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Abstract
Coherent state photon sources are widely used in quantum information processing. Inmany
applications, such as quantumkey distribution (QKD), a coherent state functions as amixture of Fock
states by assuming that its phase is continuously randomized. In practice, such a crucial assumption is
often not satisfied, and therefore the security of existingQKD experiments is not guaranteed. To
bridge this gap, we provide a rigorous security proof ofQKDwith discrete-phase-randomized
coherent state sources. Our results show that the performance of the discrete-phase randomization
case is close to its continuous counterpart with only a small number (say, 10) of discrete phases.
Compared to the conventional continuous phase randomization case, where an infinite amount of
randombits are required, our result shows that only a small amount (say, 4 bits) of randomness is
needed.

1. Introduction

Inmany quantumoptics applications, such as quantumkey distribution (QKD) [1, 2], linear optics quantum
computing [3], bit commitment [4], coinflipping [5], and blind quantum computing [6], a perfect single-
photon source is assumed to be used, which is not feasible with current technology. Instead, aweak laser is
widely used to replace the single-photon source in practice. A laser can bewell described by a coherent state [7],
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onwhich a phasemodulation by θ π∈ [0, 2 ) implements the operation α∣ 〉 to α∣ 〉θei . For a coherent state, there
is a nonzero probability of getting components other than single-photons, such as vacuum states and
multiphoton states. Tomodel this imperfection, a photon number channelmodel is used [8], which assumes
that the phase of the coherent state is randomized,
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Aphysical interpretation behind equation (1.2) is that when the phase of a coherent state is randomized, it is
equivalent to amixed state of Fock states whose photon number follows a Poisson distributionwith amean of
α∣ ∣2. In other words, the Fock states are totally decohered from each other with continuous phase
randomization.

We remark that phase randomization as specified in equation (1.2) is a common assumption in the
theoreticalmodels ofmany quantum information processing protocols. In practice, as will be discussed later in
this paper, the assumption of continuous phase randomization is often not satisfied in experiments. Therefore,
the security of a protocol (e.g., the security of a generated key inQKD) is not guaranteed.
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To illustrate the problem, for simplicity, let us consider the example ofQKD. ThefirstQKDprotocol was
published in 1984 by Bennett and Brassard (BB84) [1]. Lots of progress has beenmade since then, both
theoretically and experimentally [9]. For the BB84 protocol, secure key bits can be transmitted onlywhen single-
photon states are used. From the study of photon-number-splitting attacks [10], one can see thatmultiphoton
components are not secure for the BB84 protocol. The key idea in taking this imperfection into consideration is
in performing privacy amplification on key bits fromgood (single-photon) states and bad (multiphoton) states
separately [11].Meanwhile, to accurately quantify the amounts of key bits from good and bad states, the decoy-
statemethod has been proposed [8, 12, 13] and experimentally demonstrated [14–18].

For all the existing security analysis for coherent-stateQKDprotocols, including a recentQKDprotocol
[19], continuous phase randomization, equation (1.2), is assumed. It has been shown that when the phase is not
randomized, the performancewill be substantially reducedwith a strict security proof [20]. In fact, there are
experimental quantumhacking demonstrations showing that aQKD systemmay be attackedwhen the phase is
not randomized [21, 22].

There are twomeans to randomize the phase in practice: passive and active. In a passive phase
randomization process, the laser is turned on and off to generate pulses. Onemight be tempted tomake a naive
argument that by switching a laser on and off, the phase is fully randomized. Note that it is experimentally
challenging to rigorously verify that a continuous phase is indeed fully random.Moreover, experiments in
random-number generation have shown that there are indeed residue correlations between the phases of
adjacent pulses [23], especially in the case of high-speed applications [24], which directly rejects the claim since
fully randomized phases have no correlations. Thuswe avoid this approach here.

In the active phase randomization process, a phasemodulator is used to randomlymodulate the phases. In
this case, themodulator can only performdiscrete phase randomization, unless it uses an infinite amount of
randomnumbers. In a recent experiment [25]with coherent states, each global phase was chosen fromone of
the over 1000 possible values. First, such a large number of phases demands high precision control, which is a
challenge for practical implementations. Second, evenwith 1000 phases, the phase is still discrete and the key
ratemay be deviated from the continuous-randomization case. So far, no rigorous bound on the key rate was
derived in this experiment [25] or in any otherQKD experimental papers. Since thework of Lo and Preskill was
published [20], it has been a long-standing question to analyze the security of a practical QKD systemwith
discrete-phase randomization and rectify the highly unsatisfactory situation that there is no proof of security in
existing experiments.

In this work, we solve this long-standing open question by providing a rigorous security proof ofQKD
systems using discrete-phase-randomized coherent states. Here, we consider unconditional security, following
the standard security proof [11]. That is to say, security against themost general type of attacks allowed by
quantummechanics on the quantum channel by an eavesdropper.We show that as the number of discrete
phases increases, coherence between the Fock states in equation (1.1) decreases exponentially fast. As an
application, we provide tight security bounds for both nondecoy- and decoy- stateQKDprotocols with discrete
phase randomization. Our result applies to various encoding schemes ofQKD, including time-bin, phase
encoding, and polarization encoding.

In simulation, we compare the performance of our security boundswith the one provided by continuous
phase randomization, which shows that our security bounds are tight when the number of phases goes to
infinity. From a practical point of view, for a small number of phases (say, onlyN=10 phases), with a typical set
of experimental parameters, we observe that secret keys can be securely distributed over afiber length of up to
138 km, close to 140 km in the continuous phase randomized case. ThusAlice needs less than 4 bits ( >2 104 ) of
randomnumbers per pulse for phase randomization. In contrast, all previous security proofs essentially assume
an infinite number of bits of randomnumbers per pulse. Therefore, we aremaking an improvement here.
Moreover, our scheme is simple to implement. For instance, an implementation of active phase randomization
with 1000 discrete phases has been reported in the literature [25]. Due to themassive reduction in the number of
phases in our scheme (10 phases), one can expect a simpler implementationwith amuch higher repetition rate.
In addition toQKDprotocols, our analysis of discrete phase randomization is also readily applicable to linear
optics quantum computation [3] and other quantum cryptographic primitives [5], because phase-randomized
coherent sources also serve asmajor parts of thosefields.

2. Results

The roadmap of this section is as follows. In section 2.1, we use the Schmidt decomposition to construct states
that are close to Fock states fromdiscrete-phase-randomized coherent states. In section 2.2, we present the phase
encoding schemewhen discrete-phase-randomized coherent states are used, andwe investigate how close the
approximated Fock states are. In section 2.3, we give a security proof and derive a key rate formula for aQKD
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systemwith discrete-phase randomization. In section 2.4, we present the simulation results for two cases: with
andwithout the decoy-statemethod.

2.1. Coherent statemixture
Here, we consider a coherent state sourcewhose phase is randomly picked fromN different values (i.e., each
with probability N1 ). For the sake of simplicity, we assume theseN values are evenly distributed in π[0, 2 ),

θ π= = −k

N
k N

2
0, 1,..., 1 . (2.1)k

⎧⎨⎩
⎫⎬⎭

In the case of continuous phase randomization (when → ∞N ), equation (1.2) essentially shows that one can
decompose the phase-randomized coherentmixed state into a statisticalmixture of Fock states, ∣ 〉〈 ∣n n . In the
application ofQKD, aswell as quantum computing [3], the single-photon state, ∣ 〉〈 ∣1 1 , is themost important
component.

In the case of afiniteN, one can decompose themixed state to a set of pure states in the hopes that one of
them is close to a single-photon state. First, let us consider the caseN=2.We start with the initial state

Ψ α α= + −0 2 1 2 , (2.2)A B A B2

where the phase of coherent state, α∣ 〉2 B, is controlled by a quantum coin,A. The factor 2 is included in the
state for systemB to simplify later discussions. The normalization factor is ignored throughout the paper unless
itmatters. By performing a Schmidt decomposition

Ψ λ λ= + + −( ) ( )0 1 0 1 , (2.3)A A B A A B2 0 1

where the two pure states are given by

λ α α
λ α α

= + −
= − −

2 2 ,

2 2 . (2.4)

0

1

By substituting the definition of a coherent state, equation (1.1), it is not hard to see that λ∣ 〉0 ( λ∣ 〉1 ) is a
superposition of even (odd) photon number Fock states. By this decomposition, theHilbert space is divided into
the even and odd number Fock state spaces, ⊕H Heven odd. Since λ∣ 〉1 only contains odd photon number Fock
states, we expect that it is close to a single-photon state, which can be confirmed from the calculation offidelity
later.

In the case of general ⩾N 1, the decomposition is similar but a bitmore complex,

∑
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where ∣ 〉j A can be understood as a quantum coinwithN randomoutputs, and theN pure states are given by

∑λ α= π π

=

−
−e e 2 . (2.6)j
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By substituting equation (1.1), we have the following observations for λ∣ 〉j . It is a superposition of Fock states
whose photon numbers,moduloN, are the same j,

∑λ
α

=
+

+
=

∞ +( )
lN j

lN j
2

( )!
. (2.7)j

l

lN j

0

Then, it is not hard to see that λ∣ 〉j becomes close to a Fock state whenN is large, since +lN j( )! increases
quickly.When → ∞N , it becomes a Fock state, λ∣ 〉 = ∣ 〉jj . Later in the simulation, one can see that when
N=10, themixed coherent state becomes close to a Fock statemixture in terms of the performance of theQKD.
Similar to the case ofN= 2, theHilbert space is divided into ⊕ ⊕ ⊕ −H H H...N N N N0 mod 1 mod ( 1)mod .

Next, we canfigure out the probability if Alice performs a projectionmeasurement on the photon state in the
basis of λ∣ 〉j , which is simply the normof equation (2.7),
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where μ α= ∣ ∣2 2.When → ∞N , it becomes a photon number channel and follows a Poisson distribution,
μ μ− je !j .

2.2. Coherent state scheme
A typical scheme using a coherent state source (e.g., a phase-encodingQKD scheme), is shown infigure 1, which
is essentially an interferometer. In the state-preparation stage, Alice prepares aweak coherent state α∣ 〉2 ,
whose phase ismodulated randomly by thefirst phasemodulator, PM1. The state is separated into two pulses,
α∣ 〉r and α∣ 〉s, by a beam splitter. ThenAlice encodes the bit and basis information (say, according to the BB84
protocol) in the relative phase via the second phasemodulator, PM2.

Here, for simplicity, we consider the case that the reference pulse has the same intensity as the signal. Our
results can be extended to the strong reference case [26, 27] and the asymmetric case [28], as well as to other
encoding schemes such as polarization encoding and time-bin encoding [29].

In the schemewith discreteN-phase randomization, the photon source is decomposed into states λ∣ 〉j , as
shown in equation (2.6). After going through the phase encoding scheme as shown infigure 1, the four BB84
states encoded in λ∣ 〉j can bewritten as

∑

∑

∑

∑

α α

α α

α α

α α

=

= −

=

= −

π π π

π π π

π π π
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−

=
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=
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1 e e e
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1 e e ie , (2.9)
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wherewe omit the subscript j on the left side, but it should be understood that the four states do depend on j.
The key point to guarantee the security of the BB84 protocol is that Eve cannot distinguish the state in two

conjugate bases,X andY. The two densitymatrices in the two bases can bewritten as

ρ

ρ

= +

= +

0 0 1 1

0 0 1 1 . (2.10)

x x
L

x
L

x
L

x
L

y y
L

y
L

y
L

y
L

Note that each logical state should be regarded as a pure normalized state. In the ideal case, where a basis-
independent source, such as a single-photon source, is used, the densitymatrices in the two bases should be the
same,

ρ ρ= . (2.11)x y

Figure 1. Schematic diagram for the phase-encodingQKD schemewith coherent states. Thefirst phasemodulator, PM1, is used for
phase randomization according to equation (2.1), and the second one, PM2, is used forQKD encoding, ϕ π π π∈ {0, 2, , 3 2}.
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In the security analysis, one of the key parameters is the basis dependence of the source, which is the fidelity
between the two states in theX andY bases,

∑

∑

ρ ρ ρ ρ ρ

μ π π

μ

=

⩾
+

+
+

+

+

=

∞ +
−

=

∞ +

+

( )F

lN j

lN j lN j

lN j

, tr

( )!
2 cos

4
sin

4

( )!

(2.12)

j x y y x y

l

lN j

l

lN j

0

0

lN j
2

⎛
⎝⎜

⎞
⎠⎟

where μ α= ∣ ∣2 2 and the detailedfidelity evaluation is shown in the appendices.

Denote Fj
t( ) as the t-th order approximation of the fidelity, by taking =l t0 ,..., in the summation. The

zeroth order is

π π
μ

⩾ + +
+

−F
j j

O
j

N j
2 cos

4
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4
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( )!
. (2.13)j

j
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(0) 2
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One can see that = =F F 10
(0)

1
(0) and =F 1 22

(0) , =F 03
(0) , =F 1 44

(0) , .... Sincewhen <F 1 2 would not
render any positive key rate [20], it is confirmed thatmultiphoton states are not secure forQKDdue to their
large basis dependence in the BB84 protocol.

Take the first-order for λ∣ 〉0 and λ∣ 〉1 ,
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Thefidelity approaches 1 rapidly asN becomes large, especially when μ is small, as shown infigure 2. This shows
thatwith enough discrete phases, one can approximate the vacuum state and the single-photon state infinitely
well, which is useful in applications such asQKD.

2.3. Key rate
In the perfect phase-randomized case, the key rate formula is given by the standardGottesman–Lo–Lütkenhaus–
Preskill (GLLP) security analysis forQKDwith practical devices [8, 11],

μ

⩾ − + −

=

=
μ μ

μ−

( )
( )

R I Q H e

I fQ H E

Q Y

1 ,

,

e . (2.15)

ec
p

ec

1 1

1 1

⎡⎣ ⎤⎦

Here, Iec is the cost of error correction; μQ and μE are the overall gain and quantumbit error rate (QBER),

respectively, which can be directlymeasured inQKDexperiments;Q1,Y1, and e p
1 are the gain, yield, and phase

error rate of the single-photon component, respectively; μ μ−e is the (Poisson) probability that Alice sends
single-photon states; μ denotes the expected photon number of the signal state; f denotes the error correction

Figure 2.Plots offidelity for different values ofmean photon number μ. The fidelity here refers to F0, which is always smaller than F1
by the numerical evaluation.
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efficiency; and = − − − −H p p p p p( ) log ( ) (1 )log (1 )2 2 is the binary Shannon entropy function, where p is a
binary probability.We assume that Alice and Bob run the efficient BB84 [30] and take the basis shift factor to
be 1.

TheQKDkey rate formula, equation (2.15), is derived using ideas of entanglement distillation [31] and
complementarity [32]. It satisfies the composable security definition [33, 34]. InQKDprotocols, Alice and Bob
need to perform error correction to eliminate the errors and share an identical key. In this error-correction
procedure, a fraction of Iec is sacrificed from the raw key. Then, they need to eliminate the eavesdropper’s
information on the error-corrected key via privacy amplification. The perfect phase randomization allows us to
consider the signal as amixture of Fock states and estimate the contributions of the components of different
photon numbers separately [8]. Sincemultiphoton components are not secure in the BB84 protocol [10], only
the single-photon componentQ1 will appear in the key formula [11]. The amount of the eavesdropper’s
information in the single-photon component is related to the phase error rate, e p

1 .
The core of a practical security analysis is tofigure out the privacy amplification term, −Q H e[1 ( )]p

1 1 , in
equation (2.15). For a single-photon state, it is a basis-independent source; thus its phase error rate is equal to its
bit error rate [35]. Now, the key point of the analysis is to estimate the yield and bit error rate of the single-
photon component,Y1 and e1

b. This estimation can be donewith differentmeans, such as the decoy-state
method [8, 12, 13].

In the case of discrete phase randomization, the photon source is not decomposed into Fock states. Instead,
we decompose the channel into λ∣ 〉j , according to equation (2.5). The single-photon state will be replaced by

λ∣ 〉1 and the Poisson distributionwill be replaced by equation (2.8). Then, the approximated single-photon state,
λ∣ 〉1 , is no longer a basis-independent source. The basis dependence of the source is evaluated in section 2.2,
which causes deviation between the bit and phase error rates.

Nowwe can slightlymodify equation (2.15) tofit our case

∑⩾ − + − ( )R I P Y H e1 , (2.16)ec

j

j j j
p⎡⎣ ⎤⎦

where Pj is given in equation (2.8). The yield,Yj, and bit error rate e j
b of λ∣ 〉j , can be estimated by the decoy-state

method.Here, without any confusion, we use the same notation as the Fock-state case for simplicity. Given the
basis dependence, Δj, one can bound the phase error rate e j

p from e j
b similar to thework of Lo and Preskill [20],

Δ Δ Δ Δ Δ⩽ + − − + − − −( ) ( )( ) ( ) ( )e e e e e4 1 1 2 4 1 2 1 1 . (2.17)j
p

j
b

j j j
b

j j j j
b

j
b

The basis dependence is defined as

Δ =
− F

Y

1

2
. (2.18)j

j

j

where thefidelities, Fj, are given in equation (2.12). The key difference between our result and the original GLLP
analysis is that the bit and phase error rates are not the same in the ‘single’-photon component.

From the evaluation of the basis dependence, it is not hard to show that only j=0 and j=1would contribute
positively to thefinal key rate. Thus, the key rate evaluation becomes the followingminimization problem.

− + −
⩽ ⩽ { }( ) ( )P Y H e P Y H emin 1 1 . (2.19)

Y e

p p

0 , 1
0 0 0 1 1 1

j j
b

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
There are other constraints based on the gain andQBERobtained from the experiments. Note that with other
security proof techniques, the key rate given in equation (2.16) can be improved. For example, the vacuum
component,Q0, is shown [36] to have no phase errors when the photon number channelmodel is applied.

2.4. Parameter estimation
Now,we need to estimate the key parameters, Yj and e j

b. First, let us consider the no-decoy-state case, wherewe

assume all the losses and errors come from λ∣ 〉0 and λ∣ 〉1 ; in theworst case scenario,

∑+ ⩾ −

+ ⩽

μ

μ μ

=

−

P Y P Y Q P

e P Y e P Y E Q

,

. (2.20)

j

N

j0 0 1 1

2

1

0 0 0 1 1 1

Since the right side of equation (2.20) can be obtained from the experiment directly, one can easily solve the
minimization problempresented in equation (2.19) to get the key rate.

We simulate a typical QKD system [37] and compare various cases ofN. The result is shown infigure 3, from
whichwe can see that with only four randomphases, the performance of discrete phase randomization is close to
the performance of continuous phase randomization.We can also observe that the key rate of one phase and two
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phases are similar, but there is a gapwhen the phase number becomes three. This can be explained as follows.We
note that F0

(2) ofN=1 coincides with equation (22) in thework of Lo and Preskill [20]; thus ourfidelity formula
also extends to theN=1 case. Also, we notice that the first-order termofN=1 vanishes,making the key rate
performance ofN= 1 andN=2 similar—both are of order μ− O1 ( )2 . For ⩾N 3, the performance is improved
to μ− O1 ( )N . The details of this simulation and all following simulations are shown in theAppendices.

For the case of the decoy-statemethod, the analysis is trickier. In the perfect phase randomized case, the
decoy-statemethod immensely improves the key rate by offering accurate parameter estimation for
equation (2.19). In the security proof of the decoy-statemethod, the photon number channelmodel guarantees
the following equalities,

=
=

Y Y

e e
(signal) (decoy),

(signal) (decoy) (2.21)
n n

n n

since all the Fock states, ∣ 〉〈 ∣n n , are the same in the signal and decoy-states. Thus, adding decoy-states imposes
more equations constraints on the parameters,
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!
, (2.22)

j

j

j

j

j

j j

j

j

j

j

j

j j

0

0

0

0

without inducingmore variables other than the original unknown variables. Here, μ μ− je !j is the (Poisson)
probability that Alice sends j photon states. This consequently gives tighter bounds onYj and ej.

This is not so straightforward in the case ofN discrete phase randomization, because

λ λ≠μ ν (2.23)j j

as defined in equation (2.7),whereμ and ν are the intensities of signal anddecoy-states. Thus, wedonothave the
simple relations as the continuous phase randomization case, equation (2.21). Fortunately,wehave shown that
λ∣ 〉j is close to the Fock state, ∣ 〉j .We expect the inequality shown in equation (2.23) to be an approximate equality.

Following the quantum coin argument used in theGLLP security analysis [11], the yield and error rate
difference between the signal and decoy-states are given by

− ⩽ −

− ⩽ −

μ ν
μν

μ μ ν ν
μν

Y Y F

Y Y F

1 ,

e e 1 , (2.24)

j j

j j j j

2

2

Figure 3.Plots of key rates of the no-decoy-state scheme for different numbers of randomphases,N.WhenN=1, it refers to the no
phase randomization case.When → ∞N , it approaches the continuous phase randomization case.
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where

μ= −μνF O
N

1
!

. (2.25)
N⎛

⎝⎜
⎞
⎠⎟

Now the extra constraints added to theminimization problemof equation (2.19) for the decoy-statemethod
are, alongwith equation (2.24),

∑

∑

∑

∑

=

=

=

=

μ
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μ μ
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ν ν
ν ν ν

=

−

=

−

=
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=

−

Q P Y

E Q e P Y

Q P Y
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,

, (2.26)
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j
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j j j

j

N

j j

j

N

j j j

0

1

0

1

0

1

0

1

where μPj are given in equation (2.8). Ifmore decoy-states are used,more linear equationswill be added to
equation (2.26).

We simulate aQKD system [37]with vacuum+weak decoy-state [38] and compare various cases of phase
numberN. The decoy and signal intensities are numerically optimized tomaximize the key rate. The result is
shown infigure 4, fromwhichwe can see thatwith only 10 randomphases, the performance of discrete phase
randomization is close to the performance of continuous phase randomization.

Note that theQBERwith discrete phases highly depends on the experimental parameters. According to our
simulationmodel, eachQBER infigures 3 and 4 is a function of the signal intensity, μ, which is numerically
optimized tomaximize the key rate. Thismay not lead to the highest tolerableQBER for a given transmission
distance. The reason is that by tuning the signal intensity, μ, smaller, one can increase the tolerableQBER at the
expense of lowering the key rate. Eventually, the hard bound on the allowableQBER is 11%, just like the single-
photonBB84 protocol, despite the number of discrete phases used, as we are following the Shor-Preskill security
proof [35] and an infinitely small μ effectively turns a coherent state source into a single-photon source.

3.Discussion

In summary, we just need 10 randomphases for the discrete phase randomization, thefidelity of which is close to
the continuous case.We demonstrate the effect of discrete phase randomization by taking theQKDprotocol as
an example, andwe show that it gives a big improvement to the performance.Without phase randomization, the
key rate decays rapidly as a function of the transmittance of the channel, and drops to zero after less than 15 km
of opticalfibers, as shown infigure 3. In contrast, with discrete phase randomization, the key rate scales linearly
as a function of the transmittance, and theQKD remains feasible over 138 kmoffibers, as shown infigure 4.
Since only four bits of randomnumbers per pulse—which already give = >2 16 104 possible phases—are

Figure 4.Plots of key rates of the decoy-state scheme for different numbers of randomphases,N. Dashed line refers to the continuous
phase randomization case. Solid lines from left to right refer to increasingN from 3 to 10.
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required for phase randomization, our scheme is highly practical. Note that amuch harder discrete phase
randomization experiment with 1000 phases [25] has already been demonstrated.Moreover, ourmethodmay
not only apply to the same signal and reference pulse amplitudes case, but also to the asymmetric amplitude case
and the strong reference pulse case.We remark that our discrete phase randomization idea applies to other
quantum information processing protocols, including blind quantum computing and quantum coin tossing.

There are a few interesting prospective projects. First, due to the finite length of the key, statistical fluctuation
needs to be taken into consideration, which can be dealt with by finite key analysis, as in a recent work [39].
Second, theN-discrete-phase-randomization processmight not be perfect in an actual system (i.e., there can be

a smallfluctuation in the phasemodulation such that the actual phase appliedwill be δ π+ = … −
k

N
{

2
}k k n0,1, , 1,

where δk is a smallfluctuating value that can be positive or negative). The imperfect phasemodulation can be

dealt with bymodifying ourfidelity calculations.More precisely, one can replace the coherent state α∣ 〉πe k N2 i by

α∣ 〉π δ+e k i N2 k in equation (2.9) and calculate the fidelity in equation (2.12).We expect that the result will be
robust against small δk. Besides the usual BB84QKDprotocols, our idea can also be extended tomeasurement-
device-independentQKD [40] by treating both sources as being discrete phase randomized.
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AppendixA. Basis dependence

This appendix and the following appendices function as follows. In appendix A, the basis dependence between
theX andY (the fidelity of two densitymatrices) for λ∣ 〉j is calculatedwhenN discrete randomized phases are
used. In appendix B, we present the parameter estimation of the decoy-statemethod. In appendix C, the pseudo
codes for both nondecoy and decoy simulations are given.

Tomake the derivation easier to understand, we use index n to represent the photon number, index k to
represent the discrete phase, and index j to represent the decomposed Fock-state approximations.

We restate the four BB84 states, phase encoded in the decomposed state λ∣ 〉,j as presented in themain text,

∑
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=
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−

=
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, (A.1)
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where the denominators are the normalization factors.
To evaluate thefidelity between the two states in the two bases, we calculate the related inner products of

these four states,
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∑
∑

= =

= =

α π α

α π α

α π α

α π α

−
=

− +

−
=

−

−
=

− −

−
=

−

π

π

π

π

−

−

−

−

N

N

N

N

0 0 1 1
e e e

e e e
,

0 1 1 0
e e e

e e e
. (A.2)
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The detailed calculations of inner products and norms are shown in appendix A.2.Nowwe substitute these
values to evaluate fidelity,

∑

∑

ρ ρ = + +

⩾ − + + + + −
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= + + +
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+π α α

π α

=
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=
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−
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0 0 0 1 1 0 1 1

2

2

e e e

e e
(A.3)
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where ∣ ± 〉 and ∣ ± 〉i are the normalized eigenstates of theX andY bases. The inequality comes from the fact
that the fidelity of twomixed states is themaximal of thefidelity of all the purifications.Here, we use the intuition
that twoBell states are the same,

+ − + − + = + + + − −i i i i . (A.4)

Now, let us simplify equation (A.3); we expect it to be close to 1whenN is large.

ρ ρ ⩾
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2
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where the summation is taken over = π π −x 1, e ,..., eN N N2 i 2 i( 1) ,N dots evenly distributed on the unit circle of
the complex plane. Take the Taylor expansion of μ α= ∣ ∣ ⩾2 02 around 0,
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The details of the Taylor expansion and the calculation of ∑ −xn j are shown in appendix A.3.

A.1. Approximations: largeN or small μ
Here, wewant to check the fidelity given in equation (A.6) whenN is large or μ is small. The zeroth order, by
taking l=0 in the summation,
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(A.7)
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One can see that = =F F 10
(0)

1
(0) and =F 1 22

(0) , =F 03
(0) , =F 1 44

(0) , .... It is confirmed thatmultiphoton states
are not secure for the BB84QKDprotocol.
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Thefirst-order approximation, by taking l=0 and l=1 in the summation,
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Since ⩾N j, the second O ( · ) in the last equality can be neglected. Thefirst-order approximationwill approach
the zeroth order exponentially fast, μO N( !)N .We are interested in the first two cases, j=0 and j=1,
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Wenote that the second-order approximation of F0 whenN=1 coincides with equation (22) in [20]; thus our
fidelity formula also extends to theN=1 case. Also, we notice the first-order termwhenN=1 vanishes,making
the key rate performance ofN=1 andN=2 similar—both are of order μ− O1 ( )2 . For ⩾N 3, the performance
is improved to μ− O1 ( )N .

A.2. Inner products andnorms
Inner products,
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wherewe use the fact that πe kj N2 i and π−e k N2 i each form a ring in the complex plane, and
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Norms,
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Here, we use the inner products between two coherent states,
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It is not hard to see that by adding a same phase toϕ and θ, the result is the same.

A.3. Taylor expansion and summation
Taylor expansion:
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Summation:

∑ ∑= π−
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−
− −x e , (A.15)
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which equalsN if − =n j Nmod 0 and equals 0 if − ≠n j Nmod 0. The summation is taken over
= π π −x 1, e ,..., eN N N2 i 2 i( 1) ,N dots evenly distributed on the unit circle of the complex plane.

Appendix B. Parameter deviation in the decoy-statemethod

Herewe consider the parameter (Yj and ej) deviations between the signal states and the decoy-states in the case of
N discrete phase randomization. Denote the intensity of the signal state to be μ and the decoy state to be ν, ν μ< .
Wewant tofigure out the relationships between μYj ,

μe j and
νYj ,

νe j , respectively.
We follow the tagged idea for the phase error estimation [11]. First, we need to evaluate the fidelity between

λ∣ 〉μ
j and λ∣ 〉ν

j as defined in themain text,

∑

∑

λ α

λ β

=
+

+

=
+

+

μ

ν

=

∞ +

=

∞ +

lN j
lN j

lN j
lN j

( )!

( )!
(B.1)

j

l

lN j

j

l

lN j

0

0

where μ α= ∣ ∣2 and ν β= ∣ ∣2.We note that these are the states after phase randomization and before qubit
encoding. Then the fidelity is given by

∑

∑ ∑

∑

∑ ∑

λ λ
λ λ

λ λ λ λ

α β

α β

μν

μ ν

=

=

+

+ +

=
+

+ +

μ ν
μ ν

μ μ ν ν

=

∞

+

=

∞ +

=

∞ +

=

∞

=

∞

=

∞

( )

( )F

lN j

lN j lN j

lN j

lN j lN j

,

*

( )!

( )! ( )!

( )

( )!

( )! ( )!

(B.2)

j j

j j

j j j j

l

lN j

l

lN j

l

lN j

l

lN

l

lN

l

lN

0

0

2 2

0

2 2

0

2

0 0

In the last equality, we assume that α β* is a real number, which can be set when their phases are the same. In the
experiment, one can think of the scenario where the decoy-state intensitymodulation is done after phase
randomization.When → ∞N , this fidelity will go to 1 as the photon number channelmodel. Take the first-
order approximationwhenN is large or μ is small,

λ λ

μν

μ ν

μ

μν μ ν

=
+

+

+
+

+
+

+
+

= +
+

−
+

−
+

μ ν( )F

j

N j

j

N j

j

N j

O
j

N j

j

N j

j

N j

j

N j

,

1
( ) !

( )!

1
!

( )!
1

!

( )!

!

( )!

1
( ) !

( )!

1

2

!

( )!

1

2

!

( )!

j j

N

N N

N

N N N

2

1 2

2

2

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛

⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞

⎠
⎟⎟
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μ

μ ν μν

μ

+
+

= − + −
+

+
+

O
j

N j

j

N j

O
j

N j

!

( )!

1
2

( )
!

( )!

!

( )!
(B.3)

N

N N
N

N
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2
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⎤
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⎛

⎝
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⎞

⎠
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One can show that equation (B.2) is a non-decreasing functionwith increasing j,

∑

∑ ∑

λ λ λ λ

μν

μ ν

⩾

=

≡

μ ν μ ν

μν

=

∞

=

∞

=

∞

( ) ( )F F

lN

lN lN

F

, ,

( )

( )!

( )! ( )!

(B.4)

j j

l

lN

l

lN

l

lN

0 0

0

2

0 0

Apply the quantum coin idea fromGLLP [11],

λ λ

λ λ

+ − − ⩾

+ − − ⩾

μ ν μ ν μ ν

μ μ ν ν μ μ ν ν μ ν

( )
( )

( )( )
( )( )

Y Y Y Y F

e Y e Y e Y e Y F

1 1 ,

1 1 , (B.5)

j j j j j j

j j j j j j j j j j

NormallyYj is in the order of channel transmittance, η. One can see that if λ λ η∣ 〉 ∣ 〉 ⩽ −μ νF ( , ) 1j j , the
difference can be from [0, 1], whichwould result in a zero key rate. On the other hand, if F=1, we have

=μ νY Yj j , which is reasonable since the yields of the same states should be the same.
With the calculations presented in appendix B.1, we can solve equation (B.6),

− ⩽ −

− ⩽ −

μ ν
μν

μ μ ν ν
μν

Y Y F

e Y e Y F

1

1 (B.6)

j j

j j j j

2

2

Note that onceN, μ, and ν are given, μνF is given by equation (B.4), and hence the yield and error rate differences
arefixed.

B.1. Bound the parameter difference between signal and decoy-state
Tomake it simpler, we rewrite equation (B.6) in the following form,

+ − − ⩾ab a b F(1 )(1 ) (B.7)

where ∈a b, [0, 1]. Let =a xsin2 and =b ysin2 , where π∈x y, [0, 2]. Then

⩽ +
= −

F x y x y

x y

sin sin cos cos

cos( ). (B.8)

Thus,

− ⩽x y Farccos . (B.9)

Since F is close 1, ∣ − ∣x y is close to 0. That is, a and b are close to each other,

− = −
= + −
⩽

= −

a b x y

x y x y

F

F

sin sin

sin( )sin( )

sin(arccos )

1 (B.10)

2 2

2

AppendixC. Simulation

In this section, we calculate the key rates of both decoy and non-decoymethods derived in themain text.We use
typical experimental parameters [37], which are ed= 0.033, η η= α−10 L

Bob
10 where α = 0.2 dB km,

η = 0.045Bob , = × −Y 1.7 100
6 and assumed an error-correction inefficiency, =f e( ) 1.16. Here ed is the
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intrinsic error rate of Bob’s detectors. For each value of the distance, the signal strength, μ, has been chosen to
optimize the rate. In the simulationmodel, = + −μ

ημ−Q Y 1 e0 .

C.1.Non-decoy

1. First we calculate
μ= ∑

+

μ

=
∞

+ −
P

lN j

e

( )!
j l

lN j

0 .

2. Thenwe calculate ρ ρ

μ π π

μ
⩾

∑
+

+
+

+

∑
+

=
∞

+
−

=
∞

+

+

F
lN j

lN j lN j

lN j

( , )
( )!

2 cos
4

sin
4

( )!

j x y

l

lN j

l

lN j

0

0

lN j
2

⎛
⎝⎜

⎞
⎠⎟

.

3. For e e Y Y( , , , )0 1 0 1 in the domain defined by

∑+ ⩾ −

+ ⩽

μ

μ μ

=

−

P Y P Y Q P

e P Y e P Y E Q

,
j

N

j0 0 1 1

2

1

0 0 0 1 1 1

according to themain text, where the notations are defined in themain text, we calculate Δj and e j
p according

to equations (2.17) and (2.18).

4. Substitute the above quantities into − + −⩽ ⩽ P Y H e P Y H emin { [1 ( )] [1 ( )]}Y e
p p

0 , 1 0 0 0 1 1 1j j
b and numerically

optimize e e Y Y( , , , )0 1 0 1 for theminimum.

5. Calculate the key rate, = − + − −⩽ ⩽R P Y H e P Y H e Imin { [1 ( )] [1 ( )]}Y e
p p

ec0 , 1 0 0 0 1 1 1j j
b .

The signal intensity μ is numerically optimized tomaximize the key rate. A typical value of μ ranges from
0.001 to 0.02.When the number of phases,N, is large, μ is approximately the decay rate, η.

C.2.Decoy

1. First we calculate
μ= ∑

+

μ

=
∞

+ −
P

lN j

e

( )!
j l

lN j

0 .

2. Thenwe calculate ρ ρ

μ π π

μ
⩾

∑
+

+
+

+

∑
+

=
∞

+
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=
∞
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+

F
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l

lN j

l
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0

0

lN j
2

⎛
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⎞
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.

3. Next we calculate
μ= −μνF O
N

1
!

N⎛
⎝⎜

⎞
⎠⎟.

4. For e e Y Y( , , , )0 1 0 1 in the domain defined by

∑

∑

− ⩽ −

− ⩽ −

=

=

μ ν
μν

μ μ ν ν
μν

μ
μ μ

μ μ
μ μ μ

=

−
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−

Y Y F
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1

1

,

j j

j j j j

j

N

j j

j

N

j j j

2

2

0

1

0

1

we calculate Δj and e j
p according to equations (2.17) and (2.18).

5. Substitute the above quantities into − + −⩽ ⩽ P Y H e P Y H emin { [1 ( )] [1 ( )]}Y e
p p

0 , 1 0 0 0 1 1 1j j
b and numerically

optimize e e Y Y( , , , )0 1 0 1 for theminimum.

6. Calculate the key rate, = − + − −⩽ ⩽R P Y H e P Y H e Imin { [1 ( )] [1 ( )]}Y e
p p

ec0 , 1 0 0 0 1 1 1j j
b .
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The decoy and signal intensities, μ and ν, are numerically optimized tomaximize the key rate. A typical value
of μ is 0.5.Oneweak decoy-state with a typicalmean photon number of ν = 0.001 and one vacuum state
are used.
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