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Abstract

Biological ion channels are protein nanotubes embedded in, and passing through, the bilipid
membranes of cells. Physiologically, they are of crucial importance in that they allow ions to pass into
and out of cells, fast and efficiently, though in a highly selective way. Here we show that the conduction
and selectivity of calcium/sodium ion channels can be described in terms of ionic Coulomb blockade
in a simplified electrostatic and Brownian dynamics model of the channel. The Coulomb blockade
phenomenon arises from the discreteness of electrical charge, the strong electrostatic interaction, and
an electrostatic exclusion principle. The model predicts a periodic pattern of Ca** conduction

versus the fixed charge Qy at the selectivity filter (conduction bands) with a period equal to the ionic
charge. It thus provides provisional explanations of some observed and modelled conduction and
valence selectivity phenomena, including the anomalous mole fraction effect and the calcium
conduction bands. Ionic Coulomb blockade and resonant conduction are similar to electronic
Coulomb blockade and resonant tunnelling in quantum dots. The same considerations may also be
applicable to other kinds of channel, as well as to charged artificial nanopores.

1. Introduction

Biological ion channels are natural nanopores providing fast and highly selective permeation of physiologically
important ions (e.g. cations such as Na*, K" and Ca*") through the bilipid membranes of biological cells [ 1-3].
The channel proteins carrying the pores are embedded in the cellular membrane, and are complicated structures
consisting of thousands of atoms.

More than three decades after their discovery, and following a vast number of experiments, a great deal is
now known about ion channels. Yet there remain many features of their function—including some quite basic
features—that are still not properly understood. Examples include: the selectivity in which e.g. a calcium channel
favours Ca>" over Na™ by up to 1000:1, even though the ions are essentially the same size; that this selectivity is
combined with fast permeation in which the ion goes through the channel almost at the rate of free diffusion (as
though the channel were an open hole); the anomalous mole fraction effect (AMFE) where, in a pure NaCl
solution, a Na™ ion can pass easily through a calcium channel, but its passage is blocked by tiny traces of Ca**; the
exact role of the fixed electric charge at the so-called selectivity filter in determining the selectivity; and, associated
with that, the mechanism by which mutations that alter the fixed charge can result either in destruction of the
channel, so that it no longer conducts, or in conversion of e.g. a sodium channel into a calcium channel or
vice versa. We will account for these and other experimentally observed features of channel conduction in terms
of anovel vision of the permeation process inspired by well-understood phenomena in a quite different area of
physics, associated with quantum dots and tunnel diodes.

The conduction and selectivity of a cation-selective channel are determined by the ions’ movements and
interactions inside a short, narrow selectivity filter lined with negatively charged protein residues that provide
the net fixed negative charge Qy; correspondingly, anion-conducting channels possess positive fixed charge
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[1,4].Ionsin solution are surrounded by hydration shells with associated dehydration potential barriers that are
also crucial for selectivity in many cases [5-9]. Selectivity frequently involves a ‘knock on’ mechanism or, more
generally, the correlated motion of several ions [ 10—13]. The protein residues forming the ‘locus’ of the
selectivity filter are amino acids, of which aspartate (D) and glutamate (E) have negatively charged side chains
(Qs = —1le where eis the proton charge), lysine (K) has a positively charged side chain (Qf=+le), and alanine
(A) has a neutral side chain. The nominal Qy value is defined by which amino acid residues are present. Calcium
L-type channels possess EEEE selectivity filter loci (Q ~ —4e) [14-16]. Mammalian Na* channels have DEKA
inner siteloci (and DDEE outer sites) [1, 17] and hence different Q.. Bacterial NaChBac [18] and NavAb [19, 20]
Na* channels have selectivity filters with EEEE loci like Ca*" channels but select Na* ions over Ca**: an apparent
anomaly that awaits explanation.

The modern study of ion channels is based on the existence of the distinct open and closed states of channels,
evident in thousands of experiments as discrete levels of current flow measured from individual channel
proteins [21]. Site-directed mutagenesis provides a method for systematically varying the structure and net
charge of their selectivity filter loci. The resultant changes in conduction and selectivity as functions of Qy can
then be measured by use of the patch-clamp technique. Such mutant studies [18, 22—-29] have demonstrated that
Qyis akey determinant of conduction and selectivity in the calcium/sodium family of channels, with the Ca*'/
Na" selectivity growing with increasing | Q| [30-33]. However, the underlying mechanism has remained
obscure.

Discovery of the structures of the bacterial potassium KcsA [34] and sodium NavAb [19] channels and the
application of all-atom molecular dynamics simulations [20, 28, 35-37] have yielded deep insight into fine
details of the ionic permeation processes, including the reproduction of currents [38, 39]. However, a multi-scale
analysis is still needed [40—42] to build up a full picture. Self-consistent electrostatic and Brownian dynamics
simulations [15, 30, 43—45] describe ionic motion as an electro-diffusion process, leading to fast and direct
estimation of the currents under non-equilibrium conditions. Such simulations have shown very clearly that the
permeation and selectivity features of many channels are defined by just the basic electrostatics of narrow water-
filled channels, rather than by the details of the channel structures themselves.

The discreteness of the ionic charge plays a significant role in ion channel conduction [8, 46-48]. An
electrostatic theory of ionic transport in water-filled periodically charged nanopores [49, 50], treating the ions as
a 1D Coulomb gas [50], revealed ion-exchange through low-barrier phase transitions as the ion concentration
and Qy were varied [51]. It has recently been shown that nanopores can exhibit ionic Coulomb blockade [52], an
electrostatic phenomenon similar to electronic Coulomb blockade in mesoscopic systems [53—56].

Our earlier simulations of a simple electrostatic model of calcium/sodium ion channels revealed a periodic
set of Ca** conduction-bands and stop-bands as a function of the fixed charge Qy at the selectivity filter [57-59]
similar to transitions [51]. The energetics of that phenomenon has been derived from electrostatics as single-
and multi-ion barrier-less conduction and results were compared with the experimental data available to
date [58, 59].

In this paper we demonstrate that the origin of these conduction bands lies in ionic Coulomb blockade [52],
closely similar to its electronic counterpart in quantum dots [53]. We thus introduce a Coulomb blockade
model of permeation and selectivity in biological ion channels, describing them as discrete electrostatic devices
[56]. The applicability of Coulomb blockade to biological ion channels follows naturally from an earlier
discussion of the crucial role of electrostatics and the suggestion that there might be ‘eigenstates’ for conduction
[60, 61] in biological ion channels. We will show that the Coulomb blockade model predicts the positions and
shapes of the conduction bands, defines the channel occupancy as a Fermi—Dirac distribution, and thereby
provides an explanation of divalent block and AMFE, including the exponential dependence of the divalent
block threshold ICs, on Qy.

We will focus on the sodium/calcium family of channels including the voltage-gated Ca** [14, 28] and Na*
channels [19, 62]. These channels exhibit strong valence selectivity and can undergo a wide range of
transformations as the result of site-directed mutagenesis, enabling us to test many of the predictions of our
model. The picture that we will develop may, however, be more generally applicable. Section 2 describes a
generic model of calcium/sodium channels, its geometry (2.1), electrostatics (2.2), Brownian dynamics (2.3)
and validity (2.4). Section 3 introduces and verifies the ionic Coulomb blockade model of ion channel
conduction and selectivity; it reviews multi-ion conduction bands (3.1), describes the Coulomb blockade model
(3.2), identifies real channels and mutants (3.3), derives the shape of Coulomb blockade oscillations (3.4) and
explains the selectivity and AMEFE (3.5). Section 3.6 contains further considerations. Section 4 draws the results
together and presents concluding remarks.

In what follows, with SI units e is the proton charge, T the temperature, z the ionic valence, kg Boltzmann’s
constant and g, the electric permittivity of the vacuum. We use dimensionless units for energy assuming
kyT = 1.
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Figure 1. (a) Generic electrostatic model of the selectivity filter of a Ca®* or Na* channel. It is treated as an axisymmetric, water-filled,
cylindrical pore of radius R = 0.3 nm and length L = 1.6 nm through the protein hub in the cellular membrane. A centrally placed,
uniform, rigid ring of negative charge Qsin the range 0 < |Qy Ze | < 7isembedded in thewallat Ry = R.Ions inside the channel
move in single file along its axis. (b) Energetics of a moving Ca*" ion for fixed charge Q; = —1e. The dielectric self-energy barrier U,
(blue solid line) is balanced by site attraction (green dashed line) resulting in an almost barrier-less energy profile (red solid line).

2. A generic electrostatic and Brownian dynamics model of the calcium channel

2.1. Geometry and general features of the model
Figure 1(a) shows the generic, self-consistent, electrostatic model of the selectivity filter of a calcium/sodium
channel whose properties we will analyse. We consider it as a negatively charged, axisymmetric, water-filled,
cylindrical pore through the protein hub in the cellular membrane; and, to match the dimensions of the
selectivity filters of the Na*/Ca®* channels on which we focus, we suppose it to be of radius R = 0.3 nm and
length L=1.6 nm [14, 15, 63]. The x-axis is coincident with the channel axis, with x = 0 in the center of channel.
There s a centrally placed, uniformly charged, rigid ring of negative charge 0 < |Qy/e| < 7 embedded in the
wallat R = R. Theleft-hand bath, modeling the extracellular space, contains non-zero concentrations of Ca**
and/or Na* ions. For the Brownian dynamics simulations, the computational domain length L;= 10 nm, its
radius R; = 10 nm, the grid size h = 0.05 nm, and a potential difference in the range 0 — 25 mV (corresponding
to the depolarized membrane state) was applied between the left and right domain boundaries.

The mobile sodium and calcium ions are described as charged spheres of radius R; ~ 0.1 nm for both ions
(allowing use of the implicit solvent model [64, 65] with neglible ion radii), with diffusion coefficients of
Dy = 1.33 X 107 m?s ' [15,66] and D¢, = 0.79 x 10~ m?s~' [15], respectively.

We take both the water and the protein to be homogeneous continua describable by relative permittivities
&, = 80 and e, = 2, respectively, together with an implicit model of ion hydration whose validity is discussed
elsewhere [58]. We approximate ¢,,, Dy, and D¢, as being equal to their bulk values throughout the whole
computational domain (see below, section 2.4).

2.2. Self-consistent electrostatics of the model
The electrostatic potential U for an ion, and the potential gradients, were derived by numerical solution of
Poisson’s electrostatic equation within the computational domain shown in figure 1:

-V (806 Vd)) =p, + Zezini (Poisson’s equation), (1)

where ¢ is the relative permittivity of the medium (water or protein), p, is the density of fixed charge, z; is the
charge number (valence), and #;is the number density of moving ions.

Self-consistent electrostatics within the narrow, water-filled, channel in the protein differs significantly from
bulk electrostatics [49, 67, 68]. The huge gradient between ¢,, = 80 and ¢ » =2 the discreteness of ionic charge
and the specific channel geometry, lead to permeation, quasi-1D axial behaviour of ions inside the channel
[49, 50, 69], and hence to single-filing. Consequently, we use a 1D dynamical model to simulate the axial single-
file movement of cations (only) inside the selectivity filter and in its close vicinity.

Figure 1(b) shows axial single-ion potential energy profiles for Q; = —1e, including the repulsive self-
energy barrier U and the attraction energy U, attributable to the fixed negative charge. The dielectric self-energy
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U, plays a crucial role in controlling ion permeation through the narrow channel. It will be shown below that Uj
defines the strength of Coulomb blockade for an ion of particular valence z, and that it determines the condition
for strong valence selectivity [30, 58]. The site attraction is proportional to z X Qy, so thata variation of Qscan
significantly change the resultant profile. In particular for Q; ~ —1e, the self-potential barrier of the dielectric
boundary force can be balanced by electrostatic attraction to the fixed charge Qg resulting in almost barrier-less
conduction [58].

2.3. Brownian dynamics simulation of the ionic current

The ions’ motion through a channel can be described as an electro-diffusion process and investigated through
Brownian dynamics simulations [15, 30, 44, 45, 57, 70-73] of the ionic trajectories. Taking account of the single-
filing required by electrostatics, we can solve the over-damped, time-discretized, Langevin equation
numerically. An axial step Ax; of the ith ion is defined as [74],

Ax; = —zeD; Vi p (x;)At + J2D;At & (1) (Langevin equation), (2)

where D; is the ionic diffusion coefficient, At is the time step, &; (¢) is normalized white noise, z; is the valence of
the ith ion, and the potential ¢ (x;) is calculated self-consistently from (1) at each simulation step.

Brownian dynamics simulations of the ion current J and occupancy P were performed separately for CaCl,
and NaCl solutions, and also for a mixed-salt configuration, with concentrations [Na] = 30 mM and 20 uM
< [Ca] € 80 mM.

2.4. Validity and limitations of the generic model

Our reduced model obviously represents a considerable simplification of the actual electrostatics and dynamics
of moving ions and water molecules within the narrow selectivity filter. The validity and range of applicability of
this kind of model have been discussed in detail elsewhere [35, 58, 75, 76]. The most significant simplifications
are probably: the use of continuum electrostatics; the use of the implicit solvent model; the use of Brownian
dynamics with uncorrelated noise sources for the charged particles; and the assumption of 1D (i.e. single-file)
movement of ions inside the selectivity filter. We can partially accommodate these simplifications by use of
effective values [58].

3. Coulomb blockade model of permeation and selectivity

In this section we introduce the Coulomb blockade picture of permeation and selectivity and show that the
phenomenon manifests itself in the model of figure 1 when its geometrical parameters are appropriate for
calcium/sodium channels. We will show that the model describes well both the simulated conduction bands and
many experimentally measured phenomena of valence selectivity in calcium/sodium channels. The Coulomb
blockade model provides significant generalization of our earlier explanation of conduction bands [58] and
connects them with mesoscopic transport and single-electron devices [52, 54, 56].

We start by reviewing the main outcome of our earlier Brownian dynamics simulations of conduction bands
[57,58] in order to summarise some of the results that need to be explained including, in particular, the
observation of conduction bands.

3.1. Multi-ion conduction bands

Figures 2(a), (b) and 3(a), (b) present the Brownian dynamics results [57-59] for permeation of the model
channel figure 1(a) by calcium and sodium ions, respectively, in pure baths of different concentration, plotted in
each case asa function of Q.

Figure 2(a) exhibits a sequence of narrow conduction bands M, M, M,, separated by stop-bands of almost
zero-conductance centred on the blockade points Z;, Z,, Zs. Figure 2(b) shows that the M, peaks in J,
correspond to transition regimes where the channel occupancy Pc, jumps from one integer value to the next,
and that the stop-bands correspond to saturated regions with integer -, = 1, 2, 3.....

The band M, corresponds to single-ion low-barrier conduction (see red curve in figure 1(b)). Band M;
corresponds to double-ion knock-on conduction, which is well-established for L-type Ca?" channels
[14,77,78];asimilar peak was obtained by Corry et al [ 15] in Brownian dynamics simulations of the Ca**
channel. Band M, corresponds to triple-ion conduction, a process that can be identified with the permeation of
ryanodine receptor calcium channels [7] (see table 1 below for further detail). These bands can be considered as
examples of self-organization in ion channels [16, 73].

Comparison of the ], and P¢, plots in figures 2(a) and (b) shows that for the M,, points near which
conduction occurs, Qf = —ze (n + 1/2); whereas the non-conducting regions of constant P correspond to Z,,

4
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Figure 2. Multi-ion Ca®* conduction and occupancy in the Ca**/Na* channel model versus the effective fixed charge Qy; the
Brownian dynamics (BD) simulation results (a), (b) are reworked from [57, 59]. (a) Plots of the Ca** current J, for pure Ca*" baths
of concentration 20, 40 and 80 mM. The BD results of Corry et al [ 15] are shown for comparison (blue, dashed, diamonds, in arbitrary
units). (b) The channel occupancy Pc,. (c) Plots of the electrostatic energy U,, (blue, dashed) and the ground state (i.e. minimum)
energy Us = min, (U,) (red, solid) versus Q/for channels with n = 0, 1, 2, 3. Ca** ions inside. The conduction bands My, M;, M,
and the stop bands Z,, Z,, Z; (indicated by labels) are discussed in the text.
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Figure 3. Multi-ion Na* conduction and occupancy in the Ca**/Na* channel model versus the effective fixed charge Qg the Brownian
dynamics simulation results (a), (b) are reworked from [59]. (a) Plots of the Na* current J, for pure Na* baths of concentration 20,
40 and 80 mM. (b) The occupancy Py;,. (c) Plots of the electrostatic energy U, (blue, dashed) and resulting oscillations of the ground
state energy Ug = min, (U, ) (red, solid) versus Qfor channelswithn = 0, 1, 2...6 Na* ions inside. The conduction band Ly is
discussed in the text.
points with Q; = —zen, i.e. to the neutralized state [59]. These bands will be interpreted below as strong
Coulomb blockade.

Figures 3 (a) and (b) plot the equivalent results for sodium ions in pure NaCl baths of different
concentration showing (a) the sodium current and (b) the occupancy as functions of Qg The current ]y, exhibits
asingle-ion peak L that would appear to be analogous to the calcium conduction band M, of figure 2(a). For
larger Qythere are weak, strongly overlapping, conduction bands between which the current does not fall to zero,
making the sodium conductance relatively independent of Qg The separations of the Jyy, band maxima are
approximately half the size of those for the calcium bands, reflecting the charge difference between Na™ and Ca
ions. We will refer to this scenario as an example of weak Coulomb blockade.

Figures 2(c) and 3(c) plot the ground state energies characteristic of Coulomb blockade graphs [56]. They
will be discussed in the next section. Note that we use ground state in the physics sense, implying the state of
minimum energy.

2+
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Table 1. Putative identification of ionic Coulomb blockade model bands with some known wild type (WT) channels and mutants sequences
(extended from [58]).

N Channel/mutant Site locus Nom. Qy /e Band Band’s Qy/e
(a) WT Na*-selective Nav channel [22] DEKA -1 Lo -0.5
WT Non-selective OmpF [27] KRRRDE -1 M, -1
WT Ca®*-selective L-type channel [23] EEEE —4 M, -3
WT NaChBac[18], NavAB [28] EEEE —4 Z, —4
WT Ca**-selective RyR channel [7] DDDD(ED) -6 M, -5
(b) WT Na*-selective Nav channel [22] DEKA -1 Lo -0.5
Ca**-blocked Nav mutant = DEKE -2 M, -1
Ca®"-permeable Nav mutant = DEEA -3 Z, -2
Ca®*-selective Nav mutant = EEEE —4 M, -3
(c) WT Ca**-selective L-type channel [23] EEEE —4 M, -3
Ca**-blocked Cav mutant = EEQE -3 Z -2
Na*-conductive Cav mutant = EEKE -2 M, -1
Na*-selective Cav mutant = EEKA -1 Ly -0.5
(d) WT Na*-selective NaChBac [18] EEEE —4 Z, —4
Ca**-selective CaChBac mutant = EEEE+DDDD -7 M; -8
(e) WT Na*-selective NavAB [28] EEEE —4 Z, —4
Ca**-selective CavAB mutant = EEEE+DDDD -7 M; -8

3.2. Coulomb blockade oscillations of conductance

We are now in position to introduce the Coulomb blockade model of conduction and selectivity in Ca**/Na* ion
channels. We will find that it is able to account for the pattern of calcium and sodium bands seen in figures 2 and
3 in terms of strong and weak Coulomb blockade oscillations [55], respectively .

The discreteness and entity of the ionic charge allow to us to introduce exclusive ‘eigenstates’ {n} of the
channel for fixed integer numbers of ions inside its selectivity filter, with total electrostatic energy U,,. The
transition {n} — {n + 1} corresponds to the entry of a new ion, whereas {n} — {n — 1} corresponds to the
escape of a trapped ion. The nions’ eigenstates form a discrete exclusive set of {n}-states [79] :

n=1{0,1,2,.} Y6,=1; P=)nb, (3)

The electrostatic exclusion principle (3) leads to Fermi—Dirac statistical distributions [80] for 6,, and P,, as will be
derived below.
The total energy U,, for a channel in state {n} can be expressed as:

Uvn = (]n,s + l]n,a + Un,int (4)

where U, , is the self-energy, U, , is the energy of attraction, and U, i is the ions’ mutual interaction energy.

We approximate U, as the dielectric self-energy U, ; of the excess charge Q,,, based on the assumption that
both the ions and Q; are located within the central part of the selectivity filter, so that application of Gauss’s
theorem to the # similar ions captured within its volume gives a Coulomb blockade-like quadratic dependence
of U,on Qf[51]:

2 2
L
U, = il _Q ( Electrostatic energy )
8nepe, R 2C;
Qu=zen + Qg ( Excess charge). (5)

Here, C, stands for the geometry-dependent self-capacitance of the channel, and Q,, represents the excess charge
at the selectivity filter for the n ions as a function of Q: A binomial expansion Q;, in (5) gives first approximations
for U, ;, U, , and U, ;,, that are consistent with the energetics analysis in [58] and with the 1D Coulomb gas
model of ion—ion and ion-fixed charge interactions [49, 50]. A more realistic account of the interactions would
result in corrections to (5) and to the formulee derived from it.

With (5) we arrive at an equation identical to that for electronic Coulomb blockade (except for the presence
of z), and our further consideration follows standard Coulomb blockade theory [53, 55]. Remarkably, however,
the ionic version of the phenomenon exhibits valence selectivity precisely because it contains the valence z.

To interpret the conduction bands in terms of Coulomb blockade, we calculate U,, as a function of Q; for
n =0, 1, 2, 3and examine the minimum (i.e. ground state) energy

Ug (Qf) = min( U, ( Qr, n)) (Ground state energy) (6)
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for the ground state occupancy n, and the excess charge Qg, all as functions of Qy(see figures 2(c) and 3(c)). The
ground state (6) is by definition a stable state in thermal equilibrium.

Coulomb blockade appears in low-capacitance systems on account of quantization of the quadratic energy
in (5) on a grid of discrete states (3), provided that the ground state {ns} is separated from neighbouring
{ng + 1} states by large Coulomb energy gaps as function of geometry (R, L) and ion valence z:

62 _ lBL

ey R Uy, =2z’U;> 1 (Coulomb gap), 7

where Ag stands for Bjerrum length [49] (0.7 nm for water at T'=298K). This is the applicability condition for
the strong electrostatic exclusion principle. Ion channels are extremely small and have tiny capacitance: the
dimensionless self-energies of monovalent and divalentions are U; ; ~ 5 and U, , ~ 20, respectively, providing
strong Coulomb blockade effects for divalent ions.

It follows from (5) that U, versus Qy for given zis described by an equidistant set of identical parabole of
period equal to the ionic charge ze. These patterns are plotted for Ca*" in figure 2(c) and for Na* in figure 3(c).
We note that Ug (Qy ) exhibits two different kinds of ground state singular points, marked as M, and Z,,. The
minima of U, (and correspondingly the blockade regions) appear around the neutralization points Z,, = —zen
where the net charge at the selectivity filter Q,, = 0 and the occupancy P, is saturated at an integer value [51, 58].

Figure 2(c) illustrates the fact that for Ca*'the ground state {n¢} Z, points are separated from neighbouring
{ng + 1} states by an impermeable Coulomb gap of ~20 (see (7)) hence providing strong Coulomb blockade. At
the neutralized (Q,, = 0) blockade points Z,,, Ca**jonsare prohibited by the self-energy barrier from entering the
uncharged channel. The crossover points M,, (U, = U,,4) allow low-barrier (almost barrier-less)

{n} 5 {n + 1} transitions (see figure 1 (b)); they correspond to the P, transition regions and to the conduction
peaksin J [58]. The M,, points are separated from higher energy states by impermeable barriers of ~40; these
points are equivalent to the ion-exchange transitions reported by Zhang et al [51].

The pattern of sodium ground states in figure 3(c) arises from energy gaps U, that are 4x smaller than for
calcium, They are too small to prevent thermally activated transitions between neighbouring states and they
allow the coexistence of more then two {n}-states; correspondingly there is only a weak exclusion principle, in
turn giving rise to weak Coulomb blockade.

The positions of the singular Q; points in figure 2(a) can be written as:

Z,=—zen + 62, (Coulomb blockade),
M, =—ze(n + 1/2) + 6M,, (Resonant conduction), (8)

where 6Z,,, 5M,, are possible corrections for the singular parts of the affinity and ion—ion interaction (see above)
and possible electrostatic field leakage. Equations (8) describe two interleaved periodic sets of points having
periods equal to the ionic charge ze, very similar to their counterparts in electronic Coulomb blockade [54].

The points Z,, = —zen are neutralization points, where the excess charge Q,, = 0 and U takes minimal
values. Such points are stable and current is prohibited. Charge neutrality is important, but it is not the only
factor that influences channel conductance: the term +6Z,, accounts formally for the other factors (unaccounted
parts of ion—ion/ion-ligand interactions and hydration energy, fields leaks etc).

The points M,, = —ze (n + 1/2) are where barrier-less conduction occurs, for which U, = U, . Similarly,
the terms +6M,, account formally for any unconsidered perturbations.

We may therefore interpret the Brownian dynamics-simulated calcium conduction bands of figure 2(a) as
Coulomb blockade conductance oscillations [55] which appear in this case as | Q| is being increased, and the
corresponding occupancy steps in figure 2(b) as a Coulomb staircase [56]. The deviations in the precise
positions of M,, and Z,, can be attributed to field leaks and the model simplifications.

3.3.Identification of bands with real calcium channels
Table 1, showing the putative identifications of the bands/singularities in the Coulomb blockade model with real
channels, wild type and mutants in the Ca**/Na* family, has been extended from [57, 58].

Table 1(a) describes shows identifications of conduction bands with wild type channels.

The single-ion Na* barrier-less point L can be speculatively identified with the non-selective DEKA sodium
channel (Q; = —1e) [1, 17]. The single-ion Ca®" barrier-less point M, can be identified with the non-selective
OmpF porin (Qf = —1e) [27], or with nonselective Na*—K channel [81].

Mammalian calcium channels exist in several modifications. Some of them (L-type, T-type) share the same
highly conserved four-glutamate (EEEE) locus at the selectivity filter with nominal Q; = —4e [14]. The
permeation properties (sharp selectivity, AMFE, double-ion nature of calcium permeation) of these channels
are consistent with the double-ion M, Ca** conduction band [57, 58]. The double-ion knock-on mechanism of
conduction and selectivity in the L-type calcium channel has been derived from the experimentally observed
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double-affinity of AMFE [14, 78]. The same M, peak can be also identified with the Ca’*-selective mutant of the
Nav sodium channel (Q = —3e) [22] and a calcium-selective mutant of OmpF porin (Qy = —4e) [27].

The Ryanodine receptor RyR calcium channel has Q¢ ~ —6e and relatively weak selectivity [7]. We connect
itwith M, & —5e three-ion conduction point [57, 58].

Bacterial sodium channels, NaChBac [18] and NavAB [28] possess EEEE loci (with nominal Q; = —4e),
typical of mammalian calcium channels but nonetheless exhibit Na*-selective features and divalent blockade.
We connect them (speculatively) with the Z, Ca®* blockade point for Q = —de.

Itis evident that the nominal charges of the channel loci exceed the charge of the model bands by nearly
AQy = le.For example, at M, we have Q¢ = —3e from the Coulomb blockade model, whereas the nominal
Qs = —4e for the EEEE loci of L-type calcium channels (and there are corresponding discrepancies at the M,
and M; points). We speculate that these systematic discrepancies may be connected to field leaks, to the distant
influence of the positive charges of the other ends of the amino acids buried in the rest of the protein, or to
possible protonation of the side chains [82]. Molecular dynamics simulations [28, 35, 38] could be particularly
helpful in determining the effective values of Qfor wild type and mutant channels.

The above identification scheme can thus account for many mutation transformations observed in the Ca
Na" channels family. The main test and validation of the Coulomb blockade model is the correct prediction that
single +1e mutations should lead to sharp changes of calcium conductance from resonance to blockade and
vice versa.

Similarly, table 1(b) describes the radical mutation-induced transformation of the Nav sodium channel to a
calcium channel, when the DEKA locus has been sequentially changed by point mutations [22].

Table 1(c) shows that the downward mutations of EEEE calcium channels described in [23] lead to a
moderate decrease of divalent/monovalent (Ba**/Na") selectivity for EEEE (—4e) — EQEE (—3e) mutation and
asharp, two-order decrease for the EEEE (—4¢) — EKEE (—2¢) mutation (though see discussion below).

Tables 1(d), (e) show that the upward mutations of the EEEE loci of bacterial sodium channels (EEEE
(—4e) = EEEE+DDDD (—8¢) calcium channels described in [18, 28] lead to channel transformation to a
calcium-selective mutant CaChBac and CavAB, respectively. Ca*" selective mutants demonstrate selectivities of
up to 600x in favour of Ca*" ions over Na*, and AMFE. We putatively connect these transformations with the
jump Z, = M;. Note, that the model predicts rather high numbers of ions inside the channel (between 3 and 4
for M3) but there is no experimental evidence to support these specific occupancy numbers.

One of the most striking consequences of the Coulomb blockade oscillations is that, for channels having
Qy ~ M,,adding one negative charge should dramatically decrease the Ca** conductance. So far, all mutation
chains showed increase of calcium selectivity with growth of negative Qwhich can also, however, be explained
by alternative models [32]. On the other hand these experiments are limited to | Q| < 4e where the Coulomb
blockade model also predicts an experimental increase of calcium selectivity with growth of | Q| in the range
|Qs| = 0 — 4e (seefigure 11 of [58)] but predicts a sharp drop in calcium selectivity near the neutralization
blockade point Z,.

We can suppose that the NavAB/NaChBac EEEE locus has an effective Qs = Z, = —4e,and hencea le
mutation of the EEEE ring (or a +1e mutation of the neighbouring ring of residues) should lead to increase of S
for both directions of mutation. The currently available data (see tables (d), (e)) were obtained for mutation
steps of Q; = 4e and thus cannot resolve the effect of the smaller 1ejumps.

These identifications can be seen as an initial verification of the Coulomb blockade model predictions, albeit
with some discrepancies. Further investigations are needed to confirm the channel identifications, to
understand why the nominal Q is systematically slightly smaller than the Qf values of band maxima in the
model, and to establish the reason why mammalian and bacterial channels with EEEE-loci have opposite
selectivity properties.

2+/

3.4. Shapes of the Coulomb blockade oscillations

We now develop a description of the (interconnected) shapes of the Coulomb blockade oscillations in J, and the
Coulomb staircase in P. We consider the case of divalent Ca** bands arising from strong Coulomb blockade
(figure2).

The equilibrium distribution of P, in the vicinity of the M,, points (and hence calculation of the shapes of
P(U)or P (Qy)) follows from standard Coulomb blockade theory. As mentioned above, the energy level
separation for divalent Ca*" is so large ( ~40) that the general set of eigenstates (3) reduces to a simple two-state
exclusive set:

m={nn+1}; 6, +60,,1=1 P=n+0,. 9)

The electrostatic exclusion principle (9) plays the same role here as that of the Pauli exclusion principle in
quantum mechanics [83—85]; the standard derivation via the partition function, taking account of exclusion
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principle (9) leads [86—88] to Fermi—Dirac statistics for 6., ; and an excess (fractional) occupancy
P! =P mod1:

-1

P§=(1+exp(Un+1—/4)>_l=(1+Pb_lexp(Uc)) , (10)

where u = u, + In B, is the chemical potential, P}, is a reference occupancy related to the bulk concentration,
and y, is a constant potential assumed here tobe p, = (U) = (U, + U,41)/2. Hence:

Ui = Upir = ptg = (Unir = U )12, (11)

The Fermi—Dirac equation (10) is equivalent to the Langmuir isotherm [86] and to Michaelis—Menten
saturation. A similar Fermi function was obtained earlier [51] for the variation of P.with concentration.
Note that the Fermi—Dirac distribution needed for cases where the exclusion principle is based on volume
exclusion, and the ions have unequal diameters, has been investigated by Liu and Eisenberg [85, 89, 90].
It follows from (5) that U, is a linear function of Qy:
AQy

U =k, > (12)
e

where AQy = Qf — M, and k, = zU,. Hence the Fermi—Dirac function (10) also describes the dependence of

P*oan:
AQ7\)!
P;:(l + P, exp (kz—f]] , (13)
e

where for our geometry with z=2 (Ca*" ions) the dimensionless scaling coefficient k, ~ 10. This is the final
result for the shape of the Coulomb staircase of occupancy as a function of Q. Figure 2(b) shows qualitative
agreement of P (Qy) shapes with (13), including the concentration-dependent shift between curves with
different Pj,. We will make a more detailed comparison below.

Approximate forms of the current as a function of energy (or fixed charge) can be found via the variance o of
the Fermi-Dirac occupancy P due to thermal fluctuations, as follows from the fluctuation—dissipation theorem
and linear response theory [91]. The ability of an energy level to contribute to the current/conductance is then
proportional to 62 = dP/dU, via the Landauer approximation [54, 55]:

E U
J x P = cosh™ (—), (14)
]max d(']C 2

where ] .« Is the barrier-less diffusive current. Taking account of scattering, one reaches the standard Coulomb
blockade theory approximation [55, 92]:

Je

max

— -l ~ 2
= U, sinh (UC) ~ cosh (2‘5). (15)
Alternatively (15) can be derived by the quasi-equilibrium (or nonequilibrium reaction rate [93]) approach with
explicit solution of the Nernst—Planck equation (i.e. the Goldman—Hodgkin—Katz (GHK) solution ) taking
account of the Fermi—Dirac occupancy (10), so (15) can thus be called the Fermi-GHK approximation; a similar
result was obtained earlier by Mott [94, 95].

Figure 4 reveals a resonant conductivity as U, is varied, for both the Landauer (14) and Fermi-GHK (15)
approximations: in each case there is a peak coinciding with the maximum in the derivative of P, dP/dU. (Note
that, from (5), variation of U, is equivalent to variation of Q) In practical terms, the difference between the two
approximations is small: they both represent double-exponential peaks of half-width U/, = 2.3. The form of
this current is similar to that of the tunneling current in a quantum dot [54]: an even, double-exponential
function of U, reflecting the symmetry of the escape and relaxation trajectories [96]. Note that even small
asymmetries, easy to overlook, can have disquieting effects [97].

For a quantitative comparison of the theory with P, as obtained from the Brownian dynamics simulations,
we calculate the effective (excess) well depth U; as:

1-P AQy
n—m — =

k, ) (16)
P e

c

U =1

The Fermi—Dirac function (10) predicts that U; should be linear in Qj i.e. (16) represents linearising coordinates
for the Fermi—Dirac equation (10); the Coulomb blockade model also predicts the geometry-dependent
coefficient k...

Figure 5(a) shows a sawtooth-like dependence of U; on Qj; confirming that the P; transitions obey the
Fermi-Dirac function (10) of U.. For My, the slope corresponds well with analytic k,; the discrepancies in slope
at M, and M are attributable to our neglect of ion—ion interactions.
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Figure 4. The calculated occupancy Pand current J as U, (or equivalently Q) is varied. The occupancy P, (blue, dash—dot) shows the
Fermi-Dirac transition from P, =0 to P, = 1. The currents calculated in the Landauer J. ~ dP/dU (green, solid) and Fermi-GHK
(red, dashed) approximations both exhibit resonant peaks in the transition region.
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Figure 5. Comparisons of the ionic Coulomb blockade model with Brownian dynamics (BD) simulation results as Qris varied. (a) The
effective well depth U; (blue point-down triangles) fitted by Fermi—Dirac function (16) with best-fit slopes (full red lines) and with
analytical slopes k, (green dashed lines). (b) The full green curves representing the Landauer approximation (14), and the red-dashed
lines representing the Fermi-GHK approximation (15), are compared with the Brownian dynamics simulations (blue, point-up
triangles).

Figure 5(b) compares the predictions of the Coulomb blockade model with the conduction bands M, M,
M, obtained from the simulations [57]. The Landauer and Fermi-GHK peaks are calculated using (14) and (15)
respectively with the values of U/ taken from plot (a), and there are no adjustable parameters. The BD peak
shapes and positions are described reasonably well by the model, extending the simpler fittingin [58, 59]. Again,
the agreement is very good for M, and less good for M, and M; on account of our neglect of field leaks and the
singular parts of the interactions.

In general, the results of Brownian dynamics simulations [57, 58] correspond well with the predictions of the
Coulomb blockade model.

3.5. Valence selectivity and AMFE

Comparison of the Ca** (z=2) bands pattern (figure 2) with the Na* (z= 1) picture (figure 3 ) clearly shows that,
unlike its electronic counterpart, ionic Coulomb blockade is valence-dependent: the positions of the bands

M, = ze/2,and their period ze, shift in proportion to zas described by equation (8) and they broaden/narrow in
proportion to z* (5) [58].

The ionic Coulomb blockade model attributes selectivity to modification of the U dependences on Qs
Valence selectivity is provided by the electrostatic z-dependent shift of U; (1, Q) curves and the corresponding
shifts of the M, and Z, singular points. Alike-charge selectivity can in principle be accounted for by hydration-
dependent shifts of M, and Z,.

The model also predicts that a monovalent (e.g. sodium) ionic current can be effectively blocked by a few
divalent (e.g. calcium) ions, an effect well-known in calcium and sodium channels. Calcium blockade is an
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Figure 6. Calcium block as a function of the net charge Qyof the sodium channel inner ring mutants (relative to the wild type (DEKA)).
For the indicated mutants ICs (i.e. the concentration [Ca**] necessary to block 50% of sodium inward current) is plotted as a
function of the net charge of the inner ring Qs Data points are taken from [24] (blue open circles) and [22] (green open squares). The
continuous red line indicates an exponential function a exp (—b|Qy /e|), with b= 2.29, corresponding to a least-squares fit to all the
data.

aspect of AMFE, which is a signature of EEEE calcium channels [ 14]. The threshold of the divalent block ICs is
defined as the Ca®* concentration which results in a 50% decrease in the monovalent current [14]. We can
estimate ICs on the assumption that the sodium current is proportional to (1 — R,), i.e. to the fraction of time
when the channel is not blocked by calcium ionc. Hence equations (12, 13) result in an exponential dependence
of ICsp on Qy:

(17)

4Q
Icso [ 8 exp(kz f}

e

which is a prediction that can be tested.

Mutant studies of the DEKA sodium channel [22, 24, 26] have measured the dependence of AMFE on the
selectivity filter locus and its Q4 and it was shown that log(ICs,) can successfully be fitted by a linear function of
Qy(figure 6), in agreement with the prediction (17) of the Coulomb blockade model, or

log(ICs) =a + b&, (18)
e

where a and b are constants. The best-fit line gives b = 2.29 [24] which does not agree well with the b = k, ~ 10
calculated for our model. This discrepancy can be interpreted as evidence that the geometrical parameters (R
and L) of the selectivity filter of a DEKA sodium channel differ from values taken in our model (R =0.3 nm,
L=1.6 nm). To be compatible with experiments the selectivity filter would need to be shorter and/or wider. We
can get good agreement for e.g. R=3.5 nm and L = 0.4 nm (such a short selectivity filter would in fact correspond
well to the model of [70]) for which k, = 2.28. Because the exact values are not yet known, our fitting can be used
to estimate these parameters. Note, however, that the fitting (18) is not unique to the Coulomb blockade model
but follows from the dominance of electrostatics for divalent ions [24].

3.6. Further considerations
Although an ion moving inside a channel is a room-temperature classical system described by Newtonian
dynamics, we see that it exhibits some quantum-like mesoscopic features [52]. They include the appearance of
strong Coulomb blockade oscillations in conductance, a Coulomb staircase, and a Fermi—Dirac distribution of
occupancy for Ca>* ions. We attribute such behavior to the charge discreteness, to the strong electrostatic
interaction in confinement [52] and to the electrostatic exclusion principle. It has been shown rigorously that, in
the presence of an exclusion principle, Brownian motion leads to a Fermi—Dirac distribution of the Brownian
particles [84].

A parametric study [57] based on Brownian dynamics modelling has shown that, in accordance with (7),
strong Coulomb blockade may be expected in channels of radii R = 0.25 — 0.35 nm for ions having z= 2,
e.g. for Ca” ions in calcium/sodium channels. It is an interesting and significant question whether or not strong
blockade and the corresponding oscillations may also arise in the conduction of monovalent ions in K*
channels. The latter have a selectivity filter of appropriate radius, R ~ 0.25 nm [34]. Furthermore, K" ions are
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fully hydrated, which should lead to a stronger electrostatic interaction and hence to a marked decrease in the
effective ¢,,, bringing it close to €,, = 1. In such a case equation (7) suggests that we could expect an observable
Coulomb blockade effect, even for monovalent ions in potassium channels [40, 41], a speculation that needs to
be tested.

The relationship of the stop bands in the model to the subconductance states seen in experiments, and to the
noise of closed channels, remains to be determined. Subconductance states and unusual baseline noise are found
in a wide variety of natural biological channels [98].

4, Conclusions

We conclude that ionic Coulomb blockade manifests itself in a simple electrostatic and Brownian dynamics
model of a water-filled charged nanopore with parameters chosen to correspond to those of biological ion
channels. Itis a fundamental electrostatic phenomenon based on charge discreteness, an electrostatic exclusion
principle and linear response theory. For divalent Ca** ions in calcium/sodium channels, the blockade is strong,
so that the ionic permeation process is closely analogous to low-temperature mesoscopic transport in quantum
dots. The several similarities include the applicability of Fermi—Dirac statistics and the appearance of Coulomb
blockade oscillations, i.e. the calcium ion channel can behave as a single-charge discrete electrostatic device.

For the parameter range where it is applicable and strong, the ionic Coulomb blockade picture leads to
several explicit predictions that are unique to the model:

e Periodic oscillations of conductance versus Q; with a period close to the ionic charge ze, with stop-bands Z,,
centred on positions —zen, and conduction-bands M,, centred on —ze (n + 1/2).

e Hence, avalence dependence of the pattern of bands, leading to valence selectivity.
e Fermi-Dirac occupancy statistics and corresponding shapes of the occupancy bands.

o Thebarrier-less character of conduction at the M,, points.

The approach also provides straightforward (provisional) explanations of many experimentally observed
phenomena in the Ca®*/Na* channels family including:

e Fast permeation, which can be accounted for through barrier-less single- and multi-ion conductivity.
e The strongvalence selectivity of calcium channels.
o Divalent block of a monovalent current and the AMFE.

e The mutation transformations of conduction and selectivity.

The ionic Coulomb blockade model of ionic permeation provides a simple and transparent explanation of a
wide range of experimental data that hitherto had not seemed to be connected, and it reinterprets the calcium
conduction bands as manifestations of a quite general electrostatic phenomenon, common to ion channels,
quantum-dots, and tunnel diodes.

Currently available experimental data do not allow for full validation of the Coulomb blockade model and,
moreover, there are some small discrepancies. Therefore, we present this theory as something still awaiting full
verification through comparison with experimental results from real biological channels, rather than as
something already ‘verified’. Further investigations are needed to confirm/refute the tentative channel
identifications, to understand why the nominal Qy is systematically slightly smaller than the Q; values of band
maxima in the model, and to explain why mammalian and bacterial EEEE-loci channels have different selectivity
properties.

Finally, we remark that the results could also be applicable to other ion channels and to biomimetic
nanopores with charged walls.
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