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Abstract
Scattering of a quantumparticle with internal structure is fundamentally different from that of a point
particle and shows quantum effects such as themodification of transmission due to tunnelling and
trapping of the particle. As in a preceding paper (Shore et al 2014New J. Phys. 17 013046)we consider
amodel of a symmetric, rigid rotor travelling through an aperture in a thin but impenetrable screen
which is perpendicular to both the direction ofmotion and the rotation axis.We determine the quan-
tummechanical properties of this two-dimensional geometricalmodel using a quasi one-dimensional
scattering problemwith unconventional boundaries. Our calculations rely on finding theGreenʼs
function, which has a direct connection to the scatteringmatrix. Evaluated on a discrete lattice the
Hamiltonian is ‘dressed’ by a self-energy correction that takes into account the open boundary condi-
tions in an exact way.We find that the passage through the aperture can be suppressed or enhanced as
a result of the rotationalmotion. These effectsmanifest themselves through resonances in the trans-
mission probability as a function of incident energy and symmetry of the incident wavefunction.We
determine the density-of-states to reveal themode structure of resonant states and to exhibit the life-
times of temporary trappingwithin the aperture.

1. Introduction

In a previous article [1], referred hereafter as article I, we have considered themotion of a structured particle,
idealized as a symmetric rigid rotor, passing through an aperture whose size is comparable to the particle. This is
an important problem, because there are a number of experimental situationswhere the internal structure of a
quantummechanical object can play a role: for a list of references see [1]. On the other hand this is an interesting
question on its own, as already in the classical picture the relevant coordinates are constrained in a nontrivial
way, while in the quantummechanical treatment this leads to a complicated entanglement of the translational
and rotational degrees of freedom. Article I introduced an approximation that decoupled the translational and
rotationalmotions thereby obtaining a set of one-dimensional Schrödinger equations for the hindered
translationwith effective potentials depending on the rotationalmode. The present work removes the
simplificationmade in that work, and provides amethod that solves the two-dimensional scattering problem
within numerical accuracy.

Our article is organized as follows. In section 2we summarize themodel analyzed in article I.We present the
relevantHamiltonian and the boundary conditions that will determine thewavefunction. Section 3 presents the
quantumdynamics as a quasi one-dimensional scattering problem showing analogy to themotion of charge
carriers in nanostructures [2].We use here the technique of the Smatrix and theGreenʼs function suited to a
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numerical solutionwithout the approximations used in article I.We then devote section 4 to the discussion of
the results obtainedwith this technique, paying particular attention to the density-of-states (DOS) and to the
transmission probability and its dependence on the classical constraints. Finally section 5 summarizes our
results.

In order to keep the article self-containedwe place details in appendices. In appendix Awe present a
derivation of the so-called Fisher–Lee relation that connects elements of theGreenʼs function and the scattering
matrix. Appendix B is devoted to the evaluation of theGreenʼs function. Finally, appendix Cprovides details
about the discretization of the scattering problem.

2. Themodel: a symmetric rigid rotor constrained to a track

In this section we formulate the problem of the quantum mechanical scattering of a rotor from a
single slit. Here we are rather brief and refer for a more detailed treatment to article I. As described in
article I we consider the passage of a particle with rigid but orientable internal structure, expressible as
rotation of a rigid symmetric rod, through a single aperture, in an impenetrable thin screen. The
motion takes place in a plane perpendicular to the screen. For further simplification the centre-of-mass
motion is constrained to be along the symmetry axis of the aperture. With this assumption we are
dealing with a two-dimensional problem characterized by the centre-of-mass coordinate x and angular
coordinate φ. (See frame a( ) of figure 1 for coordinates and length scales.)

2.1. The two-dimensional Hamiltonian
The classicalHamiltonian for ourmodel problem is the sumof translational and rotational kinetic energies

= + φ
H

p

M

p

2 2
, (1)x

2 2

whereM is the totalmass of the particle and is themoment of inertia.We introduce a dimensionlessmass-
distribution parameter κ to relateM and

 κ≡ ×M a( ) , (2)2

thereby quantifying the distribution of rotormass. In coordinate representation the quantum-mechanical
Hamiltonian obtained from (1) becomes the differential operator

κ φ
= − ∂

∂
+ ∂

∂


H
M x a2

1

( )
, (3)

2 2

2 2

2

2

⎡
⎣⎢

⎤
⎦⎥

andwith the dimensionless, scaled parameters of coordinate s and energy ε

κ
ε

κ
≡ ≡

−
s

x

a
E

M a
,

2 ( )
, (4)

2

2

1⎛
⎝⎜

⎞
⎠⎟

Figure 1. (a) A symmetric rotor of radius a rotating in a plane, approaches an aperture of radius b in a thin screen. The centre-of-mass
of the rotor is constrained tomove along the symmetry axis of the aperture. This way the centre-of-mass is characterized by a single
coordinate xmeasured along this axis. The other coordinate is the orientation of the rotor, described by the angleφ, with respect to
this symmetry axis. The relevant parameter describing the geometrical situation is the aperture-to-length ratio ≡c b a . The
geometrical connection between the centre-of-mass coordinate and allowable rotation angles for a classical rotor passing through the
aperture is demonstrated in frames b( ) and c( ), where we have used the dimensionless coordinate s defined by (4).
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the energy eigenvalue equation is

φ
Ψ φ ε Ψ φ− ∂

∂
+ ∂

∂
=ε ε

s
s s( , ) ( , ). (5)

2

2

2

2

⎡
⎣⎢

⎤
⎦⎥

2.2. Rotational constraints as boundary conditions
The eigenvalue equation (5) is to be completed by boundary conditions.Wefix these by adapting the classical
geometrical constraints. Classically the effect of the aperture is to hinder rotation as the particle approaches the
screen. In frames b( ) and c( )offigure 1we demonstrate the geometrical connection between the centre-of-mass
coordinate and the allowable rotation angles.

To characterize the geometry of the rotor relative to the aperture we need, in addition to the parameters κ
and ε, the aperture-to-length ratio

≡c
b

a
. (6)

As seen infigure 1, when the rotor is within the spatial range

κ
− ⩽ ⩽ + ≡ −s s s s c, where

1
1 , (7)c c c

2

the rotation angleφ is constrained by the inequalities

α φ α α
κ

− ⩽ ⩽ ≡s s s
c

s
( ) ( ), where ( ) arctan . (8)

In the following sectionswewill refer to this range as the interaction region ( ).
Infigure 2we show the allowed domains of the angleφ determined by (8). To incorporate the hindered

motion and the resulting entanglement of the s andφ variables into the quantum-mechanical descriptionwe
impose the boundary condition that thewavefunctionmust vanish at the border of the geometrically allowed
angular domain shown as thick red lines infigure 2:

Ψ φ α= ± = − ⩽ ⩽ε s s s s s( , ( )) 0, for . (9)c c

In addition the physical configuration of a symmetric rotor, as considered here, is unchanged if it is rotated by π.
Due to this symmetry the energy eigenfunctions of the rotormust obey the symmetry relation

Ψ φ π Ψ φ+ = ± −∞ < < ∞ε εs s s( , ) ( , ) for . (10)

Infigure 2we denote this π-periodicity by thick dashed blue lines.

2.3. Classical transmission probability
In order to bring out the similarities and differences between classical and quantummechanical scattering, we
consider an ensemble of non-rotating classical particles far away from the aperture, all with fixed initial energy ε
andwith an orientation angleφ distributed evenly on the interval π φ π− ⩽ ⩽2 2.

According to (8) from this streamof classical non-rotating particles only those pass through the aperture
whose angle of orientation at = −s sc satisfies the inequality

α φ α α α
κ

− ⩽ ⩽ ≡ ≡s
c

s
, where ( ) arctan . (11)c c c c

c

For all other angles the classical rotor will be reflected.

Figure 2.The geometrically allowed (white) and forbidden (shaded) rotation anglesφ (vertical axis) as stipulated by (8) in the special
case ≡ =c b a 0.5. In the quantummechanical treatment of section 3wewill prescribe a vanishingwavefunction on the boundary of
the classically allowed region (continuous red line), and a π-periodicity in theφ-variable (thick dashed blue line).αc is defined in (11).
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Wedefine the geometric transmission probability for the incident rotors as the fraction of the ensemble in
which the initial angleφmeets this constraint

α
π π

= =
−

T
c

c

2 2
arctan

1
. (12)cc

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

This classical probability depends only on the relative sizes of the rotor and the aperture and is independent of the
initial energy ε.

3. The quantummechanical scattering problem

In this sectionwe briefly review the theoretical background to be used in solving the scattering problem, such as
the Smatrix, theGreenʼs function, and their connection. For further characterization of the process the concept
of the spectral function and the ensuingDOS are also defined.

3.1. Formulation of the scattering problem
We treat the passage of the rotor through the aperture as a quasi one-dimensional stationary scattering problem
[3], inwhich an incident wave offixed energy ε from the left encounters an obstructed passageway shown in
figure 2, resulting in transmitted and reflectedwaves. To ensure this behaviour, we prescribe two additional
asymptotic boundary conditions onΨε.

3.1.1. The free particle
Outside of the interaction region the rotor is unaffected by aperture-induced hindrance and the two-
dimensional Schrödinger equation (5) is separable into translational and rotational variables

ψ
φ

ε ϕ φ∂
∂

+ = ∂
∂

+ =±

s
k s( ) 0, ( ) 0, (13)m k m m

2

2
2 ( )

2

2
(rot)

m

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

while the energy eigenvalue ε is the sumof translational and rotational contributions

ε ε= +k . (14)m m
2 (rot)

The rotational wavefunctionsϕm are either periodic or acquire a ‘−’ signwhen the systemundergoes a π rotation
(10). In this article we restrict our analysis to free particle wavefunctions with π periodic rotational
eigenfunctions:

ϕ φ
π

ε= =φ m( )
1

e , 4 . (15)m
m

m
i2 (rot) 2

Far from the interaction region the translational wavefunctions are planewaves

ψ =± ±s( ) e . (16)k
k s( ) i

m

m

For given initial energy ε and rotational statem thewavevector

ε= −k m4 (17)m
2

is constrained to be a real number. Thismeans that at afixed total energy εwehave a restricted number of
travellingmodes given by

ε≡ ⌊ ⌋m 2 , (18)0

where⌊ ⌋denotes the integer part.

3.1.2. The asymptotic free domains
The incident wave coming from the left is a two-dimensional partial wave decomposition

∑Ψ φ ϕ φ≡ε
=−

s c( , ) e ( ), (19)
m m

m

m
k s

m
in i m

0

0

with complex-valued probability amplitudes cm, exhibiting the entanglement of the translational and rotational
degrees of freedom.

Far away to the left from the interaction region the total stationarywavefunction of energy ε is the sumof
the incident wave (19) and the resulting reflectedwave, with probability amplitudes rm

4
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∑Ψ φ ϕ φ= +ε
=−

−( )s c r( , ) e e ( ). (20)
m m

m

m
k s

m
k s

m
L i im m

0

0

Far to the right we have a transmittedwave, with transmission coefficients tm

∑Ψ φ ϕ φ=ε
=−

s t( , ) e ( ). (21)
m m

m

m
k s

m
R i m

0

0

The quantum counterpart of the classical transmission probabilityT c given by (12) is the transmitted probability
current over the incident one

ε =
∑

∑
=−

=−

T
k t

k c
( ) , (22)

m m
m

m m

m m
m

m m

2

2

0

0

0

0

which depends on scaled energy ε through the transmission probability amplitudes tm and thewave vectors km.

3.1.3. Connecting the free domains: the Smatrix
The linear connection between the incident amplitudes cm and the outgoing amplitudes rm and tm defined by
(19)–(21), respectively ismost conveniently summarized in the Smatrix of the problem.Using labels L andR
referring to the far left and right domains outside of , the elements of the Smatrix act as

∑ ∑= =r S c t S c, and . (23)m

n

mn n m

n

mn n
LL RL

Thus to calculate the transmission probability (22)we need to know the SmatricesSLL andSRL, respectively6.

3.2. TheGreen’s function
Themost efficient approach to solve the scattering problem involves theGreenʼs function [4], which according
to [2] can be physically interpreted as a generalized Smatrix describing the response at any point r due to an
excitation at point ′r . In coordinate representation the desiredGreenʼs function is defined, as a solution of the
equation

ε η
φ

φ φ δ δ φ φ+ + ∂
∂

+ ∂
∂

′ ′ = − ′ − ′ε
s

G s s s si ( , ; , ) ( ) ( ). (24)
2

2

2

2

⎡
⎣⎢

⎤
⎦⎥

The positive infinitesimal ηwithη ⟶ +0 ensures that we obtain the retardedGreenʼs function, which contains
only outgoingwaves far to the left and right from , i.e. that ensures the physically acceptable boundary
conditions given by (20) and (21). TheGreenʼs function εG depends on the scaled energy ε, whichwe have
indicated by a subscript.

In the abstractHilbert space notation of quantummechanics the defining equation (24) of theGreenʼs
function is an operator equation

ε η ε+ − =1 H G 1[( i ) ] ( ) , (25)

whereH is theHamiltonian of the problem. This form expresses the fact that εG( ) is the inverse of the energy
minus theHamiltonian, but this operator inverse should be treated carefully, as ε −1 H[ ] is singular at the
eigenvalues of H.

3.3. Partition of the system
The difficulty of the present problem arises from the complicated boundary conditions inside , as apparent
fromfigure 2 and expressed by (8) and (9). Thesemake the allowed values of the translational coordinate s and
the rotation angleφ depend on each other. It is this non-separability that obstructs an exact analytical treatment,
although for specific types of low energy incident waves we obtained results in article I bymeans of analytic
approximations.

Rather than introduce analytic simplification, we shall represent theHamiltonian on a discrete lattice, by
using lattice points where thewavefunction is declared to be nonzero. In this discrete representation (25)
becomes a systemof linear equations for εG( )which can be solved in principle bymatrix inversion.

The posed problem is periodic inφ but covers an infinite interval of s so the discrete representation space is
still of infinite size. Note that by simply cutting the infinite discrete representation at some point and changing to

6
Many times in the literature, instead of the Smatrix defined in (23), amodified unitary Smatrix is used, describing the linear connection

between the incoming and outgoing fluxes, i.e. probability current amplitudes.
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afinite-sizeHamiltonianwewould automatically introduce artificial closed boundaries andwewould get the
Greenʼs function of an isolated finite region.

To avoid the isolation, we partition theHilbert spacemore carefully into ‘left lead + box+ right lead’ as
indicated infigure 3 and incorporate the effect of the leads in the domain of the box in an exact way [2].We
choose the rectangular box, which encloses the interaction region, in suchway that along the left (L) and
right (R) boundaries of the box the conditions of (20) and (21) are still valid i.e. we have open boundary
conditions there.

The idea of dividing theHilbert space into ‘inner’ and ‘outer’ parts and deriving the effect of the ‘outer parts’
on the ‘inner parts’has a long history inmany branches of quantumphysics [5–8].

3.4. Energywavefunctions from theGreen’s function
Wenext outline how to calculate thewavefunction inside the box (arising from the incident wave)with help of
theGreenʼs function, and how to connect the free left and right domains via the Smatrix.

3.4.1. Greenʼs function in the box
By projecting equation (25) on the three domains (left lead, box and right lead) and solving for εG( ), which
when restricted to the box domainwill be denoted by εG ( )BB , we find according to appendix B the relation

Σε ε ε= − −
−

G 1 H( ) ( ) . (26)BB BB 1⎡⎣ ⎤⎦
The correctionΣ ε( ) to theHamiltonianHBB is known as the self-energy. In thework of Feshbach [5, 6] and
others this term is a non-Hermitian effective potential. On a discrete lattice this non-Hermitian correction can be
calculated exactly with the semi-infinite leads on the left and right side (see (C.5)).

3.4.2. Thewavefunction in the box
At this point we could proceed to the Smatrix without explicit calculation of thewavefunction as is usually done.
But for our specific problem the explicit formof thewavefunction inside is also interesting.We calculate it
from the incident wave (19) and theGreenʼs function inside the Box, using the fact that we have open boundary
conditions forΨε atL andR whichmust be inherited by εG( ) [9]. For details we refer to appendix A.

With the help of these conditionswe evaluate the resulting integral fromGreenʼs theorem (A.3), giving the
wavefunction inside the box as

∫ ∑Ψ φ φ φ φ ϕ φ= ′ − ′ ′ε
π

π
ε

− =−

s G s D k c( , ) d ( , ; , ) 2i ( ) . (27)
m m

m

m m m
B

2

2

0

0⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

We stress that equation (27) is exact, free of any infinite summation or approximation, and it requires εG( ) only
in the finite domain i.e. εG ( )BB .We note that equations of the Lippmann–Schwinger type [10] also express
formallyΨε on the full two-dimensional plane [11].

3.4.3. Scatteringmatrix from theGreenʼs function
Taking only excitationswhich correspond to incident waves from the left, we relate elements of the Smatrix
directly to theGreenʼs function evaluated at the left (L) and right (R) boundaries of. To do sowe introduce
the notation

 φ φ ε≡ε ( )G G; ( ) , (28)qp
q p q p

Figure 3.Weenclose the interaction region in a rectangular box, outside of which thewavefunctionΨ φε s( , ) is expressible as
products of unhindered-rotor wave functionsϕ s( )m and companion planewaves ±e k si m given by (20) and (21).Our goal is to obtain
numerically exact solutions within the box using a discretemesh of points.

6
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where the index q and the index p onG can be either L or R. The desired relationship between the blocks ofS and
εG( ) at the corresponding boundaries takes the form:

∫ ∫δ δ φ φ ϕ φ φ φ ϕ φ= − +
π

π

π

π
ε

− −
( ) ( ) ( )S k Gi2 d d ; . (29)nm

qp
qp nm m p q n q

qp
q p m p

2

2

2

2
*

This relationship is sometimes referred to in the literature as the Fisher–Lee relation [2, 12]. For completeness
we outline a simple alternative derivation of equation (29) in appendix A.

3.5. Characterization of the resonances
Due to the presence of the self-energyΣ ε( ) the discrete energy spectrumof the isolated box becomes a
continuous one, while the eigenstates broaden into resonances [11]. The characteristic features of such an
energy spectrum, containing long-living resonant states, are embodied in the spectral function, in the density-
of-states (DOS), and in the local density-of-states (LDOS).We nowbriefly review these concepts.

3.5.1. Lifetimes
To gainmore insight into the physics of theGreenʼs function of the boxwe return for amoment to the energy
eigenvalue equationwith the effectiveHamiltonian (26) .We cannot calculate the solutions of themodified
eigenvalue problem

Σ ε Ψ ε Ψ+ =μ μ μH ( ) , (30)BB B B⎡⎣ ⎤⎦
asΣ ε( ) is itself energy dependent, but we see the double effect of the non-Hermitian correction compared to the
eigenvalue equation of the isolated box. TheHermitian part ofΣ ε( ) simply shifts the eigenenergies εμ,0 of the
isolated problem,while the anti-Hermitian part brings in an imaginary contribution, resulting in

ε ε Δ γ= − −μ μ μ μ( )i 2 . (31),0

The imaginary part leads to an exponential decay of the absolute-value squaredwavefunction during time

evolution. In this sense γμ1 represents the lifetime of state Ψμ
B .

3.5.2. Spectral function
All the relevant information contained in the solutions of the eigenvalue equation (30) is also contained in the
so-called spectral function of the box, defined as [13]

ε ε ε ε≡ − = −( )A G G G( ) i ( ) ( ) 2 Im ( ) . (32)BB BB BB † BB⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦

Using the formal eigenfunction expansion

∑ε
ε ε

Ψ Ψ=
−μ μ

μ μG ( )
1

(33)BB B B

arising from (30)with the energies given by (31), from (32)we obtain in the abstractHilbert space notation the
relation [2]

∑ε Ψ Ψ
γ

ε ε Δ γ
=

− + +μ
μ μ

μ

μ μ μ( )( )
A ( )

2
. (34)BB B B

,0
2 2

3.5.3. Density-of-states (DOS)
The energy spectrumof the system is characterized by theDOS ε( ), defined as the trace of the spectral
function εA ( )BB


∫ε

π
ε

π
ε≡ =A r r A r( )

1

2
Tr ( )

1

2
d ( ) . (35)BB BB⎡⎣ ⎤⎦

With help of (34) we can understand the definition in (35) as [2]

 ∑ε
π

γ

ε ε Δ γ
=

− + +μ

μ

μ μ μ( )( )
( )

1 2

2
. (36)

,0
2 2

This function exhibits a succession of peaks as a function of the scaled energy ε, corresponding to small values of

γμ, i.e. to long lifetime states Ψμ
B . The locations of these peaks, apparent from the Lorentzian in (36), are the

energies wherewe expect to see resonances in the transmission. In the limit of infinitely long lifetimes theDOS
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approaches a succession ofDirac delta functions

 ∑ε δ ε ε Δ= − +
γ μ

μ μ
→μ

( )lim ( ) . (37)
0

,0

3.5.4. Local density-of-states (LDOS)
The LDOS gives usmore insight into the nature of the peaks in ε( ). This state-dependent function is defined
as the spectral function (32) evaluated in coordinate representation for diagonal elements r in

∑ρ
π

ε
π

Ψ
γ

ε ε Δ γ
≡ =

− + +
ε

μ
μ

μ

μ μ μ( )( )
r r A r r( )

1

2
( )

1

2
( )

2
. (38)BB B 2

,0
2 2

For infinite lifetimes this expression tends to

∑ρ Ψ δ ε ε Δ= − +
γ

ε
μ

μ μ μ
→μ

( )r rlim ( ) ( ) . (39)
0

B 2
,0

In this limit the LDOS ρε r( )provides the spatial distribution of the probability density of the resonant states.

4.Numerical results

In this sectionwe present numerical solutions of the scattering problemposed in section 3 for several values of
the aperture-to-length ratio and for different incident wave symmetries. Notable is the presence of scattering
resonances, inwhich the rotor undergoes temporary trappingwithin the interaction region . Besides the
calculation of the transmission probability (22)we also analyze this phenomenonwith the aid of the concepts
introduced in subsection 3.5.

We have carried out the calculation on a discrete lattice with 49× 49 lattice points corresponding to a box
of size π π π π− × −[ 2, 2] [ 2, 2] in the dimensionless coordinates s andφ.We chose this interval by refining
the grid until we saw convergence in the results. The energy range investigated runs between 0 and E50 0, where

κ≡ E M a2 ( )0
2 2 is the elementary unit of rotational excitation for our rotor. This range corresponds to ‘cold’

molecules, wherewe expect specific quantum effects.

4.1. Identification of the true resonances
According to (36) a plot of ε( )will reveal peaks corresponding to energies where long-living resonant states
occur. For some of these peaks there is a concentration of probability (quasi-bound resonant states) within the
region . Other peaks occur as a consequence of the dimensions of the box.We identify the latter by shifting
the box with respect to along the s-axis. Such a shift will have little effect on the peaks corresponding to ,
while peaks due to the surrounding boxwill noticeably change.

Frame a( )offigure 4 shows an example of the energy variation of theDOS ε( ). The plot reveals a series of
peaks—resonances—aswell as lesser variations. To clarify the nature of the resonances we have shifted the
bounding box along the s-axis to cover the interval π π Δ Δ− + n s s[ 2, 2] · [ , ]with = ⋯n 0, 1, , 6. Frame b( )
shows the resultingDOS variation. In this process out of the several peaks only the resonances denotedwith solid
lines did not change their position and height.

From this procedure we learn that out of the eight peaks shown in frame a( )only six are characteristic of .
We denote them asεi, with orwithout a tilde. The energies εi (ε̃i) will turn out to correspond to even (odd)
angular symmetry of the incident wavefunction, respectively. This question of symmetry is discussed in
section 4.3.

We emphasize that the size and position of the box along the s axis does not change the transmission
properties of the systembecause the Smatrix is invariant under the ‘box-shifting’ transformation. This gives an
additional possibility to verify the precision and validity of the numerical procedure.

4.2.DOS and LDOS
Information about thewavefunctions corresponding to resonant energies comes from the LDOS ρε r( ).
Formulae (38) and (39) show that a long-living resonance has a LDOSproportional to the square of the
probability distribution of that state, Ψ∣ ∣μ r( )B 2.We expect that long-living states whose properties are insensitive
to the size and location of the box will be localizedwithin the interaction region . Figure 5 verifies this
expectation, indeed thefirst two peaks of ε( ) are associatedwith dominant concentration of probability
within . In contrast, panels corresponding to dotted energy values belong to probability concentration outside
of but within. This feature confirms that these energies are not characteristic of .
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In order to exhibit energies at which long-living states appear, we present infigure 6 theDOS ε( )by a contour
plot as a function both of scaled energy ε and of aperture-to-length parameter c. This picture extends the results
shown in frame a( )offigure 4 for a single value of c=0.5 to awide range of aperture-to-length parameter values.
Thewhite domains for lower c values (lower right part of the contour plot) indicate that for higher energies new
long-living resonant statesmay appear.

Figure 4. Identification of the true resonances. a( )Density-of-states ε( ) as a function of scaled energyε for aperture-to-length ratio
c=0.5 andmass-distribution parameter κ = 1. Peaks correspond to resonant states with longer lifetimes. b( ) ε( ) for shifts of box
along the s-axis to the range π π Δ Δ− + n s s[ 2, 2] · [ , ]with = ⋯n 0, 1, , 6. Dotted vertical linesmark peak positions that changed
substantially, in contrast to the true resonances, which do not changemuch.Out of the eight peaks shown in frame a( )only six are
characteristic of .We denote themby εi and ε̃i . At the resonances εi the spatial symmetry of thewavefunction is evenwhile at ε̃i it is
odd. The second peak from the left, labelled ε̃2, is associatedwith a long-living resonant state of the system, as follows from its narrow
width. From the height of the peakwe deduce that the state has a lifetimemore than ten times longer than the lifetime of any other
state.

Figure 5.Density-of-states ε( ) as a function of scaled energy ε for aperture-to-length ratio c=0.5 andmass-distribution parameter
κ = 1. Above and belowwe show the density plots of the local density-of-states ρε r( ) for eight selected energies. For narrow resonances
ρε r( ) is the probability density. The first two plots belonging to ε1 and ε2 display strong concentrationwithin . The second peak is
much sharper than all the other ones and its wavefunction exhibits a single horizontal node. The second and fourth upper panel, that
correspond to energy valuesmarked by dotted lines, exhibit concentrationwithin but outside of . This feature identifies these
peaks as artefacts of the box. The other peaks show additional nodal structures in both s andφ, becomingmore complicatedwith
increasing energy.
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4.3. Transmission for different rotationalmodes
In this sectionwe examine how the transmission probability (22) depends on the choice of the incident
wavefunction (19). In section 4.1we used theDOS to identify the energies where resonances appear. Depending
on the rotational symmetry of the incomingmodewe can identify two essentially different types of transmission
behaviour. Incident wavefunctions with odd or even symmetry in theφ variable will excite different resonance
energies.

In order to reveal the genuine quantum effects in the scattering process, we introduce a slight generalization
of the classical transmission probability T c defined by (12).We regard the absolute-value square of theφ-
dependent part of the incident wavefunction (19) as a distribution of incoming angles for an ensemble of rotors.
Accordingly we define the pseudo-classical transmission probability by the overlap between the incident
distribution and the opening of the interaction region, as given by the integral

∫ ∑φ ϕ φ≡
α

α

− =−

T cd ( ) . (40)
m m

m

m m
pc

2

c

c

0

0

Infigures 7 and 9 a horizontal linemarks this pseudo-classical transmission probability. One expects that for
higher energies the quantummechanical transmission probability (22) should saturate to this value.

Figure 6.Contour plot of the density-of-states ε( ) as a function of scaled energy ε and aperture-to-length parameter c formass-
distribution parameter κ = 1. Lighter colours denote longer lifetimes. The vertical white lines show energies where the number of
travellingmodes i.e. 2m0 + 1, restricted by condition (18), increases.We can followhow thefirst two peaks, denotedwith ε1 and ε̃2 for
c=0.5 infigures 4 and 5, increase and sharpenwith decreasing c. In addition, below c=0.4 twonew long-living states appear for higher
energies.

Figure 7.Transmission probability εT ( ) as a function of scaled energyε for the ‘non-rotating’ incident state (41). Vertical lines
indicate the energies where resonance effects are expected from the density-of-states ε( ) shown infigure 5. The horizontal line

shows the pseudo-classical transmission probability (40) and εT ( ) varies around this line. The four contour plots correspond to the

resonant energies and show the probability-densities Ψ B 2
calculated from (27). Parameters are c=0.5, κ = 1.
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4.3.1. Even incident waves
In the present subsectionwe consider incident waves which are even in theφ variable, giving rise to the symmetry
relation = −c cm m in (19). Themost elementary examples in the low energy range are

Ψ φ ϕ φ
π

= =s( , ) e ( ) e
1

, (41)k s k s
0
even i

0
i0 0

Ψ φ ϕ φ ϕ φ
π

φ= + =−s( , ) e
1

2
( ) ( ) e

2
cos (2 ). (42)k s k s

1
even i

1 1
i1 1⎡⎣ ⎤⎦

The example of (41), taking only them=0 term, corresponds to a non-rotatingmolecule, whichwas themain
subject of article I.We note that in this special case the pseudo-classical transmission probability (40) is equal to
the classical one (12).We present numerical results of the non-rotating case infigure 7. These justify the
conclusions of article I and show the validity regime of the approximations used there.

Exactly at the first resonant energyε1 identified from theDOSwe see a peak in the transmission, as well. The
position and character of this peak is well described by the analytic calculations in article I.

An other interesting effect is the transmissionminimum, implying total reflection, at the third resonance
energyε3. Suchminima are not predicted by the approximation ofmode decoupling used in article I and that
approximationmust be abandoned as the energy increases. The second upper panel offigure 7 corresponding to
ε3, gives a hint for the reason of no transmission.When coupled to the incident wave, the symmetrywith respect
to the s-axis gets deformed, thewavefunction vanishes atR and nothing can get through to the right side.

Figure 8 shows the comparison of the transmissions for incident waves (41) and (42), which exhibit the same
overall characteristics. This statement also holds for other possible incident waveswith even symmetry inφ,
which suggests that the positions and the shapes of the peaks and dips in the transmission are characteristic of the
incident wave symmetry with respect toφ.

4.3.2. Odd incident wave
Nextwe consider incident waveswhich are odd in theφ variable, which corresponds to the symmetry relation

= − −c cm m in equation (19). Themost elementary example in the energy regime ε < 50 reads

Ψ φ ϕ φ ϕ φ
π

φ= − =−s( , ) e
1

2
( ) ( ) ie

2
sin (2 ). (43)k s k s

1
odd i

1 1
i1 1⎡⎣ ⎤⎦

Note that this incident wave is only possible for energiesε > 4, and this is the only possibility to create an odd
incident-wave in the energy regime ε< ⩽4 16.

Looking at the lower left panel infigure 5we see that the long-living resonant state at energy ε̃2 has just this
odd symmetry. The effect of this resonant state appears in the transmission plot offigure 9 as a very narrow and
high peak exactly at ε̃2. Otherwise there is almost no transmission for the odd incident wave (43) in the

ε< <4 20 energy range. From the probability-densities Ψ B 2
at ε̃2, shown in thefirst upper panel offigure 9,

we recognize thatwith this odd superposition of incidentmodes it is possible to excite the long-living resonant
state at ε̃2 whose existence appeared in theDOS infigure 4. It is also possible to excite this state with one of the
two rotatingmode functionsϕ φ− ( )1 orϕ φ( )1 . However, the odd superposition given by (43) results in a
significantly reduced overall transmission except for the resonance at ε̃2, which shows up thereforemore
sharply.

Enhancement of transmission appears also at ε̃4 and ε̃5, thewavefunction for these energies are also shown in
figure 9.

Figure 8.Transmission probability εT ( ) as a function of scaled energy ε for the even example of (42). For comparison the result for the
non-rotating incident-wave is also shown (dashed grey line). The two curves show the same overall characteristics. Parameters are
c=0.5, κ = 1.
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4.4. A true bound state of the system
In this sectionwe examine the long-living resonancewe have found for c=0.5 at ε =˜ 13.572 in theDOS
(figure 5). In section 4.3.2we demonstrated that this state causes a sharp peak in the transmission plot for
incident waveswith odd symmetry (figure 9).We shall now consider how the transmission peak varies with the
aperture-to-length ratio c .

Indeed, the position of this resonance should depend on the value of the parameter c as apparent infigure 6.
Infigure 10we show that the transmissionmaxima coincide perfectly the resonant energies deduced from the
DOS.We also see that as the size of the opening gets smaller i.e. as c decreases the transmission is diminishing
andfinally below c=0.27 no transmission is possible.

No transmission, however, does notmean that the corresponding resonant state can not be excited through
the small opening by the incident wave. Infigure 11we show the absolute value square of thewavefunction
inside in case of the odd incident wave for c= 0.27.We see that the long-living state builds up exactly at the
resonant-energy, although—as we said before—its existence is not visible in the transmission i.e. it does not
couple to the right lead.

Figure 12 shows the approximate lifetimes of this specific resonance as a function of c.We saw already in
figure 4 for c=0.5 that this state has amuch longer lifetime than any other possible state.

The very narrow and finally disappearing transmission peaks and extremely long lifetimes suggest that
around the parameter value c=0.3 the corresponding state is a true bound state of the interaction region ().

5. Conclusions

In the present article we have investigated amodel describing the stationary scattering problemof a rotating cold
diatomicmolecule passing through an aperture in a restricted two-dimensional geometry.We have calculated

Figure 9.Transmission probability εT ( ) as a function of scaled energy ε for the odd incidentwave (43). Vertical lines indicate energies

where resonance effects are expected. The horizontal line shows the pseudo-classical transmission probability (40) and εT ( ) for higher

energies varies around this line. Above are the three contour plots of wavefunction probability-densities Ψ B 2
corresponding to the

resonant energies. Parameters are c=0.5, κ = 1.

Figure 10.The position of thefirst transmission peak of the odd incident-wave (43) for seven values of the aperture-to-length
parameter c. Vertical lines show the resonant energies deduced from the correspondingmaxima in theDOS. Aswe see, these energies
coincide perfectly with the peakmaxima of transmission.

12

New J. Phys. 17 (2015) 023044 PDömötör et al



the transmission and the reflection coefficients as functions of the energy for different rotatingmodes of the
incomingmolecule. The calculations were carried out by a numericalmethod based on theGreenʼs function of
the problem in a discrete lattice representation. The complicated boundary conditionswere taken into account
bymodifying theHamiltonianwith appropriate self-energy corrections.

We have found resonances in theDOSwhich could be classified according to the rotational symmetry of the
incident wavefunction. Very sharp resonances, corresponding to long-living quasi-bound resonant states,
appear. The energies and lifetimes of these resonant states depend on the aperture-to-length ratio c and the
rotational symmetry properties of the incident wave.

As the aperture gets smaller than the size of the rotatingmolecule, the resonance peaks in the transmission
get narrower andfinally disappear while the lifetime of the corresponding excited state increases indefinitely,
suggesting that we have found a true bound state of the system.
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AppendixA. Fisher–Lee relation

Fisher and Lee [12], who deal with charge carriers in nano structures, derive a relationship between the elements
of the Smatrix and theGreenʼs function of the scattering problem.We present here an alternative derivation,
based onGreenʼs theorem, yielding also thewavefunctionwithin the box.

Figure 11.Build-up of the long-living resonant state inside region for the odd incident-wave of (43) for the aperture-to-length
parameter value c=0.27. At the resonant energy ε = 21.133 the correspondingwavefunction is located almost completely inside
and supports zero transmission probability.

Figure 12. Lifetimes of the long-living resonant state as the c parameter changes. The values of the correspondingmaxima shown in
the density-of-states plot offigure 6 (denotedwith ε̃2 for c=0.5), determine the approximate lifetime for the resonant state (36). Time
ismeasured in units of


Ma2 2

(4).
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A.1.Wavefunction inside the box
Wedenote by r a point inside the volume bounded by the closed φs( , ) surface , andwithin that domainwe
choose ′G r r( , ) so thatΨ r( )obeys physically acceptable boundary conditions, i.e. an incident wave from the left
is scattered by the structure inside.We start withGreenʼs second identity [14, 15] applied to thewavefunction
and the correspondingGreenʼs function for the domain. From

Δ ε Ψ Δ ε δ+ = + ′ = − ′ε ε( ) ( ) ( ) ( )Gr r r r r( ) 0, and , , (A.1)r r

where Δr is the Laplacian, we have

∮Ψ Ψ
Ψ

= ′ ′ ∂ ′
∂ ′

− ′
∂ ′

∂ ′ε ε
ε

ε
ε

( ) ( )
( )G

Gr r r
r r

n
r r

r

n
( ) d

( , )
, . (A.2)

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

For the evaluation of (A.2)we use the fact that we have periodic boundary conditions atφ π= ± 2, and so
we get a formula containing an integration only over the angular variable:

∫Ψ φ φ Ψ φ
φ φ

φ φ
Ψ φ

= ′ ′ ′
∂ ′ ′

∂ ′
− ′ ′

∂ ′ ′
∂ ′ε

π

π
ε

ε
ε

ε

− −

s s
G s s

s
G s s

s

s
( , ) d ( , )

( , ; , )
( , ; , )

( , )
. (A.3)

D

D

2

2 ⎡
⎣⎢

⎤
⎦⎥

With the help of the boundary conditions at the left and right edges we eliminateΨ φ′ ′ε s( , ) from the right-hand
side of (A.3) and express thewavefunction inside the box solely by theGreenʼs function. Using the complete
orthonormal set of theϕ φ( )m mode functionswe expandΨ φε s( , ) as

∫∑Ψ φ ψ ϕ φ ψ φ ϕ φ Ψ φ= ≡ε
π

π
ε

=−∞

∞

−
s s s s( , ) ( ) ( ) with ( ) d ( ) ( , ). (A.4)

m
m m m m

2

2
*

In otherwordswe do a change of representation, from the φs, basis to the ϕs, m one, so that we can then

exploit the boundary conditions for eachmode function separately.We take (19) as the incident wave on the left
and readily verify that theψ s( )m of the incident wave, with = − ⋯m m m, ,0 0, obey the following
inhomogeneous boundary conditions:

ψ
ψ

ψ
ψ

∂
∂

+ − =
∂

∂
− =

−

s

s
k D k c

s

s
k D

( )
i ( ) 2i ,

( )
i ( ) 0. (A.5)m

D

m m m m
m

D

m m

Wedenote theGreenʼs function in this representation as ′G s s( ; )nm defined by

∫ ∫φ φ ϕ φ φ φ ϕ φ′ ≡ ′ ′ ′ ′
π

π

π

π
ε

− −
G s s G s s( ; ) d d ( ) ( , ; , ) ( ). (A.6)nm n m

2

2

2

2
*

As explained in [9] theGreenʼs function inherits the homogeneous version of the boundary conditions for the
wavefunction (A.5):

∂ ′
∂ ′

+ − =
∂ ′

∂ ′
− =

−

G s s

s
k G s D

G s s

s
k G s D

( ; )
i ( ; ) 0,

( ; )
i ( ; ) 0. (A.7)nm

D
m nm

nm

D
m nm

WeexpandΨ φ′ ′ε s( , ) as (A.4) on the right-hand side of (A.3). Note that wemust have afinite sumby continuity,
asΨ φ′ ′ε s( , ) is evaluated on the left and right boundary where (20) and (21) are also valid. Thenmultiplying both
sides of the expression resulting from (A.3)withϕ φ( )n and integrating over theφ variable we obtain:

∑ψ ψ
ψ

= ′
∂ ′

∂ ′
− ′

∂ ′
∂ ′=− −

s s
G s s

s
G s s

s

s
( ) ( )

( ; )
( ; )

( )
. (A.8)n

m m

m

m
nm

nm
m

D

D

0

0 ⎡
⎣⎢

⎤
⎦⎥

Then using the boundary conditions (A.5) and (A.7)we evaluate the necessary partial derivatives at ′ = −s D and
D on the right-hand side of (A.8) cancelling almost everything and leaving uswith:

∑ψ = −
=−

s G s D k c( ) ( ; ) 2i . (A.9)n
m m

m

nm m m

0

0

Nowusing again the expansion (A.4) and the definition (A.6) of −G s D( ; )nm plus completeness of theϕ φ( )n

mode functionswe get a formula for thewavefunction inside. It is determined by the retardedGreenʼs
function of the problem evaluated in
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∫ ∑Ψ φ φ φ φ ϕ φ= ′ − ′ ′ε
π

π
ε

− =−

s G s D k c( , ) d ( , ; , ) 2i ( ) . (A.10)
m m

m

m m m
B

2

2

0

0⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

A.2. Smatrix elements
Using the expansion introduced in (A.4) thewavefunction on the left side of (20) has translational part:

ψ = + ⩽ −+ − +s c r s D( ) e e , ( ), (A.11)n n
k s D

n
k s DL i ( ) i ( )n n

while thewavefunction on the right side of (21) is represented as

ψ = ⩾−s t s D( ) e , ( ). (A.12)n n
k s DR i ( )n

Note that for both regionswe have introduced overall phase factors ±e k Di n , which is equivalent to using different
coordinate systems for the left and right leads having their origins at the respective ends of the leads. This change
has no effect on the transmission and reflection coefficients containing only the absolute values of thern and tn

amplitudes.
According to the definition of the Smatrix elements (23) the right-hand side of equations (A.11) and (A.12)

are:

∑ψ δ= +
=−

+ − +s S c( ) e e , (A.13)n
m m

m
k s D

nm
k s D

nm m
L i ( ) i ( ) LLn n

0

0 ⎡⎣ ⎤⎦

∑ψ =
=−

−s S c( ) e . (A.14)n
m m

m
k s D

nm m
R i ( ) RLn

0

0

Comparing these equationswith (A.9) and demanding continuity at = −s D andDwe have the required
connection between the elements of the scatteringmatrixS and theGreenʼs function of the problem

δ= − + − −S k G D D2i ( , ), (A.15)nm nm m nm
LL

= −S k G D D2i ( , ). (A.16)nm m nm
RL

WeevaluateGnm according to (A.6) and see that this is the Fisher–Lee formula (29).

Appendix B.Green’s function of thefinite region; the self-energy correction

Formally we express the partition introduced in section 3.3 through the projector decomposition of identity

= + +1 L L B B R R , (B.1)

where L L , B B and R R project on subspaces of functions with support in the domains of left lead, box,
and right lead, respectively.

Inserting (B.1) in (25) andmultiply from the right with B we obtain

ε η ε+ − + + =1 H G 1[( i ) ]{ L L B B R R } ( ) B B . (B.2)

Thenwe calculate projections of this operator equation on the three domains giving

τε η+ − + =( )1 H G G 0( i ) , (B.3)LL LB L † BB⎡⎣ ⎤⎦
τ τε η+ + − + =G 1 H G G 1( i ) , (B.4)L LB BB BB R RB⎡⎣ ⎤⎦

τ ε η+ + − =( ) G 1 H G 0( i ) , (B.5)R † BB RR RB⎡⎣ ⎤⎦
respectively. Herewe have introduced the notation

τ τ≡ − = − ≡ − = −( ) ( )H H H H, , (B.6)L BL LB † R BR RB †

to describe the coupling between the interior region and the semi-infinite external leads, and exploited the fact
thatH isHermitian. During the discretization process we take these links to be a nearest neighbour coupling (see
(C.4)) [11].We also used the fact that the left lead and the right lead are not connected directly, but only through
the box i.e.
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= =H H 0. (B.7)LR LR

Using (B.3) and (B.5)we express the operatorsGLB andGRB as

τ τε η= − + − = −
− ( ) ( )G 1 H G g G( i ) , (B.8)LB LL 1 L † BB L L † BB⎡⎣ ⎤⎦

τ τε η= − + − = −
− ( ) ( )G 1 H G g G( i ) , (B.9)RB RR 1 R † BB R R † BB⎡⎣ ⎤⎦

wherewe identified theGreenʼs function g of the isolated semi-infinite leads by

 ε ε η≡ + − =
−

g 1 H( ) ( i ) , L or R. (B.10)
1⎡⎣ ⎤⎦

Substituting both of these into (B.4)we get:

τ τ τ τε η+ − − − =( ) ( )1 H g g G 1( i ) R . (B.11)BB L L L † R R † BB⎡
⎣⎢

⎤
⎦⎥

Accordingly theGreenʼs function in the box is

Σε ε ε= − −
−

G 1 H( ) ( ) . (B.12)BB BB 1⎡⎣ ⎤⎦
It is customary to call the correction termΣ Σ Σ≡ +L R the self-energy [2, 11], where according to (B.11) the
definition of Σ is

   Σ τ τ≡ ( )g . (B.13)
†

This is a very general scenario: if we are only interested in quantities in some ‘inner’ region (GBB) andwe know
the coupling terms to the ‘outer’ regions ( τ ), then the effect of the latter can be taken into account exactly by
self energy terms Σ [2, 16].

The remaining problem is to calculate Σ ε( ) for our specific problem. In coordinate representationwe have
awell known analytical result for theGreenʼs function of an isolated semi-infinite leadwhen = ′s s (see [2]):

 ∑φ φ ϕ φ ϕ φ′ = − ′ε
=−∞

∞ ( )
g s s

k s

k
( , ; , )

sin
( ) ( ) e . (B.14)

m

m

m
m m

k s* i m

This can be calculated either by using an eigenfunction expansion on 
εg and then contour integration

techniques or directly from (24) implementing the closed boundary on one side correctly.

AppendixC.Discretization of the problemon a lattice

By introducing a discrete lattice the vanishing of thewavefunction along a strange shaped boundary—like the
one infigure 2—is naturally taken into account. Also the τ couplings between region and the semi-infinite
leads L andR are easy to express, taking the usual nearest neighbour approximation of second derivatives in the
Hamiltonian. In continuous-coordinate representation this is amore subtle question [17].

Introducing a two-dimensional lattice with step size Δs and Δφ in the s andφ directions respectively we
represent thewavefunctions on the i basis of lattice points as

∑Ψ Ψ Ψ Δ Δφ Ψ φ= ≡i i i s s[ ] with [ ] ( , ), (C.1)
i

i i

where φs( , )i i are the coordinates of lattice point i. TheHamiltonian of (5) taking the nearest neighbours in the
second derivatives are given by amatrix with elements

Δ Δφ

Δ Δφ=
+ =

− −

( )
H i j

s i j

s i j[ , ]

2 1 1 , if ,

1 or 1 , if and are nearest neighbours

0, otherwise.

(C.2)

2 2

2 2

⎧
⎨⎪

⎩⎪

TheGreenʼs function is represented as thematrix

∑ε φ φ Δ Δφ= =ε ε ε ( )G i j i j G i j G s s sG( ) [ , ] , with [ , ] , ; , . (C.3)
i j

i i j j
,
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From (C.2)with the notations offigureC1 the couplings (B.6) between and the leads are:

∑ ∑τ τ
Δ Δ

= =
∈ ∈s

p
s

q
1

B ,
1

B . (C.4)
i

i i
i

i i
L

2
L

L L
R

2
R

R R

From (C.4)we calculate theΣ correction (exactly) on the lattice. Focusing onΣR we see that according to the
definition (B.10) the transformationwith τ R ‘picks out’ those elements ofgR which correspond to the p p( , )i jR R

points, i.e. the end points of the semi-infinite domain (see figure C1). Nonzero elements ofΣR are

∑Σ
Δ Δ

ϕ ϕ= = −ε ε
Δ

=−∞

∞

s
g p p

s
p pB , B

1
,

1
e . (C.5)i j i j

m
m i

k s
m j

R
R R 4

R
R R 2 R

i *
R

m⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Wenote that for a discrete lattice the dispersion relation ismodified, the km in (B.10) has to be replaced by
Δ Δ=k k s ssin ( )m m .

In this way thefinite sizematrix to be inverted forGBB in (26) is fully defined.
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