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Abstract

In this work we introduce the possibility of unparticle mediated superconductivity. We discuss a
theoretical scenario where it can emerge and show that a superconducting state is allowed by deriving
and solving the gap equation for s-wave pairing of electrons interacting through the unparticle
generalization of the Coulomb interaction. The dependence of the gap equation on the unparticle
energy scale Ay and the unparticle scaling dimension dy; enables us to find a richer set of solutions
compared to those of the conventional Bardeen—Cooper—Schrieffer paradigm. We discuss unconven-
tional features within this construction, including the resulting insensitivity of pairing to the density of
states at the Fermi energy for dy = 3/2 of the superconducting gap and suggest possible experimental
scenarios for this mechanism.

1. Introduction

One of the most remarkable consequences of the discovery of unconventional superconductivity (SC) in both
cuprates and pnictides [ 1, 2] is, arguably, the richness of theoretical ideas that have been put forward to
understand this physical phenomenon [3, 4]. Searching for novel mechanisms that lead to superconducting
states differing from the conventional Bardeen—Cooper—Schrieffer (BCS) paradigm [5-7], as well as a complete
understanding of the pseudogap state [8, 9] has driven the emergence of elaborate theoretical concepts that well
transcend the goal of understanding any particular material.

There is strong evidence that suggests that interactions are mainly responsible for, or play a major role in
generating the rich phase diagrams of these systems [10—15]. Under the umbrella of such an observation, many
novel interesting ideas have emerged that were later found to be relevant also in other, completely unrelated
systems. The marginal Fermiliquid [16—18] introduced phenomenologically to account for experimental
observations [ 19] is a prime example. It was argued that strong interactions could cause the imaginary part of the
self-energy, usually associated with the quasiparticle life-time, to behave as Im X (w) ~ w instead of the
quadratic Fermi-liquid like behaviour [20]. Remarkably, this particular idea was also shown to be relevant for
the physics of graphene[21, 22].

On the other hand, high-energy physics has also profited from similar phenomenological approaches
predicting a plethora of verifiable consequences for experiments at the Large Hadron Collider (LHC) [23]. A
particularly appealing idea, proposed recently by Georgi [24, 25], is the existence of a conformally invariant
sector that couples to ordinary standard model particles. The former sector does not behave as ordinary matter
since it is described by propagators without poles, and hence has no a priori particle interpretation. Such
unparticle ‘stuff’ (as dubbed by Georgi) could in principle leave a very particular signature in LHC scattering
cross-sections as missing spectral weight corresponding to a non-integer number of ordinary particles [24, 26].
The parallelism with non-Fermi liquid properties [ 18] recently motivated the idea that unparticles resulting
from strong interactions could be responsible for the missing spectral weight in the pseudogap phase [27],
accounting also for a possible breakdown of Luttinger’s theorem [28]. These works complement the numerous
scenarios that can lead to exotic SC proposed in the literature, which have explored the dependence of the
superconducting transition temperature with model parameters [29—32]. In the case of unparticles, within a
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BCS framework it was shown [27] that if electrons participating in SC were promoted to unparticles that pair
with a standard BCS interaction, unusual phenomenology followed.

Inspired by these ideas, we aim to discuss a mechanism which is distinct from other exotic forms of SC and
which can in principle exist in strongly correlated materials. In this work we explore how SC of normal electrons
can arise from mediating unparticles. In essence, we discuss how the unparticle construction provides a path
from a high-energy theory with repulsive interactions between fermions to an effective low energy theory where
particles attract. The price to pay is that the mediating glue is composed of unparticles, ultimately resulting in
unconventional (i.e. away from standard BCS) behaviour. Being a generic theoretical scenario, this mechanism
could potentially emerge in strongly correlated matter. In this context, this work aims to clarify two important
issues (i) the simplest theoretical construction where this effective unparticle mediating interaction emerges (ii)
how this state departs from typical BCS phenomenology.

To address these points, we will first discuss a minimal theoretical framework for the mechanism to emerge,
partially reviewing known properties of unparticles, but focusing on those relevant for our work. We will write
down a generic model containing the unparticle analogue of the Coulomb interaction for which we write and
solve the gap equation at the mean-field level and s-wave pairing. We will find that even at the mean field level,
the unparticle nature of the mediators manifests itself through non-BCS phenomenology. We finish with a
discussion of our results and a summary of our main conclusions.

2. Emergence of unparticles

Although the concept of unparticles may seem exotic at first, especially in the context of strongly correlated
electrons, it is not entirely novel to condensed matter systems. Within the renormalization group (RG) approach
and due to electron interactions, quasiparticle propagators can acquire anomalous dimensions near non-trivial
fixed points [24, 33], turning them into unparticles. As discussed in [27] the Tomonoga—Luttinger liquid
exhibits such behaviour [34-36]. A second particularly clean, and to some extent unexplored examplein 2 + 1
dimensions that illustrates how unparticles emerge is that of the low energy interacting electrons in graphene. In
this system interactions renormalize the Fermi velocity vi [37, 38] which increases at low energies, a prediction
consistent with recent experiments [39]. However, as v increases, the ratio with the speed of light vr/c ceases to
be small and thus one has to consider the full relativistic Coulomb interaction to have a fully consistent theory
[37]. In this case, the theory can be shown to have a non trivial infra-red (IR) fixed point at vz = ¢. Close to this
point, the electron propagator acquires an anomalous dimension y and satisfies the scaling law

G(Aw, k) = VG (w, k), (1)

where 4 is the scaling parameter and y is the anomalous dimension, which is in general not an integer and
depends on the coupling constant at the non-trivial critical point. For graphene y = a%/(127%) — 1where
a = e?//i is the fine structure constant [37]. Such a propagator corresponds by definition to an unparticle since
itis defined around a fixed point (i.e. it is conformally invariant) and has no simple quasiparticle poles in general.
Thus electrons in graphene can be ultimately reinterpreted as genuine unparticles below an energy scale Ay °.
Motivated by this observation, we now reinterpret Georgi’s original construction, [24] where an unparticle
sector is coupled to ordinary particles, to obtain a theory that will lead us to unparticle mediated SC. The process,
summarized in figure 1 starts by considering a theory with Lagrangian

z:[yﬂ, w, A, (9] - L:l[n,ﬁ, W, A] + L[4, O], (2a)
El[l//r) ¥, A] = L:W[WT) l//] + £V/A[WT’ v, A]’ (2b)
L5[A, O] = L4[A] + LaolA, O] + Lo[O], (2¢)

defined for energies E > Ay. The theory is composed of two sectors which we illustrate schematically in figure 1.
The first sector, £, [WT, W, A], represents ordinary particles y (e.g. electrons) coupled through a generic
interaction A, (e.g. the Coulomb interaction). In the original unparticle set up, this sector would correspond to
the standard model of particle physics. On the other hand £, [A, O] represents a different interacting sector
where other degrees of freedom, collectively denoted by the field (9, interact also through A. At this point we
impose that £, [A, O]has anon trivial IR fixed point below the energy scale Ay. Above this energy scale

L,[A, O]hasan ordinary interpretation as a particle theory. Below Ay unparticles emerge as exemplified at the
beginning of the section (see figure 1). We emphasize that the scale Ay must exist in order to constrain the
unparticles to exist only below this energy scale. Remarkably, there are explicit examples where it is possible to
estimate this energy scale (see for instance equation (3) in [41] or equation (23) in [40]).

3 The energy scale at which this happens is extremely small, albeit not zero, see [40].
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Particle Unparticle
E Sector Sector

g} R a0

Figure 1. Schematic picture showing the emergence of unparticles. At high energies ordinary particles (particle sector) couple to a
second sector, the unparticle sector, that has a non-trivial infrared fixed point below a characteristic scale Ay where the fields turn
effectively into unparticles. Below Ay this sector couples to the particle sector that is unaffected by the RG flow by construction. This
coupling results in an effective four point interacting potential Vy, the unparticle analogue of the Coulomb interaction, defined by (7)
(see main text).

In particular, if £ is unaffected by the IR RG flow, at energies lower than Ay, ordinary particles yrwill
effectively only couple to unparticles [24], which we label ¢ with an action of the form

L:IR = [’W + [’II/(/) + [:(/, (3)

So far, we have just reviewed how unparticles generically emerge. We now assume that L is quadratic in the
fields and integrate out ¢) to obtain an effective interaction between electrons, mediated by an unparticle
propagator of the form (1). After this step the Lagrangean reads

g

L= ‘E'l,l/ + EZVIIT VllGr/J,l]l//]T l//]’ (4)
ij

where gis a coupling constant and G;; is the unparticle propagator in real space, which is in general a matrix

depending on the physical degrees of freedom encoded in . Generically, the functional form of the propagator

G ;i is fixed by dimensionality and conformal invariance of the unparticle sector at the IR fixed point. In
particular for a scalar unparticle the propagator is of the form [24, 42]

Adu(qz)dU—Z

Z(Aé )du_l sin ( ﬂ'du)

Gy(q) = , (5)

_ 16757 F(dU + %)
(2r)u r(dy- 1)r(2dU)'

(6)

Agy

Comparing to equation (1), y = 2(dy — 2). The quantity dy is referred to as the unparticle scaling dimension.
For a scalar particle it satisfies dy > 1to preserve unitarity of the theory [43]. We are interested in the unparticle
generalization of the Coulomb interaction and thus we focus on the effective static potential Vy; associated to this
scalar propagator which was derived in [42, 44]. This is a good approximation when retardation effects
associated to field ¢ (i.e. current—current interactions) can be neglected, which implies that the typical Fermi
velocity should satisfy vg/c < 1[45]. In this approximation the effective static potential reads

Agy dy=2
Vo(q) =4 :
o ﬂgZ(Aé)dU_l sin (ﬂdU) (q )

= Ca( )" @)

Note that mathematically, and for 1 < dy < 2, itis possible to rewrite this potential to be proportional to the
integral fo < dM2p (M2, dy)/(q* + M?) with p (M2, dy) = (M?)%=2, This form explicitly reveals that
unparticles can be interpreted as a tower of infinitely many massive particles distributed according to
p(M?, dy) [46-48]. Indeed, when examined in real space, this potential is nothing but a Yukawa potential
integrated over the screening momentum scale M>. Physically, it is possible to interpret such an interaction as
critical in the sense that it has the form of a screened interaction, but the screening occurs at all length scales,
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effectively resulting in a potential of the form W, (r) « 1/|x [4u=1[42, 44], the unparticle counterpart of the
Coulomb interaction”. Interactions of this form have also been discussed in the context of the even denominator
fractional quantum Hall states [32, 49, 50]. From equation (7) the long range Coulomb interaction is recovered
for dy = lifweidentify g = €.

A crucial observation here is that the sign of g, and thus the attractive or repulsive character of the interaction
is not fixed by the renormalization that generates the unparticles, described above [51]. A repulsive interaction
between fermions yat high energies in (2b), represented by the term L£,,4 [1//*, W, A] can turn into an effective
attractive interaction mediated by unparticles at low energies. The actual sign will depend on the nature of the IR
fixed point itself and the particular value of dy; trough the prefactor C,,. We use this freedom to fix the low
energy theory to have an attractive character.

We finish this section with a general remark on the validity of the present approach. In a general scenario
there can exist an additional energy scale, A,, below which the field y, acquires anomalous dimensions, and is
described by an unparticle propagator. In this work we assume that there exists an energy window such that
A, < E < Ay where the field y s still defined by quasiparticle propagators that interact via the unparticle
potential (7). In this notation, [27] can be interpreted as the case where Ay < E < A, and the scenario where
E < (Ay, A, )isyetto be explored.

3. Mean field approximation

Given the above discussion we now ask if the attractive unparticle Coulomb potential (7) can lead to unparticle
mediated SC, and if so, what is its particular signature. In order to accomplish this, we consider the case of
coherent quasiparticles in the presence of scale invariant bosonic unparticles. We then proceed in the spirit of a
modified BCS-theory, which now contains a potential due to mediating unparticles which has a natural cutoff,
gy, the highest energy an unparticle might have. We proceed without explicit interactions, but keep in mind
that we are free to consider any renormalized quasiparticle weight by including Z; factors in the effective mass.
Switching to the equivalent Hamiltonian formalism the effective low energy Hamiltonian follows from (4)

H= Y&y + Y Vo vi v Vi (8)
k kk'q

where the sums are a short hand notation for three-dimensional momentum space integrals. The first term
corresponds to the diagonalized Hamiltonian stemming from £,, in (4) with § = & — p with y being the
chemical potential and ¢y, a dispersion relation (fixed below). The second part contains the unparticle mediated
interaction, which we set to be attractive by choosing the sign of C, or the appropriate dy; regime.

For concreteness we choose y to describe fermions in three spatial dimensions with quadratic dispersion
ex = k*/2m. Following standard techniques [52] we can write down the self consistent mean field equation for
the superconducting gap Ay as

A = — M[l ~ane(Ee) ] 9)

ko2& + AR

where 71 (Ey ) is the Fermi-Dirac distribution function and Ex = /&7 + A7 . Unparticle physics enters through
the potential Vi; (k — k’). Welook for an isotropic s-wave solution for the superconducting gap and thus we
impose that Ay = Ay. Itis now possible to integrate the angular variables in (9), resulting in a gap equation of the
form (9) but with the effective potential (see appendix)

Cay
Vet (k, k') = — | sk + sk 2, (10)

an (dy - 1)kk 5

that depends only on the absolute values of both k = |k|and k" = |k’|. In order to solve the gap equation with
this potential, we make use of the standard Fermi surface restricted (FSR) approximation [53] by setting k = kg
toobtain,at T=0

/kzdk Ver ( ke, k) (a

2 & + A¢

At this point we find it convenient to integrate over the energy variable & and write the equation in a more

transparent dimensionless form by defining k = k/kg, 49 = Ay/ep, € = k> — 1. After a few lines of algebrawe

4 Technically, the integral over M” only converges for 1 < dy < 2. For the same interpretation to hold for dy > 2 a ultraviolet cut-off must
be provided for the the integral, which is on the other hand natural for condensed matter systems.
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obtain
= 2 ot
_ 2k /d@sgs[(lﬂ ] (12)
- 16ﬂ'2(dU - 1) 2er + A .

The integral is evaluated in an energy shell around the Fermi surface defined by the inequality |é| < gAy/eg,
where gAy is the typical energy scale under which the mediating interaction due to unparticles is non-zero”.
Note that the density of states (DOS) at the Fermi level of a 3D electron gasis p(ep)> « ki and therefore the

T . . . . dy—3/2 L .
multiplicative prefactor in front of the integral is proportional to [ p(sF)Z] ""7"" This is in sharp contrast with

conventional BCS where the equivalent prefactor is proportional to p (ey) [52]. The latter is recovered for
dy — 2since the interaction (7) approaches the short range BCS like interaction. We emphasize in particular
that for dy = 3/2 the dependence on the DOS at the Fermi level drops out completely from the gap equation.
This case is special in that it corresponds to a 1/x? interaction which in 3 + 1 dimensions scales exactly as the
kinetic term [54].

We continue the comparison with the BCS scenario by employing an approximation where we only allow
particles to exchange momentum in a infinitesimal shell close to the Fermi surface. In this approximation we are
abletoset k = 1 (¢ = 0) in the numerator of (12). By solving the remaining integral we arrive at the gap formula

Ay = 2gAy exp[—l/Vp(sF)ZdU_3], (13)

| Cav IT 422 2dy—4
do—1|2m

of the Debye frequency in BCS SC [52] since equation (13) approaches the standard BCS resultas dy — 2.
However, the BCS character is lost in general because the exponential factor in equation (13) depends both on

dyand Ay, the latter entering through V. Indeed, Cy, o 1 / AZ%=2 that results in a gap dependence

Ay x Ay exp [ —AédU_z] that has no BCS analogue.

The fact that both the unparticle energy scale and the effective interaction strength are functions of Ay
allows for distinctly non-BCS solutions of (12). To prove that these solutions exist we have solved (12)

numerically for A; with no implicit assumption on k’ or the size of Ay. In order to proceed, note that the

. . . Ady ke 1 A
prefactors in equation (12) can be rewritten as o= D) o ) (AS ) - Where Ay = Ay/kg. If we assume that

with an effective interaction V =

. In this format it is tempting to interpret gAy as the analogue

gis of the order of the bare Coulomb interaction then the dimensionless ratio gk /er is of order one for typical
values of kr and eg. Thus we are able to focus on the effect of increasing the shell around the Fermi surface
defined by Ay as well as the effect of dy;. Furthermore, since the superconducting gap should be smaller than e,
it should satisfy 4, < 1.

Our results are summarized in figure 2(a) where we plot the numerical solution of A as a function of Ay
and dy. Itis possible to distinguish two regions where A, vanishes labelled A and B. We find that regions A and B
are separated by robust physically acceptable solutions where 4, < 1 over awide range of dyand Ay.In
figure 2(b) we show an example of such an acceptable region for Ay = 0.2. The two curves compare solutions
obtained with (12) and (13) showing that the latter is an increasingly better approximation as dy — 2.

In contrast, we find that, as Ay — 0and dy > 3/2 (see figure 2(c)). The approximations thatlead to (13)
break down (for instance V ceases to be small) and (12) leads to solutions beyond the upper bound 4, = 1,
which divergewhen Ay — 0and dy — 2.Asdy — 1the gap decreases leading once more to physically valid
solutions.

All the discussed solutions are only possible because both the effective interaction strength and the upper
limit for the unparticle energies are set by Ay and the two effects can level out at a given value of dys to generate a
physically acceptable solution for the superconducting gap. Together with their dependence on physical
parameters discussed above, their emergence is in sharp contrast to how standard BCS solutions occur. Thus,
their existence and scaling with Ay and dy, represents one of the main results of this work.

4. Discussion and conclusions

In this work we have described how it is possible for unparticles in strongly correlated matter to mediate SC. We
have shown that this scenario can depart strongly from the conventional BCS paradigm. In particular, we have
found that for s-wave SC, the superconducting gap acquires an unusual dependence on the DOS at the Fermi

5 . . . - . .
We use units where g has dimensions of energy x (momentum) " and Ay has units of momentum. Thus, gAy is the natural energy scale
for unparticles.
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T T T
— Eq.(13)
-0 Eq. (12) | |

1.4 1.6
dy

Figure 2. (a) The gap in units of the Fermi energy A, asa function of Ay = Ay/kg and dy calculated from equation (12) with
gkg/er = 1 (see main text). Solutions below the solid black line can be disregarded as unphysical since they satisfy 4y > 4. = 0.2,
where A, < 1is chosen for illustrative purposes. (b) Comparison of the analytic result of equation (13) and the numerical result for
Ay = 0.2 asafunction of the unparticle dimension d;. (c) Numerical plot of small Ay region of numerical computation shown in
(a). The shaded region represents unphysical 4 > A, solutions.

1.2

level that can even vanish when the scaling dimension of the mediating unparticle is dy = 3/2. Interestingly, this
vanishing dependence on the DOS occurs at the value of dy; where kinetic and potential energy terms scale
equally in energy [54]. This may be important in the high- T, materials which are thought to switch from typical
potential energy driven pairing in the overdoped side of the phase diagram, to kinetic energy driven in the
underdoped [55, 56]. Such a crossover may correspond to a similar crossover of the unparticle scaling
determined by the value of dy,.

As further exemplified above with electrons in graphene, obtaining dy; for a particular condensed matter
system is sometimes possible. However, this is a hard task in general since it implies characterizing the crossover
from the high-energy particle description to unparticles, which could be dominated by a strong coupling IR
fixed point hard to access analytically [24, 25]. The particular value of dy, will generically depend on the coupling
constants in the unparticle sector (that differ from gin general) [24, 37] and can therefore scale with an external
experimentally tunable parameter that modifies the interaction strength. This idea resembles the situation in
hole-doped high- T, materials that can be doped from strongly correlated Mott insulators towards Fermi liquids
for large hole doping [57]. The presented dependence on dy; can significantly affect the size of the gap as shown
in figure 2(b).

To conclude, our work also leaves many interesting open extensions such as unparticle mediated d-wave SC
and the effects of reduced dimensionality or competing orders. Furthermore, the presented construction may be
useful to generalize previous studies in the context of even denominator fractional quantum Hall state theories
[32,49, 50]. The exact connection to the latter and its consequences will be explored in future work.
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Appendix. Effective potential

In this section we present the derivation of the gap formula and effective potential used in the main text. We start
from the standard gap equation (9) given in the main text

ZVU(k kDA [1 - 2nF(Ekr)], (A1)

ko2& + AR

we are most interested in isotropic s-wave pairing and thus set Ay = A,. This enables us to perform the angular
integral first that defines the effective potential

Vi (k, k') = f w sin (6% ) Vo (k — K. (A2)

2m)?
In the isotropic s-wave pairing case we can fix the direction of k to conveniently solve the integral

’ CdU T 2 12 ’ / du-2 : 7 ’
Vige (k, k') = (k + k' — 2 kk' cos (.9)) sin (0)d6’, (A.3)

which results in

Cau | (k + K)P40=2 — (k — k)42

e (k, k) = ) A.

Verr (k, k') Py Zkk’(dU - 1) (A.4)
G stk + sk')do=2, (A.5)
4n'<dU — 1)k &

validfor 1 < dy < 2 presented in the main text. To solve the remaining integral we make use of the FSR
approximation (see for instance [53]) and set k = kg. For this case, and T'= 0, the gap equation reads

szdk Veff kF, k)

(A.6)
2t o e+ a2
where we have dropped the primes. The effective potential, used in the main text is given therefore by
dU 2
o Cayl ki d
Vet (ke &) = (k) 25(1 + k) (A7)
4 (dU - 1)
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