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Abstract
The concept of symmetry breaking and the emergence of corresponding local order parameters
constitute the pillars ofmodern daymany body physics.We demonstrate that the existence of
symmetry breaking is a consequence of the geometric structure of the convex set of reduced density
matrices of all possiblemany bodywavefunctions. The surfaces of these convex bodies exhibit non-
analyticities, which signal the emergence of symmetry breaking and of an associated order parameter
and also showdifferent characteristics for different types of phase transitions.We illustrate this with
three paradigmatic examples ofmany body systems exhibiting symmetry breaking: the quantum Ising
model, the classical q-state Pottsmodel in two-dimensions atfinite temperature and the ideal Bose gas
in three-dimensions atfinite temperature. This state based viewpoint on phase transitions provides a
unique novel tool for studying exoticmany body phenomena in quantum and classical systems.

1. Introduction

In a series of ground breaking papers in the late 19th century, Gibbs [1–3] elegantly derived the thermodynamic
stable state of a given substance through theminimization of some thermodynamic potential (later known as the
free energy), in fact bymeans of a geometric construction. In particular, Gibbs considered a surface given by the
possible values of the thermodynamic extensive quantities (such as e.g. energy, volume and entropy) of a system
of interest and realized that points on this surfacewith tangent planes of equal orientation correspond to possible
stable states of the substance at a temperature and pressure given by the orientation of the tangent plane. If two
(ormore) points belong to the same tangent plane, the corresponding states can coexist in equilibrium,
characteristic forfirst order phase transitions. If two ormore points have tangent planeswith equal orientation
but different distance to the origin, the state whose tangent plane is closer to the origin ismetastable,
corresponding to a supercritical system [3].

This geometrical construction can be interpreted as identifying the thermodynamically stable states as the
extreme points of a convex set consisting of all possible realizable values of the thermodynamic extensive
quantities of a given system. In the case of Gibbs’ construction the relevant convex set is essentially the convex
hull of the thermodynamic surface, termed ‘secondary surface’ byMaxwell (who also produced a plaster clay
model of the surface forwater as a present toGibbs in 1874). All thermodynamic properties of a systemof
interest can then be read off from the geometric features of this set and phase transitions correspond to non-
analyticities on the surface, which arise by considering convex hulls of analytic functions [4].

While Gibbs’ original construction is capable of detecting regions of phase coexistence atfirst order phase
transitions, they however showno signatures at second order phase transitions, as there the thermodynamic
extensive quantities vary continuously across the critical point. In this workwe demonstrate that by including
the order parameter corresponding to such a phase transition as an extensive quantity into these sets, phase
transitions are signaled through the appearance of characteristic geometrical features in the formof ruled
surfaces. As these sets exist as a collection of all possible realizable states of a given systemwithout any prior
reference to anyHamiltonianwhich generates dynamics, the reason for the occurrence of symmetry breaking
phase transitions thus lies in the geometry of the space of all possible realizable states.
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We show the generality of this geometric interpretation by explicitly extendingGibbs’ construction to
quantumand classical lattice spinmodels, as well as quantumfield theories. Ourwork considerably extends and
clarifies the convex set picture in the context of theN-representability problem in quantum chemistry [5–8], and
provides a very nice connection to the discussions on themonogamy of entanglement andmean-field theory
in [9].

2. Convex sets for quantum lattice systems

Ground states of quantummany bodyHamiltonians composed of local interactions are very special: in order to
minimize the energy expectation value they have extremal local correlations, but those correlationsmust be
compatible with the global symmetry of themany bodyHamiltonian such as translation invariance. The
competition between those two requirements is responsible for the emergence of the typical long-range
properties as exhibited in strongly correlatedmaterials. This is best illustrated by the =S 1 2 Heisenberg
quantumantiferromagnet: the energy density would beminimized if all nearest neighbor reduced density
matrices (RDMs)were singlets, but due to themonogamy properties of entanglement [10, 11], this is not
compatible with the translation invariance of the ground state. Hence the symmetry requirements smear the
entanglement out into a globally entangled state with algebraically decaying correlations and (quasi) long range
order.

This competition is nicely reflected in the convex set of the RDMs of all possible pure andmixed quantum
many body states of the entire system3.

Let us for example consider a lattice of spin-1/2 quantum systems and arbitrary spatial dimension d, take
randomquantum states ra, andmake a scatter plot of the expectation values rá ñ º åa( )Z Tr Z

N i i
1 and

rá Ä ñ º åa á( )X X Tr X X
NK ij i j

2 , whereX andZ are Paulimatrices,N is the number of sites,K is the

coordination number of the lattice and the sum is over nearest neighbors only. This is equivalent to restricting to
translation invariant states ra

TI andmeasuring the 1 or 2-site observablesZ and ÄX X , for which only the 2-site
RDM is needed. As these terms do not commute, a large expectation value á Ä ñX X will lead to a small
expectation value á ñZ , giving rise to a curved boundary of the generated set. Due to the convexity of the set of
2-site RDMs, the generated body is also convex and corresponds to a two-dimensional projection of the full 15-
dimensional set of all possible 2-site RDMs. The extreme points of this set correspond to ground states of a
family of quantum IsingHamiltonians of the form

å å= - -
á ñ

( )H
J

K
X X B Z

2
. 1

i j
i j z

i
i

,

Indeed, surfaces of constant energy are represented by lines = - á Ä ñ - á ñE J X X B Zz in this plot, where the
orientation of these lines is given by the parameters J,Bz and their distance to the origin is proportional to
(minus) the energy. Hence the expectation values of the states withminimal energymust correspond to extreme
points for which the lines are tangent to the convex set and thus atmaximumdistance from the origin, or
equivalently, every point on the boundary of the generated set corresponds to the ground state of (1)with
parameters given by the orientation of the tangent line through that point.

The situation becomesmuchmore interesting and the presence of symmetry breaking becomes immediately
evident when adding an extra axis corresponding to the expectation value of rá ñ º åa( )X Tr X

N i i
1 to the scatter

plot. The extreme points of the resulting convex set now correspond to ground states of the quantum Ising
model including a longitudinal fieldwhich explicitly breaks the 2 spinflip symmetry

å å å= - - -
á ñ

( )H
J

K
X X B Z B X

2
. 2

i j
i j z

i
i x

i
i

,

Infigure 1we show the surface of this set in zero, one and infinite spatial dimensions (see appendix B.1 for a
scatter plot and appendixD for enlarged versions of these surface plots).

For an infinite system in d 1 spatial dimensionswewitness the emergence of a ruled surfacewith all lines
parallel to the new axis, which turns out to be the defining signature for symmetry breaking. Indeed, all points on
such a line are ground states to the same instance of (2)—with parameters given by the orientation of the tangent
plane4—butwith different values of á ñX . This implies that the ground state is not unique and there is symmetry
breaking, as an infinitesimal perturbation of the formof a longitudinalmagnetic field å Xi i to theHamiltonian

3
When restricting oneself to RDMs of pure states, this problem is related to identifying the joint numerical range of a set of operators, which

is not necessarily convex anymore [12, 13].
4
Here, all tangent planes with normal vectors = ( )n B1, , 0z


with ∣ ∣ B 1z will touch the set on a line of the ruled surface, instead of a single

point.
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(1)will break the symmetry, andmake sure that themagnetization of the ground state will be polarized in the x-
directionwith amagnitude given by the extreme points of the convex set lying on the border of the ruled surface.

á ñX is then obviously the order parameter, and the shape of the border of the ruled surface encodes all the
information about the ground state expectation values such as the order parameter as a function of the
(transverse)magnetic fieldBz.

Furthermore, from figure 1we observe three additional remarkable but obvious facts. (i)The convex set of
the zero-dimensional case completely contains the one-dimensional set, which in turn completely contains the
infinite-dimensional case. This reflects the fact thatmore andmore symmetry constraints (e.g. translation
invariance along an increasing number of spatial dimensions) restrict the convex set of possible 2-site RDMs
further and further. (ii)The ruled surfaces only arise in the thermodynamic limit, hence demonstrating the need
for thewell known fact that the order parameter is obtained by first taking the limit of the system size to infinity
and only then the longitudinalmagnetic field to zero. Any set obtained for a finite one-dimensional chain ofN
spins would look similar to (c). Put differently, with increasingN the surfaces of these sets will be gradually
deformed to asymptotically yield the surface of set (b) as  ¥N , i.e. only in this limit will the green ruled
surface and thus symmetry breaking emerge. In [7, 8], the concept of speedwas introduced to describe the
curvature of convex sets of systems onfinite lattices, and observed to divergewhen doing finite size scaling. (iii)
Wecan extract critical exponents by investigating the geometry of the convex set around the critical point5.
More generally, any thermodynamic property of the system such as susceptibilities can be read off from this
convex set and the properties of its surface, hence demonstrating the power of such convex set plots (for a
detailed analysis in the case of classical lattice systems, see 3.4).

Figure 1.Convex sets generated by nearest neighbor correlation á Ä ñX X , transversemagnetization á ñZ and longitudinal
magnetization á ñX for all possible translation invariant states on an infinite lattice of =S 1 2 spins in (a)  ¥d and (b) d=1
spatial dimensions, as well as (c) d=0 spatial dimensions (all possible states of two spins).We plot the surfaces of extreme points of
these sets, corresponding to ground states of (2) for various values of J,Bz and >B 0x (due to symmetrywe only plot the upper half).
Blue lines represent points with constant = J 1 andBx and varyingBz. In (b), the black line corresponds to the exact solution for

=B 0x [14] and pointsA andA′mark critical points, where atA a ruled surface (green) emerges, signaling a degeneracy of the ground
state, which leads to symmetry breaking and afinite value of the order parameter á ñX . The corresponding order parameter forA′ is the
staggeredmagnetization á - ñ( ) X1 i

i andwewould therefore need to add another axis corresponding to that order parameter to observe
the corresponding ruled surface. In all three cases, the red line corresponds to J=0 and thus separates regimes of ferromagnetic
( >J 0) and antiferromagnetic ( <J 0) coupling. As J=0 corresponds to the decoupled case the red line consists of product states. It
is therefore independent of the spatial dimension d and thus common to all three sets. For enlarged versions of these plots see
appendixD.

5
In the one-dimensional case, the dependence of á ñX on themagnetic fieldBz in the symmetry broken phase slightly below the critical point

e= -B J 1z with e 1 can be recovered from the orientation of the tangent plane = - á Ä ñ - á ñE J X X h Z as e= -¶á Ä ñ
¶á ñ

1
X X

Z
tofind

that indeed in this regime á ñ µ +¶á Ä ñ
¶á ñ( )X 1
X X

Z

1 8
.
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Notice that the depicted convex sets with their ruled surfaces and non-analyticities exist prior to any
reference to any underlyingHamiltonian. It is rather the choice of a collection of plotted observables (i.e. a
choice of projection of the full convex set of RDMs) that enables access to thermodynamic properties of a
correspondingHamiltonian defined by this collection. The occurrence of symmetry breaking is therefore
encoded in the geometrical structure of a certain projection of the convex set of all possible RDMs, and quantum
phase transitions are a consequence of the geometry of such convex sets.

In the case where onewould like to learn about symmetry breaking phase transitions of a particular
Hamiltonianwithout knowing the order parameter, one can still use a randomobservable as additional axis. In
general a randomobservable will have a finite contribution of the true order parameter, thus still generating
ruled surfaces, albeit not withmaximal extent. In order tofind the true order parameter one can then optimize
over randomobservables to obtain themaximal extent of the emerged ruled surfaces (see appendix C).

The general features of the plots infigure 1 are clearly generic for second order phase transitions. Note that in
the case offirst order phase transitions, onewould notneed to add an extra axis (corresponding to the order
parameter) towitness symmetry breaking, and this would already be present at finite size (see section 3 and [9]
for examples).

Infigure 1 the surface of set (a) for  ¥d was numerically obtained using semidefinite programming: as a
consequence of themonogamy properties of entanglement [10, 11] and the quantumde Finetti theorem [15],
this set is equivalent to the convex set generated by all separable states [9, 16, 17]. For the particular case of two
=S 1 2 spins, separability is completely determined by semidefinite constraints [18, 19] and the surface of the

set can be obtained byminimizing the energy = - á ñ - á ñ - á ñE J XX B Z B Xz x with respect to all separable
densitymatrices of two spins. Set (b) for d=1was obtained by doing extensive variationalmatrix product
ground state calculations [20], while set (c) for d=0was obtained by exact diagonalization of a systemof 2
spins.

2.1. Top plane
In all three sets offigure 1, pointBmarks the endpoint of a bifurcation line corresponding to = -J 1, =B 2x

and  +B 0z , which leads up to a top (blue)plane.
The correspondingHamiltonian at the top plane

å å= -
á ñ

( )H
K

X X X
2

2 3
ij

i j
j

jTP

is in fact classical and all eigenstates are product states in the x-basis + ñ - ñ{∣ ∣ }x x, .
One can easily see that the ground state is exponentially degenerate with growing system size and for d=1

the degeneracy is given by the Fibonacci sequence +FN 1whereN is the number of lattice sites. The ground space
is then given by all possible product states such that no two neighboring spins are in the - ñ∣ x state (see also
section 3.2). Any linear combination of these states is a valid ground state and the entirety of all such possible
states is given by the top blue plane.

To determine the edge of this plane for d=1we consider an infinitesimal perturbation
a b= å + åH X Zj j j j1 away from this point, with a b, 1 and project this perturbation onto the Fibonacci

subspace

å a b= + + - +- +[ ][ ( )][ ] ( )H X Z X X1 1 1 . 4p
i

i i i i1 1

The points on the edge of the top blue plane then correspond to ground states of this projectedHamiltonian in
the case of d=1 spatial dimensions. In other words, for all values of a b, we seek linear combinations of states
within the degenerate ground state subspacewhichmaximize themagnetization along the direction

a b= [ ]m , 0, . As the normal vector of the tangent plane is given by = [ ]n J B B, ,z x this plane has the same
orientation = -[ ]n 1, 0, 2 but slightly different boundaries in all three cases.

3. Convex sets for classical lattice systems

Anatural question is whether a similar picture emerges in the case of classical statistical physics. As opposed to
the competition between non-commuting terms in a quantumHamiltonian, classical phase transitions emerge
as a consequence of the competition between the internal energyE and the entropy S in the free energy
= -F E TS. As the free energy is a linear function of energy and entropy, we expect similar convex sets as for

the quantum casewhenmaking a scatter plot of the expectation values of energy, entropy and the order
parameter with respect to all possible probability distributions (see figure 2 for the classical two-dimensional
Isingmodel). Remarkably, we obtain a very similar picture as for the quantum case. The extreme points of the
convex set now correspond to expectation values forGibbs states whichminimize the free energy. Note also that

4
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pictures involving intensive quantities such as temperature and/or pressure on the axes would notmake sense in
this setting, as those quantities are not defined for general probability distributions out of equilibrium.

In the followingwework out the case for a paradigmatic example of a classical lattice spinmodel in full detail:
the q-state Pottsmodel [22–25] is a generalization of the ubiquitous 2-symmetric Isingmodel [26, 27] to
q-symmetry. It has been shown to be correspond to a q lattice gauge theory ofmatter [28, 29] and in certain
parameter regimes to coloring problems [30, 31] and hard-square lattice-gasmodels with nearest neighbor
exclusion (1NN) [32].

The Pottsmodel in amagnetic field is defined by theHamiltonian

å åd= - -
á ñ

( ) ( ) ( )zH J z z h z, , 5
ij

i j
j

j

where = ¼z q1, ,i is a q-state classical spin on site i, á ñij denotes nearest neighbors and δ is the Kronecker delta
function.We consider themodel in two spatial dimensions on a square lattice. At zero field, where themodel
possesses q-symmetry, it undergoes a symmetry breaking phase transition atfinite critical inverse temperature
b = +( )qlog 1c [23, 33], abovewhich the q-symmetry is spontaneously broken. For q=2 the Pottsmodel
is equivalent to the classical Isingmodel [26] and can thus be solved exactly in zero field for all temperatures
[21, 25]. For general >q 2 and zero field themodel can bemapped onto a staggered six-vertexmodel, which can
be solved exactly only at criticality [34, 35]. Other solvable cases include <J 0 at T 0 and zero field for q=3
on the square lattice [30], and q=4 on the hexagonal lattice as well as q=3 on theKagome lattice [31].

The symmetry breaking phase transition in zerofield is continuous for q 4 and offirst order for >q 4
[23]. The nature of the phase transitionwill be apparent from the geometrical features of the corresponding
convex set phase diagramswhichwe construct below.

Consider the space of all possible probability distributions ( )zP of configurations of q-state spins
= ¼z q1, ,i with i the position on a two-dimensional square lattice withN sites, which form a convex set in

some high-dimensional parameter space. In particular we consider three-dimensional projections of this set in
the thermodynamic limit  ¥N , parameterized by the three observables nearest neighbor interaction energy
per site

åd dá ¢ ñ = á ñ
á ñ

( ) ( ) ( )z z
N

z z,
1

2
, , 6

ij
i j

shiftedmagnetization per site

åá ñ = á ñ -
+

= á ñ -
+˜ ( )z z

q

N
z

q1

2

1 1

2
7

j
j

Figure 2.Convex set generated by the average nearest neighbor correlation á ¢ñzz , the entropy per site s, and the expectation value of the
magnetization per site á ñz for all possible probability distributions of classical 2-state spin configurations on an infinite 2D square
lattice. The surface of extreme points corresponds toGibbs states of the classical Isingmodel on a square lattice, given by
= - å - åáE J z z h zi j i j i i, , which is a special case of the q-state Pottsmodel (5) for q=2. The blue lines correspond to points with

constant interaction = J 1 andmagneticfield h and varying temperatureT, while the red line corresponds to J=0, separating the
ferromagnetic ( >J 0) from the antiferromagnetic ( <J 0) regime. The black line represents the exact solution at h=0 [21]. Beyond
the critical pointA an emerging ruled surface (green) again signals symmetry breaking. The bifurcation pointBwith parameters
= -J 1 and h=4 gives rise to an exponentially degenerate lowest-energy state with a non-zero value of the entropy as T 0. This

set looks very similar to the quantum Ising case in 1D in figure 1(b), which is to be expected as bothmodels lie in the same universality
class.
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and entropy per site

å= - ( ) ( ( )) ( )z zs
N

P P
1

log , 8
z

where á¼ñdenotes expectation values with respect to ( )zP . The convex set  is then given by all possible points
d= á ¢ ñ á ñ[ ( ) ˜ ]X z z z s, , , , such that dá ¢ ñ( )z z, , á ñz̃ and s are compatible with each other, i.e. they stem from a

common valid probability distribution ( )zP . This is an instance of the classicalmarginal problem [36–39].
Notice thatwe are using a shiftedmagnetizationwith an offset +q 1

2
, such that the convex set is reflection

symmetric with respect to á ñz̃ . The extreme points on the surface of this set are then naturally given byGibbs
states of (5).

To see this, consider (hyper)planes in this three-dimensional parameter space, which are defined as families
of points Î X , related by a plane equation of the form

d= á ¢ ñ + á ñ + =· ( ) ˜ ( )n X nn z z n z n s d, , 9x y z  

where n is the normal vector of the plane and d is the distance of the hyperplane to the origin. Setting =n J2x ,
=n hy and =n Tz , this yields exactly the (negative of the) free energy per site of (5)

d- = á ¢ ñ + á ñ +( ) ( )f J z z h z Ts2 , , 10

where the factor 2 comes from the fact that every site has 4 nearest neighbors on a two-dimensional square
lattice.

For a given set of parameters (i.e. normal vector) the hyperplane tangent to the convex set hasmaximum
possible distance from the origin and thus alsominimizes the free energy, which is the definition of aGibbs state.
Every point on the surface thus corresponds to a state of thermodynamic equilibrium, at parameters given by the
orientation of the tangent plane and free energy proportional to the distance of the tangent plane to the origin.
Conversely, every point inside the convex set corresponds to a possible non-equilibrium state of the system.

If the tangent plane touches the convex set at a unique point only, then the thermodynamic stable state is
unique and exactly given by aGibbs state which yields the observables given by the tangent point for the
parameters ( )J h T, , defined by the orientation of the tangent plane, i.e. its normal vector n. If however the
tangent plane touches the set on an entire line or even a plane, then the statewhichminimizes the free energy for
these parameters is not unique, which is a prerequisite of symmetry breaking. The set of valid states can then be
parameterized by one (ormore) real parameters. Such ruled surfaces (continuous sets of tangent lines) or planes
are thus the geometrical signatures that will enable us to detect symmetry breaking and the emergence of a
connected order parameter.

We show the surfaces of the resulting convex sets for the Pottsmodel for q=3 and q=5 infigures 3 and 4
respectively (the special case of the Isingmodel, corresponding to q= 2, is shown infigure 2). These sets show
interesting geometrical features fromwhich awealth of other information, such as the nature of phase
transitions, locations of critical points, critical exponents, susceptibilities, etc can be extracted. The numerical
data for plotting these surfaces has been obtained bymeans of tensor network techniques described in
appendix A. For scatter plots of points obtained from randomprobability distributions, which approximate the
convex set from the inside, see appendix B.2.

3.1. Symmetry breaking and the ruled surface
For zero field, >J 0 and <T Tc the thermodynamic state thatminimizes the free energy is q-fold degenerate
and the q-symmetry can be spontaneously broken, such that á ñ ¹z̃ 0. Themaximumpossible value á ñz̃ max can
then be taken as the order parameter associated to this phase transition6. For a given set of parameters any state
within this q-fold degenerate space thusminimizes the free energy and is characterized by the same values for
dá ¢ ñ( )z z, and s, but different á ñz̃ 7.

This is nicely reflected in the convex sets through the emergence of a (green) ruled surface at the critical
point. Zero field implies tangent planes with normal vectors lying in the á ñ =z̃ 0 plane, i.e. = [ ]n J T2 , 0, . The
tangent plane touches the convex set on a unique point in the á ñ =z̃ 0 plane everywhere except for >J 0 and
<T Tc, where the tangent plane in fact touches the convex set along awhole line for each J andT, given by

d= á ¢ ñ á ñ( ) [ ( ) ˜ ]X t z z r z s, , ,max with Î -[ ]r 1, 1 and á ñ >z̃ 0max themaximumvalue of the order parameter.

6
Given á ñz̃ max the shiftedmagnetization is then á ñ = - + á ñ˜ ( ( ) ) ˜z k q z1 2 max with k = 1,K, q the integer enumerating themaximally

symmetry broken states, characterized by one-sitemarginal distributions given by d= + -( ) ( )p z q p1 2 1z k, , where <p q1 is a
function ofT. Other order parameters for the Pottsmodel have also been proposed. One possibility for defining an observable whose
expectation value in the symmetry broken phase is independent of k is e.g. given by defining p=( ) ( )O z z qexp 2 i andmeasur-
ing á ñ = Î∣ ∣ [ ]O pq 0, 1 .
7
Mixtures ofmaximally symmetry broken states generally do not correspond to physically realizable states as they cannot be converted into

each other bymeans of localmodifications.Mathematically they are elements of disjointHilbert space sectors [40, 41]. A hint towards this
fact is given by the peculiar structure of the random scatter plots for quantum and classical systems as shown in appendix B.

6
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An infinitesimal value of ¹h 0 then immediately explicitly breaks the symmetry and causes the tangent plane to
touch the set on a unique point of the set infinitesimally close to the edge of the ruled surface. Or equivalently, the
curve of tangent points of a tangent plane given by = ¹[ ]n J h T2 , 0, as  h 0 will end in a point with
á ñ = á ñ ¹˜ ˜z z 0max for <T Tc. This nicely reflects the fact that the order parameter can be obtained byfirst
taking the thermodynamic limit at non-zero field before letting the field go to zero.

The nature of the phase transition changes from continuous tofirst order for >q 4, where afirst order
phase transition is characterized by a latent heat and a discontinuity offirst derivatives of the free energy at the
critical point. The internal energy and all other expectation values that can bewritten as a derivative of the free
energy, such as the order parameter and also the entropy per site s therefore have a discontinuity at the critical
point. In the convex set we can thus detect first order phase transitions through the appearance of flat
hyperplanes at the boundary that arise evenwithout additionally plotting the order parameter. At the critical point

Figure 3.Convex set generated by nearest-neighbor interaction energy dá ¢ ñ( )z z, , shiftedmagnetization á ñz̃ and entropy per site s of
all possible probability distributions of 3-state spins on a two-dimensional square lattice.We plot the surface of this set, corresponding
toGibbs-states of (5) for q=3.Due to reflection symmetrywe only plot the upper half of the set. Blue lines denote points of constant
= J 1 and h and varying temperatureT. The red line denotes the exactly solvable decoupled case J=0 and thus separates regions of

ferromagnetic and antiferromagnetic coupling. At the critical pointA the emergence of a (green) ruled surface signals a non-
uniqueness of the thermal equilibrium state at zerofield and thus symmetry breaking. As a guide to the eyewe have plotted a few
vertical lines on the ruled surface, alongwhich the tangent plane touches the convex set. PointBmarks the end point of the bifurcation
line of = -J 1, h=4 and T 0, leading up to the (blue) top planewhere the lowest energy state is exponentially degenerate,
resulting in afinite residual entropy as described in section 3.2. A similar situation arises at pointC, corresponding to the end point of
the line = -J 1, h=0, T 0. There again the lowest energy state is exponentially degenerate, resulting in afinite residual entropy
as described in section 3.3. This plane is only present for >q 2 and does therefore not appear in the convex set drawn for the Ising
model in figure 2. As a guide to the eyewe have drawn two-dimensional grids onto the top and left plane, emphasizing the fact that
there the tangent plane touches the set on the entire respective planes.

Figure 4.Convex set generated by the same observables as infigure 3 for the case of 5-state spins where the surface of this set is given by
Gibbs-states of (5) for q=5. For >q 4 the phase transition is offirst order and thus comeswith a discontinuity of the three
observables at the critical point. This results in a coexistence region of the ordered and disordered phases and the critical pointA gets
stretched out into a (gray)flat triangular surface, where anymixture of the two phases is a valid state, i.e. the two phases coexist. This
flat part then smoothly connects to the (symmetry broken) ordered phase represented by the green ruled surface. As a guide to the eye
we have drawn a two-dimensional grid onto the flat triangular surface, emphasizing the fact that there the tangent plane touches the
set on the entire triangular surface andwe have also plotted a few vertical lines on the green ruled surface, alongwhich the tangent
plane touches the convex set. Theflat surfaces emerging frompointsB andC are of the same nature as described infigure 3.
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the thermal equilibrium state is not unique and any point on this hyperplane is a valid state of the system at the
critical temperature. This corresponds to the coexistence of phases at the critical point which is characteristic for
first order phase transitions. In the case of the Pottsmodel, this flat hyperplane then smoothly connects to the
ruled surface representing the symmetry broken phase <T Tc (see figure 4).

For continuous phase transitions the thermodynamic state at the critical point is still unique and there is no
such additional hyperplane.We can thus already detectfirst order phase transitions in the lower dimensional
convex set that does not include the order parameter. In the case of the Pottsmodel, a two-dimensional convex
set parameterized by dá ¢ ñ( )z z, and s thus already suffices to detect the phase transition for >q 4, it will however
showno signature of the phase transition for q 4 (see figure 5), for which adding an additional axis
corresponding to the order parameter á ñz̃ is necessary.

Wewant to emphasize here that these convex sets and thus also the ruled surfaces exist prior tomaking any
references to anymodelHamiltonian, we just consider finite dimensional projections of the convex set of all
possible probability distributions of a systemof physical degrees of freedom. Thismeans that the reason for the
occurrence of symmetry breaking phase transitions ultimately lies in the geometrical structure of the space of all
possible probability distributions. It would therefore be interesting to investigate all possible projections of this
set and classify all possible ruled surfaces that can arise on such projections.

3.2. Top plane
The top (blue) plane corresponds to parameters = -J 1, h=4 andT=0where the tangent plane touches the
convex set on the entire top plane,meaning that the thermal equilibrium state is not unique and in fact all states
on this plane are valid equilibrium states for these parameters.

Exactly at this point, the two terms in theHamiltonian become ‘equally strong’ in the following sense. If we
start from the completely polarized state =z qj , themagnetic field term isminimized, whereas the interaction
part has a positive energy contribution, resulting in a net energy of – q2 4 per site. If we nowflip one spin at an
arbitrary position from q to -q 1, we gain exactly the same amount of energy from the interaction term aswe
lose from themagnetic field term and the overall energy stays the same.We can now continueflipping spins that
waywithout changing the energy, as long aswe neverflip any spins next to an already flipped one, whichwould
result in a net energy increase of+2. In general, a cluster ofNf flipped spins and a boundary of lengthNb results
in a net energy change of - N N4 0f b , which is only zero for =N 1f . The two lowest energy states with the
smallestmagnetization are thus the twoNéel states between q and -q 1. Similarly, flipping from q to any
< -z q 1 always results in a net energy increase and the restricted space of lowest energy states is thus given by

all configurations Î -[ ]z q q, 1j such that every = -z q 1i is completely surrounded by =z qj (see also
figure 6). This restricted space is equivalent to the configuration space for the nearest-neighbor exclusion lattice-
gasmodel (1NN) [32] and grows exponentially with the system size.

AtT=0 all such configurations are equally likely; the entropy per site is therefore finite andmeasures the
exponential growth of the space of lowest energy configurations. This symmetry of equal probability can
however be spontaneously broken as any statisticalmixture of such configurations is a valid state of the system

Figure 5. Surfaces of the two-dimensional convex sets generated by nearest neighbor interaction dá ¢ ñ( )z z, and entropy per site s for
the zerofield Pottsmodel for q=3 and q=5. The phase transition is continuous for q=3 and cannot be detected from the convex
set without adding an additional axis corresponding to the order parameter á ñz̃ . For q=5 the phase transition is however offirst
order and can thus be detected through the discontinuities of dá ¢ ñ( )z z, and s across the critical pointA, which gets stretched into a
straight (red) linewhere the twophases can coexist. As a guide to the eyewe have extended this line to both sides to see that there is
(albeit very small) curvature to both sides of the phase coexistence part.

8

New J. Phys. 18 (2016) 113033 VZauner et al



with equal free energy = -f q2 4 . The entirety of all suchmixtures is exactly given by the top blue plane in the
convex sets, where pointBmarks the state of equal probability which hasmaximal entropy.

To calculate the boundary of the top blue planewe consider tiny perturbations away from this point in
parameter space, which immediately cause a jump onto the edge of the plane. Similar to degenerate perturbation
theorywe then simulate this perturbationHamiltonian onlywithin the restricted subspace of the top plane to lift
the exponential degeneracy and determine its extreme points. The perturbationHamiltonian is just the
magnetic field term

åb m= ( )H z , 11
j

j1

whereμ is usually small. Sincewe however simulate thisHamiltonian in the restricted subspace only (which also
makes the simulation non-trivial),μ need not be small and just controls the position along the edge of the top
plane.We therefore wish to evaluate

å= m

Î

- å ( )


Z e , 12
z

z

t

j j

where the sum is only over the space of valid configurations t given by the top plane and m Î . The entropy
per site s is then given by

m= + á ñ( ) ( )s z zlog , 13

where =z Z N1 is the partition function per site. The other observables dá ¢ ñ( )z z, and á ñz̃ are computed as usual
butwith respect to (12). Note that entropy and dá ¢ ñ( )z z, are independent of q and á ñz̃ for different q are related
by just an offset. The top plane thus has the same shape for all q, but different vertical offset in á ñz̃ .

Note that (12) is equivalent to the 1NNmodel in a chemical potentialμ [42–44], where states q and -q 1
correspond to an empty and occupied site respectively. The limits m  ¥ correspond to the the completely
polarized and theNéel states respectively (or equivalently the completely empty andmaximallyfilled lattice

Figure 6.Construction of the degenerate space of lowest energy configurations for the top plane, corresponding to = -J 1, h=4 and
T=0. Starting from the fully polarized state =z qi with lowest possible energy, flipping single spins from q to -q 1 leaves the
overall energy invariant. Flipping two ormore adjacent spins however results in a net energy increase, as doesflipping from q to any
< -z q 1. The resulting space consists of all configurationswhere Î -[ ]z q q, 1j such that every = -z q 1i is completely

surrounded by =z qj .
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respectively in terms of the 1NNmodel) and thus have zero entropy, while m = 0 corresponds to pointBwith
maximal residual entropy sres. Our calculated value at this point reproduces the (log of the) value k ( )1 given in
section 1.1 of [32] up tomachine precision. The tensor networkwe use to simulate (12) is described in
appendix A.1.

3.3. Left plane
The left (red) planewith dá ¢ ñ =( )z z, 0 corresponds to parameters = -J 1, h=0 andT=0where the tangent
plane touches the convex set on the entire left plane,meaning that the thermal equilibrium state is not unique
and in fact all states on this plane are valid equilibrium states for these parameters.

For these parameters the lowest energy states are given by all configurations Î [ ]z q1,j , such that no nearest
neighbors are in the same state. This is the famous vertex coloring problem and consequently, the partition
function can bewritten as a chromatic polynomial in q [45, 46] and counts the number of proper vertex
colorings of the two-dimensional square lattice with q colors. For any >q 2 the number of valid configurations
is exponentially large in system size andwe are thus presentedwith the same situation as for the top plane in the
previous section, butwith a different restricted subspace. For q=2 this problem is trivial as only two valid
configurations exist (the twoNéel states) and the left plane is absent (see figure 2).

Again, atT=0 all these configurations are equally likely, leading to a residual, non-zero entropy sres. For
q=3 this can bemapped onto the problemof residual entropy of square ice [30], for which the value is known
exactly as = ( )s 3 2 log 4 3res [47, 48]. For >q 3 there are no exact solutions for the square lattice. The
symmetry of equal probability can again be spontaneously broken and any point on the left flat surface then
corresponds to a valid statisticalmixture of configurations within the restricted subspace, giving the same free
energy f=0. All thesemixtures are represented by the left red plane in the convex sets, where pointC
corresponds to the equal probabilitymixturewhich hasmaximal entropy sres.

To determine the boundary of the left red planewe proceed the sameway as in section 3.2 and simulate

å= m

Î

- å ( )


Z e , 14
z

z

c

j j

where the sum is nowover all proper vertex colorings c. The entropy is again given by (13).
We have calculated sres for several values of q (seefigure 7), wherewe can reproduce the exact value for q=3

up to an accuracy of -( ) 10 10 with bond dimensionD=800 of theMPS-representation of the dominant
eigenvector of the transfermatrix.

The tensor network used to simulate (14) is described in appendix A.2.

3.4. Critical exponents and susceptibilities
If we are given the entire convex set as a function of the extensive observables we can determine critical
exponents and susceptibilities purely from the geometrical shape of its surface, i.e. completely independent from
the intensive parameters J,T and h. To ease notation in this sectionwewill write

dá ¢ ñ á ñ≔ ( ) ≔ ˜ ( )t z z z z, , . 15

Critical exponents for q 4 can be extracted from the change of the tangent plane orientation around the
critical point. For this we need the functional relation between an observable and amodel parameter close to the
critical point. As an example consider the shiftedmagnetization z for zero field slightly below the critical
temperatureTc. Therewe expect z to behave as

Figure 7.Residual entropy at pointC on the left plane, corresponding to = -J 1, h=0 andT=0, for values Î [ ]q 2, 20 . Here the
residual entropy corresponds to the logarithmof the number of configurations (per site) such that no two neighbors are in the same
state.
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µ - = ( )
⎛
⎝⎜

⎞
⎠⎟z

T

T
h1 , 0 16

c

b

with b the critical exponent for themagnetization.
We assume the thermodynamic surface to be given e.g. by the interaction energy t as a function of the

(independent) variables entropy s and shiftedmagnetization z, i.e. = ( )t t s z, . Our intention is to extract b
entirely from the geometrical formof the thermodynamic surface, i.e. from the surface given by the function
( )t s z, .We therefore need away to express themodel parameters J,T and h in terms of the observables t, s and z.
From (9) and (10)we saw that they are precisely the elements of the normal vector to the surface function ( )t s z, .
On the other hand, the normal vector to the thermodynamic surface ( )t s z, at a given point is

= -
¶
¶

-
¶
¶

( )
⎡
⎣⎢

⎤
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t
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t

z
1, , . 17

andwe can immediately identify

= -
¶
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= -
¶
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( )T J
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s
h J

t

z
2 , 2 . 18

Without loss of generality wefix J=1 and consider the case h=0, i.e. the path of normal vectors with

= - =¶
¶

n 0t

z3 .We can thenwrite

= -
¶
¶

¶
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+
-
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A

1

wherewe have extracted the critical temperature from the orientation of the tangent plane at the critical point A

as = - ¶
¶

T 2
A

c
t

s
. If we plot - ¶

¶
¶
¶

-)(⎡
⎣⎢

⎤
⎦⎥log 1

A

t

s

t

s

1
versus zlog we expect a linear relation near A andwe can

read off b from the slope8.
Estimates for the critical exponents calculated that way from the obtained given numerical data are of the

same accuracy as estimates obtained from conventional fits of observables versusmodel parameters (i.e. a
logarithmic fit of (16)).

Furthermore, susceptibilities defined as the derivatives of the (extensive) observables t, s and zwith respect to
the (intensive)model parameters J,T and h can be calculated from the curvature of the surface. Loosely speaking,
wewould like to knowhowwemove on the surface if we change the orientation of the normal vector
infinitesimally along one component. In other words, if we change the orientation of n by dT along n2, what are
the resulting dt , ds and dz . The relation between these changes is of course dictated by the function ( )t s z, (or in
fact any other representation of the surface, e.g. as ( )s t z, or ( )z t s, ).

Withfixed J=1we have established themodel parameters as functions purely of the observables in (18), i.e.
we consider the vector-valued function

=( ) [ ( ) ( )] ( )p s z T s z h s z, , , , . 20

According to (17) the Jacobian of this function is then proportional to theHessian of ( )t s z, via

=
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2

sowe can express it purely in terms of the observables. The infinitesimal change in the normal vector when
moving infinitesimally on the surface is then given by d d d d d= =· [ ]p O OJ s zwith , .p

Weare however interested in the converse direction, i.e. the derivatives which are the elements of the
Jacobian of the inverse function =-( ) ≔ ( ) [ ( ) ( )]O pT h T h s T h z T h, , , , ,1

=
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The inverse function theorem then gives the elements of this Jacobian by inverting (21) andwe can thus obtain
the susceptibilities from the second derivatives of ( )t s z, , i.e. we can obtain d d d= = -· ·O p pJ JO p

1 .With the

8
As per definition of the ruled surface, z is not unique along this path and it is understood that we take themaximumof z in (19) for each s

and t, i.e. the order parameter. This path is nothing but the upper boundary of the ruled surface shown e.g. infigure 3. Alternatively we could
have formulated (19) in terms of derivatives of = ( )s s t z, . Notice however that = ( )z z s t, is not a good choice as it is a highlymultivalued
function on the ruled surface.
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determinant of (21) given by
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These relations are only valid if (21) is invertible and the susceptibilities can diverge if (23) becomes zero.
Consider for example themagnetic susceptibility cT . Infigure 3 along the path h=0we have z=0 and

=¶
¶

0t

z
(i.e. normal vectors with =n 03 ), as t becomesmaximal when z=0. This is the case for any s along this

path, themixed derivative ¶
¶ ¶

t

s z

2

is thus also zero everywhere. For >T Tc the second derivative
¶
¶

t

z

2

2 isfinite, but

becomes zero as  +T Tc (and is in fact zero at every point on the ruled surface per definition).With =¶
¶ ¶

0t

s z

2

and ¶
¶

0t

z

2

2 the determinant of the Jacobian becomes zero as T Tc and cT diverges.

4. Convex sets for quantumfield theories

As afinal example, let us consider a 3Dquantum systemof free bosons in the continuumat finite temperature
wherewe expect towitness Bose–Einstein condensation.Motivated by the above findings we plot the
expectation value of the kinetic energy, the entropy, and aU(1) symmetry breaking order parameter yá ñ, with
respect to all possible quantum states to obtain ameaningful convex structure (see figure 8). The extreme points
of this set correspond toGibbs states of theHamiltonian

ò y y y y=   - +( ) ( ) [ ( ) ( )] ( )† †H x
m

x x v x xd
1

2
28

V

3

atfixed density r = 1, where again a symmetry breaking termhas been added explicitly. A ruled surface
emerging below the critical temperature for v= 0 beautifully signals the onset of Bose–Einstein condensation,
where the equilibrium state is not unique and can be parameterized by afinite value of yá ñ. Again, the critical
exponent can be extracted from the change of the orientation of the tangent plane around the critical point.

Figure 8.Convex set of the kinetic energy y yá  ñ† , the entropy density s and (the absolute values of) the order parameter yá ñ for all
possible states of free bosons in three-dimensions withfixed particle density.We show the surface of this set corresponding toGibbs
states of the ideal Bose gas for particle density r = 1 and various values of the temperatureT and Î v . The blue lines correspond to
RGflows through parameter space as indicated by the black arrows. Theseflows can be performed exactly and are given by (33) and
(34). The black line corresponds to v=0 and displays a critical pointA at a critical temperatureTc. Beyond this point a ruled surface
emerges, witnessing symmetry breaking and the occurrence of Bose–Einstein condensation.
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The systemof an ideal Bose gas in the presence of aU(1)-symmetry breaking term can be solved analytically
[49] and the thermodynamic extensive quantities plotted infigure 8 are readily found to be

y
m

á ñ = - ( )v
, 29

l bm bml bm= - - -- -( ) ( ) ( )s F F
5

2
, 303

5 2
3

3 2
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2
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1 3
5 2

with s the entropy density and the chemical potentialμ always chosen such that

r
m

l bm= + - =- ( ) ( )v
F 1. 32

2
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3 2

Further we have defined l = p
mT

2 2 and = å "s
s
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¥ - -( ) F x n xe 0n

nx
1 . At v=0 the critical temperature is

given by r = p
l

( )Tc m

2

c
2 with l r= - ( )F 0c

3 1
3 2 .

The blue lines infigure 8 correspond tomomentum-shell RG-flows through parameter space, which can be
performed exactly [50]. The RG flow equations are found to be

b b= -( ) ( ) ( )s 0 e , 33s2

=( ) ( ) ( )v s v 0 e 34s7
2

for Î -¥ ¥( )s , .

5. Conclusion

In conclusion, we investigated the convex structure of RDMs andmarginal probability distributions ofmany
body systems and illustrated how the concept of symmetry breaking emerges very naturally through the
appearance of ruled surfaces at the boundaries of these sets. As these sets exist without any prior notion of an
underlyingHamiltonian, this shows that the reason for the occurrence of symmetry breaking lies in the
geometrical structures of the convex sets of all possible RDMs ormarginal probability distributions. This picture
seems to capture all the thermodynamically relevant features ofmany body systems in an extremely concise way.
It would therefore be very interesting to classify all possible ruled surfaces that can arise on such convex sets.

Ourwork is very close in spirit to the original groundbreaking papers of Gibbs [2, 51], which clarified that
phase transitions and the coexistence of different phases can be understood in terms of non-analyticities in the
parametrization of the surface of thermodynamic diagrams. It is also related to ideas developed in the context of
N-representability [5–8] for describing quantumphase transitions in fermionic systems. It provides an explicit
construction of the famous thermodynamic surface ofMaxwell [3] for the case of classical and quantum spin
systems, and illustrates very concisely themathematical physics point of view of symmetry breaking as a
breakdownof ergodicity [41]. It also complements the ideas developed in [52, 53], where a systematic procedure
forfinding order parameters was developed by contrasting theRDMs of the low-lying excited states infinite size

Figure A1.Graphical representations of the tensor networks. (a)Decomposition of the partition function (A.1) into a tensor network,
specified by theMPOsT given in (A.2). (b)ConcatenatingMPOs along a line yields the diagonal-to-diagonal transfermatrix D . (c)
Approximation of the dominant eigenvector of D with aMPS.
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quantummany body systems. Note however that the starting point of our work is very different: wemake no
a priori reference to aHamiltonian, and just consider scatter plots with respect to all possiblemany body
wavefunctions and/or probability distributions. Only the choice of plotted observables relates the obtained
convex set to the ground/equilibrium state properties of a correspondingHamiltonian. Finally, theworks
[16, 17] reported on the convex structure of expectation values of separable densitymatrices; in retrospect, those
are the convex sets obtained in themean-field regime of an infinite-dimensional lattice, as illustrated in
figure 1(a).

One remaining open question is howphase transitions of different types, such as e.g. Berezinskii–Kosterlitz–
Thouless phase transitions [54, 55] or especially phase transitions in the ground states of two- and higher-
dimensional quantum systemswith topological order fit in this description, as these cannot be characterized in
terms of local order parameters. The tensor network description of quantum statesmight yield one possible
resolution, as the topological order induces certain symmetries onto the virtual boundary theory of the tensor
network [56–58]. Topological phase transitions then correspond to symmetry-breaking phase transitions in the
virtual boundary theory [59], i.e. in the structure of the fixed-point subspace of the transfermatrix of the tensor
network. These transitions can thus be characterized in terms of a local order parameter at the virtual level of the
tensor network [60]. By bringing this virtual operator back to the physical level, it can be associated to the non-
local string order parameters that characterize the topological phase [61].When considering systems on a torus,
the natural approachwould hence be to plot the expectation value of such aWilson loop around the torus; the
different ground states in the topological phase can then be distinguished by different values of this (non-
extensive and non-local) order parameter, and hence a ruled surface should emerge at the topological phase
transition. Convex sets for SPTphases have been constructed in [62], which appeared as a follow up to the
preprint [63] of the current paper.
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AppendixA. Tensor network representations for classical spin latticemodels

In this sectionwe give information about the tensor network representations of the thermal partition functionZ
and the tensor networkmethods used to approximately calculate the partition function zper site, the entropy
per site s and the expectation values of local observables (such as dá ¢ ñ( )z z, and á ñz ) ofGibbs states of (5).

Consider a two-dimensional square lattice with =N L2 2 sites where the partition function is given by

å åb b d= - = + +
á ñ

[ ( )] { [ ( ) ( )]} ( )zZ H J z z
h

z zexp exp ,
4

, A.1
z z ij

i j i j

and can be understood as a contraction of a tensor network consisting of 4-index tensors

b d d d d

b

= + + +

´ + + +

{ [ ( ) ( ) ( ) ( )]}

( ) ( )
⎡
⎣⎢

⎤
⎦⎥

T J z z z z z z z z

h
z z z z

exp , , , ,

exp
2

. A.2

z z z z i j i k j l k l

i j k l

, , ,i j k l

Such that

 å= = ¼
=

( )
⎛
⎝⎜

⎞
⎠⎟Z T T T T TtTr , A.3

zn

N

z z z z z z z z z z z z z z z z
1

2

, , , , , , , , , , , ,i j k l l m n o p q j r r s m t

where tTr denotes the tensor trace. Notice that every index appears exactly twice. Since every tensor (A.2)
contains 4 nearest neighbor interaction terms andZ comprises exactly N2 of such terms there are half asmany
tensors in the network as there are sites on the lattice.

A concatenation of this choice of tensor along a line throughout the entire lattice yields the diagonal-to-
diagonal transfermatrix (DTM) D of the partition function, or in other words,T represents amatrix product
operator (MPO) [64, 65] decomposition of theDTM.Other tensor decompositions—e.g. yielding the row-to-
row or column-to-column transfermatrix upon concatenation—are also possible, the advantage of (A.2) is
however that theDTM is hermitian for all J, h andβ.

We therefore have = ( )Z Tr D
L and in the limit  ¥N the dominant eigenvalue of theDTMcorresponds

to the partition function per diagonal =z ZD L
1
of the system (see e.g. [25]).
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In order to evaluate the partition function per site = =z Z zDN L
1 1

2 and the local observables in the
thermodynamic limit  ¥L we obtain the dominant eigenvector of theDTMbymeans ofmatrix product
state (MPS) [65] techniques.More specifically, we use amodification of the algorithmpresented in [20] for
MPOs in the thermodynamic limit [66] to calculate the partition function per site z and anMPS approximation
of the dominant eigenvector of theDTM,which can be used to calculate all local observables, in particular
dá ¢ ñ( )z z, and á ñ = á ñ - +

z̃ z
q 1

2
.

Aswe have access to the partition function per site z, we can now easily evaluate the entropy per site, which is
given by

b b b= - = + ( ) ( )s e f e zlog , A.4

with the internal energy per site d= - á ¢ ñ - á ñ( )e J z z h z2 , . For graphical representations of the tensor network
and related quantities see figure A1.

A.1. Top plane and the 1NN
In order to determine the boundary of the top planewe simulate the trivial perturbationHamiltonian in the
restricted subspace t given by all configurations Î -[ ]z q q, 1j such that every = -z q 1i is completely
surrounded by =z qj , i.e. wewish to evaluate

å= m

Î

- å ( )


Z e . A.5
z

z
tp

t

j j

In section 3.2 it is alsomentioned that (A.5) is equivalent to the 1NNmodel in a chemical potential [32, 42–44]
by interpreting = -z q q, 1j as empty and occupied sites of a lattice gas with nearest neighbor exclusion.We
can therefore arrive at a formulation of (A.5)where the entropy per site s and the interaction dá ¢ ñ( )z z, are
independent of q and á ñz̃ for different q are related by an offset.

By substituting = -z q sj j with =s 0, 1j we get

å å= = =m m m m

Î

- å - -

Î

å - ( )( )

 

Z Ze e e e , A.6
s s

q s qN s qN
tp hsj j j j

where Zhs is the partition function of the 1NNmodel and  is the restricted set of all configurations Î [ ]s 0, 1j

such that every =s 1i is completely surrounded by =s 0j . The partition functions per site are then related
by = m-z ze q

tp hs.
To evaluate Zhs we can achieve a summation over the restricted subspace only by summing over all

configurations Î [ ]s 0, 1j , but giving configurationswith neighboring = =s s 1i j statistical weight zero. This
waywe obtain aMPOdecompositionwith bond dimension 2, withMPOs given by

m
= + + +( ) ( )

⎡
⎣⎢

⎤
⎦⎥T f f f f s s s sexp

2
, A.7s s s s s s s s s s s s i j k l, , ,

hs
, , , ,i j k l i j i k j l k l

where the 2×2matrix f is given by

= - ( )f s s1 . A.8s s i j,i j

Themagnetization then becomes

m m
á ñ = -

¶

¶
= -

¶
¶

= - á ñ ( )z
z

q
z

q s
log log

. A.9
tp hs

Giving for the entropy per site

m m= + á ñ = - á ñ ( )s z z z slog log . A.10tp hs

dá ¢ ñ( )z z, is invariant as d d=( ) ( )z z s s, ,i j i j and the expectation value is evaluatedwith respect to the same
probability distribution.

A.2. Left plane and the coloring problem
Todetermine the boundaries of the left (red) planewe seek to simulate the same perturbationHamiltonian as in
the last section

å= m

Î

- å ( )


Z e , A.11
z

z
lp

c

j j

butwith c a different restricted subspace, given by all configurations Î [ ]z q1,j such that no nearest neighbors
have the same value.

We can again achieve a summation over the restricted subspace only by summing over all configurations
Î [ ]z q1,j , but giving configurationswith neighboring =z zi j statistical weight zero. This waywe obtain aMPO

decompositionwith (unchanged) bond dimension q, withMPOs given by
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m
= - + + +( ) ( )

⎡
⎣⎢

⎤
⎦⎥T f f f f z z z zexp

2
, A.12z z z z z z z z z z z z i j k l, , ,

lp
, , , ,i j k l i j i k j l k l

where the q×qmatrix f is given by

d= - ( ) ( )f z z1 , . A.13z z i j,i j

The expectation value of the interaction dá ¢ ñ( )z z, is zero per construction and the entropy is then given by

m= + á ñ ( )s z zlog . A.14lp

Appendix B. Random scatter plots

B.1.One-dimensional quantum spin-1/2 lattice systems
Infigure B1 we show a scatter plot of observables of random states on a lattice of =S 1 2 spins in d=1
dimensions, together with the surface already shown infigure 1(b). The points in the plot were obtained by
generating a large amount of random infinitematrix product states [65] of lowmatrix dimension = -D 2 10,
drawn from the unitary ensemble [67] andmeasuring the corresponding observables. The plot gives a beautiful
practical demonstration of the procedure outlined in section 2. There it is argued that a scatter plot generated
fromdrawing random states and calculating expectation values of local observables from (in this case) the 2-site
RDMproduces a convex set, whose surface is given by points corresponding to ground states of a family of
Hamiltonians defined by the chosen collection of observables (in this case (2)). For a given set ofHamiltonian
parameters, any points inside the set correspond to 2-site RDMs from (superpositions ormixtures of) excited
states with respect to thatHamiltonian.

The surface shown infigure 1(b) is asymptotically obtained by taking the convex hull of the data points
generated from a larger and larger amount of random states with varying bond dimension. Figure B1 however
shows thatmoderate bond dimensions of = -D 2 10 already yield a very good approximation of the true
surface. The scatter plot also beautifully shows how the ruled surface emerges from the cloud of randomdata
points in the formof two distinct lobes in the vicinity of the green ruled surfacewith hardly any points in
between, whereas away from the the ruled surface the data points are distributed fairly homogeneously.We
observe this to be the characteristic geometric phenomenon for the occurrence of symmetry breaking in terms of
a random scatter plot and suspect that it can be related to the breakdownof ergodicity and the existence of
disjointHilbert space sectors in phases of spontaneously broken symmetries [40, 41].

B.2. Two-dimensional classical lattice spin systems
In section 3we have built on the fact that the surface of the convex sets are given byGibbs states of (5), which can
be efficiently simulated using tensor network techniques. As these convex sets however exist in probability space
prior to any definition of aHamiltonian, the occurrence of symmetry breaking is thus purely a consequence of
the geometrical structure of probability space. To further elucidate this argument we show scatter plots of points
from randomprobability distributions ( )zP , which are notGibbs distributions. The points generated by

Figure B1. Scatter plot of observables of random states on a lattice of =S 1 2 spins in d=1 dimensions, together with the surface
shown infigure 1(b). Here we explicitly plot both upper and lower half of the convex set for the sake of completeness. The black dots
correspond to observables of single randomquantum stateswithmoderate entanglement. It is clearly visible how the green ruled
surface emerges as two distinct lobes in the scatter plot of random states.
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expectation values with respect to these distributionsmust therefore all lie within the convex set surfaces shown
infigures 3 and 4.

In order to simulate randomprobability distributionswe resort to the class of distributions representable by
tensor networks consisting of 4-index tensorsT

= = ¼( ) ( )zP T T T T T , B.1z z z z z z z z z z z z z z z z, , , , , , , , , , , ,i j k l l m n o p q j r r s m t

such that the partition function, obtained by summing over all configurations z , is given by a tensor trace

 å= = ¼( ) ( )Z T T T T TtTr , B.2
z

z z z z z z z z z z z z z z z z, , , , , , , , , , , ,i j k l l m n o p q j r r s m t

which can again be efficiently evaluated using tensor network techniques. The expectation values dá ¢ ñ( )z z, and
á ñz̃ can then be calculated the usual way (see appendix A).

For a general (unnormalized) probability distribution ( )zP the entropy per site is given by

å= - = - á ñ( ) ( ) [ ( )] ( ) ( ) ( )z zs P P P z
N

Plog log
1

log , B.3
z

with z the partition function per site. In the special case of aGibbs distribution, á ñ( )Plog is nothing but the
internal energy times the inverse temperature bE, which is a local observable (i.e. a sumof local terms). The
entropy is then given by the familiar formula b= -( )s e f , with e the internal energy per site and f the free
energy per site.

For arbitrary ( )zP the quantity á ñPlog
N

1 is in general however not a local observable.With (B.1) on the other
handwe essentially restrict ourselves to probability distributions, for which the entropy is given by the sumof
local observables and the entropy per site can be evaluated as

= - á ñ( ) ( )s z Tlog
1

2
log . B.4

The factor 1

2
comes from the fact that there are half asmany tensorsT as there are sites on the lattice.We thus

obtain randompoints within the convex set by samplingT (or rather Tlog ) from some probability distribution
andmeasuring dá ¢ ñ( )z z, , á ñz̃ and s according to (B.4).

The class of distributions given by (B.1) contains all possible nearest-neighbor interactions aswell as 4-site
interactions around the face on every other plaquette. Higher order interactions and distances can be achieved in
principle by blocking sites, i.e. transforming to variables ¢ = Ä =z zi r

R
r1 . The bond dimension ofT is then given by

qR and onlymoderate values ofR are computationally feasible. As a demonstrationwe have however resorted to
R=1 and have drawn ( )Tlog from a gaussian distributionwith varying standard deviation s Î [ ]0.2, 1.5 . The
resulting scatter plots for q=3 and q=5 are shown in figure B2, together with the surfaces of extreme points
already plotted infigures 3 and 4.

These surfaces are asymptotically obtained by taking the convex hull ofmore andmore randompoints
generated that waywith  ¥R . Figure B2 shows thatR=1 already gives a quite good qualitative
approximation of the convex set. Especially around the green ruled surfacewherewe expect spontaneous
symmetry breaking it is apparent that the points cluster along q distinct branches. This can be interpreted as a
signature of the existence of q disjoint probability spaces in the symmetry broken phase and thus statistical
mixtures of configurations fromdifferent sectors do not correspond to physically realizable states.

AppendixC.Order parameter optimization

It is argued in section 2 that in the case where the order parameter withmaximal symmetry breaking is not
known, one can still use a randomobservable, whichwill in general have afinite overlapwith the true order
parameter. Using this observable as an additional axis will thus yield a convex body showing a ruled surface,
albeit not withmaximal extent. One can then optimize over all possible observables of that type tofind the
observable whichmaximizes the extent of the ruled surface and thus corresponds to the order parameter with
maximal symmetry breaking.

We demonstrate this procedure in the case of the quantum Isingmodel (1).We assume the order parameter
to be a local one-site observable and thus optimize over all possible linear combinations of Pauli-matricesX,Y
andZ, with fixed spectral radius. If the order parameter is not a one-site observable onewould have to optimize
overmulti-site observables, i.e. over linear combinations of products of Pauli-matrices in the case of spin-1/2
systems. Along that line it would be very interesting to know if it is possible to a priori determine (possibly by
differentmeans) just from a random scatter plot if there is a symmetry breaking order parameter at all.

As the observableZhowever is already present in theHamiltonian itself (i.e. we already plot á ñZ ), it is enough
to consider only linear combinations ofX andY.We thus define the one-parameter family of observables
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Figure B2. Scatter plot of observables dá ¢ ñ( )z z, , á ñz̃ and s of q-state spins on a two-dimensional square lattice for q=3 and q=5,
together with the surface of extreme points of the convex set shown in figures 3 and 4.Herewe explicitly plot both the upper and lower
half of the convex sets for the sake of completeness. Black dots correspond to observables of single randomprobability distributions
with interaction distanceR=1 (see text). Around the green ruled surface, where there is symmetry breaking, the random scatter
points clearly cluster along q separate branches, whereas the other accumulation points are afiniteR effect.

FigureC1. Scatter plot of observables á Ä ñX X , á ñZ and á Q ñ( )O (as defined in (C.1)) generated from the same set of random states as
was also used forfigure B1, for p p pQ Î { }0, 0.35 , 0.75 , .We also draw the convex hulls of the respective sets in green. It is clearly
visible that the ruled surface ismost prominent in the caseQ = 0, where =( )O X0 corresponds to the truemaximum symmetry
breaking order parameter associated to the quantumphase transition of (1).
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pQ = Q + Q Q <( ) ( ) ( ) ( )O X Ycos 2 sin 2 , 0 . C.1

And construct convex sets from random states, using á Q ñ( )O as a third axis, and varyΘ. Figure C1 shows
instances of these sets, together with their convex hulls, for certain selected values ofΘ, all generated from the
same collection of random states that was also used to generate figure B1. It is clearly visible that the ruled surface
in the formof a distinct lobe structure ismost prominent for Q = =( )O X0 , whereas there is absolutely no
signature of a ruled surface for pQ = =( )O Y .

FigureC2.Maximumdistance dmax of neighboring points on the convex hull as defined in (C.2), versus angleΘ. This quantity clearly
takes itsmaximumvalue of =d 2max atQ = 0, where =( )O X0 .

FigureD1.Enlarged version of the plot shown infigure 1(a).

FigureD2.Enlarged version of the plot shown infigure 1(b).
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To quantify the extent of the ruled surface emerging in these plots we calculate themaximumdistance

= -
á ñ

∣ ∣ ( )d x xmax , C.2
ij

i jmax

where xi and xj are neighboring points on the convex hull of the set. This quantity is naturallymaximizedwhen
the optimal order parameter withmaximum symmetry breaking is used as a third axis and is plotted againstΘ
for the present case infigure C2 , where dmax shows a definitemaximumatQ = 0.

As visual characterization in terms of ruled surfaces becomes especially hard for convex sets inmore than
three-dimensions (i.e. withmore than three observables), (C.2) can serve as a good quantity to detect ruled
surfaces also in these cases.

AppendixD. Enlarged plots for quantum lattices

InfiguresD1–D3we show enlarged version of the convex sets shown infigure 1 for better visibility of the sets’
details.
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