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We propose a new type of traveling wave pattern, one that can adapt to the size of physical
system in which it is embedded. Such a system arises when the initial state has an instability for
a range of wavevectors, k, that extends down to k = 0, connecting at that point to two symmetry
modes of the underlying dynamical system. The Min system of proteins in E. coli is such a system
with the symmetry emerging from the global conservation of two proteins, MinD and MinE. For
this and related systems, traveling waves can adiabatically deform as the system is increased in size
without the increase in node number that would be expected for an oscillatory version of a Turing
instability containing an allowed wavenumber band with a finite minimum.

PACS numbers: 82.40.Ck,87.17.Ee,87.16.dj

One of the ways in which a non-equilibrium system can
lead to pattern formation is via a traveling wave bifur-
cation [1]. In such a system, the uniform state becomes
unstable to modes at a finite wave vector k and a finite
frequency ω leading to a variety of phenomena involving
nonlinear traveling wave states. This scenario has proven
relevant for processes ranging from binary fluid convec-
tion [2, 3] to electro-hydrodynamics in liquid crystals [4]
to the sloshing of Min proteins in bacteria [5–14].

To date, this instability has been viewed as an oscil-
latory analog of the familiar Turing instability. Such an
analogy implies that as a function of some control param-
eter, the instability sets in at a critical threshold value
of the parameter at some given k ̸= 0. Furthermore,
above threshold, there is a band of unstable wavevec-
tors stretching from 0 < kmin < k < kmax. Here we
show that there exists a previously unconsidered possi-
bility, namely that for some systems with a particular
symmetry, kmin equals zero. This dramatically changes
the nature of the nonlinear patterns that form, as there
is no predetermined length scale for the emergent struc-
ture; instead, the waves are able to self-adapt to the size
of the physical system. As we will discuss, this is the
traveling wave analog of what happens in viscous fin-
gering [15, 16] where the static bifurcation extends to
kmin = 0. Models for the aforementioned Min dynamics
offer a specific realization of this new paradigm. More-
over, the self-adaptation provides a mechanism whereby
the dynamical pattern can maintain a one node form as
the cell expands during growth.

We start with the model of Ref. [11, 17] for the Min
system. There are two proteins, MinD and MinE, each
of which can be on the membrane (m) or in the cytosol
(c). The two proteins can reversibly desorb and adsorb,
and adsorption of MinE involves it directly binding to an

already membrane resident MinD. Additional nonlinear-
ities emerge from the assumed cooperativity in the des-
orption rates. Adding in diffusion in the compartments
leads in one spatial dimensions to the 4 coupled pde’s

∂cD
∂t

= Rde→D+E −RD→d +DD
∂2cD
∂x2

∂cE
∂t

= Rde→D+E −Rd+E→de +DE
∂2cE
∂x2

∂cd
∂t

= RD→d −Rd+E→de +Dd
∂2cd
∂x2

∂cde
∂t

= Rd+E→de −Rde→D+E +Dde
∂2cde
∂x2

(1)

where cD and cE are the cytosol concentrations of MinD
and MinE, cd is the concentration of MinD on the mem-
brane and cde is the concentration of the MinD/MinE
complex on the membrane and the rates are

RD→d = (λD + λdDcd)cD

Rde→D+E = λdecde

Rd+E→de = (λE + λeEc
2
de)cdcE

(2)

Of critical importance to the physics of this system
are two features. First, the diffusion constants of the
membrane-bound species are orders of magnitude smaller
than their values for the same protein in the cytosol. We
will see that this property will guarantee the existence of
an instability which drives the pattern formation and also
will enable a simplification of the dynamics, at least for
small system size. Second, the model contains two global
conservation laws; the total number of both MinD and
MinE proteins in the system are unchanged by each of the
reactions, so that they are determined solely by the ini-
tial conditions. To see what this implies, we imagine we
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FIG. 1: (color online) The growth rate Re(Ω) and frequency
Im(Ω) of the most unstable mode of the linear stability op-
erator constructed about the uniform steady-state solution,
for two different values of the diffusion rate, Dm, of the two
membrane-bound species, Dm = Dd = Dde. The frequencies
for the two cases are indistinguishable at the resolution of
the graph. The other parameters, as taken from Ref. ([11]),
are: DD = DE = 12.5µm2 s−1, λD = 0.0013 s−1, λde =
0.125 s−1, λdD = 9.3 · 10−4 µms−1, λE = 3.8 · 10−5 µms−1,
λeE = 8 · 10−9 µm3 s−1, DT = 1000µm−1, ET = 400µm−1.
In the following, all lengths with be in µm and times in s and
explicit units will be dropped.

have found a uniform steady-state solution of the model
and calculate the fate of a small perturbation around this
solution, so that

cD = c
(0)
D + δDe

−ikx+Ωt

with analogous expressions for the other concentrations.
This leads in a standard manner to a 4× 4 homogeneous
linear system, with the growth rates Ω being given by the
eigenvalues of the k-dependent stability matrix.. The re-
sults of such a calculation for the most unstable mode,
where for the moment we ignore the quantization of k in-
duced by the boundaries, are presented in Fig. 1. We see
that for k < k∗, there is a complex unstable mode, whose
(complex) growth rate goes to 0 in the limit k → 0. We
shall now show that this is a direct result of the global
conservation laws. At k = 0, due to these laws, the sums
of equations {1,3,4} and equations {2,4} are identically
zero, as shifts in the overall levels of either the conserved
MinD or MinE proteins due to the perturbation are left
unchanged by the dynamics. Hence Ω = 0 is a doubly
degenerate eigenvalue for k = 0, with left eigenvectors
ϕ̂(1) = (1, 0, 1, 1) and ϕ̂(2) = (0, 1, 0, 1). We can then cal-
culate the shift in Ω(k) for these two modes for small k
using what amounts to degenerate perturbation theory
in quantum mechanics, generalized to nonHermitian ma-
trices. To leading order, we computing the projection of
the perturbation, i.e., the diffusion terms in the stabil-
ity matrix, namely D = diag(−DD,−DE ,−Dd,−Dde)k

2

onto the basis of the degenerate 2x2 subspace to obtain
the reduced stability matrix

Sij = ϕ̂(i)Dϕ(j)

where the ϕ(j) are the corresponding right eigenvectors of
the two k = 0 zero modes, which satisfy the orthonomal-
ity condition ϕ̂(i)ϕ(j) = δij . We then have to diagonalize
Sij to find Ω(k). For the parameter set used in [11], the
steady-state is c0D = 71.77, c0E = 76.39, c0d = 604.62,
c0de = 323.61 and this gives rise to

ϕ(1) =


−0.0767
−0.1494
0.9273
0.1494

 ϕ(2) =


0.4022
−0.0422
−1.4444
1.0422



−S/k2 = Dc

[
−0.077 0.402
−0.149 −0.042

]
+Dm

[
1.077 −0.402
0.149 1.042

]
for pair-wise equal cytosol (Dc) and membrane (Dm)
diffusivities. This matrix always has a pair of complex
eigenvalues, as

tr2(S)− 4det(S) = −0.239k4(Dc −Dm)2 < 0 (3)

This complex pair is unstable as long as

tr(S) = k2 (−0.119Dc + 2.119Dm) < 0 ⇒ Dc

Dm
> 17.8

(4)
which is easily satisfied by the biophysical parameters,
as we saw in Fig. 1. In general, the initial rise of ReΩ
with k depends on the relatively large cytosol diffusion
constants whereas the value of k at which the system
restabilizes depends on the small membranal ones. In the
limit of very large diffusion constant ratio between the
cytosol and membranal fields and for equal membranal
diffusivities, Dm, the spectrum approaches (for k strictly
non-zero) the simple form Ω0 − Dmk

2 for complex Ω0

with a positive real part.
This stability structure presents a new twist on what

happens in pattern forming systems such as viscous fin-
gering and dendritic crystal growth [15, 16]. There,
translation invariance of the base system guarantees a
single zero k = 0 eigenvalue which gives rise to a real-
mode instability for 0 < k < k∗. A related idea has
arisen in the context of cellular processes that have one
chemical component being exchanged between different
compartments but is globally conserved [18]. In our sys-
tem the existence of two zero modes and of course the
non-symmetric nature of the stability matrix allows for
a pair of complex conjugate modes to have a positive
growth rate. The study of those interfacial systems has
revealed characteristic differences between the nonlinear
states that emerge as compared to those in related sys-
tems such as directional solidification [19] which have a
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regular Turing-like mode spectrum. Here the basic pat-
tern is the traveling wave, which due to the instability
extending down to k = 0, should exist up to very large
wavelengths. There are thus two new features here, com-
pared to the standard Turing case. One is the fact that
the basic unstable mode is a traveling wave as opposed
to a stationary spatial oscillation. It is in general quite
hard to arrange parameters such as to guarantee that the
basic instability is a traveling wave, while preventing a
k = 0 Hopf temporally oscillating mode. Here however
the marginality of the k = 0 modes makes the travellng
wave instability very natural, as a k = 0 Hopf instability
is impossible. Further, the standard Turing instability
has a narrow band of allowed wavelengths, at least close
to threshold, while here the instability extends to infinite
wavelength.

It is possible to show that the traveling wave pattern
arises as a supercritical bifurcation as L is increased past
Lmin = 2π/k∗, so that the unstable mode is an allowed
wavevector. Thus the amplitude grows as

√
L− Lmin

as the system size is increased. For larger systems, we
must turn to a numerical study of our traveling wave
pattern. In the top panel of Fig 2, we show an example of
a traveling wave solution, corresponding to the parameter
set already used above, for a periodic system of size L =
5µ. The second takes the limit of infinite diffusivity for
the cytosolic species cD and cE ; for the latter case, the
model is globally coupled with the value of these fields
determined at all times by the integral constraints

LcD = DT −
∫
dx (cd + cde)

LcE = ET −
∫
dx cde

where L is the size of the periodic domain. For this size
system, which is not much larger than the minimal size
for the instability, Lmin = 2π/k∗ ≈ 3.0, this traveling
wave pattern appears to be the unique attractor of the
system, arising from generic initial conditions.

The solution can thus be generated by running a sim-
ulation and waiting for the system to settle into this uni-
formly propagating state, which perforce must be linearly
stable. Alternatively, we can directly solve the steady-
state equations in the moving frame of reference, so that
the fields are only functions of x − vt and the equations
become ordinary differential equations, by an iterative
scheme acting upon the field values at collocation points.
Since there are 4 second-order equations, we have to im-
pose eight conditions. Six of these are the continuity
of the four fields and two of the derivative fields across
x = L. Two are the global constraints on the DT and
ET . Because of translation invariance we can arbitrar-
ily choose one of the fields to have a known value at say
x − vt = 0 and reduce the number of unknowns by one.
Then the number of equations to be solved is one greater
than the field unknowns, necessitating the use of the ve-
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FIG. 2: The uniformly leftward propagating wave solution,
with v = −0.0768. Top: The solution for the parameters of
Ref. [11], for which the stability analysis is shown in Fig. 1
(blue curve). The length of the periodic system is L = 5.
Middle: The solution for the limit Dc = ∞, with all other pa-
rameters as above. The membranal field profiles are basically
unchanged from the above graph. Bottom: The solution for
the same parameters as in the top panel, for the larger sys-
tem L = 20. The peak in the membranal fields is roughly the
same width as in the top panel, so that L-scaled coordinates,
it appears much sharper. Away from the peak the solutal
fields appear similar to the top panel, indicating that these
features scale linearly with L. The variation of the solutal
fields is much increased over that of the top panel.
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locity as the final unknown. One can check that we get
the same results from both of these methods. The second
approach is specifically convenient if one has a solution
for some parameter set and wishes to find a solution at
a nearby one, as in that case there is a very good ini-
tial guess with which to start the iteration. We can see
from these graphs that there is nothing singular about
the infinite-Dc global limit at least as far as this type of
solution is concerned.

We see that while the cytosol concentrations are rel-
atively featureless (exactly so in the globally coupled,
Dc → ∞, limit), the membranal fields each have a single
peak, located close to each other. As we take L larger,
as in the bottom plot of Fig. 2, this structure is main-
tained, with the peaks having roughly the same width,
and so occupying a smaller fraction of the system. The
system settles into a scaling form of the solution in which
the pattern consists of two parts. There is an inner re-
gion, which for the bottom frame of Fig 2 lies at around
the origin which gets thinner (in rescaled coordinates) as
L increases. The rest of the box has an “outer” solution
which scales linearly with L. The velocity of the solution
scales as L once the system is in the scaling regime, which
for our parameters occurs for L ≳ 15. It is interesting to
note that the large cytosol diffusion is much less success-
ful in eliminating the variation in the cytosol fields in the
larger L system.

We can understand this solution by looking separately
at the two aforementioned regions, in the globally cou-
pled limit, keeping cD and cE (as opposed to DT and
ET ; in the globally coupled limit, this is just a differ-
ent path in parameter space, which happens to exhibit
less L dependence) fixed as we increase L. We assume a
dependence only on z = (x − vt)/L and hence the time
derivatives become −(v/L) d

dz . In the outer region, the
slow diffusion is irrelevant and the only spatial deriva-
tive is the velocity term. Thus, having v ∼ L (as can
be verified from the numerical solutions) immediately al-
lows the outer solution to have spatial decays away from
the peak which become L independent in the rescaled
coordinate. In the inner region, we have in general three
terms that are important; the velocity term, the diffu-
sion term and the cubic term that occurs (with opposite
sign) in both the cd and cde equations. In fact, if we add
the two equations and assume equal diffusivities, we get
that cd + cde does not have any driving term and one
can easily check from the numerical solution that it is
approximately constant on the inner scale, which is the
original L independent length scale. Let us denote by A
the constant value of this sum at the location of the in-
ner zone. The numerics indicates that this quantity also
scales linearly with L. If we rescale lengths by z = z̃/L,
velocity by v = ṽL, and membranal concentrations by L

as well, (A = ÃL, etc.) we get the equations

0 = ṽ
dc̃d
dz̃

+Dm
d2c̃d
dz̃2

− λeEcE c̃d(Ã− c̃d)
2

0 = ṽ
dc̃de
dz̃

+Dm
d2c̃d
dz̃2

+ λeEcE c̃
2
de(Ã− c̃de)

This pair of conjugate equations are familiar from the lit-
erature on pattern formation, in the context of front so-
lutions in bistable systems such as the Ginzburg-Landau
equation. We can define a “potential” function U(c̃d) to
recast the equation for c̃d, e.g. as that of a ”particle”
moving with damping ṽ in a potential well,

−dU
dz̃

= ṽ
dc̃d
dz̃

+Dm
d2c̃d
dz̃2

,

where the potential is obviously

U(cd) = −λeEcE
(
Ã2c̃2d/2− 2Ãc̃3d/3 + c̃4d/4

)
. This potential has a maximum at cd = 0 and, interest-
ingly, a point of inflection at cd = A. Since there is no
minimum, for small dampling a particle starting at cd = 0
at z̃ = −∞ will escape to infinite cd. Above a critical
damping, the particle approaches the point of inflection
as a power-law in time, since the force is quadratic in the
distance to this point. The critical damping is equal to
ṽc = Ã

√
2λeEDm, for which the approach to the point

of inflection is exponential in time, as can be seen be di-
rectly substituting in the ansatz cd = A

2 (1 + tanh(z̃/w))
for some width w. Thus, an inner solution exists for
all velocities greater that ṽc. If we call this solution
ψ(z̃; ṽ, A), we have the final forms c̃d = ψ(z̃−z̃inner; ṽ, Ã)
and cde = Ã − cd. There are two unknowns, namely Ã
and the scaled velocity ṽ.
The construction is then completed by integrating the

L-independent outer equations in the variable z, where
as mentioned above diffusion is ignored. One can then
integrate the coupled first-order outer equations starting
immediately past zinner with the initial conditions c̃d =
Ã, c̃de = 0 and demand that the solution at z̃ = 1 returns
back to the inner solution left asymptote c̃d = 0, c̃de =
A. These conditions determine the two unknowns. The
fact that the system supports a scale-invariant nonlinear
traveling wave is, we believe, traceable to the nature of
the original stability; the system can use its ability to
self-amplify at any non-zero k to form this solution.
While this “single pulse” wave appears to be the unique

stable steady-state solution for relatively small L, as L
increases this ceases to be the case. One way to see this
is to start with an initial condition which is composed of
two L/2 pulses. For L ≲ 25, for our “standard” param-
eters, the two peak solution develops an instability and
eventually reaches the single pulse solution appropriate
to a system size of L. This process is demonstrated in
Fig 3 for L = 20. This is analogous to what was es-
tablished long ago for a periodic array of Saffman-Taylor
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FIG. 3: (color online) The merging of a two peak traveling
wave composed of two L = 10 solutions into a single L = 20
steady traveling wave. The cd field is presented, the cde field
would look very similar. The parameters are the same as in
the top panel of Fig. 2.

fingers [20]. But, here, the full story is complicated and
in general we find three regions for the asymptotic state
arising from these conditions. For L < Lc1(Dm), we ob-
tain full coarsening as above. At larger L the two pulse
pattern is stable, coexisting with the stable one pulse
wave. The onset of the instability as L decreases below
Lc1 is a (apparently subcritical) Hopf bifurcation. At
even larger L, there is a supercritical pitchfork bifurca-
tion to a non-symmetric two pulse state. Analogously,
one can start with a three pulse initial condition in a 3L
box and find regions of stable non-symmetric solutions
at large enough L. In addition, the larger range of un-
stable wavevectors at increasing L appears to result in a
shrinking of the basin of attraction of these steady-state
solutions; this remains to be quantitatively analyzed. It
should also be noted that, for finite solute diffusion, the
single pulse solution ceases to exist beyond some maxi-
mal L. When this occurs, the only traveling wave state
will have multiple peaks.

Because of the stability of the single pulse solution, the
system will stay in this state as the box size is adiabati-
cally increased. To see this, we assume that the system
is regulated so as to maintain a fixed overall average con-
centration of MinD and MinE and insert more of these
proteins uniformly into the cytoplasm as we expand the
cell. Following Ref. [21], the system equations then read

∂cD

∂t
=

L̇(t)

L(t)
(DT − cD) +Rde→D+E −RD→d +

DD

L2(t)

∂2cD

∂y2

∂cE

∂t
=

L̇(t)

L(t)
(ET − cE) +Rde→D+E −Rd+E→de +

DE

L2(t)

∂2cE

∂y2

∂cd

∂t
= −

L̇(t)

L(t)
cd +RD→d −Rd+E→de +

Dd

L2(t)

∂2cd

∂y2

∂cde

∂t
= −

L̇(t)

L(t)
cde +Rd+E→de −Rde→D+E +

Dde

L2(t)

∂2cde

∂y2
, (5)

where L(t) = L(0)eγt is the time-dependent length of the

system and y ≡ x/L(t) is the scaled spatial coordinate.
Fig. 4 shows clearly that the one pulse wave will maintain
its global topology for a very large range of scales.

Of course, the actual Min system does not live in a
periodic domain; even if one adopts the simplification
of ignoring the actual compartment structure of the cell
into membrane and cytosol in favor of a bi-continuous ap-
proach (as is done here), one should obviously use zero
flux conditions at the cell edges. So, it is useful to ask
about the from of the nonlinear traveling wave state to
the dynamics in a fixed box. In the top panel of Fig.
5, we present snapshots of simulations for small cells,
showing clearly a “sloshing” wave pattern with sharply
decreased amplitude at the cell center. Most importantly
this topology is not changed as the cell expands, even as
the pattern becomes more like a traveling wave bounc-
ing back and forth (see the bottom panel of Fig. 5).
The time-average concentrations maintain a single node
at the center even as the cell doubles; this is necessary
for the functional role of the Min system in defining the
precise midpoint of the cell [12, 22]. The self-adjustment
property of the system allows this to take place without
any fine-tuning of system parameters.

It is critical to realize that very few of our findings
should have anything to do with the detailed assump-
tions of the model. For example, if one uses more recent
and presumably more realistic models for Min dynamics
proposed in refs. [10, 23], the existence of two conserva-
tion laws will again guarantee that the wave instability
will extend down to k = 0 and therefore we can predict
the existence of self-adjusting traveling wave states. This
of course needs to be investigated in detail. A more un-
certain situation holds for a recently studied case of a
kmin = 0 wave instability arising during the frictional
sliding of one surface above a second [24]. Here the fact
that the base state with uniform sliding is explicitly not
reflection symmetric and hence there need not be modes
at both +k and −k at the same complex value of Ω; in
other words, there is a preferred direction of wave prop-
agation and this one unstable wave can be connected to
just one symmetry mode as q → 0. The extent to which
this difference matters for the non-linear state remains to
be studied. We also expect the general features explored
here will persist in a full two-dimensional model where
the 2-d nature of the cytosol is treated explicitly [17].

This work was supported by the U.S. National Science
Foundation Physics Frontier Center program grant no.
PHY-1427654, the National Science Foundation Molec-
ular and Cellular Biology (MCB) Division Grant MCB-
1241332 and the U.S.-Israel Binational Science Founda-
tion Grant no. 2015619. We gratefully acknowledge the
hospitality of the Aspen Center for Physics, where this
work was started.
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FIG. 4: (color online) The pattern produced by an exponen-
tially growing system, with doubling time of 30 mins and
initial size of L = 4. Solutal MinD, MinE is added to keep
the overall average MinD and MinE concentrations fixed. The
membranal field cd is displayed, cde looks very similar. The
system quickly settles into a single pulse traveling wave solu-
tion and preserves this form, despite the continually change in
L. The increase in amplitude and initial increase in temporal
period are apparent. The other parameters are the same as
in the top panel of Fig. 2.
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FIG. 5: (color online) Top: A “sloshing” pattern produced
in an L = 2 with reflecting boundary conditions. One sees
that the amplitude is concentrated near the edges and the
amplitude is minimal at the center. A disturbance appears
on the left, waxes and wanes 180 degrees out of phase with the
disturbance on the left. Bottom: The adiabatic adjustment
of the above “sloshing” pattern in an exponentially growing
system, with a doubling time of 30 mins. and an initial size
L = 1.5 Initially, when the system is small, the system quickly
settles into the sloshing pattern seen above, with an amplitude
minimum in the center. Later, when the system is larger, the
pattern more closely resembles the one-pulse traveling wave
solution bouncing between the walls. The other parameters
are the same as in the top panel of Fig. 2.
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