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Abstract
In recent years we havewitnessed a concentrated effort tomake sense of thermodynamics for small-
scale systems.One of themain difficulties is to capture a suitable notion of work thatmodels
realistically the purpose of quantummachines, in an analogousway to the role played, formacroscopic
machines, by the energy stored in the idealisation of a liftedweight. Despite several attempts to resolve
this issue by putting forward specificmodels, these are far from realisticallycapturing the transitions
that a quantummachine is expected to perform. In this work, we adopt a novel strategy by considering
arbitrary kinds of systems that one can attach to a quantum thermalmachine and definingwork
quantifiers. These are functions thatmeasure the value of a transition and generalise the concept of
work beyond thosemodels familiar fromphenomenological thermodynamics.We do so by imposing
simple operational axioms that any reasonablework quantifiermust fulfil and by deriving from them
stringentmathematical conditionwith a clear physical interpretation. Our approach allows us to
derivemuch of the structure of the theory of thermodynamics without taking the definition of work as
a primitive.We can derive, for anywork quantifier, a quantitative second law in the sense of bounding
thework that can be performed using some non-equilibrium resource by thework that is needed to
create it.We also discuss in detail the role of reversibility and correlations in connectionwith the
second law. Furthermore, we recover the usual identification of workwith energy in degrees of
freedomwith vanishing entropy as a particular case of our formalism.Ourmathematical results can
be formulated abstractly and are general enough to carry over to other resource theories than quantum
thermodynamics.

1. Introduction

The advent of highly-controlled experiments with small-scale quantumdevices compels us to explore the
technological perspective to use such devices as thermalmachines or heat engines [1–5]. For this reason it is
becoming increasingly important to precisely understand forwhich tasks quantummachines are useful and how
to quantify their performance in such tasks.

Withinmacroscopic thermodynamics, it is well establishedwhat the relevant tasks are that a thermal
machine can perform. They can, for example, performmechanical work, chemical work or heat up and cool
down a system away from the environment temperature. Oneway to describe those tasks in general terms is to
observe that themachine induces a transition on a system that is attached to it. Formechanical work, we attach
to the thermalmachine aweight and the task is simply to store potential energy by lifting it. In the case of cooling,
we attach a system in theGibbs state and the task is to lower its temperature. In any of these tasks, if successfully
carried over, wewill say that themachine performswork and accordingly, wewill refer here to the system
attached as thework-storage device.

In contrast, the situation ismuch less clearwhen consideringmicroscopic thermalmachines in physical
situations inwhich quantum effects are expected to be relevant [6]. Even in this regime, onemay readily conceive
quantumanalogues of a liftedweight [7–12]. At the same time, it stillmakes sense to think of refrigerators [13–
16] in the quantum regime, but it remains conceptuallymore challenging to justify such notions as reflecting the
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behaviour of realisticmachines at the nano-scale. By taking the idea seriously that quantum effects are expected
to play a role, one should take into account the possibility that thework-storage device itselfmay be composed of
a few atoms only. At this scale and in this regime systems are neither expected to fully adequate to themodel of a
liftedweight, norwould they necessarily bewell described byGibbs states, so that itmay be not possible to assign
a temperature a system is heated up to or cooled. Indeed, it can still be considered largely unclear what kind of
tasksmicroscopic thermalmachines will one day be used for. Canwe nevertheless decide on general grounds
when a quantum thermalmachine can be said to performwork?

In this work, we affirmatively answer this question by introducing a fresh approach towards addressing the
problemof decidingwhen a thermalmachine performswork, and of quantifying the amount bywhich this is
done.We allow for fully general classes of work-storage devices—going beyond those considered in [7–12]—
and deduce the basic set of properties that a function quantifyingwork has to fulfil.With this, we are establishing
a novel framework of how to define useful tasks for general quantum thermalmachines. In particular, the
framework introduced is general enough to recover the knownnotions ofmechanical work and the ones relating
to heating and cooling tasks within our formalism.

Conceptuallymore importantly still, wewill adopt a strictly operational perspective. Rather than aiming at
definingwork as an a priori given quantity, wewill advocate themindset offirst carefully and precisely stating
what operational properties any quantity reasonablymeasuringwork for arbitrary classes of work-storage
devices should satisfy.We cast these requirements into the formof basic operational axioms that we expect a
measure of work to fulfil. From these elementary axioms, we derive surprisingly stringent and specific
conditions to the relevant work quantifier. In this way, we approach the question of definingwork froman
entirely new angle.

Our approach builds upon and further develops ideas from quantum resource theories [17–21]; as a
consequence of this, we obtain several results on resource theories interesting in their own right. In particular,
our results highlight the role of correlations and so-called catalysts [22–24]. Our approach also draws some
inspiration from the axiomatic approach to thermodynamics put forth in the seminal [25], inwhich axiomatics for
thermodynamic state transformations is introduced, even though the object of study here being quite different.

2.Motivation

Consider the situation inwhich a complex experimental device is claimed to be a thermalmachine, in the sense
that it is capable of undergoing some evolution—possibly employing heat baths, fuel, ormoving parts—in order
to ultimately perform a task useful from a thermodynamic perspective.Within the realmof classical
thermodynamics what is considered ‘useful’ is verymuch established, and it is also clear how onewould quantify
the degree towhich a device is useful. Namely, without the need to know anything about the internal details of
themachine, one demands that themachine is proven useful by achieving some pre-defined task: performing
mechanical work and refrigerating or heating a system are themain examples of such tasks.

In order to offer a unifying perspective within the realmof classical thermodynamics, one can describe any
such tasks by introducing a system that, when attached to themachine, undergoes a transition between two
states of a given family. For instance, in the task of refrigerating or heating, one attaches a system that undergoes
a transition betweenGibbs states of different temperatures. In the task of performingmechanical work, the
system can usually be described by a lifted-weight, certainly in some degree of abstraction: this is a body in a
conservative force with a state described by a deterministic state-variable (for instance the height), that
undergoes a transition between two values of the height. Similarly, one can also consider notions of work such as
chemical work, that is, charging a battery.

To use a unifying nomenclature, wewill say that when carrying out any such useful tasks—be it cooling,
heating, producingmechanical work, chemical work or any other conceivable task—themachine performs work.
Also, let us refer to the attached system that undergoes the transition as thework-storage device.Whenever we use
thewordwork in the following, wemean it in this general sense, unless specified otherwise.

Importantly, note that those tasksmentioned above are verywellmotivated from a practical and operational
perspective. Indeed, a realisticmacroscopicmachine can be put to performwork by literally hanging aweight to
be lifted, charging a battery or by refrigerating or heating systems that arewell-described byGibbs states. Hence,
thosemodels are pertinent to the real experimental situations at hand.

Let us turn now to the arena of quantum thermodynamics. Consider a completely analogue situation as the
one described above: wewould like to define tasks that determinewhether amachine performs a useful task,
with the sole difference that in this case the experimental device operates at a very small scale—saywhere the
work-storage device is composed of few atoms. This question has beenwidely studied in recent years, by putting
forwardmodels that capturemicroscopic versions of a lifted-weight [7–12] or a refrigerator or heater,
respectively [13, 16]. Although thesemodels offer a consistent way to describe tasks that a quantummachine can
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perform, at the same time it is true that themotivation froma practical and operational perspective ismuch less
obvious. The reason being that a realistic work-storage devicemade of a few atomswill not bewell-modelled—
or at least not inmany conceivable experimental situations—precisely by a lifted-weight or even by systems
prepared inGibbs states. These two paradigmaticmodels are ubiquitous in the descriptions ofmacroscopic
machines, but it should be clear that at the quantum scale it is certainly not sufficient to capture all those
operations that a quantum thermalmachine is expected to perform.Hence, it seems of utmost relevance to
characterise in a general fashion howone can identify, as well as quantify, the useful tasks that a quantum
machine is capable of performing for general kinds of work-storage devices.

The goal of this work is precisely to characterise those functions that quantify the usefulness of the device as a
thermalmachine. These functions should be applicable in all generality, and in particular be sufficient to capture
general families of work-storage devices. In other words, we are identifying which functions play the role of the
energy stored in the lifted-weight or battery, or for instance, the temperature changewhen thework-storage
device is heated or cooled. These functions—aswewill see throughout thismanuscript—share all the relevant
features that the definition of work for classicalmechanics has: they serve to test the ‘usefulness’ of themachine,
they aremaximised in reversible processes and they fulfil a second law. Furthermore, these functions reduce to
the usual notions ofmechanical workwhen thework-storage device takes the formof a lifted-weight, but also
quantify tasks such as cooling or heating. This justifies that we call these functionswork quantifiers, not
innocently, but because they can be regarded, for the reasons above, as a generalisation of the notion of work for
situationswhere the usualmodels are not in place.

Lastly, let us point out that the notion of work quantifiers that is put forward not only allows for conceiving
thermodynamic tasks in the quantum regime, but it also offers a unifyingway of quantifying any
thermodynamical task: let it be heating or refrigerating,mechanical energy production or any other conceivable
task, one canfind a function that serves as a suitable quantifier for all of them.

2.1. Usefulness in thermodynamics
The goal in the following is tofind a suitable way—given by thework quantifier—tomeasure the usefulness of a
thermalmachine in themost general case, as has been pointed out above. In this sectionwewill present a simple
example that illustrates what precisely ismeant by the term ‘useful’ andwhyfinding a quantifier for arbitrary
families of states constitutes such a challenging problem.

First, let us introduce a rough definition of what is considered useful in the context of thermodynamics (for a
more technical definition see sections 4 and section 3). Consider, asmentioned above, amachine that induces a
transition in awork-storage device. Suppose that thismachine operates in a background environment at
temperatureT (which can be thought as being the reference temperature of the air surrounding themachine).
Then, it is reasonable to state the following.

Performingwork: consider amachine inducing a transition on thework storage device. If such transition
could have been also done by having themachine only using systems at equilibrium temperatureT and
leaving any other system involved in the process in the same state as it was at the beginning; thenwe conclude
that themachined did not induce a thermodynamically useful transition. In this case, we say that themachine
did not performpositive work.

This definition of usefulness paraphrases the second law of thermodynamics, which states that amachine
cannot performpositive work in a cyclic process (leaving any other system in the same state in the formulation
above) by using a single heat bath (systems at equilibrium temperatureT above)1. It is in this sense that it is
appropriate to refer to ‘usefulness’ simply aswork, as we do here. Given this definition of what performingwork
is and its relationwith the second law, itmight seem surprising thatwe argue here that the question at hand can
be viewed as largely unsettled. Onemight be temped to argue that, if not all the zoology of work quantifiers, at
least it is well established that extracting energy deterministically (that is, with unit probability)must be a task
that proves themachine useful, hence a validwork quantifier.Wewill now show that this is not necessarily the
case, in that deterministic energy is not always a validwork quantifier. This is because itmay violate our general
principle above, and this relates to the fact that the systemplaying the role of thework-storage devicemay not be
well described by a lifted-weight.

1
Planck’s formulation understands performingwork as ‘raising aweight’. However, the very same formulation is of course true if we

understand performingwork as ‘cooling down a system’. In this sense, it is impossible to cool down a system at temperatureT by putting it in
contact with a heat bath also at temperatureT in a cyclic process, as well as this it is possible to raise a weight. Unifying these two forms leads
to the simplest form considered here, that nomachine performswork using a single heat bath.
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2.2. An example
Consider awork-storage device (that we refer to asA for conciseness)which is initially in a state at zero energy
andfinally with deterministic energy 0D > .Moreover this change of energy is assumed to happen each time
thework-storage device is operated on by themachine, that is, it occurs with unit probability. Is themachine in
this case doing something useful, in such awaywe can conclude that themachine performswork?We see now at
hand of a specific example of a systemA, that this is not the case. Suppose that the quantum systemA is described
by aHamiltonianwhich has a unique ground state and a d-fold degenerate excited energy-level with energyΔ.
Then it is possible, as discussed infigure 1, to bringA into contact with a heat bath andmap the ground state ofA
to a state with deterministic energyΔ—namely themaximallymixed state within that subspace. The energyΔ
was stored deterministically inA, but entirely provided by a heat bath, thuswe cannot conclude that themachine
is doing anything useful.

This observation seems to contradict well-established notions of work that take the definition of
deterministic energy aswork as one of its pillars [26–28]. However, note that this example—where deterministic
energy is put into thework-storage device by just using a single bath—it is only possible because the systemof
figure 2 does not relate to themodel of the lifted-weight. It is instead a system that acts as an entropy sink at the
same time it stores the energy, hence leading to unusual situations that are not present inmacroscopic
thermodynamics. Of course, we do not claim that the example offigure 1 is expected tomodel a realistic system.
Nonetheless, it illustrates the difficulties emergingwhen trying to definewhat performingwork is, whenwork-
storage devices are not idealisations of a liftedweight (or its quantum versions [8–12, 16]).

Figure 1.Consider a work-storage deviceAwith aHamiltonian Hd,D having a unique ground state and a d-fold degenerate excited
level with energyΔ. Let us assume thatA is initially in the ground state.We put this system in contact with a heat bath at inverse
temperature β, so that thefinal state is theGibbs state with inverse temperature 0b > . This state is such that thefinal probability of
being in the ground state is p Z H1g d,= D( ), whereZ(H) is the partition function ofH. For any value ofΔ one canfind d such that pg
is arbitrarily close to zero. Using amore sophisticated operation consisting of an energy-conserving unitary on bath and system one
can even achieve pg=0 exactly as long as d exp b> D( ). This can be seen using techniques of [22]. This example shows that a
deterministic change of deterministic energy can in principle be done by (i) only using a single heat bath and (ii) bringing the system
closer to thermal equilibrium.Note also that the protocol works for every value ofΔ if d is large enough.Hence, it cannot be
interpreted as an exponentially suppressed statistical violation of the second law, as the results in [26–28] are often interpreted.

Figure 2. Left: phenomenological analogy of our setting in the case of amachine that burns fuel to performmechanical work. The
catalyst corresponds to themachine that returns to its initial state, using up burning fuel to lift a weight. The burning fuel corresponds
to a non-equilibrium system and the liftedweight corresponds toArthur’s work-storage device.Right:work from two points of view.
Path-dependent work obtained by looking at the time-dependent thermodynamic state of the thermalmachine at the top and
operational path-independent work obtained by looking at theweight (work-storage device) at the bottom. All processes happen at
some background-temperatureT. Thework of transition Wtrans of the fuel corresponds to themaximal height that theweight can be
lifted by arbitrarymachines leaving the fuel in the corresponding final state and operating at background-temperatureT.
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3. The operational framework

The previous considerationsmotivate our approach to the problemof definingwork, in our generalised sense, in
terms of an operational viewpoint.We formulate it as a game between two players. The first one is Arthur, who
possesses a quantum systemwhich takes the role of thework-storage device. The system is described by a pair of a
quantum state and aHamiltonian

p H, , 1r= ( ) ( )

referred to as object. Typically one assigns certain properties towhat is considered a valid work-storage system.
For instance, as discussed in the introduction, the usual demand is to impose that it is a liftedweight or its
microscopic counterparts of [8–12, 16]; or also systems in theGibbs state if we consider the task of refrigerating
or heating.However, herewe are precisely interested in considering arbitrary classes of work-storage devices,
hence, wewill be fully general and encode such constraints by assuming that p belongs to some set  , which
encodes the task themachine has to perform2. The system is initially described by p i Î( ) . The second player is
referred to asMerlin, who has amachine capable of performing transitions between the initial object p i( ) to a
final object p f Î( ) . Thismachinewill play the role of the thermalmachine or engine, which performs a
transformation on thework-storage device.

We assume that the transition p pi f( ) ( ) is performed in an environment of temperature T 1 b= (we set
kB=1), whichwe consider to befixed throughout the rest of ourwork. In a resource-theoretic setting, this
means thatMerlin performs the transitions while having unlimited and free access to arbitrary heat baths at
inverse temperatureβ. The term ‘free’ is here used in the sense of a resource theory, a notion that will bemade
precise later.

Arthur andMerlin, having agreed on the free character of heat baths and the properties of thework-storage
device given by  , would like to establish a fair way of quantifying the value of a given transition p pi f( ) ( ).
That is, they aim at agreeing on a function

p p p p, , 2i f i f b b  Î( ) ( ) ( )( ) ( ) ( ) ( )

for any p p,i f Î( ) ( ) , that establishes the prize at whichMerlin sells to Arthur the transition that he has
performed, wherewewill take the convention that p p , 0i f b( )( ) ( ) implies that Arthur has to pay to
Merlin. The prize of the transition is whatwe define aswork, and the function awork quantifier.

Since the temperature of the free heat baths isfixed, we also oftenwrite p pi f ( )( ) ( ) for
p p ,i f b( )( ) ( ) . Apart from the agreement on the free heat baths at inverse temperatureβ, thework value has

to be established solely on the basis of which transition p pi f( ) ( ) is performed byMerlin, without any
assumption or restriction on the internalmechanism ofMerlinʼs device. This is also a property inherited from
the usual notion of workwithin phenomenological thermodynamics, where thework can be quantified by
looking only at the initial and final state of thework-storage device, without knowing the details of the internal
workings of themachine (also seefigure 2). Lastly, wewould like to stress that the languagemaking reference to
players such as Arthur andMerlin captures the usual thermodynamic setting and bounds the very same
quantities usually under consideration in thermodynamics, as explained in section 3.2. Yet, the novel
operational framework introduced in this work ismost transparently stated in such a language, as a pedagogical
tool inspired by commonnotions of interactive proof systems in theoretical computer science.

3.1. Free catalytic transitions
Since the notions and the use of languagemay be unfamiliar in the quantum thermodynamic context, wewill
now specify clearly what wemean by free operations in the context of a resource theory.Here, Arthur andMerlin
have free access to heat baths at inverse temperatureβ. This will be relevant for the choice of the function ,
since Arthurwill not pay a positive amount for a transitions that can be performed by only employing free
resources. That is to say, it is important to specifically characterise the transitions that can be performedwithout
expending valuable resources and only using baths.

Concretely, we assume that bothArthur andMerlin can pick heat baths, that is, quantum systemsB prepared
in aGibbs state

H

Z

exp
, 3H

B

H
,Bw

b
=

-
b

( ) ( )

with arbitraryHamiltonianHB. They can also apply any global unitaryU that commutes with the total
HamiltonianH+HB.We use the short-hand H H H HA B A B + Ä + Ä≔ whenever the support of two

2
Note that the choice of  has a subjective element, in the sameway it amounts to a restriction to take  as a liftedweight. It describes a

particular choice of systems that we consider valid resources because we can handle them in a given experimental situation. To put an
example, one can imagine that a given experimental setup can only handle qubits, systems of bounded entropy or energy, or systemswith a
fixedHamiltonian. Our formalism allows to choose  so that it encodes each of those situations.
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operators is clear from the context. This amounts to the formalism of thermal operations first introduced in [6]
and further studied in [8]. It is alsomeaningful to allow formore general sets of operations such as the so-called
Gibbs-preservingmaps [6, 29, 30], also see the appendix, or simply thermalisingmapswhere the only possible
interactionwith the thermal bath is to bring the system to theGibbs state in the spirit of [9, 31, 32]. Undoubtedly,
inmany thermodynamic settings, the latter one is themost realistic one capturing actual experimental situations.
Thefinal formof thework quantifier will in principle depend onwhichmodel of operations with the bath is
chosen, but the formalism is general enough to be applicable in any of these situations. In the appendix we
discuss in detail which are theminimal properties of the free operations that are explicitly needed to derive our
results and show that the examples presented above have such properties.

More importantly, wewill assume that bothArthur andMerlin, in addition to the heat bath, can also borrow
any quantumancillary systemuncorrelatedwith the bath and thework-storage device, as long as it is returned in
the same initial state and also uncorrelatedwith thework-storage device (see figure 3). This ancillary system is
referred to as a catalyst, and its usage extends the set of transitions that can be performedwith a bath [22, 23].
Such catalytic operations have been frequently studied in the recent literature of quantum thermodynamics, and
naturally capture ‘bystanders’, so auxiliary systems thatmay help performing transformations. In the following,
wewill refer to the operations described in this section as free operationswhen donewithout catalyst and catalytic
free operationswhen performedwith catalyst. Similarly, wewill refer to the transitions induced by free and
catalytic free operations as free transitions and catalytic free transitions, respectively. Lastly, given any object p, we
define p( ) as the set of objects that can be reached from p by free operations. Similarly, pC ( ) denotes the set of
objects that can be reached from p by catalytic free operations.More precisely p pCÎ ( ) if there exist a catalyst
q so that p q p qÄ Î Ä( ). See appendix A.1 formore detailed definitions.

3.2. The thermodynamical reading of the operational framework
The game betweenArthur andMerlin that we have introduced encodes a typical situation in the study of thermal
machines, but does not describe it in the canonical way. The canonical analysis in the literature describes a
thermalmachine as composed by at least the following elements (see alsofigure 2).

(i) Aheat bath at inverse temperatureβ,

(ii) a systemM out of equilibrium, i.e. not in theGibbs state (3) at the temperature of the heat bath.Wewill refer
to this system as the fuel, because is the resource that allows one to extract work,

(iii) Thework-storage device A onwhich the thermalmachine acts,

(iv) and possibly but not necessarily a catalystC.

Our game formulates the problemof evaluating thework given a transition ofA, that is, evaluating how
muchwork has been performed on thework-storage device. In the language of our game,Mwould be any
system thatMerlin employs inside hismachine performing the transitions and that is possiblymodified (burnt)
after a protocol of work extraction, i.e., it plays the role of the ‘fuel’ in traditional thermodynamics. Such three-
partite (four-partite, if the catalyst is explicitly included) structure is indeed the one followed in
[7, 9, 18, 29, 31, 33–40]where the function is defined a priori as related to the energy difference in various
ways. For instance, in [7, 38]  is taken as the quantumanalogue of a liftedweight and thework quantifier is
defined as

Figure 3. Free operations and catalytic free operations. The big blue object denotes a heat bath, the yellow object a local system and the
purple object a catalyst. Thewiggly lines indicate the possible correlations after a free operation (topfigure), and catalytic free
operation (bottom figure).
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p p H Htr tr . 4
A
i

A
f

A
f

A
f

A
i

A
i

mean r r = -( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

Another relevantmodel is the case of the  -deterministic work, following the approach in [18]. It also gives
rise to an instructive example of how the constraints on the sets of allowed objects  come into play. The systems
that are considered useful in that context are qubits such that

H H E E, 1 1 , 2 5 r r= D ñá - ñá ≔ {( ) ∣ ∣ ∣ ∣ ∣ } ( )

where Eñ∣ is an eigenvector of H ,  · is a normon quantum states and 1

2
 < . The restriction  encodes that

Arthur is interested in having states of well-defined energy or at least  -close to it.Work is then given by the
energy difference of the closest energy-eigenstates. Formally as

p p f H f H, , , 6
A
i

A
f

A
f

A
f

A
i

A
i

det r r = -( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

with the function f being defined3 as

f H,
if 1 1 1

0 if 0 0 1
. 7r

r
r

=
D - ñá <

- ñá <
 
 

⎧⎨⎩( )
∣ ∣
∣ ∣

( )

As heuristically discussed in the introduction, both mean and det and the limitations that they impose  can
be regarded as particular cases of the general framework that we put forward.Nonetheless, they serve to illustrate
themathematical objects we are concernedwith. The precise way they are recovered as particular cases and the
subtleties that emerge when doing sowill be discussed in appendix E.

3.3.Work of transition, work cost andwork value
It is important to distinguish as a work quantifier on thework-storage device fromother quantities that are
usually analysed in thermodynamics and referred to aswork. Once is defined, one is then usually concerned,
in the language of the present work, with the optimal amount of work thatMerlin can obtain by performing a
transition on his systemM. This quantity has also been considered in the context of single-shot work extraction
in [10, 12, 36]. Herewewill refer to this function aswork of transition.

Definition 1 (Work of transition).Given awork quantifier and inverse temperatureβ, a set of restrictions
 , and initial and final objects ofM, denoted by pM

i( ) and pM
f( ), respectively, thework of transition

W p p ,M
i

M
f

trans b( )( ) ( ) is defined as

W p p

p p

,

sup , . 8

M
i

M
f

p p

p p p p

A
i

A
f

trans

, ;A
i

A
f

M
f

A
f

C M
i

A
i






b

b




Î

Ä Î Ä

( )

≔ ( ) ( )

( ) ( )

( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

In (8), we have introduced the short hand notation

p p H H, . 9
M
i

A
i

M
i

A
i

M A M A r rÄ Ä Ä + Ä≔ ( ) ( )( ) ( ) ( ) ( )

Also recall that the set p pC M
i

A
i Ä( )( ) ( ) is determined by all those free transitions thatMerlin can perform,

including interactions with a heat bath and the catalyst.
Notice that in contrast to W, trans is evaluated on transitions onM and not on thework-storage system. In

fact, thework associated to a given physical process can never be specified as a transition onM alone. That is, it is
impossible to determine as a function of p pM

i
M

f( ) ( ). One needs to either specify a particular catalytic free

transition leading to p p p pM
f

A
f

C M
i

A
iÄ Î Ä( )( ) ( ) ( ) ( ) , or to simply define it by taking the optimal one, as we do in

(8). It is precisely in this sense thatwork, as a function of transitions onM, is said to be a path dependent quantity
when evaluated in transitions onM, and a path-independent quantity when evaluated in transitions onA. This is
also the case in phenomenological thermodynamics: work can be specified by knowing only the initial and final
height of the liftedweight, however it is path-dependent as function of the state of themachine (see figure 2).

Onemay be tempted to think at this point that the distinction between thework of transitionWtrans and the
work quantifier at thework-storage device is somehow artificial. In the end, both quantities evaluate
transitions on systems andwhich player plays the role of Arthur orMerlinmight seem at first sight arbitrary.
However, let us insist that by nomeans Arthur andMerlin play an equivalent role. The key point is to understand
that the transitions onArthur systems are restricted so that p p,A

i
A

f Î( ) ( ) . However, transitions onMerlin are
fully unrestricted. This is possiblymost transparent in phenomenological thermodynamics: there, thework

3
In [18] it is assumed that A

ir( ) is the ground state ofHA. Hence, we have f H, 0A
i

A
i r =( )( ) ( ) .What we introduce here as det is a

generalisation that follows in spirit, but lies outside the scope formally laid out in [18].
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storage device undergoes a transition between two states of definite energy (aweight), however, the ‘fuel’
employed in the processmay undergo arbitrary transitions.

Lastly, note that in (8)wedemand that the final state ofMA is uncorrelated. As discussed in [24], the creation
of correlations can be a resource for performing thermodynamical transitions. Indeed, those correlations
betweenMAwill turn out to play an important role in our axiomatic formulation.Hence, for reasons of clarity of
presentation, wewillfirst consider the case where no correlations are allowed, as in (8), and study extensively the
role of correlations in section 8.

Yet other relevant quantities in thermodynamics are given by the so-calledwork value andwork cost defined
as

W p W p, , , 10M Mvalue transb w b b( ) ≔ ( ) ( )

W p W w p, , , 11M Mcost transb b- b( ) ≔ ( ) ( )

wherewβ is an object describing a thermal state. The quantityWvalue plays a relevant role since the second law is
usually put as a bound on it. It describes howmuchwork can be extracted from the system if it is viewed as a
resource. In this workwe are, however,mainly concernedwith the form that can take given a set of axioms.
Clearly, the quantitiesW W,trans value andWcost can only be defined once has been specified.Wewill show in
section 7, though, that from the general properties of implied by the axioms, we can find a second law
asW Wvalue cost .

4. Twobasic axioms

Weare now in the position to formulate the basis onwhich all of the following analysis rests.We introduce two
operational axioms concerning thework quantifier . They seem as innocent as they are natural, and clearly
capture features that any reasonable function of the above type quantifyingwork should satisfy. They are
physically very intuitive. In order to precisely develop our operational framework, theywill be formulated in the
mindset of the game played byArthur andMerlin, in the language of a so-called interactive proof system. In this
language, they simply ensure that none of the players can get arbitrarily richwithout expending valuable
resources.Wewill carefully discuss all implications of our results, however, also in a physical language, stressing
that the conclusions we draw indeed give rise to a natural framework for naturally grasping concepts of work in
quantum thermodynamics.

Axiom1 (Cyclic transitions of thework-storage device). For any cyclic sequence of transitions of thework-
storage device p p p pA A A

n
A

1 2 1   =( ) ( ) ( ) ( ), such that p ii Î "( ) , the sumof thework-values of the
individual transitions is larger than or equal to zero,

p p , 0. 12
i

n

A
i

A
i

1

1
1 å b

=

-
+( ) ( )( ) ( )

According to our convention, if takes a negative value, thenArthur is benefiting from the transaction, i.e.
Merlin pays to Arthur.Hence, the previous axiom ensures that—taking the simplest case—Arthur cannot get
rich by demandingMerlin tofirst do a transition p p1 2( ) ( ) and then asking fromhim to undo the transition. If
this principle was violated, Arthur could get infinitely rich just by repeatedly interactingwithMerlin. Note that
Arthur is not even himself implementing the transition, hence, he is by definition not expending any resource.

Wewill now impose our second axiom,which ensures in turn thatMerlin cannot get arbitrarily richwithout
spending resources.

Axiom2 (Cyclic transitions of the fuel). For any cyclic sequence of transitions of the fuel (Merlin’s system)
p p p pM M M

n
M

1 2 1   =( ) ( ) ( ) ( ), the sumof the optimal work thatMerlin can obtain in each sequence (this is
given byWtrans in (8)) is smaller or equal to zero,

W p p , 0. 13
i

n

M
i

M
i

1

1

trans
1 å b

=

-
+( ) ( )( ) ( )

According to our convention and (8), ifWtrans takes a positive value, thenMerlin is benefiting from the
transaction, i.e. Arthur pays toMerlin.Hence, the previous axiom ensures that—taking the simplest case—
Merlin cannot get rich by the overall process of burning his fuel in a transition p pM M

1 2( ) ( ) and then restoring the

fuel back to its original state p pM M
1 2( ) ( ). If this was violated, that is, the l.h.s. of (13)was positive, thenMerlin

would get richwhile not having burnt any fuel. It is important to notice that the objects pM
i( ) of axiom2 are not

restricted to be in  , since these restrictions apply to thework-storage device, and herewe are concernedwith
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transitions on the fuel (Merlin’s systems)which are fully unrestricted.However, axiom2depends on  because
Wtrans is defined as a function of  and , as given by (8). Also, note that axioms 1 and 2 allow—and this will be
indeed the case as discussed in section 7.1—for the l.h.s. of equation (13) to be strictly smaller than zero.

As a final remark, note that both axioms 1 and 2 encode the spirit of the second law of thermodynamics: by
preventing any of the two players to become arbitrarily richwithout spending resources, we are enforcing the
impossibility to create a perpetuum-mobilé. Our approach is, however, inverse towhat is usually found in
phenomenological thermodynamics. Therefore, work is defined a priori and the second law is understood as a
constraint on the possible physical processes. In contrast, axioms 1 and 2 do not impose any constraint on the
allowed physical operations thatMerlin is performing. They simply state that one does not account asworkwhat
can be generatedwith a bath and a catalyst with the a priori given physical operations. As such, in our set-up it is
also impossible to violate the second law: if by using, say, a forthcoming post-quantum theory, someone claimed to
extract work from a single heat bath, then it simplymeans—regardless of the details of such theory—that what it
is referred to aswork does not fulfil our operational principles.

5.General properties of thework quantifier

It is the key feature of the framework developed here that very basic principles already allow one to formulate
stringent properties of possible work functions . In this sectionwewill turn to discussing properties of a work-
function that respects axioms 1 and 2. For conceptual clarity, wewill keep the discussion rather informal in
this section. For amathematically detailed and rigorous treatment, we refer to the appendix. Nevertheless, we
will have to introduce some notation and definitions first.We are looking for a function that assigns a real
number to any pair of objects p H,i i ir= ( )( ) ( ) ( ) and p H,f f fr= ( )( ) ( ) ( ) that belongs to the given set  . Such an
inclusion is assumed throughout the remaining, unless explicitlymentioned otherwise.Wewill use Latin letters
p q r s, , , , ¼to denote objects and denote thework-value of a transition p pi f( ) ( ) as p p ,i f b( )( ) ( ) or
simply p pi f ( )( ) ( ) ifβ is clear from the context. If theHamiltonian of the two objects is identical, wewill
also use the notation i f r r( )( ) ( ) . Let us recall fromprevious sections that given any object p, we define

p( ) and pC ( ) as the set of objects that can be reached from p by free operations and catalytic free operations,
respectively. Also, in the followingwe always assume the existence of the empty object Æ Î . Physically it
means that there is nowork-storage device. Formally it is given by the state 1withHamiltonian 0 on theHilbert-
space . It therefore fulfils p p pÄ Æ = Æ Ä = for any p Î .

Theorem2 (Formofwork quantifiers).A function respects axioms 1 and 2 if and only if it can be written as

p q M q M p , 14  = -( ) ( ) ( ) ( )

for a functionM such that M 0Æ =( ) and that fulfils the following property:

• Additivemonotonicity: for all p p, , m1 ¼( ) ( ) and q q, , m1 ¼( ) ( ) in  such that q pi
m i

C i
m i

1 1Î= =⨂ (⨂ )( ) ( )

M q M p . 15
i

m
i

i

m
i

1 1

å å
= =

( ) ( ) ( )( ) ( )

In particular, the theorem implies that work, asmeasured by the work-storage device, is not path-dependent in
the sense that

p q q s p s , 16   +  = ( ) ( ) ( ) ( )

p q q p 17  = - ( ) ( ) ( )

and that nowork can be extracted in a free catalytic transition,

p q q p0, . 18C  " Î( ) ( ) ( )

Thus thework-storage device can be treated similarly to the case of amassive body under the influence of a
conservative force in classicalmechanics: there is a state-variableM and its difference along a transition
determines thework-value of the transition. Using catalytic free operations, which generalise the concept of
putting a system in contact with a heat bath in phenomenological thermodynamics, this state-variable cannot be
increased.Note that this is even truewhen considering tasks such as heating or cooling inwhich the system
undergoes a transition between two states withfluctuating energy and possibly large amounts of entropy.

Let us highlight that condition (17) is perfectly compatible with thewell-knownnotion of irreversibility that
emerges when considering notions of deterministic work in the spirit of [9, 31, 35–37, 41]. That is, (17) is
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compatiblewithW Wvalue cost< andmore generally with

W p p W p p . 19
M

i
M

f
M

f
M
i

trans trans ¹ - ( ) ( ) ( )( ) ( ) ( ) ( )

The validity of (19) for any nontrivial set  and an extended discussion on the implications of equation (17) are
discussed in section 7.1. The proof of theorem2 can be found in appendix B.

Let us nowdiscuss briefly the significance of additivemonotonicity, with the following lemma.

Lemma3 (Consequences of additivemonotonicity). If a functionM fulfils additivemonotonicity and
M 0Æ =( ) , then it fulfils also the following properties.

• Monotonocity: M q M p p q,  " Î( ) ( ) , such that q pCÎ ( ).

• Additivity: M p p M p M p p p p p, ,A B A B A B A B Ä = + " Ä Î( ) ( ) ( ) .

• Positivity: M p p0  " Î( ) .

Nonetheless, additivemonotonicity is strictly stronger than demanding thatM fulfils the three conditions of
previous Lemma. To see this, consider for example objects p p p p, , ,A

i
A

f
B

i
B

f Î( ) ( ) ( ) ( ) , but with

p p p p,A
i

B
i

A
f

B
f Ä Ä Ï( ) ( ) ( ) ( ) . Note thatmonotonicity and additivity do not apply to objects that are not in the set

 . The condition given by (B.17) implies that

M p M p M p M p 20
A

f
B

f
A
i

B
i+ +( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

if p p p pA
f

B
f

C A
i

B
iÄ Î Ä( )( ) ( ) ( ) ( ) . However, this condition could not have been derived from the conditions of

monotonicity and additivity, since they do not apply to objects that lie outside the set  .

6. Free energies aswork quantifiers

At this point amost natural question emerges: what are reasonable and natural candidates for a work quantifier
fulfilling axioms 1 and 2? Clearly, the set of valid functions will crucially depend on the set of allowed states
 . Now,wewill show that if the  is fully unrestricted, then the conditions simplify to thewell-knownnotions
ofmonotonicity and additivity.

Theorem4 (Work qualifiers in the unrestricted case). If the set H, r= {( )} is the set of all quantum states ρ
andHamiltoniansH, then a function respects axioms 1 and 2 if and only if it can be written as

p q M q M p 21  = -( ) ( ) ( ) ( )

for a functionMwith M 0Æ =( ) such that

M q M p q p , 22C " Î( ) ( ) ( ) ( )

M p q M p M q . 23Ä = +( ) ( ) ( ) ( )

Proof.One direction follows directly from theorem2 and lemma 3. That is, by using theorem2we have that the
functionM fulfils additivemonotonicity. Hence, by lemma. 3 one sees that if fulfils also the two properties of
lemma 4. To show the inverse relation, it suffices to show that (22) and (23) imply additivemonotonicity. Indeed,
by taking p pi

n i
1= =⨂ ( ) and q qi

n i
1= =⨂ ( ), we have that (22) implies

M q M p 24
i

n
i

i

n
i

1 1


= =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟⨂ ⨂ ( )( ) ( )

if q pi
n i

C i
n i

1 1== =⨂ (⨂ )( ) ( ) . Additivemonotonocity follows straightforwardly applying now (23). ,

Theorem 4 implies that any functionM fulfilling the properties (22) and (23) (when appropriately re-scaled
to fulfil M 0Æ =( ) ) can be used to build validwork quantifier for every possible set  . Herewe present a natural
family of suchmonotones.

Theorem5 (Work quantifiers fromRényi divergences). If the free transitions  are given byGibb-preserving
transitions—see definition 27—or any subset of them, then the work quantifier

p q F q F p, b D - Da a
b

a
b( ) ≔ ( ) ( )with
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F p H S w,
1

, 25H,r
b

rD = =a
b

a b( ( )) ( ∣∣ ) ( )

where Sa is the quantumRényi divergence [42, 43], for any 0a > , fulfils axioms 1 and 2 for every set  .

Note that although this theoremputs conditions on the free transitions  , the axiom2 imposes that this
transitions can be supplied by a catalyst, through definition 1. The proof of this statement follows from the fact
that Rényi divergences satisfy (22) and (23)4. From all the possible choices ofα, the case of 1a = corresponding
to the free energy based on the standard von-Neumann entropy plays a crucial role that will be discussed in
section 8.

7. The second law and irreversibility

Wewill now turn to discussing the connection of our framework developed here and quantitative second laws of
thermodynamics that emerge from it. In the language introduced here, such second laws are captured by the
work-value of an objectWvalue being necessarily smaller than or equal to its work-costWcost (defined in (10) and
(11), respectively). As already discussed after the formulation of axioms 1 and 2, the axioms already impose that
the definition of workmust not allow for either of the players to get arbitrarily rich, which in spirit encodes the
second law of thermodynamics. Indeed, this intuition can bemade explicit by noting that axiom2, if we take
p p pM M

1 3= =( ) ( ) and p 2 w=( ) (whereω is any thermal object), implies

W p W w p0 26trans trans w + ( ) ( ) ( )

which togetherwith (10) and (11) imply the second law in the form

W p W p . 27value cost( ) ( ) ( )

Wewill nowdiscuss the exact conditions whenwe can expect to get a strict inequality, which is a phenomenon
usually referred to as irreversibility and that emerges in all the analyses of deterministic work (also called single-
shotwork extraction) [9, 31, 35–37, 41].Wewill see that this will depend crucially on the restrictions that are
imposed over thework-storage device given by the set  .

7.1. Restrictions imply irreversibility
Let usfirst consider the case where no restrictions are imposed on the formof thework-storage device, that is, 
is the set of all pairs of states andHamiltonians. It is thenmaybe not surprising that reversibility arises, in the
sense thatW Wvalue cost= is true. The reason for this is simple: the best strategy thatMerlin can employ to extract
work froman object pM is just giving the system toArthur. In this case the transition onA is given by

p pA MÆ  = and thus thework is given simply by M pM( ). The same is true in the case of thework-cost of the
object.Merlin can just create pM by taking it fromArthur.Hence, summarizing, we see that if  is unrestricted
wefind

W p M p W p unrestricted .M M Mvalue cost = =( ) ( ) ( ) ( )

At amore heuristic level, we have seen that the tasks involving thermodynamical work become trivial when
no restrictions are imposed on  , since the entire process reduces toMerlin giving the physical systemhe
possesses to Arthur. This comeswith no surprise if we think about the analogue situation in phenomenological
thermodynamics. Take for instance the task of performingmechanical work, that is, storing potential energy on
a lifted-weight. IfMerlin has as a resource some instance of ‘burning fuel’, then he cannot simply give it to
Arthur, expecting that the latter accepts it as a valid formofmechanical work. In otherwords, Arthurwould
demand to receive a work-storage device in  , which are the set of liftedweights. Otherwise, if  was completely
unrestricted, giving toArthur simply the burning fuel as such—and also all the other parts of themachine—
would be indeed the best strategy forMerlin. Any other strategywould involve interactions with a heat bath,
whichwould necessarily decrease the value of the burning fuel asmeasured by anymonotone function.

That said, the limitations on the set  , rather than being a technicality, impose the very conditions so that
non-trivial thermodynamical processes take place:merlinwill nowhave to transform resources pM Ï into
resources that are in  , possibly at the prize of dissipating the resource partially, which in turn yields
irreversibility of the formW Wvalue cost< . To illustrate this point, wewill discuss in detail particular examples of
restrictions.

4
See [42] for an exhaustive analysis of Rényi divergences. Indeed, for theorem 5we only need that the function Sa (·∣∣ · ) fulfils the data-

processing inequality and additivity. The former implies F p F pC D Da
b

a
b( ( )) ( ).
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7.2. Examples of restrictions: redefining  -deterministic work
Let us discuss some examples ofmeaningful restrictions that can be imposed on the set of states and
Hamiltonians and see how they led to irreversibility in the formofW Wvalue cost< . In section 3.2we have already
briefly introduced the notion of  -deterministic work. Intuitively it describes the situation of work-storage
devices which are almost in energy-eigenstates andwherework ismeasured in terms of the energy-difference of
these eigenstates. The original formulation of  -deterministic work introduced in [8] does not qualify for a valid
work quantifier respecting axioms 1 and 2, as it is discussed in appendix E.However, the notion of
 -deterministic work can be naturally integrated in our formalismmodifying slightly the function det , while
keeping the physical constraint  . Let us therefore showhow the idea can be transferred into our setting and
cast into a valid work-quantifier. Consider the following set of qubit work-storage devices,

H E E H E E E, 2 , .1  r r - ñá < ñ = ñ ≔ {( ) ∣ ∣ ∣ ∣ ∣ }

The operationalmeaning of 0  roughly is the optimal probability to be able to distinguish the state ρ from an
energy-eigenstate in ameasurement. Aswork-quantifier we can choose anywork quantifier that respects axioms
1 and 2 for the set  .Wewill analyse for simplicity the one induced by the vonNeumann free energy, that is

p p F p F p, 1 1 b ¢ = D ¢ - Db b( ) ( ) ( ). In the case of 0 = , all states are energy eigenstates and, if the
Hamiltonian does not change in a transition, thework-quantifier simplymeasures the energy-difference
between the states before and after the transition. This coincides with the original definition of  -deterministic
work given in [8] onlywhen 0 = and p and p¢ have the sameHamiltonian.However, it recovers in spirit the
notion of  -deterministic work in away that is compatible with our axiomatic approach.

Let us now show that one indeed obtains irreversibility in this setting. This can be shown in the simplest case
of 0 = . It is implied by the results of [8] that ifMerlin has a full-rank systemdescribed by pM, it cannot be used
to induce a transition on thework-storage device of the form E E0 0 A Añá  ñá∣ ∣ ∣ ∣ . Hence, W p 0Mvalue =( ) for

0 . Nonetheless, pMmay by a system arbitrarily far from equilibrium, hence it is necessary to spend resources to
create it andW p F p 0M Mcost 1 D >b( ) ( ) .

Furthermore, we expect the phenomenon of irreversibility to emerge in numerous physicallymeaningful sets
other than the  -deterministic work extraction. For instance, onemay imagine restrictions on  that reflect
work-storage devices whoseHilbert-space dimension is bounded by some finite number. Alternatively, onemay
consider onewhose states’ entropy or free energy is bounded from above.We expect that irreversibility emerges
in any such setting for at least some systems, sinceMerlinwill not be in general allowed to give his system to
Arthur. The formerwill have to interact with the heat bath leading to unavoidable dissipation and irreversibility.
Wewill leave the detailed investigation of such scenarios for futurework.

8. The role of correlations, the second law and super-additivity

Wewill now turn to discuss the role of correlations between the fuel (Merlin systemM) and thework-storage
deviceA and the implications that it has for the characterisation of thework quantifier . To do this, let usfirst
define a quantity similar to thework of transition in definition 1, butwhere the fuel is allowed to establish
correlationswith thework-storage device.

Definition 6 (Correlatedwork of transition).Given awork quantifier and inverse temperatureβ, a set of
restrictions  , and initial andfinal objects ofM, denoted by pM

i( ) and pM
f( ), respectively, the correlated work of

transitionW p p ,M
i

M
f

trans
corr b( )( ) ( ) is defined as

W p p

p p

,

sup , . 28

M
i

M
f

p p

p p p

A
i

A
f

trans
corr

, ;A
i

A
f

MA
f

C M
i

A
i






b

b




Î

Î Ä

( )

≔ ( ) ( )

( ) ( )

( )

( ) ( )
( ) ( )

( ) ( ) ( )

Note that the only difference with definition 6 is that the supremum is taken over protocols that allow the final
state pMA

f( ) to have arbitrary correlations.We can also define the correlatedwork cost and value as

W p W p, , , 29M Mvalue
corr

trans
corrb w b b( ) ≔ ( ) ( )

W p W w p, , , 30M Mcost
corr

trans
corrb b- b( ) ≔ ( ) ( )

It is to be expected that axioms 1 and 2 are not sufficient to capture the second law in the case where correlations
are allowed. For instance axiom2 captures the idea thatMerlin cannot get richwhile returning the fuel to the
same initial state. But in principle, it does not preventMerlin from getting rich by (despite returning the fuel to
the same state) establishing correlations between the fuel and thework-storage device. This is indeed the case: we
canfind awork quantifier fulfilling axiom1 and 2 such thatW p W pM Mvalue

corr
cost
corr>( ) ( ). Although thismight
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not be a surprising result we include here a specific example, because it illustrates how the notion of super-
additivity will come into play: the example relies on the use of work quantifiers p p M p M p  ¢ = ¢ -( ) ( ) ( )
such thatM is not super-additive, where super-additivitymeans that M p M p M pAB A B +( ) ( ) ( ), when-
ever p p p, ,AB A B Î .

Assume now a bipartite state pMA and amonotoneM such that super-additivity is violated, that is,
M p M p M pMA M A< +( ) ( ) ( ). Let usfirst look atW pMcost

corr ( ). One particular protocol to create pM consists of
Arthur having initially pMA and giving subsystemM toMerlin, while keeping pA. This particular protocol gives
an upper bound to thework cost as

W p M p M p . 31M MA Acost
corr  -( ) ( ) ( ) ( )

Secondly, we can lower boundW pMvalue ( ), simply by performing the obvious protocol whereMerlin gives pM to
Arthur, resulting in

W p M p . 32M Mvalue
corr ( ) ( ) ( )

Combining the fact that pMA violates super-additivity with equations (31) and (32) results in a strict violation of
the second lawW p W pM Mvalue

corr
cost
corr>( ) ( ).

Let us nowdiscuss the implications of this example. Suppose thatMerlinwould like to use the fact that
W p W pM Mvalue

corr
cost
corr>( ) ( ) to become arbitrarily rich, or in other words, create a perpetuum-mobilé. He can start

by initially having pM and obtainingW pMvalue
corr ( ). Then hewill againcreate pM, having paidW pMcost

corr ( ) and thus
resulting in an overall benefit. Note thatM is returned to its original state after each cycle, however it becomes
correlatedwith thework-storage device.WhenMerlin repeats those processes, hewill need fresh uncorrelated
work-storage devices each time, devices that end up all being correlatedwithMerlin’s catalyst and among them.
Hence,Merlin is getting arbitrarily richwithout spending resources in the sense that he is not changing his
systemwhich behaves like a catalyst, but he does spend resources, because he is establishing correlations between
M and a newwork-storage device at each cycle. In otherwords,Merlin is spending ‘absence of correlations’,
hence it seems natural that he can obtain benefit from it. A similar, but non-equivalent, effect has been discussed
in [24], where the correlations are established among different parts of the catalyst. Thus, one possible viewpoint
is to state that in order to account properly for resources, correlations cannot be created. Hence, the second law
would take the form (27)which is indeed fulfilled for anywork quantifier satisfying axioms 1 and 2.

A complementary approach to capture the role of correlations is to take the opposite view: correlating the
catalyst with thework-storage device does not spend any resource and hence, it should be considered a valid
operation. Furthermore, thework quantifier has to bemodified accordingly to prevent from violations of the
second-law (even if correlations are created) as given byW p W pM Mvalue

corr
cost
corr>( ) ( ). For this, we introduce a

reformulation of axiom2 that accounts for correlations.We highlight that we do not regard this reformulation
as being as fundamental as axiom2. It only aims at capturing in a consistent waywhich are the validwork
quantifiers if correlations are treated as a free resource, in the spirit of [24].

Axiom3 (Correlated cyclic transitions of the fuel). For any cyclic sequence of transitions of the the ‘fuel’
(Merlin’s system) p p p pM M M

n
M

1 2 1   =( ) ( ) ( ) ( ), the sumof the optimal work thatMerlin can obtain in each
sequencewhen correlationswith thework-storage device are allowed (this is given byWtrans

corr in (28)) is smaller or
equal to zero,

W p p , 0. 33
i

n

M
i

M
i

1

1

trans
corr 1 å b

=

-
+( ) ( )( ) ( )

The intuition behind axiom3 is similar to the one of axiom2,with the only difference thatMerlin is not allowed
to become arbitrarily rich even by creating correlationswith thework-storage devices. Imposing axiom3has
two important consequences. Firstly, one can easily show that if onemakes use of axiom3, then the usual second
law is fulfilled, stated as

W p W p . 34M Mvalue
corr

cost
corr( ) ( ) ( )

Secondly, allowing for correlations has consequences on the allowedwork quantifiers . Taking the simplest
case of n=2 and p p pM M M

1 2= =( ) ( ) , axiom3 implies thatW p p p0M M Mtrans
corr  "( ) . Combining this fact

with definition 6 one can easily see that , in order to respect axioms 1 and 3 has to satisfy

p q 0A A ( )

for all q p,A A in  such that q pA C A
Corr.Î ( ), wherewe define pC

Corr. ( ) to be the set of objects that can be
reached from p by using thermal baths and an ancillary system that is left, after the interactionwith the bath, with
the samemarginal state andHamiltonian, but possibly correlated with the system.Wewill refer to this
transitions as correlated catalytic free transitions. It is easy to see that p p pA B C AB

Corr.Ä Î ( )) for p p p, ,A B AB Î .
Togetherwith additivity, this implies that in order to respect axioms 1 and 3, thework quantifier is written as
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p p M p M p  ¢ = ¢ -( ) ( ) ( ), where

M p M p M p . 35AB A B +( ) ( ) ( ) ( )

As a consequence, the following is true.

Theorem7 (Von-Neumann free energy in the unrestricted case).Under axioms 1 and 3, from all the Rényi free
energies, only the vonNeumann free energy

F H S,
1

36H1 ,r
b

r wD b
b( ) ≔ ( ∣∣ ) ( )

remains to be a validmonotone to define awork-quantifier for arbitrary sets  (up to a constant). It gives rise to a
second law in the form

W p F p W p . 37M M Mvalue
corr

1 cost
corr D b( ) ( ) ( ) ( )

Note that the vonNeumann free energy can also bewritten as

F H F H F H, , , 38H1 1 1 ,r r wD = -b b b
b( ) ( ) ( ) ( )

with F H H S, tr1 r r r b= -b ( ) ( ) ( ) . It therefore closely resembles the phenomenological free energyU−TS,
ormore precisely the exergy with respect to an environment of temperatureT 1 b= .We hence recover the
statement that themaximumamount of work that can be extracted by aworking systemwith access to a heat
bath of temperatureT is given by the exergy of theworking systemwith respect to the temperatureT—but using
reasoning very different from that of phenomenological thermodynamics. It is also interesting to see that on a
formal level in the framework developed here, the von-Neumann free energy does not arise from considering an
asymptotic setting, but rather arises from theway correlations are taken into account.

We have seen that super-additivity and the vonNeumann free energy emerge naturally oncewe allow for the
creation of correlations between the catalyst and the system. A similar result was obtained in [24], where it was
shown that, for classical states, the change of vonNeumann free energy decides whether a transition between
two objects is possible ifmultiple catalyst can be used, which can become correlatedwith each other, but not
with the system.

In the light of the previous discussions onemight wonder whether super-additivity already singles out the
vonNeumann free energy as the unique validmonotone to define awork quantifier in the case of correlated
catalysis. This is true in the case of vanishingHamiltonians but otherwise unrestricted sets  , whichwe state in
the following theorem.

Theorem8 (Von-Neumann free energy as awork quantifier for vanishingHamiltonians).Consider the set of
all finite-dimensional quantum states and the vanishingHamiltonian ,  r= {( )}and free operations given by
thermal operations or Gibbs-preservingmaps. Then the unique work quantifier with continuousmonotoneM and
fulfilling axioms 1 and 3 is given, up to a constant factor, by

p p F p F p, 391 1 b ¢ = D ¢ - Db b( ) ( ) ( ) ( )

where F1D b is the vonNeumann free energy.

Proof.Without loss of generality, consider the candidates for awork-quantifier defined as
M d f, logr a r r-( ) ≔ ( ( ) ( )), where d r( ) is the dimension of theHilbert-space of ,r a is some positive
constant and f r( ) is a yet unspecified continuous (on states offixed dimension) function.Wewill show that f
has to be given by the vonNeumann entropy. Since S d d Slogdr r r r= -r( ∣∣ ( )) ( ) ( )( ) this implies the claim.
Using additivity, super-additivity we immediately obtain that fhas to be additive and sub-additive. From
monotonicity under thermal operationswe obtain that a) f U U fr r=( ) ( )† for any unitary and b)
f p U U fi i i i r rå( ) ( )† for any probability-distribution pi over unitariesUi. Property a) implies that f only

depends on the eigenvalues of ρ and is therefore equivalent to a function f̃ on probability distributions, which
fulfills additivity and sub-additivity. Property b) implies that f̃ is Schur-concave, i.e., can only increase under
randompermutations. In [44] it has been shown that for probabiliy-distributions without zeros, such a function
is of the form f p cH p cd p= +˜( ) ( ) ( ), whereH is the Shannon-entropy, c 0 and c c cd d d d1 2 1 2

= + . By
continuity, this form extends to arbitrary probability-distributions andwe obtain f cS cdr r= + r( ) ( ) ( ), where
S is the vonNeumann entropy. From M d, 0d d  =( ) , we obtain c d c dlog logd+ = . This implies

M c d S d S, log log ,r a r r a r r= - = ¢ -( ) ( ( ) ( )) ( ( ) ( ))

which finishes the proof. ,

Onemightwonder whether the result could also hold in infinite-dimensional systems.However, in such
systems the vanishingHamiltonian does not have awell-defined thermal state for any temperature, so that it
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should not be considered as a physicalHamiltonian on such systems. To extend this result tomore general
classes ofHamiltonians constitutes an interesting open problem. Importantly, if true, this does still not imply
that one can onlymake use of the vonNeumann free energy as awork quantifier. There aremany situations of
physical relevancewhere the set of  is restricted, where one could still conceive other work quantifiers. Indeed,
we have seen in section 7 how imposing constraints  , rather than a technicality, is crucial to recover several
commonly discussed regimes inwhich thermodynamics is expected to operate.

9. Summary

In this work, we have approached the subtle andmuch discussed question of how to quantify the performance of
thermalmachines at the small scale, where fluctuations and quantum effects play a relevant role. This problem
has so far been addressed in the literature by focusing onfinding quantumanalogues of the relevant tasks in
classical thermodynamics: compressing a gas, lifting aweight or cooling a systembelow the environment
temperature.Here, we allow instead for arbitrary classes of physical systems, intended to realistically account for
the transitions that a quantum thermalmachine is expected to perform. The problem that we have tackled here
is precisely how to quantify the performance of a quantummachine in these tasks lacking of a classical analogue.
We have taken a strictly operational approach and have posed the problemof identifying reasonable functions
that evaluate the value of a given transition. These functions are supposed to have basic properties analogue to
the familiar notion of work in phenomenological thermodynamics. These properties have been stated in the
formof strictly operational axioms that captureminimum reasonable conditions thatmeaningful work-
quantifiers are expected to satisfy. This is a distinct deviation inmindset: we do not define quantities ad-hoc
based on its classical counterparts, but aim at clarifying those characteristic features that anywork quantifier
should fulfil, providing a general framework.

Remarkably, simple and elementary as these axiomsmay appear, they provide sufficientmathematical
structure to give rise to surprisingly detailed and stringent properties that any function quantifyingwork has to
fulfil andwhich can be rigorously derived from the axioms.

One of the advantages of the formalism is that it is general enough to allowus to derive central concepts in
thermodynamics without taking the definition of work as an a priori given element. For instance, our generalised
work quantifiers give rise to quantitative versions of the second law. Similarly, one can precisely discuss notions
of irreversibility in this framework, in the sense that in order to obtain useful work, it is necessary to dissipate the
resources provided by the ‘fuel’, concomitant to familiar notions in thermodynamics.

When the system is taken to be an analogue of a liftedweight in the quantum regime, our general framework
recovers the usual definition of work as the energy difference as a particular case. At anmore heuristic level, this
can be summarised by the insight that the task of extractingwork is nothing but the transfer of free-energy from
an arbitrary system (the fuel) to another systemwhich has to fulfil a set of given restrictions (thework-storage
device). In the specific situation inwhich those restrictions are such that thework-storage device is a lifted
weight, then the free energy coincides with the energy.

For coherence of the presentation, we have focused onwork quantifiers in quantum thermodynamics in the
main text. It should be clear, however, that the technical results achieved are general enough to capture also
other quantum resource theories, beyond the quantum thermodynamic context. The arguments laid out in
main text and the supplementarymaterial clearly highlight the role that catalysts and their correlations play in
such resource theories. Furthermore, our results show that there is a close connection between catalysis, the
built-up of correlations, and of reversibility. In particular, we have shown inwhat precise way a restriction of the
state-space of work-storage devices is necessary in order to obtain irreversibility. It is our hope that the approach
taken here can be seen as a further invitation to revisit notions derived from classical thermodynamics and
taking an operational perspective when aiming at clarifying inwhat precise way they can be extended to the
quantum regime.
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AppendixA. Scenario and definitions

A.1. Transitions and free transitions
Let us consider a pair of a quantum states and aHamiltonian p H,r= ( ). In the followingwe, will call such pairs
objects and denote the associatedHilbert space by p( ), which formost of this work is taken to befinite-
dimensional.

Definition 9 (Transition).A transition is defined by a pair of objects p p,i f( ) ( ) and an ordering between them.
Wewill refer to a transition as p pi f( ) ( ).

Definition 10 (State transition).This is a transition inwhich theHamiltonian remains constant. That is, if
H H, ,i fr r( ) ( )( ) ( ) , wewill refer to a state transition and denote it simply, if theHamiltonian is clear from the

context, by i fr r( ) ( ).

Definition 11 (Sequence).A set of n 1- transitions of the form p pk k
k
n1

1
1 +

=
-{ }( ) ( ) is referred to as sequence.

Wewill simply denote it by p p p n1 2  ( ) ( ) ( ).

Such transitions are to be interpreted, in the context of the present work, as changes on the system and state
Hamiltonian of the battery of Arthur as implemented byMerlin.

Definition 12 (Free image).A free image is a function  thatmaps p i( ) and a parameter b into sets of objects
p p ,k

i b={ } ( )( ) .When F is such that theHamiltonian remains constant, that is,

H, , , A.1i
k r b r=( ) {( )} ( )( )

wewill refer to it as free state-image.

Definition 13 (Free transition).A free transition is defined as any transition p pi f( ) ( ), where
p p ,f i bÎ ( )( ) ( ) .When the parameter b is clear from the context, wewill denote a free transition simply
as p pi i ( )( ) ( ) .

Definition 14 (Tensoring objects).Given two objects p H,r= ( ) and p H,r¢ = ¢ ¢( ), we define the tensor
product

p p H H, . A.2p p  r rÄ ¢ Ä ¢ Ä + Ä ¢¢≔ ( ) ( )( ) ( )

In the definitionwe explicitly indicated onwhich tensor-factor the identitymaps act. In the following, wewill
omit such indications when the information is clear from the context.

Definition 15 (Non-interacting objects). If an object based on a bipartite systemof parts A and B has the form

p H H, A.3AB A B A B r= Ä + Ä( ) ( )

we refer to it as non-interacting object.

Non-interacting objects are those objects onwhichwe define a partial trace.

Definition 16 (Partial traces).Given any two objects p H,S S Sr= ( ) and p H,S S Sr= ( ), we define the trace
tr S as an operator acting on objects p of the form

p p p H H, , A.4S S S S S S S S r r= Ä = Ä Ä + Ä( ) ( )∣ ∣ ∣ ∣

such that p ptr S S=( ) .We extend this definition to all non-interacting objects by the partial trace on quantum
states.

At this point a remark aboutHamiltonians is in order.Whenwe consider non-interacting objects, the local
Hamiltonians are not well-defined: we can always change their traces by adding a global zero of the form

A B A B   l lÄ - Ä( ) ( ) to the globalHamiltonian. Thereforewewill fromnow call twoHamiltonian
operators equivalent if they differ by amultiple of the identity, H H l~ + . For simplicity, wewill, however,
not indicate this in our notation andwill just refer to the equivalence classes asHamiltonians.We could also just
fix the trace of theHamiltonians. It will become clear later, whywe do not follow this path.
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Definition 17 (Catalytic free image).Given the free image  , we define the catalytic free image C as

p p q p q p q, ; , . A.5C
i i b b$ Ä Î Ä( ) ≔ { ∣ ( )} ( )( ) ( )

Definition 18 (Catalytic free transition).A catalytic free transition is defined as any transition p pi f( ) ( ) with
p p ,f

C
i bÎ ( )( ) ( ) .When the parameter b is clear from the context, wewill denote a free state-transition simply

as p pi
c

i ( )( ) ( ) .

Definition 19 (Assisted transitions and sequences).Twoobjects p p,1 2( ) ( ) form a transition assisted by c c,1 2( ) if

p c p c , , A.62
2

1
1 bÄ Î Ä( ) ( )( ) ( )

Nowconsider a sequence of transitions p pi i 1 +( ) ( ) for i n1, , 1= ¼ - . If each transition is a free transition
assisted by c c,i i 1+( ), respectively, we say the sequence is assisted by c c, n1( ).

In other words, an assisted sequence is a sequence on objects that can be performed by using free operations
and an ancilla that is at the end uncorrelatedwith the systembutmight have changed its state.

Althoughwewould like to keep this definition fully general, let us anticipate that ci i{ } are going to play the
role of the fuel employed byMerlin, which enables (assists) a transition or sequence of transitions, by changing
its state (by being burnt).

Definition 20 (Free sequence).Wecall a sequence assisted by (c, c) a free sequence.

Followingwith the interpretation of c as the fuel, a free sequence is then a sequence of transitions that can be
implementedwhile not spending any fuel.

A.2. Basic assumptions on the free transitions
In themain text we have focused on the resource theory of a-thermality, where the free operations are, loosely
speaking, defined as the energy preserving joint operations on system and bath. These aremathematically
characterised by theGP-maps, or strictly contained subsets of operations, such as the thermal operations.
However, our results apply potentially towidely different resource theories defined by other classes of free
operations, notmotivated by the thermodynamic context. In this endeavour, we aim at contributing to the
emerging understanding of general resource theories [19, 20].We state below thefirst assumptions on the free
operations that are needed in order to derive the results of section 5 in themain text, in particular theorem2
(restated as theorem 25 in this appendix).

Property 1 (Composability). If p p ,3 2 bÎ ( )( ) ( ) and p p ,2 1 bÎ ( )( ) ( ) , then p p ,3 1 bÎ ( )( ) ( ) .

Property 2 (Swapping products).Given an object of the form p p n1 Ä ¼ Ä( ) ( ), then

P p p p p , , , A.7n n1 1 b bÄ ¼ Ä Î Ä ¼ Ä "( ) ( ) ( )( ) ( ) ( ) ( )

where P permutes the labels n into n1, , 1 , ,s s¼ ¼( ) ( ( ) ( )).

Note that property 2 implies that the identity is a catalytic free transition, that is, p p,C bÎ ( ) for all b .
This follows since one can take as catalyst q=p and perform a swap between the system and the catalyst.

Property 3 (Tracing as free operation). For any subsystem S of A A, , N1 ¼ of a product object, tracing out is in
the free image. That is,

p p p ptr , . A.8S A A A AN N1 1
 bÄ ¼ Ä Î Ä ¼ Ä( ) ( ) ( )

In the case where

S A , A.9i
N

i1È= = ( )

the entire system is traced out. In this case we introduce the notation ptrS Æ( ) ≔ . In this instance proposition 3
is also fulfilled andwe denote it by p , b Æ( ) 0. The object∅ can be seen as the pair 1, 0( ) on = .
Note that it therefore fulfills p pÄ Æ = for every object p. It is therefore a free object independent of b .

The next lemmawill turn out to be very useful in the subsequent sections.

Lemma21 (Mapping time to space). Suppose  fulfills properties 1 and 2 and let p p ¢ be an assisted transition
by c c, ¢( ) and q q ¢ be an assisted transition by c c,¢ ( ). Then the transition p q p qÄ  ¢ Ä ¢ is an assisted
transition by c c, ( ).
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Proof.Note that by definition 19 of assisted transition and property 1, the transition p c p cm1 Ä  Ä ¢ is free.
Therefore, also the transition p q c p q cq m1 1Ä Ä  Ä Ä ¢ is free. An equivalent argument implies that

p q c p q cm m n1Ä Ä ¢  Ä Ä  is also free transition. Composing these two transitions yields that
p q c p q cm n1 1Ä Ä  Ä Ä  is also a free transition. ,

A.3.Work quantifiers
Oncewe have specified the transitions and the free transitions, wewill define a quantifier of the value of a given
transitionswithin the set of allowedwork-storage devices  .Wewill always assume that the empty object∅ is an
element of  .

Definition 22 (Work quantifier).Wedefine thework quantifier as a function thatmaps a transitionwithin
 and parameter p p ,i f b( )( ) ( ) into the real numbers. If b is clear from the context, wewill simply
write p pi f ( )( ) ( ) .

Appendix B.General axioms

Wewill nowpresent the axioms 1 and 2 of themain text, restated in amore precisemanner bymaking use of the
mathematical definitions of sectionA.1.

Axiom1 (Cyclic transitions of thework storage device).Given a collection of objects of thework-storage
device p p, , n1 ¼ Ì{ }( ) ( ) such that p pn 1=( ) ( ), then

p p , 0. B.1
i

n
i i

1

1
1 å b

=

-
+( ) ( )( ) ( )

Axiom1 ensures that if a set of states can be arranged in a cyclic sequence, the total work, given by the l.h.s. of
(B.1), cannot be negative. Otherwise, Arthur, who receives at the end the same object he possessed at the
beginning, can repeat the protocol an arbitrarily number of times and obtain an arbitrarily large benefit.

Axiom 2 in themain text is however formulated in terms of trans . However, as this quantity is given as a
function of and  we can reformulate axiom2 as being directly expressed in terms of for transitions of the
work-storage device, whichmakes it amore comfortable formulation towork in the following proofs of this
appendix.

Axiom2 (Reformulation of ‘cyclic transitions of the fuel’). Let p qA
k

A
k

k
n

1
1 =

-{ }( ) ( ) be a collection of assisted
transitions of thework-storage device, assisted by c c,k k 1+( ) respectively, with c cn 1= . Then

p q , 0. B.2
k

n

A
k

A
k

1

1

 å b
=

-

( ) ( )( ) ( )

Importantly, note that the objects pA
k( ) and qA

k "( ) k in this formulation describe thework-storage device, contrary
to themain text formulation of axiom2. A schematic depiction of the transitions involved in this Axiom is given
byfigure 4.Nowwewill show, that although formulated in seemingly unrelated terms, both formulations are
equivalent.

First, let us state a corollary of axiom2 that will be useful in further proofs.

Corollary 23 (Cyclic free sequences). Let p p pA A A
n1 2  ( ) ( ) ( ) a free sequence, then,

p p , 0. B.3
k

n

A
k

A
k

1

1
1 å b

=

-
+( ) ( )( ) ( )

Corollary 23 follows simply by the definition of free sequence, which is a particular case of the conditions of
axiom2, in the casewhere q pA

k
A

k 1= +( ) ( ).

B.0.1. Equivalence between formulations: Wewill now show that indeed the version of the axiom2 given in the
main text is equivalent to the one given above. Let usfirst assume the version given in themain text. That is, we
assume that for any sequence of the fuel (Merlin’s system), wherewe p p pM M

n
M

1 1  =( ) ( ) ( ), then
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W p p , 0. B.4
i

n

M
i

M
i

1

1

trans
1 å b

=

-
+( ) ( )( ) ( )

Nowconsider a set of assisted transitions p qA
k

A
k

k
n

1
1 =

-{ }( ) ( ) of thework-storage device, assisted by c c,k k 1+( )
respectively, with c cn 1= , as axiom2 states. Using definition 1, we have that

p q W c c , B.5
A
k

A
k

k ktrans 1   +( ) ( ) ( )( ) ( )

for all k n1, , 1Î ¼ -{ }. But then by identifying c pi M
i= ( ) for all i, we obtain equation (B.2).

Let us now show the converse direction.We have to show, that given a sequence p p pM M
n

M
1 1  =( ) ( ) ( ),

equation (B.2) implies equation (B.4). Each transition p pM
k

M
k 1 +( ) ( ) will also induce a transition on themarginal

of thework-storage device, given by p qA
k

A
k

k Î( ) ( ) , where k is the set of allmarginal transitions on thework-

storage device that can happen togetherwith p pM
k

M
k 1 +( ) ( ) on the fuel, and equivalently for all k.More

explicitly,

p q q p p p . B.6k A
k

A
k

A
k

M
k

C A
k

M
k1  Ä Î Ä+≔ { ∣ ( )} ( )( ) ( ) ( ) ( ) ( ) ( )

That said, all the p qA
k

A
k

k Î( ) ( ) are an assisted transition by p pM
k

M
k 1 +( ) ( ). By our assumption

(equation (B.2)) this implies that the total work-value fulfills

p q 0 B.7
k

n

A
k

A
k

1

1

 å 
=

-

( ) ( )( ) ( )

for all p qA
k

A
k

k Î( ) ( ) . Then, this implies trivially

p qsup 0. B.8
k

n

p q
A
k

A
k

1

1

A
k

A
k

k




å 
=

-

 Î
( ( )) ( )( ) ( )

( ) ( )

Nownotice that the supremum in equation (B.8) is the same as the one in the def. 1 ofWtrans, which concludes
the proof.

B.1. Implications for thework definition
Wenow turn to exploring implications for thework quantifiers. Since the twoAxioms have been reformulated
in appendix B in such away that they only refer to objects of thework-storage device and not of the fuel, wewill
drop the labels M and A. Unless explicitlymentioned, wewill use the letters p q, to refer to thework-storage
device.

Lemma24 (Properties of work quantifiers).Consider a free image  fulfilling properties 1–3. In this case, axioms
1 and 2 are fulfilled if and only if satisfies the following properties,

1. For all p p, , m1 ¼( ) ( ) and q q in, , m1 ¼( ) ( ) such that q pi
m i

C i
m i

1 1Î= =⨂ (⨂ )( ) ( ) ,

p q 0. B.9
i

m
i i

1

 å 
=

( ) ( )( ) ( )

Figure 4.A set of transitionswhere the constraints of axiom 2 apply.Merlin holds a ancillary systemdescribed by c1 and receives the
work-storage device in p 1( ). Both systems are initially uncorrelated.Merlin performs free transitions so that the final state is described
by c q2

1Ä ( ). After this process, Arthur comeswith a newwork-storage device, initially uncorrelated so thatMerlin holds now
c p2

2Ä ( ). Several sequences of transitions are performed as depicted, so that at thefinal step, the ancillary systemhas returned to its
initial state c1. Importantly, also note thatMerlin’s ancillary system is uncorrelatedwith all thework-storage systems used in the
process. Hence,Merlin, apart from the thermal bathswhich are considered free, has not spent any resource (neither in the formof
changing his ancillary system, nor in the formof correlations) in the overall process. Axiom2 states thatMerlin cannot obtain benefit
when adding up thework value of each transition.
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2. For all p q r, , Î

p q q p , B.10  = - ( ) ( ) ( )

p q q r p r . B.11   +  = ( ) ( ) ( ) ( )

Proof.Wewillfirst show that the axioms imply the properties, beginningwith properties (B.10) and (B.11). The
two properties follow immediately oncewe have shown that any cyclic sequence p p p pn1 2 1  ¼  = has
a total work-value equal to zero. Given axiom1, which already implies that it is larger than zero, this only
requires us to show that such a sequence has awork-value smaller or equal to zero. This will be done by showing
that any cyclic sequence is a free sequence, which is enough to show the claim given corollary 23.Wewill show
that any cyclic sequence is a free sequence, where following the notation of definition 20, c cn1 = ≔ cis given by
c pi

n
i2

1= =
-⨂ . To see that c assists any cyclic sequence from p1 to p pn 1= , consider the object p c pi

n
i1 1

1Ä = =
-⨂ .

By swapping, which is a free operation, we arrive at state p c2 Ä ¢with c p p p pn1 3 4 1¢ = Ä Ä Ä Ä - .
Repeating the swapping sequentially we see that the first system goes through the transitions
p p pn1 2 1   - . Applying afinal swap the fuel is returned to c and the system returns to object p1,
proving the claim and thus, equations (B.10) and (B.11).

Let us now showproperty (B.9) from the axioms. The premise of (B.9) is that, there exists a catalytic free
transition p qi

n
i i

n
i1 1= =⨂ ⨂ . Herewe are takingm=nwithout loss of generality. The other cases follow by

tensoring a suitable number of empty objects∅. Then the transition p q1 1 is an assisted transition by

c p c q, . B.12
i

n

i
i

n

i1
2

1
2

= ¢ =
= =

⎛
⎝⎜

⎞
⎠⎟⨂ ⨂ ( )

Secondly, the transition p q2 2 is an assisted transition by c q p q,i
n

i i
n

i2 2 2 3= = =( ⨂ ⨂ ). This can be seen by just
performing a swap between thework-storage system in p2 and thefirst element of the fuel in q2. An equivalent
swapping can be used to show that p qj j is an assisted transition by

c p q c p q, B.13j
i

j

i
k j

n

k j
i

j

i
k j

n

k
2

1

2 1

= ¢ =
=

-

= = = +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⨂ ⨂ ⨂ ⨂ ( )

for j n3, , 1= ¼ - . Lastly, p qn n is assisted by c p q c p,n i
n

i n n i
n

i2
1

2= Ä ¢ = Ä=
-

=( ⨂ ). Altogether, this implies
that the set of sequences p qi i i

n
1 ={ } can be each performedwith free operations assisted by c c,i i¢( ) as described

previously. Note, that c ci i 1¢ = + and c cn1 = ¢, hence, itmeets the conditions of axiom2which by equation (B.2)
implies

p q 0.
i

n

i i
1

 å 
=

( )

Finally, let us show that the properties (B.9)–(B.11) imply the axioms. Axiom1 is trivially satisfied since
properties (B.10) and (B.11) imply that for any cyclic sequence the total amount of work is zero. Let usmove to
axiom2,which has as a premise that one has n 1- assisted transitions p qj j( ) ( ), assisted by c c,j j 1+( )with
j n1, , 1= ¼ - and c cn 1= . Then, we can use lemma 21 and see that the transition

p q B.14
j

n
j

j

n
j

1

1

1

1


=

-

=

-
⨂ ⨂ ( )( ) ( )

is an assisted transition, assisted by c c c, n1 1=( ). That is, the system c is returned unchanged, hence
p qj

n j
j
n j

1
1

1
1=

-
=
-⨂ ⨂( ) ( ) is indeed a catalytic free transition and (B.9) implies that

p q 0, B.15
j

n
j j

1

1

 å 
=

-

( ) ( )( ) ( )

proving (B.2) and thus axiom1. ,

Let us now show that axioms 1 and 2, or equivalently equations (B.9)–(B.11), imply that thework function
 must take a very particular form.

Theorem25 (theorem2 in themain text).Given a free image  that fulfils properties 1- 3, the function fulfils
axioms 1 and 2 if and only if it can bewritten as

p q M q M p , B.16  = -( ) ( ) ( ) ( )

for a functionM such that M 0Æ =( ) and that fulfils the following property:
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Additivemonotonicity: for all p p, , n1 ¼( ) ( ) and q q, , n1 ¼( ) ( ) in  such that q pi
n i

C i
n i

1 1Î= =⨂ (⨂ )( ) ( )

M q M p . B.17
i

n
i

i

n
i

1 1

å å
= =

( ) ( ) ( )( ) ( )

Proof.Wewill prove it by showing an equivalence with conditions (B.9)–(B.11), which in turn are equivalent
with axioms 1 and 2. Consider the function M p p Æ ( ) ≔ ( ). By properties (B.10) and (B.11)wehave

p q M q M p B.18  = -( ) ( ) ( ) ( )

and M 0Æ =( ) is true by definition. Clearly, (B.9) is fulfilled if and only if additivemonotonicity holds for
M. ,

AppendixC.Gibbs-preserving and thermal operations

In this section, wewill turn to two classes of operations that can be used tomodelmeaningful classes of
thermodynamic operations in the quantum regime, namelyGibbs-preserving operations (GPO) [6, 29, 30] and
thermal operations (TO) [8].Wewillfirst introduce the necessary objects, then definewhat state transitions are
possible, andfinally show that all the necessary properties are indeed fulfilled.

BothGPO andTOhave the same sets of free objects, induced byGibbs-states.

Definition 26 (Gibbs objects).The free objects of GPO andTOare given by

w H, , , C.1H H
H

Z

exp

H
w w= = b-( ) ( )( )

with anyHamiltonianH, and calledGibbs objects.

Since H H w w= l+ for any l Î , Gibbs objects are well-defined. To every object p H,r= ( )we can
associate theGibbs object

w p H, . C.2Hw=( ) ( ) ( )

Let us nowdefineGibbs-preserving transitions.

Definition 27 (Gibbs-preserving transition).A transition p H q K, ,r s=  =( ) ( ) isGibbs-preserving if
there exists a quantum channel  such that

and . C.3K H s r w w= =( ) ( ) ( )

Clearly, anyGibbs-object ismapped to anotherGibbs-objects underGibbs-preserving transitions, hence the
name. In the case that theHamiltonianH does not change in aGibbs-preserving transitionwe call the
corresponding quantum channel  aGibbs-preserving channel with respect toH. An operational way to think
about the change ofHamiltonian inGibbs-preserving transitions is given byGibbs-preserving operations.

Definition 28 (Gibbs-preserving operations).Any operation composed of taking thermal objects (at thefixed
inverse temperature b), applyingGibbs-preserving channels and tracing out subsystems is called aGibbs-
preserving operation (GPO).

GPO are closed under composition since the set of Gibbs-objects is closed under tensor products and a
composition of twoGibbs-preserving channels is againGibbs-preserving. Let us discuss some examples of GPO.
A particular way to describe them is throughmaps fromobjects to objects which induceGibbs-preserving
transitions.

Example 29. SupposeGmaps objects to objects, such that

G H H, , C.4H r r=( ) ( ( ) ˜ ( )) ( )

with H a quantum channel and ̃ amap thatmapsHamiltonians ontoHamiltonians. Furthermore, suppose
that themaps ,H ̃ fulfill the consistency relation

C.5H H H w w=( ) ( )˜( )

for all objects H,r( ). Then p G p ( ) is aGibbs-preserving transition for any object p and can bewritten as a
Gibbs-preserving operation.
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To see that the above construction can be seen asGibbs-preserving operations let H be the channel which
acts as H H r w=( ) for any , r the swap channel  r s s rÄ = Ä( ) and Hw Ä the channel that tensors in

Hw , i.e., H Hw r w rÄ = Ä( ) . Now letG be anyGibbs-preserving operation. It is easy to check from the
consistency condition that H H  Ä◦ is aGibbs-preserving channel with respect to theHamiltonian
H H  Ä + Ä ˜ ( ). A simple calculation furthermore shows that on the level of quantum states we have

tr , C.6H H H H2    w r rÄ Ä =◦ ◦( )◦ ( ) ( ) ( )˜( )

while on the level ofHamiltonianswe have themapping H H ˜ ( ).
In the following examples we use the notation of the previous example.

Example 30. Suppose idH = . Then H =( ) H (as equivalence classes)must hold true for the pair to be a
Gibbs-preserving operation. Conversely, if H =( ) H then automatically H H H w w=( ) has to be valid.

This example implies that H H H w w=( ) if and only if H H =( ) (as equivalence class).

Example 31. Fix an n-dimensional unitaryUn for every n Î . Then letting H U HUn n =˜ ( ) † and
U HUH n n r =( ) †, with n Î being the dimension corresponding to theHilbert space of r, defines aGibbs-

preserving operation.

This example implies that the swap-operation p q qÄ Ä p is a Gibbs-preserving operation.

Example 32. For anyGibbs objectw, themap p p Ä w is aGibbs-preserving operation.

Example 33. For any non-interacting object pA A, , N1  and any subset S A A, , N1Í ¼{ }, the partial trace
p pA A S, , N1 ¼  is aGibbs-preserving operation.

Example 34.To everyHamiltonianH choose a unitaryUH such that

U H, 0. C.7=[ ] ( )

Then themapTwhich acts as

T H U U H, , C.8H Hr r=( ) ( ) ( )†

is aGibbs-preserving operation.

Definition 35 (Thermal operations).A thermal operation is any operation that can be composed from the
operations in the examples 31–34.

By definition, thermal operations are closed under composition.

Definition 36 (Catalysis).A transition p  r is a catalytic Gibbs-preserving transition if there exists an object q
such that

p q r q C.9Ä  Ä ( )

is aGibbs-preserving transition. The transition is a catalytic thermal transition if it is induced by a thermal
operation.

Wewill see later, corollary 37, that also catalytic Gibbs-preserving transitions alwaysmapGibbs objects to
Gibbs objects. This is even true if correlations are allowed to built up between the system and the catalyst.

Proposition 1.Gibbs-preserving transitions and transitions induced by thermal operations fulfil properties 1–3.

Proof.This immediately follows from the examples and the definition of thermal operations. ,

AppendixD. Free energy

In this sectionwe give an example for a validwork-quantifier if we choose as free state transitionsGibbs-
preserving transitions or those induced by thermal operations. As customary, we define the vonNeumann free
energy of an object p H,r= ( ) as the function
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F H F H F H, , , , , , D.1H1 r r b w bD -b ( ) ≔ (( ) ) (( ) ) ( )

where

F p H S, tr , D.21b r r-
b

( ) ≔ ( ) ( ) ( )

and S r( ) denotes the vonNeumann entropy of r.We can also express F1D b using the quantum relative entropy,
which is for states r and s defined as

S tr log log D.3r s r r r s= -( ∣∣ ) ( ) ( )

if supp suppr sÍ( ) ( ) and is equal to¥ otherwise. It is well known that

F H S, . D.4H1
1r r wD =b
b

( ) ( ∣∣ ) ( )

This equation also directly shows that F H,rD b ( ) is a well-defined function on objects: it is invariant under
maps of the form

H H D.5l+ ( )
for any l Î . In this sectionwewill prove the following proposition.

Proposition 2 (Properties of the von-Neumann free energymonotone).The function F1D b is amonotone
under catalytic Gibbs-preserving transitions and fulfils the following properties:

1. Normalisation: F w F 01 1D = D Æ =b b( ) ( ) for anyw being aGibbs object.

2. Extensivity:

F p p F p F p . D.6A B A B1 1 1D Ä = D + Db b b( ) ( ) ( ) ( )

3. Strong generalised super-additivity: if p p,AB
f

AB
i( ) ( ) are non-interacting objects on AB,

F p F p F p

F p D.7

A
f

A
i

AB
f

AB
i

1 1

1

D - D D

- D

b b b

b

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

if pAB
f( ) can be reached from pAB

i( ) by only acting on subsytemA.

Note that this proposition also implies that F1D b is amonotone for catalytic thermal transitions, since these
constitute a strict subset of catalytic Gibbs-preserving transitions.Hence FD b defines a valid work-quantifier for
bothGibbs-preserving transitions and thermal operations. The property of strong generalised super-additivity
furthermore implies the usual super-additivity F p F p F pAB A B1 1 1D D + Db b b( ) ( ) ( ), if pAB is non-interacting.

Wewill separate the proof into several propositions.Wewill frequently use the followingwell-known
properties of the relative entropy:

1. Positivity: S 0r s( ∣∣ ) and S 0r s =( ∣∣ ) if and only if r s= ,

2. Data-processing inequality: S T T Sr s r s( ( )∣∣ ( )) ( ∣∣ ) for any quantum channelT.

3. Mutual information: for any bipartite state A A1 2
r we have

S S S S . D.8AB A AB AB A Br r r r r r= + - Ä( ) ( ) ( ) ( ∣∣ ) ( )

Positivity directly implies that, for a fixedHamiltonianH, theGibbs-state Hw at inverse temperature b is the
uniqueminimumof the function F H,1 r rD b ( ) 0. Thuswe already know that F w 01D =b ( ) for any
Gibbs object and that F p 01D >b ( ) if p is not aGibbs object.

Proposition 3 (Extensivity of the free energy difference).The function F1D b is extensive.

Proof.The proof follows immediately fromProperty 3. of the relative entropy. ,

Proposition 4 (Super-additivity of the free energy difference).The function F1D b fulfils strong generalised
super-additivity.
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Proof.Assume that two objects

p H H, D.9
AB
i

AB
i

A
i

B A B
i r= Ä + Ä( ) ( )( ) ( ) ( ) ( )

and

p H H, D.10
AB

f
AB
f

A
f

B A B
f r= Ä + Ä( ) ( )( ) ( ) ( ) ( )

are related through a local operation onA. Then

D.11AB
f

A AB
ir r= Ä( )( ) ( )( ) ( )

for some quantum channel A acting on systemA and therefore B
i

B
fr r=( ) ( ) and H HB

i
B

f=( ) ( ).We need to show
that

F p F p F p F p . D.12
A

f
A
i

AB
f

AB
i

1 1 1D - D D - Db b b b( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

If ,A Bw w are twoGibbs-states, then it is easy to prove, using locality, that for any state ABr on AB wehave

S S

S . D.13
AB A B AB A B

A B A B

r w w r r r
r r w w

Ä = Ä
+ Ä Ä

( ∣∣ ) ( ∣∣ )
( ∣∣ ) ( )

Using this relationwe can rewrite the r.h.s. of equation (D.12) as

S S

S

S . D.14

AB
f

A
f

B
f

AB
i

A
i

B
i

A
f

B
f

H H

A
i

B
i

H H

1

1

A
f

B
f

A
i

B
i

r r r r r r

r r w w

r r w w

Ä - Ä

+ Ä Ä

- Ä Ä

b

b

[ ( ∣∣ ) ( ∣∣ )]

[ ( ∣∣ )

( ∣∣ )] ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

Using H H,B
f

B
i

B
i

B
fr r= =( ) ( ) ( ) ( ) and extensitivity, wefind that the second term in brackets reduces to

S S F p F p . D.15A
f

H A
i

H A
f

A
i1

1 1A
f

A
ir w r w- = D - D

b
b b[ ( ∣∣ ) ( ∣∣ )] ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

But from the data-processing inequality we get that

S S C 0. D.16AB
f

A
f

B
f

AB
i

A
i

B
i1 r r r r r rÄ - Ä =

b
[ ( ∣∣ ) ( ∣∣ )] ( )( ) ( ) ( ) ( ) ( ) ( )

We thus have

F p F p C F p F pr.h.s. . D.17
A

f
A
i

A
f

A
i

1 1 1 1= D - D + D - Db b b b( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

,

What is left to be proven is that F1D b is amonotone under free (catalytic) transitions.

Proposition 5 (Monotonicity underGibbs-preserving transitions).The function F1D b is amonotone under
Gibbs-preserving transitions.

Proof.Consider aGibbs-preserving transition

p H r K, , D.18r r=  =( ) ( ( ) ) ( )

with K Hw w= ( ). Thenwe get
S S

S , D.19
K H

H

  


r w r w

r w
=( ( )∣∣ ) ( ( )∣∣ ( ))

( ∣∣ ) ( )

where the last inequality is the data-processing inequality. ,

Proposition 6 (Monotonicity under catalytic Gibbs-preserving transitions).The function F1D b is amonotone
under catalytic Gibbs-preserving transitions.

Proof.Consider a catalytic transition p q rÄ  Ä q. Frommonotonicity and extensitivity of F1D b , we obtain

F r F r q F q

F p q F q

F p . D.20

1 1 1

1 1

1


D = D Ä - D

D Ä - D

= D

b b b

b b

b

( ) ( ) ( )
( ) ( )
( ) ( )

,
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A similar proof can also be given in the settingwhere the catalyst is allowed to become correlatedwith the
system. In this case, we need to use super-additivity of F1D b . The same applies for the next corollary.

Corollary 37 (MappingGibbs objects toGibbs objects).Catalytic Gibbs-preserving transitionsmapGibbs objects
to Gibbs objects.

Proof.Consider a transition w q rÄ  Ä q. Then F r F wD D =b b( ) ( ) 0. But F 0D b and FD b vanishes
only onGibbs-objects. Hence rhas to be aGibbs object. ,

This finishes the proof of proposition 2.

Appendix E. The usual notions ofwork as a particular case in our formalism

In this sectionwewill review the commondefinitions of work that have been considered in the literature and
recast them as particular cases of our formalism. That is, wewill show that the energy stored in thework-storage
device is a validwork quantifier fulfilling axioms 1 and 2, where the catalytic free operations and the set of
restrictions  encode the behavior of a liftedweight.

E.1. The average energy of the liftedweight
Herewewill discuss themodel of work considered in [7, 38]. In this case, the restrictions  are taken as the
quantumanalogue of a liftedweight:

H H mgX, ; , E.1A A A
mean r= ={( ) } ( )

whereX is the position operator associated to one continuous degree of freedom,m is themass of theweight and
g is the gravitational constant. Note that no restrictions are put on the state Ar but theHamiltonianHA isfixed
throughout the protocol. Thework quantifier is defined as

p p H Htr tr . E.2
A
i

A
f

A
f

A A
i

Amean r r = -( ) ( ) ( ) ( )( ) ( ) ( ) ( )

Importantly, the treatment of thework-storage device as a liftedweight is encoded in the set of catalytic free
operations C . Following the formalismof [7] and adding to it the notion of a catalyst, we have that the free
operations, that we denote by C

mean are given by

U U; tr , E.3C A A BC B C A
mean r r r w s r= ¢ ¢ = Ä Ä( ) { ( )} ( )†

where w is aGibbs state (reflecting a heat-bath), themean-energy is preserved

U U Htr 0, E.4B C A B C A BCAw s r w s rÄ Ä - Ä Ä =(( ) )) ( )†

the catalystC is left in the samefinal state,

U Utr , E.5C BA B C As w s r= Ä Ä( ) ( )†

andfinally, that the unitaryU commutes with the space-translation operator onA (see [7, 39] for details).
Given all the conditions, it is shown in [7, 39] that

H Htr tr . E.6A A A A A C A
meanr r r r¢ " ¢ Î( ) ( ) ( ) ( )

That is, the function M H H, trr r( ) ≔ ( ) is amonotone under C
mean catalytic free operations. Lastly, one can

easily show that the average energy fulfils the properties of additivity and super-additivity, hence, using theorem
4we see that mean fulfills axioms 1 and 2 5.

As a final remark, notice that the free operations C
mean impose a limitation in comparison towhat is usually

allowedwhen thermal operations orGibbs preservingmaps are considered. The condition that the unitary has
to commutewith the translation operator of thework-storage device prevents one from employing the lifted
weight as an entropy sink in the spirit of the example offigure 1. At the same time, it is obvious from themodel of
thework-storage device and the conditions on C

mean that this idealisationwill not represent the realistic
behaviour of a nano-machine. Awork-storage devicemade of a few atoms certainly will not have aHamiltonian
of the form (E.1)neither one can expect the operations performed in a real experimental device to, even
approximately, commutewith the translation operator on thework-storage device, even if itsHilbert-space
allows for such operators.

5
Strictly speaking, themean energy does not fulfil the property of being positive for all states in mean , as it is also demanded by theorem 4.

However, this can be tackled by simply taking mean so that themean energy of the states is bounded frombellow. In this way, we can take
the origin of energies (which does not alter the definition ofwork) in such away all the states have positive energy.
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E.2. Thewbit and  -deterministic work extraction
Nowwewill consider themodel of awbit and the notion of  -deterministic work as it has been put forward in
[8]. The restrictions on thework-storage device are such they are qubits with

H H E E, 1 1 , 2 , E.71  r r= D ñá - ñá ≔ {( ) ∣ ∣ ∣ ∣ ∣ } ( )

where Eñ∣ is an eigenvector of H , 1 · is the 1-normon quantum states and 1

2
 < . The restriction  encodes

that Arthur is interested in having states of well-defined energy or at least  -close to it.Work is then given by the
energy difference of the closest energy-eigenstates, formally as

p p f H f H, , , E.8
A
i

A
f

A
f

A
f

A
i

A
i

det r r = -( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

with the function f being defined as

f H,
if 1 1 1

0 if 0 0 1
. E.9r

r
r

=
D - ñá <

- ñá <
 
 

⎧⎨⎩( )
∣ ∣
∣ ∣

( )

It is easy to see that strictly speaking, thismodel of thewbit respects axioms 1 and 2 if 0 = . In that case, 0=
is given only by pure energy eigenstates. Hence, wefind that det evaluated on 0= coincides with thework-
quantifier defined by the non-equilibrium free-energy on any transitionwhere theHamiltonian is constant.
However, for 0 > we find that thismodel of the liftedweight does not satisfy the axioms 1 and 2. Indeed, one
can simply check that it does not fulfil equation (18), or in other words, it is possible to storework in thewbit by
simply putting it in contact with a single thermal bath. Indeed, it has been shown in [30] that for any value of

0 > and b one can find a value of 0D > such that there exists a thermal operation that brings a qubit work-
storage system initially in the ground state to afinal state 1 1 1 0 0f  r = - ñá + ñá( )∣ ∣ ∣ ∣( ) . Hence, for any  >
0, there exist p p,i f Î( ) ( ) , such that p pi f

det  = D >( )( ) ( ) 0, while p pf
C

iÎ ( )( ) ( ) , in contradiction
with (18). Thus, det only defines a work quantifier that is compatible with axioms 1 and 2 if 0 = . A discussion
on how to define awork quantifier that incorporates the notion of  -deterministic workwithout running into
contradictions is presented in section 7.2.

As a final remark, let us note again that the incompatibility of  -deterministic workwith our axioms is
unrelatedwith issues related to reversibility or the fact that p q q p  = - ( ) ( ). Indeed, also
 -deterministic work fulfils this property. The reason thatmakes it violate the axioms is the same as the one given
in the example offigure 1: when 0 > , thewbit can act as an entropy sink. Thus, identifying workwith energy as

det does, allows one to extract work by using a single heat bath.Nonetheless, as we propose in section 7.2 in the
main text, it is possible to keep the spirit of the  -deterministic work (that thework-storage devices are  -close
to pure energy eigenstates) and put forward a properwork quantifier that satisfies the axioms.

Appendix F. Probability distributions ofwork

Wewill nowdiscuss howour formalism is perfectly compatible with the notion of work as a classical random
variable and thewell-known results that pertain to the fluctuations of the probability distribution of work of
[26, 27]. In the setting in the focus of attention in so-called fluctuation theorems one considers a system S on
which an energymeasurement is performed both at the beginning and the end of a given unitary evolution. That
is, the initial and final energies E i( ) and E f( ) are random variables, and so is thework given by w E Ef i= -( ) ( ),
which occurswith probability PW(w). Let us assume that the energy difference is bounded so that P w 0W ¹( )
only if w w wmin max  . Onemay then always assume the presence of awork-storage deviceA that stores the
energy lost by S and that is—in each event—in an energy eigenstate.

More explicitly, we consider x x mgX x x, where = ñá ñá{(∣ ∣ )} ∣ ∣ is an eigenstate of the truncated position
operator

X x x xd F.1
w

w

min

max

ò= ñá∣ ∣ ( )

(takingmg=1 for simplicity)6. Then, in each event—that is, conditioned on a specific value of the initial and
finalmeasurement—thework-storage device undergoes the transition

p X p w w X0 0 , , . F.2i
A A

f
A A= ñá  = ñá(∣ ∣ ) (∣ ∣ ) ( )( ) ( )

6
Here, x x xd

w

w

min

max
ò ñá∣ ∣ should be understood as afinite-dimensional Hamiltonianwith non-degenerate spectrumwithin w w,min max[ ], as

dense as necessary to reflect all the possible work-values.
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Then, we simply take

p p f p f p wi i f i  = - =( ) ( ) ( )( ) ( ) ( ) ( )

with f x x X x,A Añá =((∣ ∣ )) . Clearly, this work quantifier fulfills axioms 1 and 2, since it coincides, for the case of
x x mgX, = ñá{(∣ ∣ )}, with taking f F1= D b , which by theorem 5 fulfils the axioms.

Nonetheless, note that it is crucial to include as part of thework extraction scheme the step inwhich a
measurement is performed at the beginning and at the end. This is necessary even if S is a classical system.
Otherwise, the process will result in amixed state of thework-storage device.

To bemore precise, it is important to appreciate that the two following notions are not equivalent:

(i) X w w X0 0 , ,A A A Añá  ñá(∣ ∣ ) (∣ ∣ ) occurs with probability PW(w).

(ii) X P w w w X0 0 , ,A A w W A Añá  å ñá(∣ ∣ ) ( ( )∣ ∣ ) takes place.

The interpretation of work as a randomvariable in [26, 27] corresponds to a process of the type (i), where the
probability distribution of work PW(w) encodes our a priori knowledge or capability tomake predictions about
which transition of the form (F.2) is going to take place. The transition given by (ii) is a situation that is not
covered by x x mgX, = ñá{(∣ ∣ )}and given simply by (E.2). In order to quantify work for a transition of the
form (ii), one has to properly account for the fact that thework-storage devicemight act as an entropy sink. In
otherwords, in order to account for transitions of the form (ii), one cannot identify work simply with the energy
difference, and one has to define awork quantifier that fulfils axioms 1 and 2 for extended sets  that contain

P w w ww W Aå ñá( )∣ ∣ as a valid state.
Although this discussion between the differences of (i) and (ii) is rather obvious, wewould like to stress that it

plays an important role in the interpretation of work in quantitative terms, since (i) requires to perform an
energymeasurement, which is not a free operationwithin any sensible thermodynamic framework.Hence, it
should be kept inmind that when referring towork as a randomvariable, one is effectively quantifying thework
extracted/invested in the process plus thework extracted/invested in themeasurements, which of course is a
perfectly valid approach.

In contrast, in the formalismof [8, 33], deterministic values of energy are obtained, not by conditioning on
the value of an energymeasurement, but by engineering the protocol in such away thework-storage device ends
in a deterministic state of energy.

Lastly, let us point out that our axiomatic framework can incorporate the notion of work as a random
variable in situationsmore general than the one considered above. For example, onemay consider probability
distributions of work for arbitrary processes between twomeasurements described by POVMs Ma a{ } , provided
that all the post-measurement states are validwork-storage devices, i.e., are fairly included in the set  .Then, for
anywork quantifier that fulfills axioms 1 and 2 for the set  , thework p pi f

i f
 a a( )( ) ( ) occurs with

probability P ,i fa a( ), where p i

ia
( ) is the initial state conditioned on having obtained outcome ia initially (and

equivalently for the state p f

fa
( ) after the finalmeasurement) and P ,i fa a( ) is the joint probability distribution of

obtaining the pair ,i fa a . In this way, we see that the framework laid out in this work and the picture of
capturingwork as a probability distribution are compatible.
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