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Abstract

Quantum states that can yield work in a cyclical Hamiltonian process form one of the primary
resources in the context of quantum thermodynamics. Conversely, states whose average energy
cannot be lowered by unitary transformations are called passive. However, while work may be
extracted from non-passive states using arbitrary unitaries, the latter may be hard to realize in practice.
Itis therefore pertinent to consider the passivity of states under restricted classes of operations that can
be feasibly implemented. Here, we ask how restrictive the class of Gaussian unitaries is for the task of
work extraction. We investigate the notion of Gaussian passivity, that is, we present necessary and
sufficient criteria identifying all states whose energy cannot be lowered by Gaussian unitaries. For all
other states we give a prescription for the Gaussian operations that extract the maximal amount of
energy. Finally, we show that the gap between passivity and Gaussian passivity is maximal, i.e.,
Gaussian-passive states may still have a maximal amount of energy that is extractable by arbitrary
unitaries, even under entropy constraints.

1. Introduction

Atthe very core of quantum thermodynamics—which has recently seen a surge in interest from the quantum
information community [1-3]—lies the task of extracting work from quantum systems. Ideally, this is achieved
by reversible cyclic processes that can be represented by unitary transformations, which, in turn, form the most
basic primitive of a cyclically operating engine. However, from so-called passive states [4] no work can be
extracted unitarily if only a single copy of the system is available. Viewing quantum thermodynamics as a
resource theory of work extraction [5, 6], it is therefore tempting to view passive states as being freely available.
Curiously, most passive states still contain extractable work, that can only be accessed by processing multiple
copies using entangling operations [7]. This has sparked interested in the role of entanglement in work
extraction [8] and more generally in the structure of passive states [9]. States from which no energy can be
extracted unitarily, no matter how many copies are available, are called completely passive, and without further
conserved charges the unique completely passive state is the so-called thermal state. Naturally, the extraction of
work from non-passive quantum states using arbitrary unitaries has therefore been the subject of many fruitful
investigations (see, e.g., [10—13]). This has provided useful insights into the role of coherence, correlations, and
entanglement for work extraction [14—17], and conversely, about the work cost for establishing

correlations [18-20] and coherence [21].

However, the unitary operations that extract the maximal amount of work from a given non-passive state
may be difficult to realize in practice. For example, the global entangling unitaries required to extract work from
passive but not completely passive states are not feasible under realistic conditions, which alreadyleads to a
discrepancy between theoretically extractable work and what is practically achievable. Consequently, the
characterization of states as non-completely passive may fail to accurately represent how useful a quantum
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system is for thermodynamical work extraction in practice. It is hence of interest to study the ergotropy [10], i.e.,
the maximal amount of work that can be unitarily extracted in a Hamiltonian process, under the restriction to
practically realizable transformations. An important example of such a constraint in continuous variable
systems is the class of Gaussian unitary operations, which, although being standard operations in quantum
optical systems (see, e.g., [22, 23]), represents a significant restriction of the set of all possible transformations.
This manifests, amongst other things, in the fact that Gaussian operations are not universal for quantum
computation [24].

It is the aim of this paper to investigate this interesting dichotomy between what is possible in principle and
what is practically feasible within quantum thermodynamics, focusing on Gaussian unitary transformations. We
provide a full characterization of Gaussian passivity for multi-mode states, i.e., we give necessary and sufficient
conditions to identify all (not necessarily Gaussian) quantum states from which no work can be extracted using
Gaussian transformations. This characterization only requires knowledge of the first and second statistical
moments of the state in question, independently of whether the state itself is Gaussian or not, and immediately
provides a protocol for optimal Gaussian work extraction given any number of modes. Finally, we show that the
gap between passivity and Gaussian passivity can be maximal if only the first and second moments of the state are
known. That is, we show that the first and second moments of any Gaussian-passive state (which need notbe a
Gaussian state, and hence is not to be confused with a passive Gaussian state) are in principle compatible with
those of a state of maximal ergotropy, even under entropy constraints.

To examine the usefulness of Gaussian transformations in the context of thermodynamic work extraction,
we first review the notion of passivity in section 2. In section 3 we introduce the notion of Gaussian passivity and
formulate our main result, the characterization of all Gaussian-passive states, before examining the ergotropic
gap in section 4. Insection 5 we finally discuss the consequences and applications of our results.

2. Passive states

On an elementary level, controlled engines perform their tasks based on repeated cycles, during which the
system dynamics are typically changed through an external control. The resulting time evolution of the system is
hence governed by a time-dependent Hamiltonian H(#). At the end of each cycle of duration 7 the system is
returned to its initial Hamiltonian, i.e., H (n7) = H (0) = H, for any integer #, leading to unitary dynamics
perturbed only by the necessary interactions with the environment. In this sense the unitary orbits of the input
quantum states determine the fundamental limits of operation of cyclic machines, which is one of the reasons
that unitary work extraction has recently attracted attention [7-9, 17, 25, 26].

Within this paradigm, the elementary processes that we consider here can in principle generate work if the
average energy of a given system can be reduced by unitary operations. That s, if for a system with Hilbert
space ‘H described by a density operator p € L () there exists a unitary operator U € L (H), such that

E = tr(HyUpUT) < tr(Hyp) = E. (1)

States for which the average energy cannot be reduced by unitaries are called passive. All passive states p,, are
diagonal in the eigenbasis {|n) } of Hy with probability weights decreasing (not necessarily strictly) with
increasing energy [4], that is, passive states Ppass €aN be written as

d—1
ppass = an |7’l> <I’l|, (2)
n=0

where p < p, when E, > E,,and d = dim(H),and,asusual, 0 < p, < 1and >_, p, = 1, while the energy
eigenstates satisfy

Hy |n) = E, |n). 3)

To see this, simply consider a two-dimensional subspace spanned by |m) and |n) with E,,, < E,.. To decrease the
average energy using a unitary on this subspace, the corresponding probability weights must satisfy p, < p,.
Any state for which this is not the case for any two-dimensional subspace is passive, and is of the form of
equation (2).

An example for a passive state in continuous variable systems is a product state of two thermal states of two
bosonic modes at the same frequency wand temperature T = 1/ (in units where /2 = kg = 1). Abosonic
mode is represented by annihilation and creation operators aand a', satisfying [a, a’] = 1,and a Hamiltonian
Hy = w a'a. The operator a annihilates the vacuum state, i.e., a |0) = 0, and the eigenstates of the
Hamiltonian, the Fock states, are obtained by applying the creation operators |n) = (a")"/~/n! |0). A thermal
state 7 () of temperature T = 1/ is given by

2
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e BHo

T(B) = Z (C))

where Z = tr(e” ) is the partition function. In the Fock basis the thermal state reads

T(B) =1 — e ™)) e n)(n. )

Since thermal states are the only completely passive states, any resource state for a cyclic engine must be out of
thermal equilibrium. The most elementary engine is hence a heat engine, which only needs access to two thermal
baths at different temperatures. This is arguably the simplest out-of-equilibrium resource: given two thermal
baths at equal temperature, increasing the temperature of one of them can be achieved by increasing the energy
of one of the systems without requiring any knowledge of its microstates.

At this point, it seems prudent to restate the above observation about these elementary heat enginesin a
more technical manner by reminding the reader of the elementary fact that, for two bosonic modes at the same
frequency, the product state of two thermal states with different temperatures is not passive. Since we will refer
to it later in the manuscript, it is instructive to examine one potential strategy to prove this statement. Consider
two bosonic modes at the same frequency w, with temperatures T, and T, > T, respectively. The product state
of the two thermal states is

(T, Tp) = (1 — e/ Ty(1 — e /Ty~ ef“’(%+TLb) |m)(m| @ |n)(n]. 6)

m,n

Up to acommon prefactor, the matrix elements are
e(f+4) = emmr Tty @)

The state is not passive if there exist pairs of non-negative integers m, nand m’, n’, such that
mT, + nT,> m'T, + n' T, 8)

while m’ + n' > m + n.Now consider, e.g., the case where m = n = x/2,whilem’ = 0andn’ = x + 1for
some even non-negative integer x. In this case, the second inequality is trivially true for all x and the first
condition is

x(To + T)/2> (x + DT, ©

whichimplies x > 2T, /(T, — T,) > 0. So by picking x large enough, one can always find a two-dimensional
subspace, in which a unitary can reduce the average energy, proving that the state 7 (T, T;,) of equation (6) is not
passive.

However, practically realizing these unitaries on arbitrary (two-dimensional) subspaces of the overall
Hilbert space may prove to be practically unachievable. Therefore, it is of interest to investigate the limitations of
work extraction by operations that can be feasibly implemented.

3. Gaussian-passive states

While the fact that 7 (T, T;) of equation (6) is not passive in principle allows the construction of a heat engine
the necessary unitaries to extract energy may be difficult to realize in practice. A set of operations thatare in
general easier to implement are Gaussian unitaries, which are generated by Hamiltonians that are at most
quadratic in the mode operators, and transform Gaussian states to Gaussian states. These, in turn, are states
whose characteristic Wigner function is Gaussian (see, e.g., [23] for a detailed review). Such states are fully
described by their first and second statistical moments, that is, the expectation values of linear and quadratic
combinations of the quadrature operators X;, where X,,,_ | = (a, + a,f )/A2 and X, = —i(a, — aJ V/N2,
andn = 1, 2,...,N labels the N modes of the system in question. The second moments are collected in the real,
symmetric, and positive definite 2N x 2N covariance matrix I', with components

where (A) = tr(Ap) is the expectation value of the operator A in the state p. For example, the thermal state of a
single bosonic mode that we have encountered in equation (5) belongs to the class of Gaussian states and is of
particular interest for us here. Its first moments vanish, (X;) = 0, while the covariance matrix is given
by Dihermal = coth (5"‘}/2)]1

Gaussian unitaries are described by affine maps (S, €) : X — SX + &, where ¢ € R?N represent phase
space displacements, and S are real, symplectic matrices. By definition, a symplectic operation S leaves invariant
the symplectic form €2 with components 2,,,,, = i[X,, X,] = 6.1 — Onms1o 1€

3
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SQST=Q. (11)

Displacements, represented by the unitary Weyl operators D (£) = exp (ix/2 X7Q¢), do not affect the covariance
matrix but rather shift the first moments. While all of the mentioned transformations preserve the Gaussian
character of Gaussian states, one can of course also consider the effects of Gaussian transformations on any
arbitrary state via the effect on the corresponding covariance matrix and vector of first moments. We are now
interested in determining for which (not necessarily Gaussian) states of two non-interacting bosonic modes with
frequencies w, and wy, (w.l.0.g. we assume wjy, > w,), energy can be extracted using only Gaussian operations. In
analogy to the previous terminology we call states Gaussian-passive if their average energy cannot be reduced by
Gaussian unitaries. The first important step in analyzing this property is the ability to identify Gaussian-passive
states, which is established by the following theorem.

Theorem 1. Any (not necessarily Gaussian) state of two non-interacting bosonic modes with frequencies w, and
wp = w, is Gaussian-passive if and only if its first moments vanish, (X) = 0, and its covariance matrix I is either

(i) in Williamson normal form [27]
I' = diag{v,, vs Vi, V)

with v, > vy, for w, < wy. Or, in the case of equal frequencies w, = wy, the state may also be

_fal C
F_(c le)

(i) in standard form [28, 29]

with C = cl, if w, = wy.

Proof. To prove theorem 1, we will proceed in the following way. We will start with the most general
combination of first moments (X) and second moments I that any initial state may have, before successively
applying Gaussian operations (steps P1-P4) to reduce the average energy. When we reach a state whose energy
cannot be further reduced by Gaussian unitaries, we compare its energy to that of the initial state and identify
under which conditions the energy has been lowered with respect to the initial state. These conditions will finally
result in the identification of the characteristics of Gaussian-passive states as stated in clauses (i) and (ii) above.

(P1) Displacements: As we consider non-interacting bosonic modes, the average energy of a two-mode state is
given by the sum of the average energies of the individual modes. For a single mode with frequency w, and
ladder operators a and a’, a state described by the density operator p has the average energy
E(p) = w,tr(pa’a), which can be written in terms of the state’s covariance matrix I, and vector of first
moments (X,) as

E(p) = wa(i[tr(ra) - 2]+ i [1(Xa) Hz)’ (12)

where ||-||is the (Euclidean) norm. Since displacements change the first moments but leave the second
moments invariant, the energy of the state can always be decreased by shifting (X,) to the null vector.
Conversely, every state with non-vanishing first moments cannot be Gaussian-passive, since its energy can
be lowered by appropriate displacements. From here on we may hence consider only states for which the
energy has been reduced by displacements as much as possible, such that for each mode one has (X,) = 0.
In the following, one may then apply Gaussian unitaries represented by symplectic transformations S, which
leave the zero first moments invariant.

(P2) Local symplectic operations: In the next step, we note that every two-mode covariance matrix I" can be
brought to the standard form I [28,29] bylocal symplectic operations Sjoc = Sioc,a @ Sioc,b> thatis,

1
ST she =T = (41 ) (13)

where C = diag{q, ¢}. Each of the single-mode symplectic operations Sy, ; (i = 4, b) can be decomposed
into phase rotations and single-mode squeezing as

Stoci = R(6)S (1) R(¢y). (14)
For some real angles 6, and ¢;, and real squeezing parameters r;, these local operations take the form
[ cosf; sinb; v_fe" 0
RO) = ( sin 6; cosei) » S() = ( 0 e'f)' (15)

Conversely, this means that we can write the covariance matrix I" as

4
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I' = Sp) (ST, (16)

where the inverse operations are also local symplectic transformations S, = Soe, @ Spoc.s- The single-

mode inverses Slgj,,. are simply
Sioei = R(=$)S(=m)R (0. (17)
This allows us to express the energy of the state described by the covariance matrix I as

E(T) = %(a cosh(2r,) — 1) + %(b cosh(2ry) — 1). (18)

Since cosh(2r;) > 1,itbecomes clear that the energy of a state with covariance matrix I" can be lowered by
local symplectic operations until I' reaches the standard form. Consequently, states for which I' = I; are
not Gaussian-passive, whereas states with covariance matrices in the standard form may still have energy
that can be reduced by global symplectic transformations.

(P3) Two-mode squeezing: After using local Gaussian operations to extract as much energy as possible, one is
hence left with a state whose covariance matrix is in the standard form of equation (13). The local covariance
matrices of each mode are then proportional to the identity, al and b1, but the off-diagonal block C may
have two different diagonal elements c; and ¢,. If this is the case, we can apply a two-mode squeezing
operation to reduce the energy and bring the covariance matrix to a form in which the off-diagonal block is
proportional to the identity as well. The symplectic representation of this global transformation is

cosh(r)1 sinh(r) az)

sinh(r)o, cosh(r)l (19)

Stms = (

where 0, = diag{1, —1} is the usual Pauli matrix and the squeezing parameter r that achieves equal oft-
diagonal elements is given by

a-—c¢

r = —lartanh| 2—2|. (20)
2 a+b

To show that this transformation always reduces the average energy, we compute the energy E (")

associated to the two-mode squeezed covariance matrix I' = StysI STTMS and find

E(D) = % [a cosh?(r) + bsinh?(r)] + % [b cosh?(r) + asinh?(r)]

+ @[(q — &)sinh(2r) — 1]. Q1)

We then take the derivative with respect to rand set O (I')/0r = 0, which provides the condition
(a + b)sinh(2r) 4+ (q — @)cosh(2r) = 0, (22)

which in turn is solved by r from equation (20). It is then easy to check that for this value of r we have
02E(T')/0r? > 0, indicating that the energy is minimal for the specified value of the squeezing parameter.
The two-mode squeezing transformation with this strength hence reduces the energy. While the oft-
diagonal block of the covariance matrix is proportional to the identity after this operation, the local
covariance matrices are generally not of this form, albeit still being diagonal. We can then use local rotations
R(¥, ¢) = R(¥) ® R(p), which leave the energy invariant, to bring the covariance matrix back to the
standard form where every 2 x 2 subblock is now proportional to the identity, i.e.,

al cl )

- 23
cl bl (23)

L' =RW, )T R, ¢) = (
In some circumstances, the third step of the protocol can be seen as the conversion of Gaussian
entanglement into work. Note that the previous two steps consist of local unitaries, and hence leave any
entanglement measure invariant. If the initial state is a Gaussian state, the form of T in equation (23) further
indicates that no more entanglement is present after step P3, since a non-negative determinant of the2 x 2
off-diagonal block is a sufficient separability criterion for two-mode Gaussian states [29]. For any Gaussian
state, the presence of entanglement hence indicates that the energy can be lowered by Gaussian unitaries in
the third step. However, the fact that the energy of a Gaussian state can be lowered in step P3, does not
imply that the initial state is entangled [19]. Moreover, if the initial state is not Gaussian, the final state after
step P3 may still be entangled in general.

(P4) Beam splitting: Having reached a state with a covariance matrix as in equation (23), we have exhausted all
local Gaussian operations as well as two-mode squeezing to lower the energy. In particular, at this point we
know that applying any local or global squeezing transformation can only increase the energy. This leaves

5
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only the beam splitting transformation as a last Gaussian unitary that we still have at our disposal. This
transformation, represented by the global orthogonal symplectic matrix

cos(@)1 sin(A)1 )

sin(@)1 — cos(0)1 (24)

Sps(0) = (
for real values of 6, is an optically passive transformation. That is, it leaves the average excitation number
unchanged. If the frequencies of the two modes are the same, w, = wy, then such a transformation
obviously also leaves the average energy unchanged. In this case, the energy of the state cannot be further
lowered by any Gaussian unitary and we conclude that the state is hence Gaussian-passive, which proves
clause (ii) of theorem 1.

If the frequencies are not the same we may assume w.l.o.g. that w, < wj,. Then, the energy can be lowered by
shifting as many excitations as possible to the lower frequency mode. To prove this rigorously, we compute
the average energy of

Tap = Ses(O)T Sis (6), (25)
for which we find
E(Tep) = %[a cos2(0) + bsin2(0) + csin(20) — 1]
+ %[b cos?(0) + asin*(f) — sin(20) — 1]. (26)

Similarly as for the two-mode squeezing we then set 9E (Isp) 08 = 0 and find that the energy is minimized
when

%arctan(asz) ifa>b,
0= . . o 27
S arctan (ﬁ) + 5 ifa<b

The resulting covariance matrix [p = diag{w,, v,, vy, v} isin Williamson normal form [27], its
eigenvalues coincide with its symplectic eigenvalues, and the lower frequency mode now has the higher
population, v, > v;,. Any further Gaussian unitary applied to this final state would bring the covariance
matrix (and/or the first moments) to a form that would allow reducing the energy via one (or several) of the
steps P1-P4. The corresponding symplectic operations leave the symplectic eigenvalues invariant.
Consequently, the second moments of the initial state uniquely determine the associated Gaussian-passive
covariance matrix [gp. Thatis, I5p is the only covariance matrix with symplectic spectrum { v, v, vy, Vp}
whose energy cannot be lowered by Gaussian unitaries. (If w, = wy, the Gaussian-passive covariance matrix
is not unique, but is determined only up to arbitrary optically passive transformations.) We therefore arrive
at the conclusion that the state associated to the covariance matrix I';p is Gaussian-passive. Any state whose
covariance matrix is not of this form can be subjected to one (or several) of the steps P1-P4 to reduce its
average energy, and is hence not Gaussian-passive, which concludes the proof.

O

Note that for any given initial state (which need not be Gaussian), the corresponding Gaussian-passive state
is not unique, because the operations P1-P4 do not commute. For instance, applying the operations of step P1
after any of the other steps leads to different final states that have the same first and second moments, and hence
the same final energy. The symplectic eigenvalues of the initial state hence uniquely define the lowest energy that
can be reached via Gaussian unitaries, but several (non-Gaussian) states (equivalent up to energy conserving
Gaussian unitaries) may be compatible with the corresponding Gaussian-passive covariance matrix.

A corollary that follows immediately from theorem 1 concerns the extension to an arbitrary number of
modes.

Corollary 1. An arbitrary state of n bosonic modes is Gaussian-passive if and only if all of its two-mode marginals are
Gaussian-passive.

Proof. To prove this statement, simply note that all Gaussian unitaries can be decomposed into sequences of
operations on one or two modes. Consequently, if a state admits no two-mode marginal whose energy can be
lowered by Gaussian unitaries, then the overall state must be Gaussian-passive. O
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An interesting example for a Gaussian-passive state of two modes with different frequencies is that of a
product of single-mode thermal states, in which each mode has a different temperature. In this case the

symplectic eigenvalues are v; = coth (E) and for T, = 0 the condition 1, > v, for Gaussian passivity can be

i

expressed as
Yo o Lo (28)
we Ty
Now, recall from section 2 that we know that within the framework of general operations the product states of
two thermal states at different temperatures is not passive, regardless of the frequencies of the modes involved.
However, as we have seen, such a state may nonetheless be Gaussian-passive depending on the relation between
thelocal temperatures and frequencies.

Here, aword of caution is in order. Since (Gaussian) unitaries leave the purity tr(p?) = 1//det(I")
unchanged, one may be tempted to (falsely) conclude that the existence of (Gaussian) states that have the same
purity as a given Gaussian-passive state but alower average energy means that one may further reduce the energy
of Gaussian-passive states beyond what is stated in theorem 1. For example, for 1,1, < wj,/w, the Gaussian
state with covariance matrix

I — (l/al/b 1 0)’ (29)
0 1

has the same purity as the Gaussian-passive state specified in clause (i). However, such states cannot be reached
by Gaussian unitaries if their symplectic eigenvalues (v, and 1 in the example) do not match those of the
original state. In general, there may not even exist a non-Gaussian unitary (even if it preservers the Gaussian
character of the specific state in question) that transforms the corresponding states into each other. Finally, note
thatall passive states are obviously Gaussian-passive, but the converse is not true.

4. The gap between passivity and Gaussian passivity

Given the characterization of a given state as Gaussian-passive, it is now natural to ask how much extractable
energy is potentially sacrificed by the restriction to Gaussian unitary orbits, rather than general unitary
transformations. Suppose that one only has knowledge of and access to the first and second moments of an
arbitrary state of two bosonic modes. With this information, which can practically be easily obtained in several
ways (see, e.g., [30]), one may use Gaussian unitaries to lower the energy of the state until reaching a Gaussian-
passive state. One may then wonder how much more energy could have been extracted if general unitary
operations could be applied. The answer to this question of course depends on the particular state in question. So
far, we have only fixed the first and second moments, which identifies states uniquely only if they are Gaussian. It
is hence crucial to understand which (non-Gaussian) states are in general compatible with a given set of first and
second moments. A first important observation can be phrased in the following lemma.

Lemma 1. The first and second moments of any Gaussian-passive state are compatible with a (non-Gaussian) pure
state for which the entire energy is extractable by unitary transformations.

Proof. To prove the lemma first note that any Gaussian-passive state of an arbitrary number of modes with
different frequencies (clause (i) of theorem 1) has alocally thermal covariance matrix with different effective
temperatures for each mode. In this case it is therefore enough to consider a single mode in a thermal state with
arbitrary temperature, and show that there exists a pure state with the same first and second moments. If such a
pure state exists for a single mode for any temperature, then one can certainly find pairs of states of this kind
whose tensor product is compatible with a Gaussian-passive, locally thermal two-mode state.

In the case that the covariance matrix has non-zero off-diagonal blocks, i.e., if clause (ii) of theorem 1
applies, the covariance matrix can be brought to the locally thermal form by an energy conserving, Gaussian
unitary, that is, a beam splitting transformation with angle 6 given by equation (27). Then, as before, one is
required to find a pure state that matches the resulting locally thermal covariance matrix. Applying the inverse of
the beam splitting operation to this state, one finally obtains a pure two-mode state compatible also for
Gaussian-passive states with non-diagonal covariance matrices.

To identify the pure states in question, recall that the first moments of a Gaussian-passive state must vanish.
This is also the case for all Fock states |n) = (a')"/ Jn! | 0). Indeed, this is even true for all superpositions of
Fock states that differ by two or more excitations, for instance, all states of the form Y, ¢; |n + m k) forany
n, m € Nyand m > 2. Restricting to this family of states we are interested in identifying those members that
also have the second moments of a thermal state. This is achieved by considering states that are superpositions of
Fock states that differ by three (or more) excitations (m > 3), forinstance, \/p |n) + /1 — p |n + 3)for

7
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0 < p < 1.Forsuch asstate the covariance matrix takes the form of a thermal state I' = v, where

v=2pn+ 2(1 — p)(n + 3) + 1).Byselecting the discrete value n € Ny and the continuous parameter p
appropriately, the second moments of this state can be chosen to match those of the desired Gaussian-passive
state. The thus constructed state p s clearly pure, and its (non-equilibrium) free energy F (p) = E(p) — TS (p),
where S(p) = —tr[p In(p)]is the von Neumann entropy, is hence identical to its average energy E (p). The
latter can of course be lowered to zero by a (non-Gaussian) unitary by rotating the pure state towards the vacuum
state. O

Aswe have seeninlemma 1, if only the first and second moments of a state are known and the state is
Gaussian-passive, in principle all (or none) of the state’s energy may be extractable. In other words the gap
between the free energy, i.e., the energy extractable by general unitary transformations, and the energy that can
be extracted using only Gaussian unitaries is maximal. However, for such a maximal gap both the initial and final
state must be pure, since we are applying only (Gaussian) unitary transformations, which leave the spectrum
(and hence the entropy) unchanged. As most machines operate at an ambient temperature that is above zero and
the second law implies that it is highly unlikely for any state to fall below the entropy of the corresponding
thermal state, a maximal gap in the above sense may not occur in practice.

It is therefore reasonable to assume that, in addition to the first and second moments, also a lower bound on
the entropy of the state is known. Given some non-zero entropy S(p) = —tr[p In(p)], the average energy of the
state is bounded from below and may not be lowered arbitrarily’. In such a case, it is of interest to ask whether the
free energy gap is still maximal. That is, we ask: does every Gaussian-passive state with entropy® S, admit a state p
that has the same entropy, S(p) = Sy, and the same first and second moments (X) = 0and I', but whose energy
E(p) (which is determined by (X) and I via equation (12)) may be lowered to the minimal value E, that is
compatible with Sy using (arbitrary) unitary transformations?

Theorem 2. The first and second moments of any Gaussian-passive state with entropy Sy are compatible with a (non-
Gaussian) state of the same entropy for which the maximal amount of energy (the energy difference to the thermal
state of entropy So) is extractable by unitary transformations.

Proof. For a Gaussian-passive state with fixed first and second moments ((X) = 0 andI), the energyis also
fixed, see equation (12). In addition, we assume that the entropy of the initial (Gaussian-passive) state is S.
Clearly, any previous Gaussian unitaries or possible general unitary transformations on the closed system that
are yet to be carried out must leave this entropy invariant. On the other hand, the state p that minimizes the
energy E (p) at a fixed entropy S is the thermal state of equation (4). Since we cannot change the spectrum using
unitary transformations, we hence have to show that for every Gaussian-passive state at entropy S there exists a
state p that has the same spectrum as a thermal state of entropy So, but whose first and second moments (and
hence its energy) match those of the Gaussian-passive state.

The strategy to show that this is possible is to start from the thermal state and manipulate it using unitary
transformations to reach the desired first and second moments. In this way the spectrum of the state is preserved.
In particular, we know that the spectrum is also invariant under the possible application of an energy-conserving
beam splitting operation in the case that the covariance matrix of the Gaussian-passive state is not diagonal
(clause (ii) of theorem 1). Consequently, we can again focus on proving the statement of theorem 2 for single-
mode Gaussian-passive states with thermal covariance matrices, as we have argued in the proof oflemma 1. For
each of these local single-mode covariance matrices the diagonal elements are identical and linear functions of
the energy, see equation (12). The first moments as well as the off-diagonals of the covariance matrix of both the
thermal state and the initial state vanish. We therefore restrict to rotations in subspaces of Fock states that differ
by three (or more) excitations to keep it that way.

We now just have to show that this method allows increasing the energy of the thermal state to reach the
energy of any single-mode Gaussian-passive state, which also fixes the desired non-zero second moments. For
any specified energy this can be achieved by continuously rotating in the subspace spanned by the states |0) and
|n) for some sufficiently large n > 3. Since the thermal state is (i) diagonal in the Fock basis, (ii) the eigenvalues
are strictly decreasing with increasing n, and (iii) the Hilbert space is infinite-dimensional, one may reach
arbitrarily large energies at a fixed entropy. Finally, because a Gaussian-passive state with the same first and
second moments (and therefore same energy), and with the same entropy S as the Gaussian-passive initial state
can be reached unitarily from the minimal energy thermal state, the converse must also be true. O

We implicitly assume that the spectrum of the Hamiltonian is bounded from below, i.e., a ground state exists.

8 . . . . . .
Note that the entropy is not determined by the second moments alone, since the Gaussian-passive state need not be a Gaussian state.
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Itis quite remarkable to note that the proof of theorem 2 makes use of the infinite-dimensionality of the
Hilbert space, which is reminiscent of the famous Hilbert hotel paradox (see, e.g., [31, p 17]). The fact that the
Hilbert space is infinite-dimensional is crucial to give the necessary freedom to be able to unitarily increase the
energy of any thermal state to arbitrary values without introducing non-zero first moments or off-diagonal
second moments. In any finite dimension this is not possible. In practice, one may encounter systems that are
effectively finite-dimensional, which would place limitations on the applicability of theorem 2. This could lead
to a potential reduction of the ergotropy gap.

Nonetheless, it is interesting to observe that the infinite dimensions of the Hilbert space may even allow
extending the statement of theorem 2 to cases where more than the first two statistical moments of the
Gaussian-passive state are known. For instance, suppose an expectation value of a cubic combination of mode
operators such as (a®) was known. In this example, one could rotate in a subspace spanned by two Fock states
separated by three excitations (e.g., |k) and |k + 3) for some appropriate value of k ) to arrange for the desired
expectation value without changing the lower order moments, energy, or entropy.

5. Conclusion

In this article, we have investigated the fundamental thermodynamic problem of work extraction from
continuous-variable quantum systems under the restriction to Gaussian unitaries. These operations can
typically be easily implemented in quantum optics experiments, whereas the general unitary transformations
that may be required to extract work from a given non-passive state may be extremely challenging to realize. To
capture the limitations of this restricted class of operations for the task at hand we have introduced the notion of
Gaussian passivity. We have given necessary and sufficient criteria for identifying Gaussian-passive states (whose
energy may not be reduced by Gaussian unitaries) based on the first and second statistical moments of an
arbitrary number of modes. Furthermore, we have shown that although the first two statistical moments provide
complete information about the Gaussian ergotropy (the maximal amount of energy extractable in a Gaussian
unitary process), the gap to the non-Gaussian ergotropy may always be maximal if the state is not fully known,
even under entropy constraints.

This trade-off between usefulness and severe limitation of Gaussian operations comes as no surprise and is a
recurring feature in continuous-variable quantum information. For instance, Gaussian operations are known
not to be universal for computational tasks [24]. Similar properties have also been described in a quantum
thermodynamical framework of converting work and correlations. There it was found that, while Gaussian
operations provide optimal scaling for the creation of entanglement using large input energies, they cannot
create entanglement with finite energy at arbitrary temperatures [19, 32].

While uncovering and quantifying the restrictiveness of Gaussian operations in the thermodynamic context,
our results also provide practical strategies for the implementation of quantum heat engines based on Gaussian
operations in quantum optical architectures. In particular, the steps P1-P4 of the proof of theorem 1 can be
viewed as a set of instructions for Gaussian work extraction.
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