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Abstract
The discovery of quasi-two-dimensional (Q2D) crystals has started a new era ofmaterials science.
Novelmaterials, atomically thin andmechanically, thermally and chemically stable, with a large
variety of electronic properties are available and they can be assembled in ultrathin flexible devices.
Understanding collective electronic excitations (plasmons) inQ2D systems ismandatory for
engineering applications in plasmonics. In view of recent developments in the emerging field of
graphene-based plasmonics, the correspondence between the theoretically calculated quantities and
the observables experimentallymeasured inQ2D crystals is still unsatisfactory.Motivated by recent
Nazarov’s findings (Nazarov 2015New J. Phys. 17 073018), herewe discuss some crucial issues of
current theoretical approaches as well as the computationalmethods applied to two-dimensional
materials with special emphasis to cover their peculiarities, range of application and pitfalls.

1. Perspective

In the last ten years, a variety of theoreticalmethods and experimental approaches has been intensively applied
to graphene. In particular, the application capabilities of graphene-based plasmonic devices have stimulated
research on plasmonmodes in graphene and two-dimensional (2D)materials ‘beyond graphene’ [2–5].

The collective electronic excitation of 2DDirac fermions (Dirac plasmon) forms a dispersive feature at

0–1 eV, with the characteristic q√ dependence [6–15], where q is themomentum. Such excitation, arising from
intraband transitions involving electronic states in theDirac cone, is observed only for doped graphene, where
the dopingmay arise from gating potentials [1], the adsorption or the intercalation of chemical species [16], or
just charge transfer from themetal substrate [17].

Although technological efforts havemainly focused in the spectral range from terahertz [18] to the visible
[19], several potential applications of plasmonmodes in the ultraviolet (UV) part of the electromagnetic
spectrum exist. A possible advantage ofUVplasmons is thematching of their high energy with the electronic
transition energy ofmany organicmolecules, thus paving theway forUVplasmonics [20], UV imaging, DNA
sensing [21], UV absorbers [22], andmetamaterials withUVplasmonic resonances [23].

Apart from these intriguing characteristics, the comprehension ofUVplasmons has fundamental
importance also for the detailed understanding of the elementary excitations of graphene, determined by the π
and σ valence electrons lying outside theDirac cone. Plasmon spectra of free-standingmonolayer graphenewere
first obtained in [24], where the authors identified two distinct structures, attributed to the so-called π and π+ σ
plasmons. They observed that these two plasmonicmodeswere red-shifted as compared to the corresponding
features in the bulk graphite [25–27], due to the reduction ofmacroscopic screeningwhen going from graphite
to graphene [28].However, the plasmonic nature of these electronic excitations for the case of graphene is highly
debated. Recently, it has been suggested [29] that the previously accepted attribution should be revised and that
the π and π+ σ plasmons are indeed single-particle π→ π* and σ→ σ* excitations, respectively, with a
characteristic q2 dependence of the energy. This affirmation ismotivated by the finding that in graphene the
value of the real part of the dielectric function ε1 does not go through zero for either the π→ π* or the σ→ π*
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transition, and,moreover, the imaginary part ε2 is not small in these energy regions to allow a plasmon
excitation.

Similar debate has concerned the study of the dispersion relation of high-energy plasmons in free-standing
monolayer andmultilayer graphene. The early theoretical and experimentalmeasurements observed linear
dispersion of π plasmon in graphene [30–33], which differs from the q2 dispersion observed in graphite
[25, 26, 28, 34]. The reported linear dispersion has been correlated to transitions from the linearly dispersing
Dirac cone and this claimwas quickly widely accepted [35, 36]. Recently, the correlation of the reported linear
dispersion of the π plasmon to the linearDirac cone has been questioned. Strong evidence for 2Dplasmon
character of π and σ electron excitations has been demonstrated bymeans of energy loss spectroscopy (EELS)
experiments, showing the q√ dependent dispersion [37]. Even taking into account possible uncertainties
arising from experimental difficulties in EELSmeasurements for low q values, it is evident that this apparent
controversy deserves to be analyzed and resolved.

This debate has been promptly solved by a theoretical study byNazarov in this issue ofNew J. Phys. [1]. The
starting point ofNazarov is to consider electronic excitations in quasi-two-dimensional (Q2D) samples, i.e.
atomically thin crystals. Such systems represent real 2D filmswhich are periodic and infinite in two-dimensions
(x. y) but they havefinite thickness in the z direction (perpendicular to the layer). They notably differ fromboth
bulk (three-dimensional, 3D) and zero-thickness 2D crystals. Both 3D and 2D systems are usually treated by
introducing thewell-known dielectric function ε(q,ω). However, considering that the total (external plus
induced) scalar potentials of the electric fieldφtot(q,ω) depend on the z coordinate, evenwhenφext is uniform in
z direction, the definition of ε(q,ω) is not straightforwardly transferable to theQ2D case. Therefore, the
dielectric function (and the related quantities as energy-loss function, conductivity, etc) of aQ2D crystal should
be re-defined in accordance to the system’s structure. In particular, Nazarov re-examines the problemof the
correspondence between the theoretically calculated quantities and the observables in themeasurements on
Q2D crystals, finding that the energy-loss function Im ,

q

1

( , )
−

ε ω conventionally used for the interpretation of the

EELS data, is not the right quantity to be comparedwith EELS experiments. Instead, in reflection EELS, the
quantity, better characterizing the inelastic electron scattering, is the EELS-related energy-loss function, which is
shown to be qualitatively and quantitatively different in the case ofQ2D systems. Consequently, the use of an
appropriate dielectric function proper of real 2D crystals with afinite zdimension is not straightforward to
compare EELSmeasurements (both in reflection and transmissionmode) with the so-called loss function.

A further limitation for theoretical approaches to plasmonmodes in 2Dmaterials is usually represented by
the use of the 3D super-cellmethods for calculating excitations in 2Dmaterials to artificially replicate the
periodicity of the system in the z direction, by choosing the interlayer distance d large enough to prevent the
interlayer interactions. Clearly, whatever large is the interlayer separation d, at sufficiently small q the interlayer
interaction persists and thus the super-cell calculation cannot be rightly transferred in the case of single-layer
thickness. Nazarov [1] develops an appropriatemethod to get rid of this spurious contributions. The correct
procedure allows concluding that the uncritical use of results of the super-cell calculations applied toQ2D
systems has led to themisinterpretation of the π and π+ σ peaks as single-particle interband transitions rather
than plasmons [29].

As its practical application, Nazarov [1] calculates the dielectric function and the related excitation spectrum
of single-layer graphene. By resolving the recent controversy in the interpretation of the π and π+ σ peaks as
plasmons or single-particle interband transitions, Nazarov’s results [1] conclusively demonstrate that
prominent π and π+ σ collective excitations in graphene exist. They are also accompanied by interband
transitions in a close energy range. Dispersing plasmonmodes and non-dispersive single-particle interband
transitions can be theoretically distinguished from each other by amomentum-resolved analysis.

The results obtained byNazarov [1] are particularly suitable for describing the electronic excitations inQ2D
crystals by correctly accounting the finite thickness of the investigated systems. These findings constitute an
importantmilestone in the comprehension of collective electronicsmodes in low-dimensional systems.
Nazarov’s work [1]will facilitate the comparison between theoretical and experimental results, so as to improve
the dialogue between experimentalists and theoreticians working on plasmons inQ2D systems.
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