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Abstract
In this workwe introduce the possibility of unparticlemediated superconductivity.We discuss a
theoretical scenariowhere it can emerge and show that a superconducting state is allowed by deriving
and solving the gap equation for s-wave pairing of electrons interacting through the unparticle
generalization of theCoulomb interaction. The dependence of the gap equation on the unparticle
energy scale ΛU and the unparticle scaling dimension dU enables us tofind a richer set of solutions
compared to those of the conventional Bardeen–Cooper–Schrieffer paradigm.We discuss unconven-
tional features within this construction, including the resulting insensitivity of pairing to the density of
states at the Fermi energy for =d 3 2U of the superconducting gap and suggest possible experimental
scenarios for thismechanism.

1. Introduction

One of themost remarkable consequences of the discovery of unconventional superconductivity (SC) in both
cuprates and pnictides [1, 2] is, arguably, the richness of theoretical ideas that have been put forward to
understand this physical phenomenon [3, 4]. Searching for novelmechanisms that lead to superconducting
states differing from the conventional Bardeen–Cooper–Schrieffer (BCS) paradigm [5–7], as well as a complete
understanding of the pseudogap state [8, 9] has driven the emergence of elaborate theoretical concepts that well
transcend the goal of understanding any particularmaterial.

There is strong evidence that suggests that interactions aremainly responsible for, or play amajor role in
generating the rich phase diagrams of these systems [10–15]. Under the umbrella of such an observation,many
novel interesting ideas have emerged that were later found to be relevant also in other, completely unrelated
systems. Themarginal Fermi liquid [16–18] introduced phenomenologically to account for experimental
observations [19] is a prime example. It was argued that strong interactions could cause the imaginary part of the
self-energy, usually associatedwith the quasiparticle life-time, to behave as Σ ω ω∼Im ( ) instead of the
quadratic Fermi-liquid like behaviour [20]. Remarkably, this particular ideawas also shown to be relevant for
the physics of graphene[21, 22].

On the other hand, high-energy physics has also profited from similar phenomenological approaches
predicting a plethora of verifiable consequences for experiments at the LargeHadronCollider (LHC) [23]. A
particularly appealing idea, proposed recently byGeorgi [24, 25], is the existence of a conformally invariant
sector that couples to ordinary standardmodel particles. The former sector does not behave as ordinarymatter
since it is described by propagators without poles, and hence has no a priori particle interpretation. Such
unparticle ‘stuff’ (as dubbed byGeorgi) could in principle leave a very particular signature in LHC scattering
cross-sections asmissing spectral weight corresponding to a non-integer number of ordinary particles [24, 26].
The parallelismwith non-Fermi liquid properties [18] recentlymotivated the idea that unparticles resulting
from strong interactions could be responsible for themissing spectral weight in the pseudogap phase [27],
accounting also for a possible breakdown of Luttinger’s theorem [28]. These works complement the numerous
scenarios that can lead to exotic SC proposed in the literature, which have explored the dependence of the
superconducting transition temperature withmodel parameters [29–32]. In the case of unparticles, within a
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BCS framework it was shown [27] that if electrons participating in SCwere promoted to unparticles that pair
with a standard BCS interaction, unusual phenomenology followed.

Inspired by these ideas, we aim to discuss amechanismwhich is distinct fromother exotic forms of SC and
which can in principle exist in strongly correlatedmaterials. In this workwe explore how SCof normal electrons
can arise frommediating unparticles. In essence, we discuss how the unparticle construction provides a path
froma high-energy theory with repulsive interactions between fermions to an effective low energy theory where
particles attract. The price to pay is that themediating glue is composed of unparticles, ultimately resulting in
unconventional (i.e. away from standard BCS) behaviour. Being a generic theoretical scenario, thismechanism
could potentially emerge in strongly correlatedmatter. In this context, this work aims to clarify two important
issues (i) the simplest theoretical constructionwhere this effective unparticlemediating interaction emerges (ii)
how this state departs from typical BCS phenomenology.

To address these points, wewillfirst discuss aminimal theoretical framework for themechanism to emerge,
partially reviewing knownproperties of unparticles, but focusing on those relevant for ourwork.Wewill write
down a genericmodel containing the unparticle analogue of theCoulomb interaction forwhichwewrite and
solve the gap equation at themean-field level and s-wave pairing.Wewillfind that even at themean field level,
the unparticle nature of themediatorsmanifests itself through non-BCS phenomenology.Wefinishwith a
discussion of our results and a summary of ourmain conclusions.

2. Emergence of unparticles

Although the concept of unparticlesmay seem exotic at first, especially in the context of strongly correlated
electrons, it is not entirely novel to condensedmatter systems.Within the renormalization group (RG) approach
and due to electron interactions, quasiparticle propagators can acquire anomalous dimensions near non-trivial
fixed points [24, 33], turning them into unparticles. As discussed in [27] the Tomonoga–Luttinger liquid
exhibits such behaviour [34–36]. A second particularly clean, and to some extent unexplored example in +2 1
dimensions that illustrates howunparticles emerge is that of the low energy interacting electrons in graphene. In
this system interactions renormalize the Fermi velocity vF [37, 38]which increases at low energies, a prediction
consistent with recent experiments [39]. However, as vF increases, the ratiowith the speed of light v cF ceases to
be small and thus one has to consider the full relativistic Coulomb interaction to have a fully consistent theory
[37]. In this case, the theory can be shown to have a non trivial infra-red (IR) fixed point at =v cF . Close to this
point, the electron propagator acquires an anomalous dimension γ and satisfies the scaling law

λω λ λ ω= γG k G k( , ) ( , ), (1)

where λ is the scaling parameter and γ is the anomalous dimension, which is in general not an integer and
depends on the coupling constant at the non-trivial critical point. For graphene γ α π= −(12 ) 12 2 where
α = e c2 is the fine structure constant [37]. Such a propagator corresponds by definition to an unparticle since
it is defined around afixed point (i.e. it is conformally invariant) and has no simple quasiparticle poles in general.
Thus electrons in graphene can be ultimately reinterpreted as genuine unparticles below an energy scale ΛU

3.
Motivated by this observation, we now reinterpret Georgi’s original construction, [24] where an unparticle

sector is coupled to ordinary particles, to obtain a theory thatwill lead us to unparticlemediated SC. The process,
summarized infigure 1 starts by considering a theory with Lagrangian

    ψ ψ ψ ψ= +A A A a, , , , , [ , ], (2 )†
1

†
2

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
  ψ ψ ψ ψ ψ ψ= +ψ ψA A b, , , , , , (2 )A1

† † †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
       = + +A A A c[ , ] [ ] [ , ] [ ], (2 )A A2

defined for energies Λ≫E U. The theory is composed of two sectorswhichwe illustrate schematically infigure 1.

Thefirst sector,  ψ ψ A, ,1
†⎡⎣ ⎤⎦, represents ordinary particlesψ (e.g. electrons) coupled through a generic

interactionA, (e.g. theCoulomb interaction). In the original unparticle set up, this sector would correspond to
the standardmodel of particle physics. On the other hand  A[ , ]2 represents a different interacting sector
where other degrees of freedom, collectively denoted by thefield , interact also throughA. At this point we
impose that  A[ , ]2 has a non trivial IRfixed point below the energy scale ΛU. Above this energy scale
 A[ , ]2 has an ordinary interpretation as a particle theory. Below ΛU unparticles emerge as exemplified at the
beginning of the section (seefigure 1).We emphasize that the scale ΛU must exist in order to constrain the
unparticles to exist only below this energy scale. Remarkably, there are explicit examples where it is possible to
estimate this energy scale (see for instance equation (3) in [41] or equation (23) in [40]).

3
The energy scale at which this happens is extremely small, albeit not zero, see [40].
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In particular, if 1 is unaffected by the IRRG flow, at energies lower than ΛU, ordinary particlesψwill
effectively only couple to unparticles [24], whichwe labelϕwith an action of the form

   = + +ψ ψϕ ϕ. (3)IR

So far, we have just reviewed howunparticles generically emerge.We now assume that IR is quadratic in the
fields and integrate outϕ to obtain an effective interaction between electrons,mediated by an unparticle
propagator of the form (1). After this step the Lagrangean reads

  ∑ψ ψ ψ ψ= +ψ ϕ
g

G
2

, (4)
ij

i i ij j jIR
†

;
†

where g is a coupling constant and ϕG ij; is the unparticle propagator in real space, which is in general amatrix
depending on the physical degrees of freedom encoded inψ. Generically, the functional formof the propagator

ϕG ij; isfixed by dimensionality and conformal invariance of the unparticle sector at the IR fixed point. In
particular for a scalar unparticle the propagator is of the form [24, 42]

Λ π
=ϕ

−

−

( )
( ) ( )

G q
A q

d
( )

2 sin
, (5)

d
d

d

2 2

U
2 1

U

U

U

U

π
π

Γ

Γ Γ
=

+

−

( )
( ) ( )

A
d

d d

16

(2 ) 1 2
. (6)d

d

5 2

2

U
1

2

U U
U

U

Comparing to equation (1), γ = −d2( 2)U . The quantity dU is referred to as the unparticle scaling dimension.
For a scalar particle it satisfies ⩾d 1U to preserve unitarity of the theory [43].We are interested in the unparticle
generalization of theCoulomb interaction and thuswe focus on the effective static potentialVU associated to this
scalar propagator whichwas derived in [42, 44]. This is a good approximationwhen retardation effects
associated tofieldϕ (i.e. current–current interactions) can be neglected, which implies that the typical Fermi
velocity should satisfy ≪v c 1F [45]. In this approximation the effective static potential reads

π
Λ π

=

≡

−

−

−

( ) ( )
( )

( )

V g
A

d

C

q q

q

( ) 4
2 sin

. (7)

d

d

d

d
d

U

U
2 1

U

2 2

2 2

U

U

U

U

U

Note thatmathematically, and for ⩽ <d1 2U , it is possible to rewrite this potential to be proportional to the

integral ∫ ρ +∞
M M d Mqd ( , ) ( )

0
2 2

U
2 2 with ρ = −M d M( , ) ( )d2

U
2 2U . This form explicitly reveals that

unparticles can be interpreted as a tower of infinitelymanymassive particles distributed according to
ρ M d( , )2

U [46–48]. Indeed, when examined in real space, this potential is nothing but a Yukawa potential
integrated over the screeningmomentum scaleM2. Physically, it is possible to interpret such an interaction as
critical in the sense that it has the formof a screened interaction, but the screening occurs at all length scales,

Figure 1. Schematic picture showing the emergence of unparticles. At high energies ordinary particles (particle sector) couple to a
second sector, the unparticle sector, that has a non-trivial infrared fixed point below a characteristic scale ΛU where thefields turn
effectively into unparticles. Below ΛU this sector couples to the particle sector that is unaffected by the RGflowby construction. This
coupling results in an effective four point interacting potentialVU, the unparticle analogue of the Coulomb interaction, defined by (7)
(seemain text).
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effectively resulting in a potential of the form ∝ −V r x( ) 1 d
U

2 1U [42, 44], the unparticle counterpart of the
Coulomb interaction4. Interactions of this formhave also been discussed in the context of the even denominator
fractional quantumHall states [32, 49, 50]. From equation (7) the long rangeCoulomb interaction is recovered
for =d 1U if we identify =g e2.

A crucial observation here is that the sign of g, and thus the attractive or repulsive character of the interaction
is notfixed by the renormalization that generates the unparticles, described above [51]. A repulsive interaction

between fermionsψ at high energies in (2b), represented by the term  ψ ψψ A, ,A
†⎡⎣ ⎤⎦ can turn into an effective

attractive interactionmediated by unparticles at low energies. The actual signwill depend on the nature of the IR
fixed point itself and the particular value of dU trough the prefactor CdU.We use this freedom tofix the low
energy theory to have an attractive character.

Wefinish this sectionwith a general remark on the validity of the present approach. In a general scenario
there can exist an additional energy scale, Λe, belowwhich thefieldψ, acquires anomalous dimensions, and is
described by an unparticle propagator. In this workwe assume that there exists an energy window such that
Λ Λ< <Ee U where the fieldψ is still defined by quasiparticle propagators that interact via the unparticle
potential (7). In this notation, [27] can be interpreted as the case where Λ Λ< <E eU and the scenario where

Λ Λ<E ( , )eU is yet to be explored.

3.Meanfield approximation

Given the above discussionwe now ask if the attractive unparticle Coulombpotential (7) can lead to unparticle
mediated SC, and if so, what is its particular signature. In order to accomplish this, we consider the case of
coherent quasiparticles in the presence of scale invariant bosonic unparticles.We then proceed in the spirit of a
modifiedBCS-theory, which now contains a potential due tomediating unparticles which has a natural cutoff,
Λg U, the highest energy an unparticlemight have.We proceedwithout explicit interactions, but keep inmind
thatwe are free to consider any renormalized quasiparticle weight by includingZk factors in the effectivemass.
Switching to the equivalentHamiltonian formalism the effective low energyHamiltonian follows from (4)

∑ ∑ξ ψ ψ ψ ψ ψ ψ= +
′

− ′+ ′H V q( ) , (8)
k

k k k
kk q

k k q k q k
†

U
† †

where the sums are a short hand notation for three-dimensionalmomentum space integrals. Thefirst term
corresponds to the diagonalizedHamiltonian stemming from ψ in (4)with ξ ε μ= −k k with μ being the
chemical potential and εk a dispersion relation (fixed below). The second part contains the unparticlemediated
interaction, whichwe set to be attractive by choosing the sign of CdU or the appropriate dU regime.

For concreteness we chooseψ to describe fermions in three spatial dimensions with quadratic dispersion
ε = k m2k

2 . Following standard techniques [52]we canwrite down the self consistentmean field equation for
the superconducting gap Δk as

∑Δ
Δ

ξ Δ
= −

− ′

+
−

′

′

′ ′
′( )k kV

n E
( )

2
1 2 , (9)k

k

k

k k

k
U

2 2
F

⎡⎣ ⎤⎦

where n E( )kF is the Fermi–Dirac distribution function and ξ Δ= +Ek k k
2 2 . Unparticle physics enters through

the potential − ′k kV ( )U .We look for an isotropic s-wave solution for the superconducting gap and thuswe
impose that Δ Δ=k 0. It is nowpossible to integrate the angular variables in (9), resulting in a gap equation of the
form (9) butwith the effective potential (see appendix)

∑
π

′ = −
− ′

+ ′
=±

−

( )
V k k

C

d kk
s k sk( , )

4 1
( ) , (10)

d

s

d
eff

U

2 2U
U

that depends only on the absolute values of both = ∣ ∣kk and ′ = ∣ ′∣kk . In order to solve the gap equationwith
this potential, wemake use of the standard Fermi surface restricted (FSR) approximation [53] by setting =k kF

to obtain, atT=0

∫ π ξ Δ
= −

+

( )k k V k k
1

d

2

,

2
. (11)

k

2 eff F

2
0
2

At this point wefind it convenient to integrate over the energy variable εk andwrite the equation in amore

transparent dimensionless formby defining =k k k¯
F, Δ Δ ε=¯

0 0 F, ϵ = −k¯ ¯ 12 . After a few lines of algebrawe

4
Technically, the integral overM2 only converges for < <d1 2U . For the same interpretation to hold for >d 2U a ultraviolet cut-offmust

be provided for the the integral, which is on the other hand natural for condensedmatter systems.
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obtain

∫
∑

π
ϵ

ϵ

ϵ Δ
=

−

+ +

+

−
=±

−

( )
( )

( )m k C

d

s s

1
2

16 1
d¯

1 ¯ 1

2 ¯ ¯
. (12)

d
d s

d

F
2 3 2

2
U

2 1

2
0
2

U

U

U⎡
⎣⎢

⎤
⎦⎥

The integral is evaluated in an energy shell around the Fermi surface defined by the inequality ϵ Λ ε∣ ∣ < g¯ U F,
where Λg U is the typical energy scale underwhich themediating interaction due to unparticles is non-zero5.

Note that the density of states (DOS) at the Fermi level of a 3D electron gas is ρ ε ∝ k( )F
2

F
2 and therefore the

multiplicative prefactor in front of the integral is proportional to ρ ε
−

( )
d

F
2 3 2U⎡⎣ ⎤⎦ . This is in sharp contrast with

conventional BCSwhere the equivalent prefactor is proportional to ρ ε( )F [52]. The latter is recovered for
→d 2U since the interaction (7) approaches the short range BCS like interaction.We emphasize in particular

that for =d 3 2U the dependence on theDOS at the Fermi level drops out completely from the gap equation.

This case is special in that it corresponds to a x1 2 interactionwhich in 3 + 1 dimensions scales exactly as the
kinetic term [54].

We continue the comparisonwith the BCS scenario by employing an approximationwherewe only allow
particles to exchangemomentum in a infinitesimal shell close to the Fermi surface. In this approximationwe are
able to set =k̄ 1 ϵ =(¯ 0) in the numerator of (12). By solving the remaining integral we arrive at the gap formula

Δ Λ ρ ε= − −g V2 exp 1 ˜ ( ) , (13)d
0 U F

2 3U⎡⎣ ⎤⎦

with an effective interaction = π∣ ∣
−

−
Ṽ

C

d m

d

1

4

2

2 4
dU

U

2 U⎡
⎣⎢

⎤
⎦⎥ . In this format it is tempting to interpret Λg U as the analogue

of theDebye frequency in BCS SC [52] since equation (13) approaches the standard BCS result as →d 2U .
However, the BCS character is lost in general because the exponential factor in equation (13) depends both on
dU and ΛU, the latter entering through Ṽ . Indeed, Λ∝ −C 1d

d
U
2 2

U
U that results in a gap dependence

Δ Λ Λ∝ − −exp d
0 U U

2 2U⎡⎣ ⎤⎦ that has no BCS analogue.
The fact that both the unparticle energy scale and the effective interaction strength are functions of ΛU

allows for distinctly non-BCS solutions of (12). To prove that these solutions exist we have solved (12)
numerically for Δ̄0 with no implicit assumption on ′k or the size of ΛU. In order to proceed, note that the

prefactors in equation (12) can be rewritten as π π ε Λ− −
( )

A

d d

gk

8 ( 1) sin ( )

1

¯

d

d

U

U U

F

F
U
2 U 1

where Λ Λ= k¯
U U F. If we assume that

g is of the order of the bare Coulomb interaction then the dimensionless ratio εgkF F is of order one for typical
values of kF and εF. Thuswe are able to focus on the effect of increasing the shell around the Fermi surface
defined by Λ̄U aswell as the effect of dU. Furthermore, since the superconducting gap should be smaller than εF,
it should satisfy Δ ≪¯ 10 .

Our results are summarized in figure 2(a) wherewe plot the numerical solution of Δ̄0 as a function of Λ̄U

and dU. It is possible to distinguish two regionswhere Δ̄0 vanishes labelledA andB.Wefind that regionsA andB
are separated by robust physically acceptable solutions where Δ ≪¯ 10 over awide range of dU and Λ̄U. In
figure 2(b)we show an example of such an acceptable region for Λ =¯ 0.2U . The two curves compare solutions
obtainedwith (12) and (13) showing that the latter is an increasingly better approximation as →d 2U .

In contrast, wefind that, as Λ →¯ 0U and >d 3 2U (see figure 2(c)). The approximations that lead to (13)
break down (for instance Ṽ ceases to be small) and (12) leads to solutions beyond the upper bound Δ =¯ 10 ,
which divergewhen Λ →¯ 0U and →d 2U . As →d 1U the gap decreases leading oncemore to physically valid
solutions.

All the discussed solutions are only possible because both the effective interaction strength and the upper
limit for the unparticle energies are set by ΛU and the two effects can level out at a given value of dU to generate a
physically acceptable solution for the superconducting gap. Together with their dependence on physical
parameters discussed above, their emergence is in sharp contrast to how standard BCS solutions occur. Thus,
their existence and scalingwith ΛU and dU represents one of themain results of this work.

4.Discussion and conclusions

In this workwe have described how it is possible for unparticles in strongly correlatedmatter tomediate SC.We
have shown that this scenario can depart strongly from the conventional BCS paradigm. In particular, we have
found that for s-wave SC, the superconducting gap acquires an unusual dependence on theDOS at the Fermi

5
Weuse units where g has dimensions of energy × (momentum)−1 and ΛU has units ofmomentum. Thus, Λg U is the natural energy scale

for unparticles.
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level that can even vanishwhen the scaling dimension of themediating unparticle is =d 3 2U . Interestingly, this
vanishing dependence on theDOS occurs at the value of dUwhere kinetic and potential energy terms scale
equally in energy [54]. Thismay be important in the high-Tcmaterials which are thought to switch from typical
potential energy driven pairing in the overdoped side of the phase diagram, to kinetic energy driven in the
underdoped [55, 56]. Such a crossovermay correspond to a similar crossover of the unparticle scaling
determined by the value of dU.

As further exemplified abovewith electrons in graphene, obtaining dU for a particular condensedmatter
system is sometimes possible. However, this is a hard task in general since it implies characterizing the crossover
from the high-energy particle description to unparticles, which could be dominated by a strong coupling IR
fixed point hard to access analytically [24, 25]. The particular value of dUwill generically depend on the coupling
constants in the unparticle sector (that differ from g in general) [24, 37] and can therefore scale with an external
experimentally tunable parameter thatmodifies the interaction strength. This idea resembles the situation in
hole-doped high-Tcmaterials that can be doped from strongly correlatedMott insulators towards Fermi liquids
for large hole doping [57]. The presented dependence on dU can significantly affect the size of the gap as shown
infigure 2(b).

To conclude, ourwork also leavesmany interesting open extensions such as unparticlemediated d-wave SC
and the effects of reduced dimensionality or competing orders. Furthermore, the presented constructionmay be
useful to generalize previous studies in the context of even denominator fractional quantumHall state theories
[32, 49, 50]. The exact connection to the latter and its consequences will be explored in futurework.
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Figure 2. (a) The gap in units of the Fermi energy Δ̄0 as a function of Λ Λ= k¯U U F and dU calculated from equation (12)with
ε =gk 1F F (seemain text). Solutions below the solid black line can be disregarded as unphysical since they satisfy Δ Δ> =¯ ¯ 0.2c0 ,

where Δ ≪¯ 1c is chosen for illustrative purposes. (b) Comparison of the analytic result of equation (13) and the numerical result for
Λ =¯ 0.2U as a function of the unparticle dimension dU. (c)Numerical plot of small Λ̄U region of numerical computation shown in
(a). The shaded region represents unphysical Δ Δ>¯ ¯c0 solutions.
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Appendix. Effective potential

In this sectionwe present the derivation of the gap formula and effective potential used in themain text.We start
from the standard gap equation (9) given in themain text

∑Δ
Δ

ξ Δ
= −

− ′

+
−

′

′

′ ′
′( )k kV

n E
( )

2
1 2 , (A.1)k

k

k

k k

k
U

2 2
F

⎡⎣ ⎤⎦

we aremost interested in isotropic s-wave pairing and thus set Δ Δ=k 0. This enables us to perform the angular
integral first that defines the effective potential

∫ θ ϕ
π

θ′ = − ′′ ′
′( )k k k kV V( , )

d d

(2 )
sin ( ). (A.2)

k k
keff 2 U

In the isotropic s-wave pairing case we canfix the direction of k to conveniently solve the integral

∫π
θ θ θ′ = + ′ − ′ ′ ′ ′

π −( )V k k
C

k k kk( , )
2

2 cos ( ) sin ( )d , (A.3)
d d

eff
0

2 2 u 2U

which results in

π
′ = + ′ − − ′

′ −

− −

( )
V k k

C k k k k

kk d
( , )

2

( ) ( )

2 1
, (A.4)

d d d

eff

2 2 2 2

U

U
U U

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

∑
π

=
− ′

+ ′
=±

−

( )
C

d kk
s k sk

4 1
( ) , (A.5)

d

s

d

U

2 2U
U

valid for < <d1 2U presented in themain text. To solve the remaining integral wemake use of the FSR
approximation (see for instance [53]) and set =k kF. For this case, andT=0, the gap equation reads

∫ π ξ Δ
=

+

( )k k V k k
1

d

2

,

2
, (A.6)

k

2 eff F

2
0
2

wherewe have dropped the primes. The effective potential, used in themain text is given therefore by

∑
π

=
−

+
−

=±

−( )
( )

( )
( )V k k

C k

d k
s sk, ¯

4 1 ¯
1 ¯ , (A.7)

d
d

s

d
eff F

F
2 2

U

2 2U

U

U

with =k k k¯
F.
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