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Abstract

The discovery of quasi-two-dimensional (Q2D) crystals has started a new era of materials science.
Novel materials, atomically thin and mechanically, thermally and chemically stable, with a large
variety of electronic properties are available and they can be assembled in ultrathin flexible devices.
Understanding collective electronic excitations (plasmons) in Q2D systems is mandatory for
engineering applications in plasmonics. In view of recent developments in the emerging field of
graphene-based plasmonics, the correspondence between the theoretically calculated quantities and
the observables experimentally measured in Q2D crystals is still unsatisfactory. Motivated by recent
Nazarov’s findings (Nazarov 2015 New J. Phys. 17 073018), here we discuss some crucial issues of
current theoretical approaches as well as the computational methods applied to two-dimensional
materials with special emphasis to cover their peculiarities, range of application and pitfalls.

1. Perspective

In the last ten years, a variety of theoretical methods and experimental approaches has been intensively applied
to graphene. In particular, the application capabilities of graphene-based plasmonic devices have stimulated
research on plasmon modes in graphene and two-dimensional (2D) materials ‘beyond graphene’ [2-5].

The collective electronic excitation of 2D Dirac fermions (Dirac plasmon) forms a dispersive feature at
0-1 eV, with the characteristic \/ q dependence [6—15], where q is the momentum. Such excitation, arising from
intraband transitions involving electronic states in the Dirac cone, is observed only for doped graphene, where
the doping may arise from gating potentials [ 1], the adsorption or the intercalation of chemical species [16], or
just charge transfer from the metal substrate [17].

Although technological efforts have mainly focused in the spectral range from terahertz [ 18] to the visible
[19], several potential applications of plasmon modes in the ultraviolet (UV) part of the electromagnetic
spectrum exist. A possible advantage of UV plasmons is the matching of their high energy with the electronic
transition energy of many organic molecules, thus paving the way for UV plasmonics [20], UV imaging, DNA
sensing [21], UV absorbers [22], and metamaterials with UV plasmonic resonances [23].

Apart from these intriguing characteristics, the comprehension of UV plasmons has fundamental
importance also for the detailed understanding of the elementary excitations of graphene, determined by the
and o valence electrons lying outside the Dirac cone. Plasmon spectra of free-standing monolayer graphene were
first obtained in [24], where the authors identified two distinct structures, attributed to the so-called zand 7+ ¢
plasmons. They observed that these two plasmonic modes were red-shifted as compared to the corresponding
features in the bulk graphite [25-27], due to the reduction of macroscopic screening when going from graphite
to graphene [28]. However, the plasmonic nature of these electronic excitations for the case of graphene is highly
debated. Recently, it has been suggested [29] that the previously accepted attribution should be revised and that
the #and 7 + o plasmons are indeed single-particle # — 7* and o — ¢* excitations, respectively, with a
characteristic 9> dependence of the energy. This affirmation is motivated by the finding that in graphene the
value of the real part of the dielectric function €, does not go through zero for either the # — 7* or the 6 — #*
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transition, and, moreover, the imaginary part €, is not small in these energy regions to allow a plasmon
excitation.

Similar debate has concerned the study of the dispersion relation of high-energy plasmons in free-standing
monolayer and multilayer graphene. The early theoretical and experimental measurements observed linear
dispersion of z plasmon in graphene [30—33], which differs from the g* dispersion observed in graphite
[25, 26,28, 34]. The reported linear dispersion has been correlated to transitions from the linearly dispersing
Dirac cone and this claim was quickly widely accepted [35, 36]. Recently, the correlation of the reported linear
dispersion of the z plasmon to the linear Dirac cone has been questioned. Strong evidence for 2D plasmon
character of 7and o electron excitations has been demonstrated by means of energy loss spectroscopy (EELS)
experiments, showing the \/ q dependent dispersion [37]. Even taking into account possible uncertainties
arising from experimental difficulties in EELS measurements for low g values, it is evident that this apparent
controversy deserves to be analyzed and resolved.

This debate has been promptly solved by a theoretical study by Nazarov in this issue of New J. Phys. [1]. The
starting point of Nazarov is to consider electronic excitations in quasi-two-dimensional (Q2D) samples, i.e.
atomically thin crystals. Such systems represent real 2D films which are periodic and infinite in two-dimensions
(x. ) but they have finite thickness in the z direction (perpendicular to the layer). They notably differ from both
bulk (three-dimensional, 3D) and zero-thickness 2D crystals. Both 3D and 2D systems are usually treated by
introducing the well-known dielectric function £(q, @). However, considering that the total (external plus
induced) scalar potentials of the electric field ¢*°'(q, @) depend on the z coordinate, even when ¢** is uniform in
zdirection, the definition of (g, @) is not straightforwardly transferable to the Q2D case. Therefore, the
dielectric function (and the related quantities as energy-loss function, conductivity, etc) of a Q2D crystal should
be re-defined in accordance to the system’s structure. In particular, Nazarov re-examines the problem of the
correspondence between the theoretically calculated quantities and the observables in the measurements on

Q2D crystals, finding that the energy-loss function —Im m, conventionally used for the interpretation of the

EELS data, is not the right quantity to be compared with EELS experiments. Instead, in reflection EELS, the
quantity, better characterizing the inelastic electron scattering, is the EELS-related energy-loss function, which is
shown to be qualitatively and quantitatively different in the case of Q2D systems. Consequently, the use of an
appropriate dielectric function proper of real 2D crystals with a finite zdimension is not straightforward to
compare EELS measurements (both in reflection and transmission mode) with the so-called loss function.

A further limitation for theoretical approaches to plasmon modes in 2D materials is usually represented by
the use of the 3D super-cell methods for calculating excitations in 2D materials to artificially replicate the
periodicity of the system in the z direction, by choosing the interlayer distance d large enough to prevent the
interlayer interactions. Clearly, whatever large is the interlayer separation d, at sufficiently small q the interlayer
interaction persists and thus the super-cell calculation cannot be rightly transferred in the case of single-layer
thickness. Nazarov [ 1] develops an appropriate method to get rid of this spurious contributions. The correct
procedure allows concluding that the uncritical use of results of the super-cell calculations applied to Q2D
systems has led to the misinterpretation of the 7 and x + o peaks as single-particle interband transitions rather
than plasmons [29].

As its practical application, Nazarov [1] calculates the dielectric function and the related excitation spectrum
of single-layer graphene. By resolving the recent controversy in the interpretation of the 7 and z + o peaks as
plasmons or single-particle interband transitions, Nazarov’s results [ 1] conclusively demonstrate that
prominent z and z + o collective excitations in graphene exist. They are also accompanied by interband
transitions in a close energy range. Dispersing plasmon modes and non-dispersive single-particle interband
transitions can be theoretically distinguished from each other by a momentum-resolved analysis.

The results obtained by Nazarov [ 1] are particularly suitable for describing the electronic excitations in Q2D
crystals by correctly accounting the finite thickness of the investigated systems. These findings constitute an
important milestone in the comprehension of collective electronics modes in low-dimensional systems.
Nazarov’s work [1] will facilitate the comparison between theoretical and experimental results, so as to improve
the dialogue between experimentalists and theoreticians working on plasmons in Q2D systems.
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