energy of the initial
bound state is −0.261 999 compared well with the recent, highly accurate theoretical value of
−0.262 005 [1].

The matching radius ρM for the calculation of the continuum wavefunction is chosen as
720, since the photodetachment cross sections calculated with ρM = 720 and with ρM = 920
differed by less than 1% even near thresholds and since they turned out to be stable against the
change in ρM for ρM ≥ 720. The dipole matrix element is calculated by a radial integration over
the range 0 ≤ ρ ≤ 325.

The photodetachment cross sections obtained in the length and the velocity forms of the
dipole operator should be exactly the same if the wavefunctions used in the dipole–matrix
calculations were exact, although the gauge independence (or the same results from the length
and velocity forms) does not always guarantee the exact wavefunctions. The present results with
both gauges agree within 1% and, hence, here we report only the results from the length form.
The appendix explains how we assess the convergence of the photodetachment cross section
σ(h̄ω;n) for the production of Ps(n), with respect to the number of channels included in the
HSCC equations for the final continuum state. As is explained in the appendix, the inclusion of
all channels up to e− + Ps(n = 4) is expected to lead to quite accurate cross sections except very
close to the threshold EPs(n=4) = −0.015 625 for the formation of Ps(n = 4).

The calculated total photodetachment cross section
∑

n σ(h̄ω;n) is shown in figure 1 below
a photon energy of 6.7 eV in comparison with three other calculations. One is an estimation by
Bhatia and Drachman [6] using the asymptotic wavefunction

Ψi = C[R−1
i exp(−γRi)]ψPs(1s)(ri) (10)
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Figure 1. The total cross section for photodetachment h̄ω+Ps− → e−+Ps below
the Ps(n = 4) threshold. Full curve, present calculation; dashed curve, Bhatia
and Drachman [6]; dot–dashed curve, Ward et al [5]; and open circles, Igarashi
et al [13]. The threshold energies for the production of Ps(n) are indicated by
vertical arrows.

for the initial bound state and the properly symmetrized product of the Ps ground-state
wavefunction ψPs(1s)(ri) and a plane wave of the relative coordinate Ri for the final state.
In equation (10), γ satisfies ε0 = (3/4)γ2, and the normalization constant C is determined
to reproduce well the asymptotic form of an accurate Ps− wavefunction. This simple
approximation for the photodetachment cross section is a modification of the method applied
to the photodetachment of H− by Ohmura and Ohmura [23]. This approximation is valid only
for low photoelectron energies for which the p-wave photoelectron is kept away from the inner
region by the centrifugal barrier and has a small phase shift, and for which the main contribution
to the dipole matrix element comes from a region where the photoelectron lies far from the
neutral H or Ps atom.

Another, more elaborate calculation included in figure 1 was carried out by Ward et al [5] by
means of the variational method below the Ps(n = 2) threshold. The cross section of Ward et al
agrees well with the present results below 0.6 eV, where the cross section reaches its maximum.
At higher photon energies, however, a considerable difference is found between them. The cross
section of Ward et al is about 50% larger than the present HSCC results near 4 eV. For confirming
the reliability of the present results we carried out a detailed convergence test not only as described
in the appendix, but also by reducing the number of coupled equations for both the initial and
final states to only the Ps(n = 1, 2) channels. All of these test calculations yielded nearly the
same photodetachment cross sections around 5 eV and below, showing the good convergence
of the present cross section, although the reduced coupled equations deteriorated the initial-
state binding energy ε0 to 0.011 974, compared with the value 0.011 999 obtained in the full
calculation. As a further check of the numerical calculations we obtained the photodetachment
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Table 1. The phase shifts for scattering e− + Ps(n = 1) of 1Po symmetry
at energies below the Ps(n = 2) threshold. The total energy of the system is
given by E = 3

4k
2 − 0.25 in atomic units in terms of the wavenumber k of the

relative motion. The present results are shown for two different sizes of the HSCC
equations, namely, including all channels detaching into e− + Ps(n = 1, 2) and
including all channels e−+Ps(n = 1–4). Comparison is made with the variational
calculation by Ward et al [5] and with the B-spline close-coupling calculation by
Igarashi et al [13].

k E Ps(n = 1, 2) Ps(n = 1–4) Ward et al Igarashi et al

0.05 −0.2481 −0.0044 −0.00026 −0.0006 —
0.10 −0.2425 −0.0485 −0.0425 −0.038 −0.0379
0.15 −0.2331 −0.140 −0.0130 −0.123 —
0.20 −0.2200 −0.258 −0.244 −0.235 −0.235
0.25 −0.2031 −0.383 −0.365 −0.353 —
0.30 −0.1825 −0.501 −0.477 −0.463 −0.463
0.35 −0.1581 −0.604 −0.575 −0.559 —
0.40 −0.1300 −0.688 −0.654 −0.635 −0.634
0.45 −0.0981 −0.748 −0.708 −0.687 —

cross sections of H− by replacing the positron mass with the proton mass, and found a satisfactory
agreement with the cross sections found in the literature [18, 24, 25].

The third calculation compared in figure 1 with the present results is an elaborate close-
coupling calculation with B-spline expansion by Igarashi et al [13]. The agreement is seen to
be perfect.

Table 1 compares the phase shifts for scattering e− +Ps(n = 1) of 1Po symmetry calculated
using two different sets of HSCC equations with those obtained by Ward et al [5] and by Igarashi
et al [13]. The present values for the larger set of coupled equations are close to the results
of Ward et al and Igarashi et al; the difference in the phase shifts is too small to explain the
large difference, found in figure 1, in the photodetachment cross sections between the present
calculation and that of Ward et al. Calculated photodetachment cross sections are usually more
stable than the phase shifts with respect to an increase in the number of coupled channels,
since the former are obtained from the dipole matrix element between the initial and the final
wavefunctions, which is insensitive to the small change in the phase of the wavefunction. Thus,
the reason for the disagreement between the present cross section and that of Ward et al is unclear.

One of the oscillator-strength sum rules [26]

S−1 ≡ (2π2α)−1
∫ ∞

ε0
d(h̄ω)

∑
n

σ(h̄ω;n)/(h̄ω)

=
8
27

〈Ψi|(r1 + r2)2|Ψi〉 ≡ S̃ (11)

where α is the fine-structure constant, was used by Bhatia and Drachman [6] for a consistency
check. This check was made also by Ward et al [5]. They reported a close agreement, namely,
S−1 = 29.5 and S̃ = 29.75. In this check, however, they used the cross section above the
Ps(n = 2) threshold calculated in the asymptotic approximation of [6], since they carried out
the variational calculation only below this threshold. As mentioned below equation (10), the
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asymptotic approximation is valid only for low photon energies near the detachment threshold.
Indeed, the cross section in the asymptotic approximation differs significantly from that of other,
more accurate calculations shown in figure 1 even at a low energy of 0.6 eV. Furthermore,
the contribution from the Ps production in excited states and the resonance effect on the
photodetachment cross sections are also important for an accurate evaluation of S−1; neither of
them is taken into account in the asymptotic approximation. Therefore, the apparent agreement
betweenS−1 and S̃ of Ward et al does not necessarily suggest the accuracy of their cross sections.

In the present calculation, S̃ is found to be 29.79 and the contribution to S−1 from the region
below the Ps(n = 2) threshold EPs(n=2) is 25.16. The latter value is to be compared with the
corresponding contribution 28.0 in the length form in the calculation by Ward et al †. The larger
value of Ward et al is naturally expected from figure 1.

The present contribution to S−1 from the region between the Ps(n = 2) and Ps(n = 3)
thresholds is 1.80 and that from the region between the Ps(n = 3) and Ps(n = 4) thresholds is
0.36, all the contributions up to the Ps(n = 4) threshold summing up to 27.32, which is still less
than 29.79 by 2.47 (≡ ∆S−1). The oscillator-strength sum S0 up to the Ps(n = 4) threshold
is 1.917 (1.389 from E < EPs(n=2), 0.431 from EPs(n=2) < E < EPs(n=3), and 0.097 from
EPs(n=3) < E < EPs(n=4)), and is still less than the correct value of 2.000 by 0.083. This
missing contribution, which should come from the region above the Ps(n = 4) threshold, is
expected to explain a large part of the difference ∆S−1.

In figure 1 for the total photodetachment cross section, we see sharp spikes in the
neighbourhood of the Ps(n = 2) threshold (at 5.4287 eV in photon energy) and structures
below the n = 3 (6.3736 eV) and n = 4 (6.7043 eV) thresholds. An energy region near the
Ps(n = 2) threshold is enlarged in figure 2 for the partial cross sections σ(h̄ω;n) (n = 1, 2)
where a comparison is made with the cross section for photodetachment from H−. Two prominent
spikes just below the Ps(n = 2) or H(n = 2) threshold are due to the first two of the infinite
series of Feshbach resonances. These resonances are attributed to energy levels supported by
an attractive adiabatic hyperspherical potential that decays as ρ−2 owing to the Stark effect on
the degenerate Ps(n = 2) or H(n = 2) states. Another peak above the Ps(n = 2) or H(n = 2)
threshold arises from a shape resonance of 1Po symmetry. These resonances are discussed, for
example, in [8].

The channel functions in (6) contain the information on the correlation patterns between
the particles and they are reflected in the shape of the corresponding adiabatic potential curves.
After [27], we use the label n(K,T )A to specify a channel or a potential curve and use a set of
quantum numbers n(K,T )A

n′ to assign a resonance which is mainly supported by the n(K,T )A

potential curve and for which the inner (outer) electron is interpreted to be in the orbital with
a radial quantum number n (n′)‡. A channel function with n describes the fragmentation into
e− + Ps(n) in the asymptotic region, and its potential curve approaches the energy of Ps(n).
The quantum number K is related to the average of the vectorial distance ri between the two
particles in Ps(n) projected onto the relative vector Ri between Ps and the other electron. The
quantum number T is related to the average of the total angular momentum projected onto the
interelectronic axis. A channel function withA = + (−) has an antinodal (nodal) structure near
r1 = r2, while that withA = 0 has much less amplitude there;A represents the radial correlation

† This value was estimated by subtracting from the value of S−1 quoted in [5] the contribution from the region
above the Ps(n = 2) threshold calculated in the asymptotic approximation.
‡ The radial quantum number n′ for the outer electron is assumed to start from n and to increase one by one in a
particular series, although its meaning deviates from the Rydberg principal quantum number.
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h̄ω + Ps− → e− + Ps(n) near the n = 2 threshold indicated by vertical arrows.
Full curve, n = 1 production; and dotted curve, n = 2 production.

or the correlation between r1 and r2. The rules specified in [27] for the case of He and H− have
been applied to assign the (K,T )A quantum numbers to each of the Ps− potentials. Channels
with larger K in each manifold have lower-lying potentials as ρ → ∞ than those with smaller
K. For small ρ, A = + channels are more attractive than A = − channels.

The 1Po potential curves converging to then = 3 (n = 4) thresholds in the asymptotic region
are shown in figure 3 (figure 4). The potentials 3(1, 1)+ and 3(2, 0)− in figure 3 and 4(3, 0)−,
4(2, 1)+, and 4(1, 0)− in figure 4 are attractive in nature at large ρ, due to the dipole potentials
resulting from the degenerate excited states Ps(n = 3) or Ps(n = 4). They support infinite series
of Feshbach resonances. The law of a constant energy ratio between adjacent resonances in a
particular series, derived by Gailitis and Damburg [22], may be used to identify the series.

The partial photodetachment cross sections σ(h̄ω;n) below the n = 3 (n = 4) threshold
are shown in figure 5 (figure 6) for the H− and Ps− systems. We see that the resonances
supported by the channels with A = + have broader widths than the A = − resonances. The
main decay channels satisfy ∆n = −1 and ∆K = −1 with T and A unchanged [28], namely,
3(1, 1)+ → 2(0, 1)+ and 4(2, 1)+ → 3(1, 1)+ for the A = + channels and 3(2, 0)− → 2(1, 0)−

and 4(3, 0)− → 3(2, 0)− for theA = − channels. A channel withA = + has a deeper minimum
at a smaller ρ than a channel with A = −. This leads to a larger overlap and stronger non-
adiabatic coupling between n(K,T )A and (n− 1)(K − 1, T )A for A = + than for A = − and,
hence, to broader A = + resonances than A = − resonances.
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Figure 3. The 1Po potential curves converging to the Ps(n = 3) threshold in the
asymptotic region. A set of quantum numbers (K,T )A is attached to each curve.
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Figure 4. The 1Po potential curves converging to the Ps(n = 4) threshold in the
asymptotic region. A set of quantum numbers (K,T )A is attached to each curve.

A close qualitative resemblance between the photodetachment spectra of Ps− and H− is
seen in figure 2 up to the energy region of the shape resonance near the Ps(n = 2) threshold.
For energies near and above the 3(1, 1)+

3 resonance in figure 5, there still exist corresponding
resonances in Ps− and H−, but the detailed shape begins to differ depending on the system.
The 4(3, 0)− series seen for Ps− in figure 6 is missing for H− in the same figure. Both
in figure 5 and in figure 6 there are energy regions between prominent resonances where
σ(h̄ω;n = 2) > σ(h̄ω;n = 1) for Ps− and σ(h̄ω;n = 2) < σ(h̄ω;n = 1) for H−.
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Figure 5. Partial photodetachment cross sections for the H− and Ps− systems
below the n = 3 threshold indicated by vertical arrows. Full curve, n = 1
production; and dotted curve, n = 2 production.

The calculated resonance energies and widths are compared with the results of the complex-
coordinate rotation method [9]–[11] in table 2. We include the resonance parameters calculated
in terms of three basis sets: (a) all channel functions leading to Ps(n = 1–4) + e−, (b) all
channel functions leading to Ps(n = 1–3) + e−, and (c) all channel functions leading to
Ps(n = 1–2) + e−. The convergence behaviour of the resonance parameters near the Ps(n = 2)
threshold may give a rough estimate of the reliability of the present calculation. The resonance
positions calculated with the basis sets (b) and (c) agree within three to four digits. Those
with the basis sets (a) and (b) agree within four to five digits. The widths from these three
basis sets agree within about 15%. Near the Ps(n = 2) threshold, the channels detaching into
e− + Ps(n = 2) are weakly open or weakly closed and those detaching into e− + Ps(n = 3) or
e− + Ps(n = 4) are strongly closed. We believe that the position of an n′(K,T )A

n′′ resonance
calculated with all channels e− + Ps(n = 1–nc) is reliable to within about four digits if nc > n

′

and to within three digits if nc = n, and that the width is reliable to within about 20% if
nc ≥ n.

The agreement between the present resonance parameters and those by the complex-rotation
method is good for resonances below the Ps(n = 3) threshold. For resonances just below the
Ps(n = 4) threshold, the present and complex-rotation resonance positions agree to within about
three digits. The widths of the 4(3, 0)−

6 , 4(2, 1)+
6 , and 4(3, 0)−

7 resonances, however, disagree
between the present work and the complex-rotation calculation.
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Figure 6. Partial photodetachment cross sections for the H− and Ps− systems
below the n = 4 threshold indicated by vertical arrows. Full curve, n = 1
production; dotted curve, n = 2 production; and dashed curve, n = 3 production.

4. Summary

The HSCC method is used to calculate the total and partial photodetachment cross sections for
the Ps− system. The present total cross section agrees well with the variational calculations of
Ward et al [5] below the photon energy of the cross section maximum, but is considerably lower
than the result of [5] at higher energies. The off-resonance cross section below the Ps(n = 2)
threshold calculated by Igarashi et al [13] using a close-coupling method with a B-spline basis
set agrees well with the present results at all the energies reported in [13]. A drastic increase
in the present cross section occurs near the Ps(n = 2) threshold due to Feshbach and shape
resonances. Fine structures in the total and partial cross sections due to Feshbach resonances
are found also just below the Ps(n = 3) threshold and just below the Ps(n = 4) threshold. The
resonance parameters obtained in the present calculations are generally in good agreement with
the results of the complex-coordinate rotation calculation [9]–[11].

The photodetachment cross sections of H− and Ps− are compared in detail both in the
resonance regions and off resonance. They appear qualitatively similar to each other, although
the detailed shapes of the corresponding resonances in H− and Ps− start to differ beyond the
lowest Feshbach resonance below the n = 3 threshold. Some narrow resonances found in Ps−

below the Ps(n = 4) threshold are without their counterparts in the H− spectrum. The relative
magnitudes of the partial cross sections at the higher photon energies depend strongly on the
system.
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Table 2. 1Po resonances of the Ps− system. Er denotes the resonance energy in
atomic units, Γ denotes the resonance width in atomic units, and x[y] = x× 10y.

Label Present Complex rotation
n(K, T )A

n′ (Er, Γ) (Er, Γ)

2(1, 0)−
3 (−6.3155[−2], 9.2[−7])a (−6.3156[−2], 1.0 ± 0.3[−6])b

(−6.3156[−2], 9.8[−7])c

(−6.3144[−2], 8.9[−7])d

2(1, 0)−
4 (−6.2543[−2], 2.5[−7])a

(−6.2543[−2], 2.7[−7])c

(−6.2542[−2], 2.4[−7])d

2(0, 1)+2 (−6.2158[−2], 6.4[−4])a (−6.217[−2], 4.5 ± 0.3[−4])e

(−6.2153[−2], 5.1[−4])c

(−6.2174[−2], 5.4[−4])d

3(1, 1)+3 (−3.1621[−2], 2.2[−4])a (−3.1622[−2], 2.2[−4] ± 1[−7])b

(−3.1572[−2], 2.2[−4])c

3(2, 0)−
4 (−2.9212[−2], 1.5[−6])a (−2.9215[−2], 1.5 ± 0.1[−6])b

(−2.9205[−2], 1.8[−4])c

3(2, 0)−
5 (−2.8125[−2], 6.0[−7])a

(−2.8114[−2], 3.7[−7])c

3(1, 1)+4 (−2.8099[−2], 3.3[−5])a

(−2.8057[−2], 2.9[−5])c

3(2, 0)−
6 (−2.7864[−2], 8.7[−8])a

(−2.7860[−2], 1.0[−7])c

3(1, 1)+5 (−2.7811[−2], 3.5[−6])a

(−2.7860[−2], 3.0[−6])c

4(2, 1)+4 (−1.8863[−2], 3.2[−5])a (−1.8890[−2], 3.1 ± 0.1[−5])f

4(3, 0)−
5 (−1.7031[−2], 1.1[−6])a (−1.7041[−2], 1.3[−6])f

4(2, 1)+5 (−1.6480[−2], 2.0[−5])a (−1.6540[−2], 2.0 ± 0.1[−5])f

4(3, 0)−
6 (−1.6139[−2], 4.2[−7])a (−1.6161[−2], 4.7 ± 5 [−6])f

4(2, 1)+6 (−1.5855[−2], 6.4[−6])a (−1.5880[−2], 1.7 ± 0.5[−5])f

4(3, 0)−
7 (−1.5819[−2], 1.3[−7])a (−1.5803[−2], 2.5 ± 2 [−6])f

a Including all channels detaching into e− + Ps(n = 1–4).
b [9].
c Including all channels detaching into e− + Ps(n = 1–3).
d Including all channels detaching into e− + Ps(n = 1–2).
e [11].
f [10].

In the present work, all the channels detaching into e− + Ps(n = 1–4) have been coupled
in solving the scattering equation of the 1Po symmetry. Higher closed channels may need to
be coupled to obtain more accurate resonance parameters and photodetachment cross sections
close to the n = 4 threshold.
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Appendix

Here we assess the convergence behaviour of the photodetachment cross section σ(h̄ω;n) for the
production of Ps(n), with respect to the number of channels included in the HSCC equations for
the final continuum state. For this purpose we compare the cross section σ(1–3)(h̄ω;n) calculated
including all channels detaching into e− + Ps(n = 1–3) with the cross section σ(1–4)(h̄ω;n)
calculated including all channels e− + Ps(n = 1–4). The cross sections σ(1–3)(h̄ω;n) and
σ(1–4)(h̄ω;n) agree with each other to within 1% for both n = 1 and n = 2 at total energies E
below −0.03. Near the threshold EPs(n=3) = −0.027 778 for e− + Ps(n = 3), however, some
disagreement between the n = 2 cross sections starts to occur; at E = −0.029, for example,
σ(1–3)(h̄ω;n = 2) is about 6% smaller than σ(1–4)(h̄ω;n = 2), although σ(1–3)(h̄ω;n = 1)
and σ(1–4)(h̄ω;n = 1) agree with each other to within 0.2%. As E approaches the threshold
EPs(n=3) further, the convergence in the cross section becomes slower and slower, although the
gauge insensitivity is still well maintained. Thus, at E = −0.027 804, σ(1–3)(h̄ω;n = 1) is
about 15% larger than σ(1–4)(h̄ω;n = 1), and σ(1–3)(h̄ω;n = 2) is about 25% larger than
σ(1–4)(h̄ω;n = 2). By generalizing this, we may infer, empirically, that the retention of all the
channels in the HSCC equations up to and including the lowest-lying closed channels yields
accurate cross sections σ(h̄ω;n) except, possibly, very close to the threshold for the opening of
another set of channels. This empirical rule was also found in previous applications of the HSCC
method to the photoionization of He and photodetachment of H− [18]. In the present production
run, we include all channels up to e− + Ps(n = 4). Therefore, the calculated cross sections
are expected to be very accurate except very close to the threshold EPs(n=4) = −0.015 625 for
Ps(n = 4).
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