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Abstract
Quantum states that can yield work in a cyclicalHamiltonian process formone of the primary
resources in the context of quantum thermodynamics. Conversely, states whose average energy
cannot be lowered by unitary transformations are called passive. However, while workmay be
extracted fromnon-passive states using arbitrary unitaries, the lattermay be hard to realize in practice.
It is therefore pertinent to consider the passivity of states under restricted classes of operations that can
be feasibly implemented.Here, we ask how restrictive the class of Gaussian unitaries is for the task of
work extraction.We investigate the notion ofGaussian passivity, that is, we present necessary and
sufficient criteria identifying all states whose energy cannot be lowered byGaussian unitaries. For all
other states we give a prescription for theGaussian operations that extract themaximal amount of
energy. Finally, we show that the gap between passivity andGaussian passivity ismaximal, i.e.,
Gaussian-passive statesmay still have amaximal amount of energy that is extractable by arbitrary
unitaries, even under entropy constraints.

1. Introduction

At the very core of quantum thermodynamics—which has recently seen a surge in interest from the quantum
information community[1–3]—lies the task of extractingwork fromquantum systems. Ideally, this is achieved
by reversible cyclic processes that can be represented by unitary transformations, which, in turn, form themost
basic primitive of a cyclically operating engine. However, from so-called passive states[4]nowork can be
extracted unitarily if only a single copy of the system is available. Viewing quantum thermodynamics as a
resource theory of work extraction[5, 6], it is therefore tempting to view passive states as being freely available.
Curiously,most passive states still contain extractable work, that can only be accessed by processingmultiple
copies using entangling operations [7]. This has sparked interested in the role of entanglement inwork
extraction[8] andmore generally in the structure of passive states[9]. States fromwhich no energy can be
extracted unitarily, nomatter howmany copies are available, are called completely passive, andwithout further
conserved charges the unique completely passive state is the so-called thermal state. Naturally, the extraction of
work fromnon-passive quantum states using arbitrary unitaries has therefore been the subject ofmany fruitful
investigations (see, e.g., [10–13]). This has provided useful insights into the role of coherence, correlations, and
entanglement forwork extraction[14–17], and conversely, about thework cost for establishing
correlations[18–20] and coherence[21].

However, the unitary operations that extract themaximal amount of work from a given non-passive state
may be difficult to realize in practice. For example, the global entangling unitaries required to extract work from
passive but not completely passive states are not feasible under realistic conditions, which already leads toa
discrepancy between theoretically extractable work andwhat is practically achievable. Consequently, the
characterization of states as non-completely passivemay fail to accurately represent howuseful a quantum
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system is for thermodynamical work extraction in practice. It is hence of interest to study the ergotropy[10], i.e.,
themaximal amount of work that can be unitarily extracted in aHamiltonian process, under the restriction to
practically realizable transformations. An important example of such a constraint in continuous variable
systems is the class of Gaussian unitary operations, which, although being standard operations in quantum
optical systems (see, e.g., [22, 23]), represents a significant restriction of the set of all possible transformations.
Thismanifests, amongst other things, in the fact thatGaussian operations are not universal for quantum
computation[24].

It is the aim of this paper to investigate this interesting dichotomy betweenwhat is possible in principle and
what is practically feasible within quantum thermodynamics, focusing onGaussian unitary transformations.We
provide a full characterization ofGaussian passivity formulti-mode states, i.e., we give necessary and sufficient
conditions to identify all (not necessarily Gaussian) quantum states fromwhich nowork can be extracted using
Gaussian transformations. This characterization only requires knowledge of the first and second statistical
moments of the state in question, independently of whether the state itself is Gaussian or not, and immediately
provides a protocol for optimal Gaussianwork extraction given any number ofmodes. Finally, we show that the
gap between passivity andGaussian passivity can bemaximal if only the first and secondmoments of the state are
known. That is, we show that the first and secondmoments of anyGaussian-passive state (which need not be a
Gaussian state, and hence is not to be confusedwith a passiveGaussian state) are in principle compatible with
those ofa state ofmaximal ergotropy, even under entropy constraints.

To examine the usefulness of Gaussian transformations in the context of thermodynamicwork extraction,
wefirst review the notion of passivity in section2. In section3we introduce the notion ofGaussian passivity and
formulate ourmain result, the characterization of all Gaussian-passive states, before examining the ergotropic
gap in section4. In section5wefinally discuss the consequences and applications of our results.

2. Passive states

Onan elementary level, controlled engines perform their tasks based on repeated cycles, duringwhich the
systemdynamics are typically changed through an external control. The resulting time evolution of the system is
hence governed bya time-dependentHamiltonianH(t). At the end of each cycle of duration τ the system is
returned to its initialHamiltonian, i.e., H n H H0 0t = º( ) ( ) for any integer n, leading to unitary dynamics
perturbed only by the necessary interactions with the environment. In this sense the unitary orbits of the input
quantum states determine the fundamental limits of operation of cyclicmachines, which is one of the reasons
that unitary work extraction has recently attracted attention[7–9, 17, 25, 26].

Within this paradigm, the elementary processes thatwe consider here can in principle generatework if the
average energy of a given system can be reduced by unitary operations. That is, if for asystemwithHilbert
space described bya density operator L r Î ( ) there existsa unitary operatorU L Î ( ), such that

E H U U H Etr tr . 10 0r r= < =˜ ( ) ( ) ( )†

States for which the average energy cannot be reduced by unitaries are called passive. All passive states passr are
diagonal in the eigenbasis n{∣ ⟩}ofH0 with probability weights decreasing (not necessarily strictly)with
increasing energy[4], that is, passive states passr can bewritten as

p n n , 2
n

d

npass
0

1

år = ñá
=

-

∣ ∣ ( )

where p pn m when E En m , and d dim = ( ), and, as usual, p0 1n  and p 1n nå = , while the energy
eigenstates satisfy

H n E n . 3n0 ñ = ñ∣ ∣ ( )

To see this, simply consider a two-dimensional subspace spanned by mñ∣ and nñ∣ with E Em n< . To decrease the
average energy using a unitary on this subspace, the corresponding probability weightsmust satisfy p pm n< .
Any state for which this is not the case for any two-dimensional subspace is passive, and is of the formof
equation (2).

An example fora passive state in continuous variable systems isa product state of two thermal states of two
bosonicmodes at the same frequencyω and temperatureT 1 b= (in units where k 1B = = ). A bosonic
mode is represented by annihilation and creation operators a and a†, satisfying a a, 1=[ ]† , and aHamiltonian
H a a0 w= † . The operator a annihilates the vacuum state, i.e., a 0 0ñ =∣ , and the eigenstates of the

Hamiltonian, the Fock states, are obtained by applying the creation operators n a n 0nñ = ñ∣ ( ) ! ∣† . A thermal
state t b( ) of temperatureT 1 b= is given by
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e
, 4

H0


t b =

b-
( ) ( )

where tr e H0 = b-( ) is the partition function. In the Fock basis the thermal state reads

n n1 e e . 5
n

nåt b = - ñábw bw- -( ) ( ) ∣ ∣ ( )

Since thermal states are the only completely passive states, any resource state for acyclic enginemust be out of
thermal equilibrium. Themost elementary engine is hence a heat engine, which only needs access to two thermal
baths at different temperatures. This is arguably the simplest out-of-equilibrium resource: given two thermal
baths at equal temperature, increasing the temperature of one of them can be achieved by increasing the energy
of one of the systemswithout requiring any knowledge of itsmicrostates.

At this point, it seems prudent to restate the above observation about these elementary heat engines in a
more technicalmanner by reminding the reader of the elementary fact that, for two bosonicmodes at the same
frequency, the product state of two thermal states with different temperatures is not passive. Sincewewill refer
to it later in themanuscript, it is instructive to examine one potential strategy to prove this statement. Consider
two bosonicmodes at the same frequencyω, with temperaturesTa andT Tb a> , respectively. The product state
of the two thermal states is

T T m m n n, 1 e 1 e e . 6a b
T T

m n,

a b
m
Ta

n
Tbåt = - - ñá Ä ñáw w w- - - +( )( ) ( )( ) ∣ ∣ ∣ ∣ ( )

Up to a commonprefactor, thematrix elements are

e e . 7mT nTm
Ta

n
Tb TaTb

b a=w- + - +w( ) ( )( )

The state is not passive if there exist pairs of non-negative integersm, n and m¢, n¢, such that

m T n T m T n T , 8b a b a+ > ¢ + ¢ ( )

while m n m n¢ + ¢ > + . Now consider, e.g., the case where m n x 2= = , while m 0¢ = and n x 1¢ = + for
some even non-negative integer x. In this case, the second inequality is trivially true for all x and thefirst
condition is

x T T x T2 1 , 9a b a+ > +( ) ( ) ( )

which implies x T T T2 0a b a> - >( ) . So by picking x large enough, one can alwaysfind a two-dimensional
subspace, in which a unitary can reduce the average energy, proving that the state T T,a bt ( ) of equation (6) is not
passive.

However, practically realizing these unitaries on arbitrary (two-dimensional) subspaces of the overall
Hilbert spacemay prove to be practically unachievable. Therefore, it is of interest to investigate the limitations of
work extraction by operations that can be feasibly implemented.

3.Gaussian-passive states

While the fact that T T,a bt ( ) of equation (6) is not passive in principle allows the construction of a heat engine
the necessary unitaries to extract energymay be difficult to realize in practice. A set of operations that are in
general easier to implement areGaussian unitaries, which are generated byHamiltonians that are atmost
quadratic in themode operators, and transformGaussian states toGaussian states. These, in turn, are states
whose characteristicWigner function is Gaussian (see, e.g., [23] for a detailed review). Such states are fully
described by their first and second statisticalmoments, that is, the expectation values of linear and quadratic
combinations of the quadrature operators i , where a a 2n n n2 1 = +- ( )† and a ai 2n n n2 = - -( )† ,
and n N1, 2, ,= ¼ labels theNmodes of the system in question. The secondmoments are collected in the real,
symmetric, and positive definite N N2 2´ covariancematrixΓ, with components

2 , 10ij i j j i i j     G = á + ñ - á ñá ñ ( )

where A Atr rá ñ = ( ) is the expectation value of the operatorA in the state ρ. For example, the thermal state of a
single bosonicmode thatwe have encountered in equation (5) belongs to the class of Gaussian states and is of
particular interest for us here. Itsfirstmoments vanish, 0iá ñ = , while the covariancematrix is given
by coth 2thermal bwG = ( ) .

Gaussian unitaries are described by affinemaps S S, :  x x+( ) , where N2x Î represent phase
space displacements, and S are real, symplecticmatrices. By definition, a symplectic operation S leaves invariant
the symplectic formΩwith components imn m n m n n m, 1 , 1  d dW = = -- +[ ] , i.e.,

3
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S S . 11TW = W ( )
Displacements, represented by the unitaryWeyl operators D exp i 2 Tx x= W( ) ( ), do not affect the covariance
matrix but rather shift the firstmoments.While all of thementioned transformations preserve theGaussian
character of Gaussian states, one can of course also consider the effects of Gaussian transformations on any
arbitrary state via the effect on the corresponding covariancematrix and vector offirstmoments.We are now
interested in determining forwhich (not necessarily Gaussian) states of two non-interacting bosonicmodes with
frequenciesωa andωb (w.l.o.g. we assume b aw w ), energy can be extracted using onlyGaussian operations. In
analogy to the previous terminologywe call statesGaussian-passive if their average energy cannot be reduced by
Gaussian unitaries. Thefirst important step in analyzing this property is the ability to identify Gaussian-passive
states, which is established by the following theorem.

Theorem1.Any (not necessarily Gaussian) state of two non-interacting bosonicmodes with frequencies aw and

b aw w is Gaussian-passive if and only if its firstmoments vanish, 0á ñ = , and its covariancematrix G is either

(i) inWilliamson normal form[27]

diag , , ,a a b bn n n nG = { }

with a bn n for a bw w< . Or, in the case of equal frequencies a bw w= , the statemay also be

(ii) in standard form[28, 29]

a C
C b



G = ⎜ ⎟

⎛
⎝

⎞
⎠

with C c= , if a bw w= .

Proof.Toprove theorem1, wewill proceed in the followingway.Wewill start with themost general
combination offirstmoments á ñand secondmomentsΓ that any initial statemay have, before successively
applyingGaussian operations (steps P1–P4) to reduce the average energy.Whenwe reach a state whose energy
cannot be further reduced byGaussian unitaries, we compare its energy to that of the initial state and identify
underwhich conditions the energy has been loweredwith respect to the initial state. These conditions willfinally
result in the identification of the characteristics of Gaussian-passive states as stated in clauses(i) and(ii) above.

(P1)Displacements: Aswe consider non-interacting bosonicmodes, the average energy of a two-mode state is
given by the sumof the average energies of the individualmodes. For a singlemodewith frequencyωa and
ladder operators a and a†, a state described by the density operator ρ has the average energy
E a atrar w r=( ) ( )† , which can bewritten in terms of the state’s covariancematrix aG and vector offirst
moments aá ñas

E
1

4
tr 2

1

4
, 12a a a

2r w= G - + á ñ ⎜ ⎟⎛
⎝

⎞
⎠( ) [ ( ) ] ( )

where · is the (Euclidean)norm. Since displacements change the firstmoments but leave the second
moments invariant, the energy of the state can always be decreased by shifting aá ñ to the null vector.
Conversely, every state with non-vanishing firstmoments cannot beGaussian-passive, since its energy can
be lowered by appropriate displacements. Fromhere onwemay hence consider only states for which the
energy has been reduced by displacements asmuch as possible, such that for eachmode one has 0aá ñ = .
In the following, onemay then applyGaussian unitaries represented by symplectic transformations S, which
leave the zero firstmoments invariant.

(P2) Local symplectic operations: In the next step, we note that every two-mode covariancematrixΓ can be
brought to the standard form stG [28, 29] by local symplectic operations S S Sa bloc loc, loc,= Å , that is,

S S a C
C b

, 13T
loc loc st




G = G = ⎜ ⎟
⎛
⎝

⎞
⎠ ( )

where C c cdiag ,1 2= { }. Each of the single-mode symplectic operations S iloc, i a b,=( ) can be decomposed
into phase rotations and single-mode squeezing as

S R S r R . 14i i i iloc, q f= ( ) ( ) ( ) ( )

For some real angles θi andfi, and real squeezing parameters ri, these local operations take the form

R S r
cos sin

sin cos
, e 0

0 e
. 15i

i i

i i
i

r

r

i

i
q

q q
q q

=
-

=
-⎛

⎝⎜
⎞
⎠⎟ ( )( ) ( ) ( )

Conversely, thismeans thatwe canwrite the covariancematrixΓ as
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S S , 16T
loc

1
st loc

1G = G- -( ) ( ) ( )

where the inverse operations are also local symplectic transformations S S Sa bloc
1

loc,
1

loc,
1= Å- - - . The single-

mode inverses S iloc,
1- are simply

S R S r R . 17i i i iloc,
1 f q= - - -- ( ) ( ) ( ) ( )

This allows us to express the energy of the state described by the covariancematrixΓ as

E a r b r
2

cosh 2 1
2

cosh 2 1 . 18a
a

b
b

w w
G = - + -( ) ( ( ) ) ( ( ) ) ( )

Since rcosh 2 1i ( ) , it becomes clear that the energy of a state with covariancematrixΓ can be lowered by
local symplectic operations untilΓ reaches the standard form. Consequently, states for which stG ¹ G are
notGaussian-passive, whereas states with covariancematrices in the standard formmay still have energy
that can be reduced by global symplectic transformations.

(P3)Two-mode squeezing: After using local Gaussian operations to extract asmuch energy as possible, one is
hence left with a state whose covariancematrix is in the standard formof equation (13). The local covariance
matrices of eachmode are then proportional to the identity, a and b, but the off-diagonal blockCmay
have two different diagonal elements c1 and c2. If this is the case, we can apply a two-mode squeezing
operation to reduce the energy and bring the covariancematrix to a form inwhich the off-diagonal block is
proportional to the identity aswell. The symplectic representation of this global transformation is

S
r r

r r

cosh sinh

sinh cosh
, 19z

z
TMS





s
s

=
⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( ) ( )

( )

where diag 1, 1zs = -{ } is the usual Paulimatrix and the squeezing parameter r that achieves equal off-
diagonal elements is given by

r
c c

a b
artanh . 201

2

1 2= -
-
+

⎛
⎝⎜

⎞
⎠⎟ ( )

To show that this transformation always reduces the average energy, we compute the energy E G( ˜ )
associated to the two-mode squeezed covariancematrix S S T

TMS st TMSG = G˜ andfind

E a r b r b r a r

c c r

2
cosh sinh

2
cosh sinh

4
sinh 2 1 . 21

a b

a b

2 2 2 2

1 2

w w

w w

G = + + +

+
+

- -

( ˜ ) [ ( ) ( )] [ ( ) ( )]

[( ) ( ) ] ( )

We then take the derivative with respect to r and set E r 0¶ G ¶ =( ˜ ) , which provides the condition

a b r c c rsinh 2 cosh 2 0, 221 2+ + - =( ) ( ) ( ) ( ) ( )

which in turn is solved by r from equation (20). It is then easy to check that for this value of rwe have
E r 02 2¶ G ¶ >( ˜ ) , indicating that the energy isminimal for the specified value of the squeezing parameter.

The two-mode squeezing transformationwith this strength hence reduces the energy.While the off-
diagonal block of the covariancematrix is proportional to the identity after this operation, the local
covariancematrices are generally not of this form, albeit still being diagonal.We can then use local rotations
R R R,J j J j= Å( ) ( ) ( ), which leave the energy invariant, to bring the covariancematrix back to the
standard formwhere every 2×2 subblock is nowproportional to the identity, i.e.,

R R
a c

c b
, , . 23T  

 
J j J jG = G = ⎛

⎝⎜
⎞
⎠⎟( ) ˜ ( ) ˜

˜ ( )

In some circumstances, the third step of the protocol can be seen as the conversion ofGaussian
entanglement intowork.Note that the previous two steps consist of local unitaries, and hence leave any
entanglementmeasure invariant. If the initial state is aGaussian state, the formof G in equation (23) further
indicates that nomore entanglement is present after stepP3, since a non-negative determinant of the 2×2
off-diagonal block is a sufficient separability criterion for two-modeGaussian states[29]. For anyGaussian
state, the presence of entanglement hence indicates that the energy can be lowered byGaussian unitaries in
the third step.However, the fact that the energy of aGaussian state can be lowered in stepP3, does not
imply that the initial state is entangled[19].Moreover, if the initial state is notGaussian, thefinal state after
stepP3may still be entangled in general.

(P4)Beam splitting: Having reached a statewith a covariancematrix as in equation (23), we have exhausted all
local Gaussian operations as well as two-mode squeezing to lower the energy. In particular, at this point we
know that applying any local or global squeezing transformation can only increase the energy. This leaves

5

New J. Phys. 18 (2016) 113028 EGBrown et al



only the beam splitting transformation as a last Gaussian unitary that we still have at our disposal. This
transformation, represented by the global orthogonal symplecticmatrix

S
cos sin
sin cos

24BS
 

 
q

q q
q q

=
-

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( ) ( ) ( )

for real values of θ, is an optically passive transformation. That is, it leaves the average excitation number
unchanged. If the frequencies of the twomodes are the same, a bw w= , then such a transformation
obviously also leaves the average energy unchanged. In this case, the energy of the state cannot be further
lowered by anyGaussian unitary andwe conclude that the state is henceGaussian-passive, which proves
clause(ii) of theorem1.
If the frequencies are not the samewemay assumew.l.o.g. that a bw w< . Then, the energy can be lowered by
shifting asmany excitations as possible to the lower frequencymode. To prove this rigorously, we compute
the average energy of

S S , 25T
GP BS BSq qG = G( ) ( ) ( )

for whichwefind

E a b c

b a

2
cos sin sin 2 1

2
cos sin sin 2 1 . 26

a

b

GP
2 2

2 2

w
q q q

w
q q q

G = + + -

+ + - -

( ) [ ( ) ( ) ( ) ]

[ ( ) ( ) ( ) ] ( )

Similarly as for the two-mode squeezingwe then set E 0GP q¶ G ¶ =( ) andfind that the energy isminimized
when

a b

a b

arctan if ,

arctan if .
27

c

a b

c

a b

1

2

2

1

2

2

2


q =

+ <p

-

-

⎧
⎨⎪
⎩⎪

( )
( ) ( )

The resulting covariancematrix diag , , ,a a b bGP n n n nG = { } is inWilliamson normal form[27], its
eigenvalues coincidewith its symplectic eigenvalues, and the lower frequencymode nowhas the higher
population, a bn n . Any further Gaussian unitary applied to thisfinal statewould bring the covariance
matrix (and/or thefirstmoments) to a form that would allow reducing the energy via one (or several) of the
stepsP1–P4. The corresponding symplectic operations leave the symplectic eigenvalues invariant.
Consequently, the secondmoments of the initial state uniquely determine the associatedGaussian-passive
covariancematrix GPG . That is, GPG is the only covariancematrix with symplectic spectrum , , ,a a b bn n n n{ }
whose energy cannot be lowered byGaussian unitaries. (If a bw w= , theGaussian-passive covariancematrix
is not unique, but is determined only up to arbitrary optically passive transformations.)We therefore arrive
at the conclusion that the state associated to the covariancematrix GPG is Gaussian-passive. Any statewhose
covariancematrix is not of this form can be subjected to one (or several) of the stepsP1–P4 to reduce its
average energy, and is hence notGaussian-passive, which concludes the proof.

,

Note that for any given initial state (which need not beGaussian), the correspondingGaussian-passive state
is not unique, because the operationsP1–P4 do not commute. For instance, applying the operations of stepP1
after any of the other steps leads to differentfinal states that have the samefirst and secondmoments, and hence
the samefinal energy. The symplectic eigenvalues of the initial state hence uniquely define the lowest energy that
can be reached viaGaussian unitaries, but several (non-Gaussian) states (equivalent up to energy conserving
Gaussian unitaries)may be compatible with the correspondingGaussian-passive covariancematrix.

A corollary that follows immediately from theorem1 concerns the extension to an arbitrary number of
modes.

Corollary 1.An arbitrary state of n bosonicmodes is Gaussian-passive if and only if all of its two-modemarginals are
Gaussian-passive.

Proof.Toprove this statement, simply note that all Gaussian unitaries can be decomposed into sequences of
operations on one or twomodes. Consequently, if a state admits no two-modemarginal whose energy can be
lowered byGaussian unitaries, then the overall statemust beGaussian-passive. ,
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An interesting example for aGaussian-passive state of twomodes with different frequencies is that of a
product of single-mode thermal states, inwhich eachmode has a different temperature. In this case the

symplectic eigenvalues are cothi T2
i

i
n = w( ) and forT 0b ¹ the condition a bn n> for Gaussian passivity can be

expressed as

T

T
. 28a

b

a

b

w
w

< ( )

Now, recall from section2 that we know that within the framework of general operations the product states of
two thermal states at different temperatures is not passive, regardless of the frequencies of themodes involved.
However, as we have seen, such a statemay nonetheless beGaussian-passive depending on the relation between
the local temperatures and frequencies.

Here, a word of caution is in order. Since (Gaussian) unitaries leave the purity tr 1 det2r = G( ) ( )
unchanged, onemay be tempted to (falsely) conclude that the existence of (Gaussian) states that have the same
purity as a givenGaussian-passive state but a lower average energymeans that onemay further reduce the energy
ofGaussian-passive states beyondwhat is stated in theorem1. For example, for a b b an n w w< theGaussian
state with covariancematrix

0
0

, 29a b 



n nG¢ = ⎜ ⎟⎛
⎝

⎞
⎠ ( )

has the same purity as theGaussian-passive state specified in clause(i). However, such states cannot be reached
byGaussian unitaries if their symplectic eigenvalues ( a bn n and 1 in the example) do notmatch those of the
original state. In general, theremay not even exist a non-Gaussian unitary (even if it preservers theGaussian
character of the specific state in question) that transforms the corresponding states into each other. Finally, note
that all passive states are obviously Gaussian-passive, but the converse is not true.

4. The gap between passivity andGaussian passivity

Given the characterization of a given state as Gaussian-passive, it is nownatural to ask howmuch extractable
energy is potentially sacrificed by the restriction toGaussian unitary orbits, rather than general unitary
transformations. Suppose that one only has knowledge of and access to thefirst and secondmoments of an
arbitrary state of two bosonicmodes.With this information, which can practically be easily obtained in several
ways (see, e.g., [30]), onemay useGaussian unitaries to lower the energy of the state until reaching aGaussian-
passive state.Onemay thenwonder howmuchmore energy could have been extracted if general unitary
operations could be applied. The answer to this question of course depends on the particular state in question. So
far, we have only fixed the first and secondmoments, which identifies states uniquely only if they areGaussian. It
is hence crucial to understandwhich (non-Gaussian) states are in general compatible with a given set offirst and
secondmoments. Afirst important observation can be phrased in the following lemma.

Lemma1.The first and secondmoments of anyGaussian-passive state are compatible with a (non-Gaussian) pure
state for which the entire energy is extractable by unitary transformations.

Proof.Toprove the lemma first note that anyGaussian-passive state of an arbitrary number ofmodes with
different frequencies (clause (i) of theorem1)has a locally thermal covariancematrix with different effective
temperatures for eachmode. In this case it is therefore enough to consider a singlemode in a thermal state with
arbitrary temperature, and show that there exists a pure state with the samefirst and secondmoments. If such a
pure state exists for a singlemode for any temperature, then one can certainly find pairs of states of this kind
whose tensor product is compatible with aGaussian-passive, locally thermal two-mode state.

In the case that the covariancematrix has non-zero off-diagonal blocks, i.e., if clause(ii) of theorem1
applies, the covariancematrix can be brought to the locally thermal formby an energy conserving, Gaussian
unitary, that is, a beam splitting transformationwith angle θ given by equation (27). Then, as before, one is
required tofind a pure state thatmatches the resulting locally thermal covariancematrix. Applying the inverse of
the beam splitting operation to this state, one finally obtains a pure two-mode state compatible also for
Gaussian-passive states with non-diagonal covariancematrices.

To identify the pure states in question, recall that the firstmoments of aGaussian-passive statemust vanish.
This is also the case for all Fock states n a n 0nñ = ñ∣ ( ) ! ∣† . Indeed, this is even true for all superpositions of
Fock states that differ by two ormore excitations, for instance, all states of the form c n m kk kå + ñ∣ for any
n m, 0Î and m 2 . Restricting to this family of states we are interested in identifying thosemembers that
also have the secondmoments of a thermal state. This is achieved by considering states that are superpositions of
Fock states that differ by three (ormore) excitations (m 3 ), for instance, p n p n1 3ñ + - + ñ∣ ∣ for
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p0 1  . For such a state the covariancematrix takes the formof a thermal state nG = , where
pn p n2 2 1 3 1n = + - + +( ( )( ) ). By selecting the discrete value n 0Î and the continuous parameter p

appropriately, the secondmoments of this state can be chosen tomatch those of the desiredGaussian-passive
state. The thus constructed state ρ is clearly pure, and its (non-equilibrium) free energy F E TSr r r= -( ) ( ) ( ),
where S tr lnr r r= -( ) [ ( )] is the vonNeumann entropy, is hence identical to its average energyE r( ). The
latter can of course be lowered to zero by a (non-Gaussian) unitary by rotating the pure state towards the vacuum
state. ,

Aswe have seen in lemma1, if only thefirst and secondmoments of a state are known and the state is
Gaussian-passive, in principle all (or none) of the state’s energymay be extractable. In otherwords the gap
between the free energy, i.e., the energy extractable by general unitary transformations, and the energy that can
be extracted using onlyGaussian unitaries ismaximal.However, for such amaximal gap both the initial and final
statemust be pure, sincewe are applying only (Gaussian) unitary transformations, which leave the spectrum
(and hence the entropy) unchanged. Asmostmachines operate at an ambient temperature that is above zero and
the second law implies that it is highly unlikely for any state to fall below the entropy of the corresponding
thermal state, amaximal gap in the above sensemay not occur in practice.

It is therefore reasonable to assume that, in addition to the first and secondmoments, also a lower bound on
the entropy of the state is known.Given some non-zero entropy S tr lnr r r= -( ) [ ( )], the average energy of the
state is bounded frombelow andmay not be lowered arbitrarily7. In such a case, it is of interest to askwhether the
free energy gap is stillmaximal. That is, we ask: does everyGaussian-passive statewith entropy8 S0 admit a state ρ
that has the same entropy, S S0r =( ) , and the same first and secondmoments 0á ñ = andΓ, but whose energy
E r( ) (which is determined by á ñandΓ via equation (12))may be lowered to theminimal valueE0 that is
compatible with S0 using (arbitrary) unitary transformations?

Theorem2.The first and secondmoments of anyGaussian-passive state with entropy S0 are compatible with a (non-
Gaussian) state of the same entropy for which themaximal amount of energy (the energy difference to the thermal
state of entropy S0) is extractable by unitary transformations.

Proof. For aGaussian-passive state withfixed first and secondmoments ( 0á ñ = andΓ), the energy is also
fixed, see equation (12). In addition, we assume that the entropy of the initial (Gaussian-passive) state is S0.
Clearly, any previousGaussian unitaries or possible general unitary transformations on the closed system that
are yet to be carried outmust leave this entropy invariant. On the other hand, the state ρ thatminimizes the
energy E r( ) at afixed entropy S0 is the thermal state of equation (4). Sincewe cannot change the spectrumusing
unitary transformations, we hence have to show that for everyGaussian-passive state at entropy S0 there exists a
state ρ that has the same spectrum as a thermal state of entropy S0, but whosefirst and secondmoments (and
hence its energy)match those of theGaussian-passive state.

The strategy to show that this is possible is to start from the thermal state andmanipulate it using unitary
transformations to reach the desired first and secondmoments. In this way the spectrumof the state is preserved.
In particular, we know that the spectrum is also invariant under the possible application of an energy-conserving
beam splitting operation in the case that the covariancematrix of theGaussian-passive state is not diagonal
(clause (ii) of theorem1). Consequently, we can again focus on proving the statement of theorem2 for single-
modeGaussian-passive states with thermal covariancematrices, as we have argued in the proof of lemma1. For
each of these local single-mode covariancematrices the diagonal elements are identical and linear functions of
the energy, see equation (12). Thefirstmoments as well as the off-diagonals of the covariancematrix of both the
thermal state and the initial state vanish.We therefore restrict to rotations in subspaces of Fock states that differ
by three (ormore) excitations to keep it that way.

We now just have to show that thismethod allows increasing the energy of the thermal state to reach the
energy of any single-modeGaussian-passive state, which alsofixes the desired non-zero secondmoments. For
any specified energy this can be achieved by continuously rotating in the subspace spanned by the states 0ñ∣ and
nñ∣ for some sufficiently large n 3 . Since the thermal state is (i) diagonal in the Fock basis, (ii) the eigenvalues
are strictly decreasingwith increasing n, and (iii) theHilbert space is infinite-dimensional, onemay reach
arbitrarily large energies at a fixed entropy. Finally, because aGaussian-passive state with the samefirst and
secondmoments (and therefore same energy), andwith the same entropy S0 as theGaussian-passive initial state
can be reached unitarily from theminimal energy thermal state, the conversemust also be true. ,

7
We implicitly assume that the spectrumof theHamiltonian is bounded frombelow, i.e., a ground state exists.

8
Note that the entropy is not determined by the secondmoments alone, since theGaussian-passive state need not be aGaussian state.
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It is quite remarkable to note that the proof of theorem2makes use of the infinite-dimensionality of the
Hilbert space, which is reminiscent of the famousHilbert hotel paradox (see, e.g., [31, p 17]). The fact that the
Hilbert space is infinite-dimensional is crucial to give the necessary freedom to be able to unitarily increase the
energy of any thermal state to arbitrary values without introducing non-zero firstmoments or off-diagonal
secondmoments. In anyfinite dimension this is not possible. In practice, onemay encounter systems that are
effectively finite-dimensional, whichwould place limitations on the applicability of theorem2. This could lead
to a potential reduction of the ergotropy gap.

Nonetheless, it is interesting to observe that the infinite dimensions of theHilbert spacemay even allow
extending the statement of theorem2 to cases wheremore than thefirst two statisticalmoments of the
Gaussian-passive state are known. For instance, suppose an expectation value of a cubic combination ofmode
operators such as a3á ñwas known. In this example, one could rotate in a subspace spanned by two Fock states
separated by three excitations (e.g., kñ∣ and k 3+ ñ∣ for some appropriate value of k ) to arrange for the desired
expectation valuewithout changing the lower ordermoments, energy, or entropy.

5. Conclusion

In this article, we have investigated the fundamental thermodynamic problemofwork extraction from
continuous-variable quantum systems under the restriction toGaussian unitaries. These operations can
typically be easily implemented in quantumoptics experiments, whereas the general unitary transformations
thatmay be required to extract work from a given non-passive statemay be extremely challenging to realize. To
capture the limitations of this restricted class of operations for the task at handwe have introduced the notion of
Gaussian passivity.We have given necessary and sufficient criteria for identifyingGaussian-passive states (whose
energymay not be reduced byGaussian unitaries) based on thefirst and second statisticalmoments of an
arbitrary number ofmodes. Furthermore, we have shown that although the first two statisticalmoments provide
complete information about theGaussian ergotropy (themaximal amount of energy extractable in aGaussian
unitary process), the gap to the non-Gaussian ergotropymay always bemaximal if the state is not fully known,
even under entropy constraints.

This trade-off between usefulness and severe limitation ofGaussian operations comes as no surprise and is a
recurring feature in continuous-variable quantum information. For instance, Gaussian operations are known
not to be universal for computational tasks[24]. Similar properties have also been described ina quantum
thermodynamical framework of convertingwork and correlations. There it was found that, whileGaussian
operations provide optimal scaling for the creation of entanglement using large input energies, they cannot
create entanglement withfinite energy at arbitrary temperatures[19, 32].

While uncovering and quantifying the restrictiveness of Gaussian operations in the thermodynamic context,
our results also provide practical strategies for the implementation of quantumheat engines based onGaussian
operations in quantumoptical architectures. In particular, the stepsP1–P4 of the proof of theorem1 can be
viewed as a set of instructions forGaussianwork extraction.
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