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Abstract
Awitch ball is a reflecting sphere of glass. Looking into the disk that it subtends, thewhole sky can be
seen at one glance. This feature can be exploited to see and photograph the squintMoon illusion, in
which the direction normal to the illuminated face of theMoon—its ‘attitude vector’—does not
appear to point towards the Sun. The images of the Sun andMoon in the disk, the geodesic connecting
them, theMoon’s attitude, and the squint angle (distinct from the tilt), can be calculated and
simulated, for all celestial configurations and viewing inclinations. TheMoon direction antipodal to
the Sun, corresponding to fullMoon, is a singularity of the attitude vector field, with index +1. The
main features of thewitch ball images also occur in otherways of imaging the squintMoon.

1. Introduction

Reflecting glass spheres have interesting optical properties [1]. And they have applications: hung in thewindows
of country houses to repel an approachingwitch (who fears her image); and in country gardens, to reflect the
whole sky, enabling delicate clouds and sky colours to be seenmore clearly [2] (becauseminification increases
contrast gradients). Looking into such a ‘witch ball’ or ‘garden globe’, we see a disk of light, reflected from the
entire 4π sphere of directions: forwards near the edge, and, in the center, the head or camera containing the
observing lens obscuring light frombehind (figure 1).

Here I describe another use for such a ‘witch ball’ or ‘garden globe’: to study the squintMoon [2–4] illusion.
We know that the Sun illuminates theMoon, and, depending on theMoon’s phase (crescent, half, gibbous), we
see part of the lit hemisphere, corresponding to the relative positions of the Sun andMoon in the sky. Therefore
we expect the lit side of theMoon to point towards the Sun. But it does not: usually, it points above the Sun. This
is the squint (figure 2). It is commonly seenwhen the Sun andMoon are in the sky at the same time; but it is also
particularly clear for the gibbousMoon after sunset: we know that the Sun is below the horizon, yet theMoon
sometimes points upwards.

It is obvious that the squint is an illusion: in three-dimensional space the normal to the lit facemust intersect
the Sun, because light travels in straight lines. Onewell-known [2] way to confirm this, and thus dispel the
illusion, is to hold a string tautwith one end at theMoon and the other at the Sun: at theMoon, its direction
coincides precisely with that of the lit face.

Several important aspects of the illusion have been studied in detail: its dependence on perception as well as
cognition [5]; the need tomove one’s head in order to follow the direction from theMoon to the Sunwhen they
are too far apart in the sky to be seen simultaneously [6–8]; the extent towhich the illusion depends on standing
upright and looking horizontally, andwhether the illusion requires a straight horizon [9]; and perspective and
orthogonal projections associatedwith vision and photography [6, 7, 10].

My emphasis here is different: to understand how the squint appears when viewed in awitch ball, and
thereby illustrate its persistence in a variety of circumstances: it is robust. Imaging the sky in this way has several
advantages: the Sun andMoon can be seen simultaneously in the globe’s disk, without the need tomove one’s
head. By changing the direction inwhich the globe is viewed, the horizon can appear straight or curved, enabling
exploration of different ways inwhich the squint appears. And, as explained in section 2, the optics is relatively
simple, enabling an unambiguous definition and calculation of the squint, and simulation of how it appears in
thewitch ball, in section 3.

OPEN ACCESS

RECEIVED

29 January 2015

REVISED

11May 2015

ACCEPTED FOR PUBLICATION

11May 2015

PUBLISHED

29 June 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/6/060201
mailto:asymptotico@bristol.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/6/060201&domain=pdf&date_stamp=2015-06-29
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/6/060201&domain=pdf&date_stamp=2015-06-29
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Whydoes the squint appear at all? The Sun ismuchmore distant than theMoon, and this affects the shape of
the illuminatedMoon: its phase. But both Sun and theMoon are so far fromus thatwe do not directly perceive
their distances in three-dimensional space, but rather their directions in the sky, relative to the Earth.Directions
can be represented as unit vectors on the celestial sphere, that is, points on the Earth-centered sphere of
directions (figure 3). On this sphere, the straight line from theMoon to the Sun in three-dimensional space is
represented by a great circle: a geodesic.We do not perceive the sphere directly. Rather we see its projection onto
a skyview: some perceptual space, or a space defined by an imaging system—for example a panoramic picture
created by stitching together photographs taken in different directions, or the reflected image in thewitch ball, to
be studied here, where the skyview is a disk.

Every projection from the sphere to some skyview, e.g. a plane, introduces distortion. Usually the geodesic
great circle will be projected as a curve. The direction inwhich theMoon appears to point is the tangent to the
geodesic at the location of theMoon. For this direction, which can alternatively be described as the ‘symmetry
axis of the illuminated face’, or ‘the normal to the lit face’ or ‘the perpendicular bisector of the line joining the
horns of theMoon’, I introduce, as a less cumbersome term, theMoon’s attitude (it is also called the ‘Moon
pointer’ [7]); see figure 1. For curved geodesics, the attitude does not point to the expected position of the Sun—
meaning that it does not point along the straight line connecting theMoon to the Sun in the skyview. The squint
is the discordance between these two directions, and itsmagnitude can be represented as the angle between
them. (For perspective and orthogonal projections [7], straight lines in space project to straight lines in the
plane, so the geodesics are not curved—but angles are distorted, so the squint still appears, albeit described
differently.)

The squint angle depends on the projection, that is, on our perceptual space (which need not be the same for
everybody or at all times), and on the imaging systemused. But the squint phenomenon occurs for every
projection; one example, different from thewitch ball image to be studied here, is zenith-centered sterographic
projection [4], roughlymodeling the squint seen lying down and looking up. And aswewill see, the squint can
be positive, negative, or zero (when the axis of projection intersects the geodesic). This variability contrasts with
the tilt, namely the angle between the attitude and the horizontal, which can be calculated directly on the
direction sphere (section 3), regardless of how it is imaged. (To avoid a potential source of confusion, I note that
the phenomenon here called the squintMoon, following [3], is often called the tiltedMoon.)

The squint seen in awitch ball can be captured photographically, as described and illustrated in section 4.
When theMoon is close to full, i.e. when the Sun andMoon are opposite in the sky, the attitude is very sensitive
to the phase. This is the antipodal singularity, explained in section 5. Some subtle details of the images in awitch
ball are explained in the appendix.

Figure 1. Images in awitch ball; (a) viewed horizontally, (b) viewed vertically. (These pictures have been reversed left-to-right, to
reverse themirror reversal.)
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Figure 2. (a) Schematic view of the sky illustrating the squintMoon, with the projection from the direction sphere deliberately
unspecified. (b) Photograph (perspective projection) showing theMoon just after first quarter, when the Sun (far out of shot) is
setting; the inset shows theMoonmagnified; it points upwards, squinting above the Sun.

Figure 3.Plane containing theMoon, Sun and Earth, and its intersectionwith the unit sphere of directions.
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2.Witch ball imaging

Looking into the globe, which has radius r, we see objects reflected in a disk, also of radius r. Referring tofigure 4,
consider a ray reflected after arriving from a direction θ. It suffices to restrict the analysis to a distant viewer, so
that reflected rays are always in the same direction (‘backwards’); for a viewer at afinite distance [1], the
calculations are a littlemore complicated, but all essential features, including the simulations to follow in
section 3, are the same.

It is obvious from the law of specular reflection andfigure 4 that the distance a of the location of the image on
the observation disk is [2]

a r sin
1

2
. (2.1)⎜ ⎟⎛

⎝
⎞
⎠θ=

(It is worth noting that the stereographic projection outlined elsewhere [4] corresponds to replacing sin 1

2
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tan .)1

2
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inwhich the x axis runs East–West and the y axis North–South.Here and hereafter wewill usually take r= 1,with
no essential loss of generality.

Let the polar angles (π/2–elevation) of theMoon and Sun in the sky be θm and θs, with corresponding
azimuthsϕm andϕs. This corresponds to spherical polar coordinates with axis vertically upwards. The
corresponding direction vectors of theMoon and Sun are
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With a view inclined at an angleα to horizontal (where α> 0 is looking downwards, soα= π/2 corresponds to
viewing the overhead sky in the disk), the transformed directions of theMoon and Sun required for imaging in
thewitch ball are

Figure 4.Geometry of reflection in awitch ball.
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corresponding to a rotation α about the x axis. Henceforthwewill not always indicate theα dependence
explicitly.

On the disk, the positions of theMoon and Sun are, according to (2.3),
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Similarly, the horizon appears on the disk as a curve given parametrically by
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So, looking down (α= π/2), the horizon is a circle of radius r/√2, and looking horizontally it is the segment
|x|⩽ 1, of the x axis y= 0.

As is easily shown [1], the projection corresponding to (2.1) is area-preserving: a given solid angle dΩ in the
skymaps to an area dA on the disk, such that dA/dΩ= r2/4, independent of position in the sky or on the disk. In
cartography, this is Lambert’s azimuthal equal-area projection of 1772.

3. Simulating the squint

On the direction sphere (figure 5), the geodesic connecting theMoon to the Sun is the curve

g
m s
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t

t t

t t
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where the parameter value t= 0 corresponds to theMoon and t= 1 to the Sun.On the disk, the corresponding
curve is
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Figure 5.Geometry on the direction sphere:Moon, Sun, geodesic, attitude, and tilt τ.
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The attitude vectorA is the direction of the geodesic (figure 5) at the location of theMoon. A short
calculation gives this vector in thewitch ball skyview as
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2 1
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The squint is the angle σ between the vectorA and the vector rs–rm connecting the Sun andMoon in the skyview,
namely

A A

x x y y
arg

i

( ) i( )
. (3.4)

x y

s m s m
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⎣
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⎤
⎦
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(This way of expressing the angle eliminates the ambiguities of trigonometric functions.)
The squint angle σ is a function of the five angles θm,ϕm, θs,ϕs, andα. Figure 6 shows the dependence on the

Moon’s azimuthϕm, and viewing elevation α, for Sun elevation 10° (θs = 80°) and in theWest (ϕs = 0), and
Moon elevation 45° (θm= 45°). The squint is usually positive, but is negative for some higher viewing elevations;
this will be explained later.

To simulate the phase of theMoon,we note that the circular boundary of the illuminated hemisphere
appears fromEarth (figure 3) obliquely, as an ellipse with axis ratio m s,⋅ andwe see the part that faces us—the
terminator line—as a half-ellipse. Therefore theMoon’s boundary shape can be simulated as the union of this
half-ellipse and a semicircle.

Figure 7 shows some simulations of the Sun andMoon as seen in thewitch ball, for nine configurations
corresponding to the squint angle calculated infigure 6, with the Sun position and theMoon elevation fixed, and
the crescent, half and gibbousMoon (different azimuthsϕm), for three different viewing angles. The top row
shows the sky looking down, i.e. seeing, reflected in thewitch ball, what would appear without thewitch ball
when lying down and looking up. Themiddle row shows the same configurations viewed obliquely. The bottom
row shows the horizontal view.

For all simulations except figure 7(e), the squint is clearly indicated by the curvature of the geodesic: the
Moon’s attitude (red arrows) does not point to the Sun. Figure 7(e)marks the change of sign of the squint angle σ
frompositive (Moon points above the Sun) infigures 7(f)–(i) to negative infigures 7(a)–(d). Zero squint
corresponds to the viewing axis lying on the geodesic; I owe this insight (which also holds for stereographic and
other projections) to Professor Vager (private communication). The transition is illustrated infigure 8, by a
fixedMoon and Sun configuration viewed from three directions α.

Figure 6. Squint angle σ as a function of theMoon azimuthϕm and viewing elevation α, forMoon elevation 45°, and Sun elevation 10°
and azimuth 0. The intersectionwith the plane σ= 0 indicates the line acrosswhich σ changes sign.

6

New J. Phys. 17 (2015) 060201 MVBerry



The squint angle σ, quantifying the discordance between theMoon’s attitudeA and the direction from the
Moon to the Sun in the skyview, is different from the tilt τ, which is the angle betweenA and the horizontal.We
can calculate τ using the direction sphere. Fromfigure 5, it is clear that

Figure 7. Simulations of the sky seen in awitch ball. Red arrows: theMoon’s attitude; dashed curves: the geodesic from theMoon to
the Sun; black dots: the zenith; white curves: the horizon; open circles: the viewing axis. In (a), (b) and (c), the viewing elevation is
α= 90°; in (d), (e) and (f), α=45°; in (g), (h) and (i),α= 0. The Sun elevation is 10° (θs = 80°), and its azimuth isϕm= 0; theMoon
elevation is 45°(θm=45°); in (a), (d) and (g) theMoon azimuth isϕm= 50°; in (b), (e) and (h)ϕm=90°; in (c), (f) and (i)ϕm= 130°.

Figure 8.As figure 7, illustrating the sign change of squint σ as the viewing axis crosses the geodesic, forMoon elevation 40° (θm= 50°)
and azimuthϕm= 160°, with the Sun on the horizon (θs = 90°) and azimuthϕs = 45°, for viewing elevations (a):α= 10° (σ> 0); (b):
α= 33.212° (σ= 0); (c):α= 60° (σ< 0).
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4.Observations

As alreadymentioned, there are at least two advantages of using awitch ball to see the squint. Evenwhen the Sun
andMoon are far apart in the sky they can be seen reflected in the ball without needing tomove one’s head. And
the projection onto the viewing disk is a consequence of elementary optics and does not require assumptions
about the skyview that corresponds to our visual perception.

But there is a disadvantage: theMoon occupies a tiny fraction of the sky, namely

moon area

sky area 2
(9.52 ) 10 10 . (4.1)m

2
6 5

πρ
π

= = … × ≈− −

Therefore it appears in the globe as a tiny dot, whichmust bemagnified in order to discern the phase and
therefore the attitude. This difficulty is sharedwith all ways of photographing the squint, as published pictures
illustrate, for example in [5, 11, 12] (the conventional photograph infigure 2(b) shows theMoon but not the
Sun, which is on the horizon, far out of shot).However, this difficulty can be overcome, and theMoon’s attitude
identified, as figure 9 illustrates.

Figure 9.The sky, photographed in awitch ball just before sunset in Bristol on 28December 2014 (a clear day slightly before half-
Moon). In (a) and (c), the location of theMoon is indicated by a red circle. In themagnified pictures (b) and (d), the insets show
furthermagnifications indicating the attitudeA (red arrow); the squint is obvious from the red line continuingA and the geodesic
sketched as the yellow dashed curve: σ is positive in (a) and (b), and negative in the higher-inclination view (c) and (d). (These pictures
have been reversed left-to-right, to reverse themirror reversal.)
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5. The antipodal singularity.

The attitudeA is defined in terms of the orientation in the sky of the lit face of theMoon. At themoment of full
Moon, when the Sun andMoon are in opposite directions relative to the Earth, that is, antipodal on the direction
sphere, the lit face points towards us. Therefore its orientation in the sky (on the direction sphere or in any
skyview) is undefined. This corresponds to a singularity of the squint, because as theMoon passes full its gibbous
face reverses, and so does the vectorA. Indeed, for configurations close to full,A can have any orientation.

The antipodal singularity is illustrated infigure 10(a). This shows several positions of the gibbousMoon,
viewed obliquely in thewitch ball after sunset. It is clear thatA rotates through 360° around the direction
antipodal to the Sun. Thismeans that on the direction sphere, or any projection of it such as thewitch ball
projection, the vector fieldA has a singularity of index +1 at the antipode. This is also a singularity of the squint
angle on thewitch ball, because σ also changes by 360° in a circuit of the antipode.

Figure 10(b) shows the attitudefieldA forfixed Sun position after sunset, plotted for randomMoon
directions above and below the horizon. The antipodal singularity is obvious. Also obvious is a singularity at the
direction of the Sun, also of index +1, consistent with the Poincaré–Hopf theorem [13] that any vector field on a
spheremust have singularities whose total index is +2. But this singularity of the fieldA is not a singularity of the
squint, because close to the Sun (i.e. near newMoon) theMoon–Sun direction is almost parallel toA, so the
squint is small for a thin crescentMoon, and vanishes at newMoon.

6. Concluding remarks

In one sense, choosing thewitch ball to observe and record the squint is a jeu d’esprit, a celebration of the
International Year of Light, further exploring one of several phenomena treated briefly elsewhere [4]. In light of
the fact that the squint, as seen by eye standing upright looking directly at theMoon, has been explained by other
authors [5–7, 10], this choicemight seem superfluous, even eccentric. But there are several reasons for it.When
concentrating on the simplest way inwhich the squint appears, it is easy not to appreciate that it is amore general
phenomenon.Other ways of perceiving the squint reveal that several features, which some authors have thought
essential in explaining it, are in fact not: being upright, perceiving the horizon as straight, using perspective
projections tomodel the simplest photography,moving one’s head to shift one’s gaze from theMoon to the Sun.

This shift of emphasis, to thewider class of squints, leads to the geometric way of understanding the
phenomenon, based on the general class of projections from the direction sphere (or the straight line of light
from the Sun to theMoon in three-dimensional space), inwhich geodesics appear as different curves. Further, it
leads to the identification of the antipodal singularity as a central aspect of the squint. Thewitch ball is a device
that exemplifies this generality: although the optical projection is area-preserving, it is neither conformal
(preserving local angles) nor perspective or orthogonal (preserving straight lines); it allows for different viewing
orientations, in almost all of which the horizon is curved; it does not require eye or headmovement; and it does
not require the choice of a stitching algorithm to create a panoramic photograph. Yet the squint persists, and can
be observed and recorded.

Figure 10. (a) Several configurations of the gibbousMoon, showing the attitude vectors (red arrows) surrounding the fullMoon
(white diskwithout an arrow), antipodal to the fixed position of the Sun after sunset (60° below the horizon, i.e. θs= 150°, with
azimuthϕs = 45°), viewed in thewitch ball at elevation α= 30°; the horizon is the white curve. (b) As (a), showing the attitude vector
fieldA plotted for 1000 randomMoon directions θm,ϕm, showing index +1 singularities at the Sun and its antipode.
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Appendix .Witch ball caustic

To study the image of a distant point, consider all the rays incident from a distant object and emerging in
different directions θ after being reflected. The image is virtual, that is, inside thewitch ball. Fromfigure 4 (with
the arrows reversed), the equation of the virtual ray that emerges at θ is (againwith r= 1)

y x x( , ) tan
sin

1

2
cos

. (A.1)θ θ
θ

θ
= − −

These rays do not intersect at a focal point. Instead, they touch a caustic surface, obtained by rotating a caustic
line about its symmetry axis. The caustic is the envelope defined by

y x( , ) 0, (A.2)θ∂ =θ

togetherwith (A.1). A short calculation gives its equation parametrically as

x y( )
1

2
cos

1

2
1 2sin

1

2
, ( ) sin

1

2
, { }. (A.3)2 3⎜ ⎟⎛

⎝
⎞
⎠θ θ θ θ θ θ π= − + = ⩽

This is a cusped curve, shown in red infigure 11, which has been turned to correspond to the family of rays for
which θ is the direction of incidence.

Therefore the ball images each point in the sky onto a curve (or, when rotated, a ‘spun cusp’ surface).
Nevertheless, we see sharp images—and not only in thewitch ball but also inmost curved surfaces, for example
distorting fairgroundmirrors. The reason is explained elsewhere [1] and simply outlined here. The emerging
rays forming thewitch ball image come not from thewhole caustic but from the segment (dotted blue in
figure 11(b)) whose tangent rays enter the eye pupil or the camera lens. The projection of this segment normal to
the viewing direction is the geometrically blurred image, but usually falls below the Rayleigh resolution limit and
so cannot be resolved. The image of the sky, namely the union of location of the effectively point images for each

Figure 11.Virtual caustic (red curve), for a family of rays from a distant source, formed by the continuation of all the reflected rays
inside the ball. The blue dotted curve is the segment of the caustic that enters the eye or camera lens.
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value of θ, lies on a surface whose distance from the plane normal to the optic axis and including the center of the
ball, varies from r/2 (for θ= 0) to zero (for θ= π). The distance of these images from the axis is given by (2.1).
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