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Abstract

Scattering of a quantum particle with internal structure is fundamentally different from that of a point
particle and shows quantum effects such as the modification of transmission due to tunnelling and
trapping of the particle. As in a preceding paper (Shore et al 2014 New J. Phys. 17 013046) we consider
amodel of a symmetric, rigid rotor travelling through an aperture in a thin but impenetrable screen
which is perpendicular to both the direction of motion and the rotation axis. We determine the quan-
tum mechanical properties of this two-dimensional geometrical model using a quasi one-dimensional
scattering problem with unconventional boundaries. Our calculations rely on finding the Green’s
function, which has a direct connection to the scattering matrix. Evaluated on a discrete lattice the
Hamiltonian is ‘dressed’ by a self-energy correction that takes into account the open boundary condi-
tions in an exact way. We find that the passage through the aperture can be suppressed or enhanced as
aresult of the rotational motion. These effects manifest themselves through resonances in the trans-
mission probability as a function of incident energy and symmetry of the incident wavefunction. We
determine the density-of-states to reveal the mode structure of resonant states and to exhibit the life-
times of temporary trapping within the aperture.

1. Introduction

Inaprevious article [1], referred hereafter as article I, we have considered the motion of a structured particle,
idealized as a symmetric rigid rotor, passing through an aperture whose size is comparable to the particle. This is
an important problem, because there are a number of experimental situations where the internal structure of a
quantum mechanical object can play a role: for a list of references see [1]. On the other hand this is an interesting
question on its own, as already in the classical picture the relevant coordinates are constrained in a nontrivial
way, while in the quantum mechanical treatment this leads to a complicated entanglement of the translational
and rotational degrees of freedom. Article I introduced an approximation that decoupled the translational and
rotational motions thereby obtaining a set of one-dimensional Schrédinger equations for the hindered
translation with effective potentials depending on the rotational mode. The present work removes the
simplification made in that work, and provides a method that solves the two-dimensional scattering problem
within numerical accuracy.

Our article is organized as follows. In section 2 we summarize the model analyzed in article I. We present the
relevant Hamiltonian and the boundary conditions that will determine the wavefunction. Section 3 presents the
quantum dynamics as a quasi one-dimensional scattering problem showing analogy to the motion of charge
carriers in nanostructures [2]. We use here the technique of the S matrix and the Green’s function suited to a

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) A symmetric rotor of radius a rotating in a plane, approaches an aperture of radius b in a thin screen. The centre-of-mass
of the rotor is constrained to move along the symmetry axis of the aperture. This way the centre-of-mass is characterized by a single
coordinate x measured along this axis. The other coordinate is the orientation of the rotor, described by the angle ¢, with respect to
this symmetry axis. The relevant parameter describing the geometrical situation is the aperture-to-length ratioc = b/a. The
geometrical connection between the centre-of-mass coordinate and allowable rotation angles for a classical rotor passing through the
aperture is demonstrated in frames (b) and (c), where we have used the dimensionless coordinate s defined by (4).

numerical solution without the approximations used in article I. We then devote section 4 to the discussion of
the results obtained with this technique, paying particular attention to the density-of-states (DOS) and to the
transmission probability and its dependence on the classical constraints. Finally section 5 summarizes our
results.

In order to keep the article self-contained we place details in appendices. In appendix A we present a
derivation of the so-called Fisher—Lee relation that connects elements of the Green’s function and the scattering
matrix. Appendix B is devoted to the evaluation of the Green’s function. Finally, appendix C provides details
about the discretization of the scattering problem.

2. The model: a symmetric rigid rotor constrained to a track

In this section we formulate the problem of the quantum mechanical scattering of a rotor from a
single slit. Here we are rather brief and refer for a more detailed treatment to article I. As described in
article I we consider the passage of a particle with rigid but orientable internal structure, expressible as
rotation of a rigid symmetric rod, through a single aperture, in an impenetrable thin screen. The
motion takes place in a plane perpendicular to the screen. For further simplification the centre-of-mass
motion is constrained to be along the symmetry axis of the aperture. With this assumption we are
dealing with a two-dimensional problem characterized by the centre-of-mass coordinate x and angular
coordinate ¢. (See frame (a) of figure 1 for coordinates and length scales.)

2.1. The two-dimensional Hamiltonian
The classical Hamiltonian for our model problem is the sum of translational and rotational kinetic energies

2 2
P P,
= 4 7 , (1)
2M 2M
where M is the total mass of the particle and M is the moment of inertia. We introduce a dimensionless mass-
distribution parameter « to relate M and M
M =M X (ka)?, (2)

thereby quantifying the distribution of rotor mass. In coordinate representation the quantum-mechanical
Hamiltonian obtained from (1) becomes the differential operator

7| o0? 1 02
H=—|—+ — | (3)
2M | ox*  (ka)? d¢?

and with the dimensionless, scaled parameters of coordinate s and energy &

_x _ 2o
S=;, €=E(W) N (4)
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Figure 2. The geometrically allowed (white) and forbidden (shaded) rotation angles ¢ (vertical axis) as stipulated by (8) in the special
casec = b/a = 0.5. In the quantum mechanical treatment of section 3 we will prescribe a vanishing wavefunction on the boundary of
the classically allowed region (continuous red line), and a z-periodicity in the ¢-variable (thick dashed blue line). e, is defined in (11).

the energy eigenvalue equation is

0? 0?
_[Q + 5—61)2]%(5, @) =€ ¥ (s, p). (5)

2.2.Rotational constraints as boundary conditions
The eigenvalue equation (5) is to be completed by boundary conditions. We fix these by adapting the classical
geometrical constraints. Classically the effect of the aperture is to hinder rotation as the particle approaches the
screen. In frames (b) and (c) of figure 1 we demonstrate the geometrical connection between the centre-of-mass
coordinate and the allowable rotation angles.

To characterize the geometry of the rotor relative to the aperture we need, in addition to the parameters x
and &, the aperture-to-length ratio

(6)

h
I

S |-

As seen in figure 1, when the rotor is within the spatial range

1
—s.<s<+s, where s.=—+1-¢c2, (7)
K
the rotation angle ¢ is constrained by the inequalities
—a(s) K@ <L als), where a(s) = arctan ﬁ (8)
K|s
In the following sections we will refer to this range as the interaction region (T).

In figure 2 we show the allowed domains of the angle ¢ determined by (8). To incorporate the hindered
motion and the resulting entanglement of the s and ¢ variables into the quantum-mechanical description we
impose the boundary condition that the wavefunction must vanish at the border of the geometrically allowed
angular domain shown as thick red lines in figure 2:

¥o(s, 9 = xa(s)) =0, for —s. <s<se (9)
In addition the physical configuration of a symmetric rotor, as considered here, is unchanged if it is rotated by 7.
Due to this symmetry the energy eigenfunctions of the rotor must obey the symmetry relation
V(s, p + m) =x¥(s, @) for —oo < s < 00. (10)

In figure 2 we denote this z-periodicity by thick dashed blue lines.

2.3. Classical transmission probability
In order to bring out the similarities and differences between classical and quantum mechanical scattering, we
consider an ensemble of non-rotating classical particles far away from the aperture, all with fixed initial energy ¢
and with an orientation angle ¢ distributed evenly on the interval —z/2 < ¢ < #/2.

According to (8) from this stream of classical non-rotating particles only those pass through the aperture
whose angle of orientation ats = —s, satisfies the inequality

c
—a. < ¢ < a, where a. = a(s.) = arctan g (11)
KS¢

For all other angles the classical rotor will be reflected.

3
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We define the geometric transmission probability for the incident rotors as the fraction of the ensemble in
which the initial angle ¢ meets this constraint

2
TC = % _ 2 arctan[é]. (12)
T =& 1—¢?

This classical probability depends only on the relative sizes of the rotor and the aperture and is independent of the
initial energy €.

3. The quantum mechanical scattering problem

In this section we briefly review the theoretical background to be used in solving the scattering problem, such as
the S matrix, the Green’s function, and their connection. For further characterization of the process the concept
of the spectral function and the ensuing DOS are also defined.

3.1. Formulation of the scattering problem

We treat the passage of the rotor through the aperture as a quasi one-dimensional stationary scattering problem
[3], in which an incident wave of fixed energy € from the left encounters an obstructed passageway shown in
figure 2, resulting in transmitted and reflected waves. To ensure this behaviour, we prescribe two additional
asymptotic boundary conditions on ¥..

3.1.1. The free particle
Outside of the interaction region 7 the rotor is unaffected by aperture-induced hindrance and the two-
dimensional Schrédinger equation (5) is separable into translational and rotational variables

0? 2| (@) 0* (rot)
E + km Vi, (s) =0, ()_qoz + &n ¢m((p) =0, (13)

while the energy eigenvalue ¢ is the sum of translational and rotational contributions
e=k2+ &Y. (14)

The rotational wavefunctions ¢, are either periodic or acquire a ‘-’ sign when the system undergoes a z rotation
(10). In this article we restrict our analysis to free particle wavefunctions with 7z periodic rotational
eigenfunctions:

1.
b, () = — el2m?, ") = 4m?, (15)
Jr

Far from the interaction region 7 the translational wavefunctions are plane waves
yi (5) = e, (16)

For given initial energy € and rotational state m the wavevector

k= e — 4m? (17)

is constrained to be a real number. This means that at a fixed total energy € we have a restricted number of
travelling modes given by

mo = |Ve/2], (18)

where| | denotes the integer part.

3.1.2. The asymptotic free domains
The incident wave coming from the left is a two-dimensional partial wave decomposition

PP @)= ) on e g, (0), (19)

m=—=my

with complex-valued probability amplitudes c,,, exhibiting the entanglement of the translational and rotational
degrees of freedom.

Far away to the left from the interaction region T the total stationary wavefunction of energy ¢ is the sum of
the incident wave (19) and the resulting reflected wave, with probability amplitudes r,,,

4
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Mo

Vi @)= 3 (cme™ + nue ) ¢, (). (20)

m=-=my

Far to the right we have a transmitted wave, with transmission coefficients ¢,,,

VEG, @)= ) twel g, (p). (21)

m=—=my

The quantum counterpart of the classical transmission probability T given by (12) is the transmitted probability
current over the incident one

D2 o T

—i . 4 b
ol

which depends on scaled energy e through the transmission probability amplitudes t,,, and the wave vectors k,,,.

T(e) = (22)

3.1.3. Connecting the free domains: the S matrix

The linear connection between the incident amplitudes c,, and the outgoing amplitudes r,, and t,,, defined by
(19)—(21), respectively is most conveniently summarized in the S matrix of the problem. Using labels L and R
referring to the far left and right domains outside of Z, the elements of the S matrix act as

T = ZS,,% ¢y, and t, = ZS,E,E Cp- (23)
n n

SLL SRL

Thus to calculate the transmission probability (22) we need to know the S matrices S"* and SR, respectively®.
3.2. The Green’s function

The most efficient approach to solve the scattering problem involves the Green’s function [4], which according
to [2] can be physically interpreted as a generalized S matrix describing the response at any pointr due to an
excitation at pointr’. In coordinate representation the desired Green’s function is defined, as a solution of the

equation
0? 02
e+in+ —+— |G (s, 055, ¢9)=6(s—5)6(p — ¢'). (24)
0s?  dg?

The positive infinitesimal  withg — 0% ensures that we obtain the retarded Green’s function, which contains
only outgoing waves far to the left and right from 7, i.e. that ensures the physically acceptable boundary
conditions given by (20) and (21). The Green’s function G, depends on the scaled energy ¢, which we have
indicated by a subscript.

In the abstract Hilbert space notation of quantum mechanics the defining equation (24) of the Green’s
function is an operator equation

[(e+in)1 — HG(e) =1, (25)

where H is the Hamiltonian of the problem. This form expresses the fact that G (¢) is the inverse of the energy
minus the Hamiltonian, but this operator inverse should be treated carefully, as[e1 — H]is singular at the
eigenvalues of H.

3.3. Partition of the system

The difficulty of the present problem arises from the complicated boundary conditions inside 7, as apparent
from figure 2 and expressed by (8) and (9). These make the allowed values of the translational coordinate s and
the rotation angle ¢ depend on each other. It is this non-separability that obstructs an exact analytical treatment,
although for specific types of low energy incident waves we obtained results in article I by means of analytic
approximations.

Rather than introduce analytic simplification, we shall represent the Hamiltonian on a discrete lattice, by
using lattice points where the wavefunction is declared to be nonzero. In this discrete representation (25)
becomes a system of linear equations for G (&) which can be solved in principle by matrix inversion.

The posed problem is periodic in ¢ but covers an infinite interval of s so the discrete representation space is
still of infinite size. Note that by simply cutting the infinite discrete representation at some point and changing to

Many times in the literature, instead of the S matrix defined in (23), a modified unitary S matrix is used, describing the linear connection
between the incoming and outgoing fluxes, i.e. probability current amplitudes.
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Figure 3. We enclose the interaction region Z in a rectangular box 3, outside of which the wavefunction ¥, (s, ¢) is expressible as
products of unhindered-rotor wave functions ¢, (s) and companion plane waves ex'*"* given by (20) and (21). Our goal is to obtain
numerically exact solutions within the box using a discrete mesh of points.

a finite-size Hamiltonian we would automatically introduce artificial closed boundaries and we would get the
Green'’s function of an isolated finite region.

To avoid the isolation, we partition the Hilbert space more carefully into ‘left lead + box + right lead’ as
indicated in figure 3 and incorporate the effect of the leads in the domain of the box in an exact way [2]. We
choose the rectangular box /3, which encloses the interaction region, in such way that along the left (/31) and
right (Br) boundaries of the box the conditions of (20) and (21) are still valid i.e. we have open boundary
conditions there.

The idea of dividing the Hilbert space into ‘inner’ and ‘outer’ parts and deriving the effect of the ‘outer parts’
on the ‘inner parts’ has along history in many branches of quantum physics [5-8].

3.4. Energy wavefunctions from the Green’s function
We next outline how to calculate the wavefunction inside the box (arising from the incident wave) with help of
the Green’s function, and how to connect the free left and right domains via the S matrix.

3.4.1. Green’s function in the box
By projecting equation (25) on the three domains (leftlead, box and right lead) and solving for G (¢), which
when restricted to the box domain will be denoted by G®® (¢), we find according to appendix B the relation

G (e) = [e1 - H® - X (e)]“. (26)

The correction X (&) to the Hamiltonian HB is known as the self-energy. In the work of Feshbach [5, 6] and
others this term is a non-Hermitian effective potential. On a discrete lattice this non-Hermitian correction can be
calculated exactly with the semi-infinite leads on the left and right side (see (C.5)).

3.4.2. The wavefunction in the box
At this point we could proceed to the S matrix without explicit calculation of the wavefunction as is usually done.
But for our specific problem the explicit form of the wavefunction inside /3 is also interesting. We calculate it
from the incident wave (19) and the Green’s function inside the Box, using the fact that we have open boundary
conditions for ¥, at B and Bg which must be inherited by G(¢) [9]. For details we refer to appendix A.

With the help of these conditions we evaluate the resulting integral from Green’s theorem (A.3), giving the
wavefunction inside the box as

nl2 o
i 9) = [1 0 Gs i =D o) X 2ikncndh, (o) | 27)

m=-—my

We stress that equation (27) is exact, free of any infinite summation or approximation, and it requires G (¢) only
in the finite domain /3 i.e. G®8(¢). We note that equations of the Lippmann—Schwinger type [10] also express
formally ¥, on the full two-dimensional plane [11].

3.4.3. Scattering matrix from the Green’s function

Taking only excitations which correspond to incident waves from the left, we relate elements of the S matrix
directly to the Green’s function evaluated at the left (/31 ) and right (J3z ) boundaries of 3. To do so we introduce
the notation

Gﬁp(%; qop) = <Bq| G(e) ‘Bp>, (28)
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where the index g and the index p on G can be either L or R. The desired relationship between the blocks of § and
G (&) at the corresponding boundaries takes the form:

/2
ST = 8. S + 2k f d f
4 —n/2 (pp -

This relationship is sometimes referred to in the literature as the Fisher—Lee relation [2, 12]. For completeness
we outline a simple alternative derivation of equation (29) in appendix A.

nl

dy, 4; () G (45 9,) 9 (,): 29)

nl

3.5. Characterization of the resonances

Due to the presence of the self-energy X (¢) the discrete energy spectrum of the isolated box becomes a
continuous one, while the eigenstates broaden into resonances [11]. The characteristic features of such an
energy spectrum, containing long-living resonant states, are embodied in the spectral function, in the density-
of-states (DOS), and in the local density-of-states (LDOS). We now briefly review these concepts.

3.5.1. Lifetimes

To gain more insight into the physics of the Green’s function of the box we return for a moment to the energy
eigenvalue equation with the effective Hamiltonian (26) . We cannot calculate the solutions of the modified
eigenvalue problem

[HBB +2(£)] "{’3> =¢, |'1’,]f>, (30)

as X (e) is itself energy dependent, but we see the double effect of the non-Hermitian correction compared to the
eigenvalue equation of the isolated box. The Hermitian part of ¥ (¢) simply shifts the eigenenergies €, o of the
isolated problem, while the anti-Hermitian part brings in an imaginary contribution, resulting in

€y =€u0— Ay — i(yﬂ/Z). (31)

The imaginary part leads to an exponential decay of the absolute-value squared wavefunction during time
evolution. In this sensel /Y, represents the lifetime of state‘ '1”,? >

3.5.2. Spectral function
All the relevant information contained in the solutions of the eigenvalue equation (30) is also contained in the
so-called spectral function of the box, defined as [13]

ABB(g) = i[GBB(s) ~ (6™e) )T] = —21m[ G*(e) |. (32)
Using the formal eigenfunction expansion
BB () — 1 B B
G (8)_28_% ‘l[/ﬂ><y’ﬂ| (33)

arising from (30) with the energies given by (31), from (32) we obtain in the abstract Hilbert space notation the
relation [2]

ABB(g) = Z‘T3><‘F3| 7 . (34)

u (e — &40+ A,,)z + (yﬂ/Z)z

3.5.3. Density-of-states (DOS)
The energy spectrum of the system is characterized by the DOS N’ (g), defined as the trace of the spectral
function ABB(¢)

N(e) = Te[ () ] = — [ ar el A5 1), (35)
2 2 I B
With help of (34) we can understand the definition in (35) as [2]

1 Yuf?
N(e) = — . (36)
’ ”? (e = euo+ A,,)2 + (yﬂ/z)2

This function exhibits a succession of peaks as a function of the scaled energy €, corresponding to small values of
Y i.e. to longlifetime states ’ 5”,:3 > Thelocations of these peaks, apparent from the Lorentzian in (36), are the
energies where we expect to see resonances in the transmission. In the limit of infinitely long lifetimes the DOS

7



10P Publishing

NewJ. Phys. 17 (2015) 023044 P Dométor et al

approaches a succession of Dirac delta functions

}}gM(@ = ; 5(& = en0 + Ay). (37)

3.5.4. Local density-of-states (LDOS)
The LDOS gives us more insight into the nature of the peaks in ' (¢). This state-dependent function is defined
as the spectral function (32) evaluated in coordinate representation for diagonal elementsr in 3
1 1 2 7,
P ) = (x| A Ir) = = 3 || — . (38)
x n s (e = eno+4u) + (52

For infinite lifetimes this expression tends to

lim (1) = R 8 (e — eu0 + 44)- (39)
s u

In this limit the LDOS p, (r) provides the spatial distribution of the probability density of the resonant states.

4. Numerical results

In this section we present numerical solutions of the scattering problem posed in section 3 for several values of
the aperture-to-length ratio and for different incident wave symmetries. Notable is the presence of scattering
resonances, in which the rotor undergoes temporary trapping within the interaction region 7. Besides the
calculation of the transmission probability (22) we also analyze this phenomenon with the aid of the concepts
introduced in subsection 3.5.

We have carried out the calculation on a discrete lattice with 49 x 49 lattice points corresponding to a box /3
of size[—x/2, n/2] X [—n/2, x/2]in the dimensionless coordinates s and ¢. We chose this interval by refining
the grid until we saw convergence in the results. The energy range investigated runs between 0 and 50E,, where
Ey = 7%/2M (xa)* is the elementary unit of rotational excitation for our rotor. This range corresponds to ‘cold’
molecules, where we expect specific quantum effects.

4.1. Identification of the true resonances

According to (36) a plot of N (&) will reveal peaks corresponding to energies where long-living resonant states
occur. For some of these peaks there is a concentration of probability (quasi-bound resonant states) within the
region I. Other peaks occur as a consequence of the dimensions of the box /3. We identify the latter by shifting
the box BB with respect to T along the s-axis. Such a shift will have little effect on the peaks corresponding to Z,
while peaks due to the surrounding box will noticeably change.

Frame (a) of figure 4 shows an example of the energy variation of the DOS N’ (¢). The plot reveals a series of
peaks—resonances—as well as lesser variations. To clarify the nature of the resonances we have shifted the
bounding box /3 along the s-axis to cover the interval [—z/2, z/2] + n - [As, As]withn = 0, 1, -+, 6. Frame(b)
shows the resulting DOS variation. In this process out of the several peaks only the resonances denoted with solid
lines did not change their position and height.

From this procedure we learn that out of the eight peaks shown in frame (a) only six are characteristic of 7.
We denote them as €, with or without a tilde. The energies ¢; (£;) will turn out to correspond to even (odd)
angular symmetry of the incident wavefunction, respectively. This question of symmetry is discussed in
section 4.3.

We emphasize that the size and position of the box 3 along the s axis does not change the transmission
properties of the system because the S matrix is invariant under the ‘box-shifting’ transformation. This gives an
additional possibility to verify the precision and validity of the numerical procedure.

4.2.DOS and LDOS

Information about the wavefunctions corresponding to resonant energies comes from the LDOS p, (r).
Formulae (38) and (39) show that along-living resonance has a LDOS proportional to the square of the
probability distribution of that state, | ‘1’5 (r) |*. We expect that long-living states whose properties are insensitive
to the size and location of the box /3 will be localized within the interaction region 1. Figure 5 verifies this
expectation, indeed the first two peaks of N (&) are associated with dominant concentration of probability
within 7. In contrast, panels corresponding to dotted energy values belong to probability concentration outside
of T but within /3. This feature confirms that these energies are not characteristic of 7.
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Figure 4. Identification of the true resonances. (a) Density-of-states N (¢) as a function of scaled energy ¢ for aperture-to-length ratio
¢=0.5and mass-distribution parameter x = 1. Peaks correspond to resonant states with longer lifetimes. (b) N () for shifts of box B
along the s-axis to the range[—7/2, 7/2] + n - [4s, As]withn = 0, 1, -+, 6. Dotted vertical lines mark peak positions that changed
substantially, in contrast to the true resonances, which do not change much. Out of the eight peaks shown in frame (a) only six are
characteristic of 7. We denote them by ¢;and &;. At the resonances ¢; the spatial symmetry of the wavefunction is even while at&; it is
odd. The second peak from the left, labelled &, is associated with a long-living resonant state of the system, as follows from its narrow
width. From the height of the peak we deduce that the state has a lifetime more than ten times longer than the lifetime of any other

state.
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Figure 5. Density-of-states N (&) as a function of scaled energy & for aperture-to-length ratio c = 0.5 and mass-distribution parameter
k = 1. Above and below we show the density plots of the local density-of-states p, (r) for eight selected energies. For narrow resonances
. (r) is the probability density. The first two plots belonging to £, and ¢, display strong concentration within 7. The second peak is
much sharper than all the other ones and its wavefunction exhibits a single horizontal node. The second and fourth upper panel, that
correspond to energy values marked by dotted lines, exhibit concentration within /3 but outside of Z. This feature identifies these
peaks as artefacts of the box 3. The other peaks show additional nodal structures in both s and ¢, becoming more complicated with
increasing energy.

In order to exhibit energies at which long-living states appear, we present in figure 6 the DOS N (&) by a contour
plotas a function both of scaled energy € and of aperture-to-length parameter c. This picture extends the results

shown in frame (a) of figure 4 for a single value of c = 0.5 to a wide range of aperture-to-length parameter values.
The white domains for lower ¢ values (lower right part of the contour plot) indicate that for higher energies new

long-living resonant states may appear.
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Figure 6. Contour plot of the density-of-states N (¢) as a function of scaled energy £ and aperture-to-length parameter c for mass-
distribution parameter k = 1. Lighter colours denote longer lifetimes. The vertical white lines show energies where the number of
travelling modes i.e. 21, + 1, restricted by condition (18), increases. We can follow how the first two peaks, denoted with &; and &, for
c=0.51n figures 4 and 5, increase and sharpen with decreasing c. In addition, below ¢ = 0.4 two new long-living states appear for higher
energies.
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Figure 7. Transmission probability T (¢) as a function of scaled energy € for the ‘non-rotating’ incident state (41). Vertical lines
indicate the energies where resonance effects are expected from the density-of-states N (¢) shown in figure 5. The horizontal line

shows the pseudo-classical transmission probability (40) and T (¢) varies around this line. The four contour plots correspond to the

2
resonant energies and show the probability-densities | Y’B| calculated from (27). Parameters are c= 0.5,k = 1.

4.3. Transmission for different rotational modes

In this section we examine how the transmission probability (22) depends on the choice of the incident
wavefunction (19). In section 4.1 we used the DOS to identify the energies where resonances appear. Depending
on the rotational symmetry of the incoming mode we can identify two essentially different types of transmission
behaviour. Incident wavefunctions with odd or even symmetry in the ¢ variable will excite different resonance
energies.

In order to reveal the genuine quantum effects in the scattering process, we introduce a slight generalization
of the classical transmission probability T defined by (12). We regard the absolute-value square of the ¢-
dependent part of the incident wavefunction (19) as a distribution of incoming angles for an ensemble of rotors.
Accordingly we define the pseudo-classical transmission probability by the overlap between the incident
distribution and the opening of the interaction region, as given by the integral

2

rre= [ " de Z cw (@) | - (40)

ac
m=-—mo

In figures 7 and 9 a horizontal line marks this pseudo-classical transmission probability. One expects that for
higher energies the quantum mechanical transmission probability (22) should saturate to this value.

10
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50

Figure 8. Transmission probability T' (¢) as a function of scaled energy ¢ for the even example of (42). For comparison the result for the
non-rotating incident-wave is also shown (dashed grey line). The two curves show the same overall characteristics. Parameters are
c=05kk=1.

4.3.1. Even incident waves
In the present subsection we consider incident waves which are even in the ¢ variable, giving rise to the symmetry
relation ¢, = c_,, in (19). The most elementary examples in the low energy range are

. . 1
oneven (s, @) = e1k05¢0 (@) = elkoS_ﬂ, (41)
. 1 : 2
lilleven (S, w) - elkls > [¢1 (CD) + ¢—l (§0):| = elkls ; COS (2§0) (42)

The example of (41), taking only the 7 = 0 term, corresponds to a non-rotating molecule, which was the main
subject of article I. We note that in this special case the pseudo-classical transmission probability (40) is equal to
the classical one (12). We present numerical results of the non-rotating case in figure 7. These justify the
conclusions of article I and show the validity regime of the approximations used there.

Exactly at the first resonant energy ¢ identified from the DOS we see a peak in the transmission, as well. The
position and character of this peak is well described by the analytic calculations in article L.

An other interesting effect is the transmission minimum, implying total reflection, at the third resonance
energy £;. Such minima are not predicted by the approximation of mode decoupling used in article I and that
approximation must be abandoned as the energy increases. The second upper panel of figure 7 corresponding to
€3, gives a hint for the reason of no transmission. When coupled to the incident wave, the symmetry with respect
to the s-axis gets deformed, the wavefunction vanishes at 3x and nothing can get through to the right side.

Figure 8 shows the comparison of the transmissions for incident waves (41) and (42), which exhibit the same
overall characteristics. This statement also holds for other possible incident waves with even symmetry in ¢,
which suggests that the positions and the shapes of the peaks and dips in the transmission are characteristic of the
incident wave symmetry with respect to ¢.

4.3.2. Odd incident wave
Next we consider incident waves which are odd in the ¢ variable, which corresponds to the symmetry relation

Cm = —C_yinequation (19). The most elementary example in the energy regime & < 50 reads
Wod (s, ) = s [6(0) - b ()] = ie“‘”\/Z sin (2¢0). (43)
V2 n

Note that this incident wave is only possible for energies e > 4, and this is the only possibility to create an odd
incident-wave in the energy regime 4 < ¢ < 16.

Looking at the lower left panel in figure 5 we see that the long-living resonant state at energy £, has just this
odd symmetry. The effect of this resonant state appears in the transmission plot of figure 9 as a very narrow and
high peak exactly at &,. Otherwise there is almost no transmission for the odd incident wave (43) in the

4 < & < 20 energy range. From the probability-densities ‘ '{’Br at &,, shown in the first upper panel of figure 9,
we recognize that with this odd superposition of incident modes it is possible to excite the long-living resonant
state at £, whose existence appeared in the DOS in figure 4. It is also possible to excite this state with one of the
two rotating mode functions ¢_, (¢) or ¢, (). However, the odd superposition given by (43) resultsina
significantly reduced overall transmission except for the resonance at &,, which shows up therefore more
sharply.

Enhancement of transmission appears also at &, and &, the wavefunction for these energies are also shown in
figure9.

11
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Figure 9. Transmission probability T (¢) as a function of scaled energy ¢ for the odd incident wave (43). Vertical lines indicate energies

where resonance effects are expected. The horizontal line shows the pseudo-classical transmission probability (40) and T (¢) for higher
2

energies varies around this line. Above are the three contour plots of wavefunction probability-densities | Y’B‘ corresponding to the

resonant energies. Parameters are c=0.5,x = 1.
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Figure 10. The position of the first transmission peak of the odd incident-wave (43) for seven values of the aperture-to-length
parameter c. Vertical lines show the resonant energies deduced from the corresponding maxima in the DOS. As we see, these energies
coincide perfectly with the peak maxima of transmission.

4.4. A true bound state of the system

In this section we examine the long-living resonance we have found for c=0.5at&, = 13.57 in the DOS

(figure 5). In section 4.3.2 we demonstrated that this state causes a sharp peak in the transmission plot for
incident waves with odd symmetry (figure 9). We shall now consider how the transmission peak varies with the
aperture-to-length ratioc.

Indeed, the position of this resonance should depend on the value of the parameter cas apparent in figure 6.
In figure 10 we show that the transmission maxima coincide perfectly the resonant energies deduced from the
DOS. We also see that as the size of the opening gets smaller i.e. as c decreases the transmission is diminishing
and finally below ¢ = 0.27 no transmission is possible.

No transmission, however, does not mean that the corresponding resonant state can not be excited through
the small opening by the incident wave. In figure 11 we show the absolute value square of the wavefunction
inside B in case of the odd incident wave for ¢ = 0.27. We see that the long-living state builds up exactly at the
resonant-energy, although—as we said before—its existence is not visible in the transmission i.e. it does not
couple to the right lead.

Figure 12 shows the approximate lifetimes of this specific resonance as a function of c. We saw already in
figure 4 for ¢ = 0.5 that this state has a much longer lifetime than any other possible state.

The very narrow and finally disappearing transmission peaks and extremely long lifetimes suggest that
around the parameter value ¢ = 0.3 the corresponding state is a true bound state of the interaction region (7).

5. Conclusions

In the present article we have investigated a model describing the stationary scattering problem of a rotating cold
diatomic molecule passing through an aperture in a restricted two-dimensional geometry. We have calculated

12
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Figure 11. Build-up of the long-living resonant state inside region 7 for the odd incident-wave of (43) for the aperture-to-length
parameter value ¢ = 0.27. At the resonant energy e = 21.133 the corresponding wavefunction is located almost completely inside T
and supports zero transmission probability.
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Figure 12. Lifetimes of the long-living resonant state as the c parameter changes. The values of the corresponding maxima shown in
the density-of-states plot ozf figure 6 (denoted with &, for c=0.5), determine the approximate lifetime for the resonant state (36). Time
is measured in units of % (4).

the transmission and the reflection coefficients as functions of the energy for different rotating modes of the
incoming molecule. The calculations were carried out by a numerical method based on the Green’s function of
the problem in a discrete lattice representation. The complicated boundary conditions were taken into account
by modifying the Hamiltonian with appropriate self-energy corrections.

We have found resonances in the DOS which could be classified according to the rotational symmetry of the
incident wavefunction. Very sharp resonances, corresponding to long-living quasi-bound resonant states,
appear. The energies and lifetimes of these resonant states depend on the aperture-to-length ratio cand the
rotational symmetry properties of the incident wave.

As the aperture gets smaller than the size of the rotating molecule, the resonance peaks in the transmission
get narrower and finally disappear while the lifetime of the corresponding excited state increases indefinitely,
suggesting that we have found a true bound state of the system.
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Appendix A. Fisher-Lee relation
Fisher and Lee [12], who deal with charge carriers in nano structures, derive a relationship between the elements

of the S matrix and the Green’s function of the scattering problem. We present here an alternative derivation,
based on Green’s theorem, yielding also the wavefunction within the box.
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A.1. Wavefunction inside the box 3

We denote byr a point inside the volume bounded by the closed (s, ¢) surface S, and within that domain we
choose G (r, r') so that ¥ (r) obeys physically acceptable boundary conditions, i.e. an incident wave from the left
is scattered by the structure inside 3. We start with Green’s second identity [ 14, 15] applied to the wavefunction
and the corresponding Green’s function for the domain /3. From

(Ar + E)Y’E(r) =0, and (A, + E)Gg(r, r') = 5(r - r’), (A.1)
where A, is the Laplacian, we have
/ A
¥ (r) = yg dr’ %(r’)% - Gé.(r, r’) 615/1.) (A.2)

For the evaluation of (A.2) we use the fact that we have periodic boundary conditions at ¢ = +7/2,and so
we get a formula containing an integration only over the angular variable:

D

(A.3)

/2 , ) , aGg(S, ;S/, /) ) ) awg(s/, /)
¥ (s, @) = f_/z de [%(s,(p)%—ﬁ(s,fp;s,fp)—m,(p

-D

With the help of the boundary conditions at the left and right edges we eliminate ¥ (s’, ¢’) from the right-hand
side of (A.3) and express the wavefunction inside the box solely by the Green’s function. Using the complete
orthonormal set of the ¢, () mode functions we expand ¥ (s, ¢) as

0 nl
Y(s, ) = z W, (s) &, (@)  with y (s) = / : do ¢, (p) ¥.(s, @). (A.4)

m=-0

In other words we do a change of representation, from the|s, ¢) basis to the| s, ¢, > one, so that we can then
exploit the boundary conditions for each mode function separately. We take (19) as the incident wave on the left

and readily verify that the y;, (s) of the incident wave, withm = —my, ---, m, obey the following
inhomogeneous boundary conditions:
oy, (s) oy, (s)

+ ik, (=D) = 2ikyyCyy
-D

— ik, (D) = 0. (A.5)

Js b

We denote the Green’s function in this representation as G,,,,, (s; s’) defined by
/2 /2
Gmisis)= [* do [ a0 4(0) Guls, 035 0) (0. (46)

As explained in [9] the Green’s function inherits the homogeneous version of the boundary conditions for the
wavefunction (A.5):

G (55 8")

0Gy (55 s’
. T ik Gon (55 —D) = 0, 2Gm{555)
S

— ik, Gy (s; D) = 0. (A.7)
D os’

D

Weexpand ¥, (s, ¢') as (A.4) on the right-hand side of (A.3). Note that we must have a finite sum by continuity,
as'. (s', ¢') is evaluated on the left and right boundary where (20) and (21) are also valid. Then multiplying both
sides of the expression resulting from (A.3) with ¢, (¢) and integrating over the ¢ variable we obtain:

< 0Gn (s; 5') oy, () I”
nm\S5 S 'm
= ! — Gum (S5 ! A8
v, (s) Z [u/m(s) v (55) =3 ] (A.8)
m=—my -D

Then using the boundary conditions (A.5) and (A.7) we evaluate the necessary partial derivatives ats’ = —D and

D on the right-hand side of (A.8) cancelling almost everything and leaving us with:

mo

Y(s) = ) Gun(ss =D) 2ikycp. (A.9)

m=—my

Now using again the expansion (A.4) and the definition (A.6) of G, (s; —D) plus completeness of the ¢, (¢)
mode functions we get a formula for the wavefunction inside /3. It is determined by the retarded Green’s
function of the problem evaluated in B
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72 o
i 9) = [1 a0 Gls i =Dy 00| X Zikncndh, (o) | (A10)

m=—my

A.2. S matrix elements
Using the expansion introduced in (A.4) the wavefunction on the left side of 3 (20) has translational part:

l//nL (s) = ¢, efnlstD) 4 p emikulsHD)] (s<-D), (A.11)
while the wavefunction on the right side of B (21) is represented as

wR(s) = t, efl=D), (s = D). (A.12)

Note that for both regions we have introduced overall phase factors e¥*+", which is equivalent to using different

coordinate systems for the left and right leads having their origins at the respective ends of the leads. This change
has no effect on the transmission and reflection coefficients containing only the absolute values of ther, and ¢,
amplitudes.

According to the definition of the S matrix elements (23) the right-hand side of equations (A.11) and (A.12)
are:

mo
wh(s) = Z [eik"(5+D) Sy + e knls+D) SnL,%]cm, (A.13)
m=—mo
mo
1//51 (s) = Z elkns=D) GRL (A.14)
m=-—mo
Comparing these equations with (A.9) and demanding continuity ats = —D and D we have the required

connection between the elements of the scattering matrix S and the Green’s function of the problem
S = =0 + 2k Gy ( =D, =D), (A.15)
Si’?fh = 21km Gnm (D) _D) (A16)

We evaluate G,,,,, according to (A.6) and see that this is the Fisher—Lee formula (29).

Appendix B. Green’s function of the finite region; the self-energy correction

Formally we express the partition introduced in section 3.3 through the projector decomposition of identity
1=[L)(L[+[B)(B|+ [R)(R], (B.1)
where|L) (L |,|B) (B |and|R) (R | project on subspaces of functions with support in the domains of left lead, box,

and right lead, respectively.
Inserting (B.1) in (25) and multiply from the right with|B) we obtain

[(e +im1 — HJ{|ILY(L | + [BY(B| + [R)(R [}G(e) [B) = 1 [B). (B.2)
Then we calculate projections of this operator equation on the three domains giving
[e+in1 —HL]G™ + (1) 6™ =0, (B.3)
GO+ (e +in1 - HP| G + R G =1, (B.4)
(%) 6™ +[ (¢ +in1 - H¥|G™ = o, (B.5)

respectively. Here we have introduced the notation
= -H = —(HY), = oH® = (HY), (B.6)

to describe the coupling between the interior region /3 and the semi-infinite external leads, and exploited the fact
that H is Hermitian. During the discretization process we take these links to be a nearest neighbour coupling (see
(C.4)) [11]. We also used the fact that the left lead and the right lead are not connected directly, but only through
theboxi.e.
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H!R = HIR = 0. (B.7)

Using (B.3) and (B.5) we express the operators G'8 and G*® as
G = —[ (e +im1 - HU] 7 (¢1) G* = —g" (1) G, (B.8)
GRB = —[(8 +inl — HRR]_I(‘L'R)T GBB = —gR (TR>T GPB, (B.9)
where we identified the Green’s function g of the isolated semi-infinite leads by
gl(e) = [(8 +in)l — HDD]_I, D=LorR. (B.10)
Substituting both of these into (B.4) we get:
[(8 +in)1 — HB® — 7zlgl (*t'L)T — 7RgR (rR)T]GBB =1. (B.11)

Accordingly the Green’s function in the box is

-1

GPB(e) = [e1 _HF_ X (e)] (B.12)

Itis customary to call the correction term ¥ = X' + XR the self-energy [2, 11], where according to (B.11) the
definition of £P is

3D =D gl (TD)T. (B.13)

This is a very general scenario: if we are only interested in quantities in some ‘inner’ region (G®?) and we know
the coupling terms to the ‘outer’ regions (z7), then the effect of the latter can be taken into account exactly by
selfenergy terms XP [2, 16].

The remaining problem is to calculate ¥? (&) for our specific problem. In coordinate representation we have
awell known analytical result for the Green’s function of an isolated semi-infinite lead when s = s’ (see [2]):

©  gin (kms)

m=—oo km

gl w35, 0) = - b (@) &y, (") . (B.14)

This can be calculated either by using an eigenfunction expansion on gf and then contour integration
techniques or directly from (24) implementing the closed boundary on one side correctly.

Appendix C. Discretization of the problem on a lattice

By introducing a discrete lattice the vanishing of the wavefunction along a strange shaped boundary—Ilike the
one in figure 2—is naturally taken into account. Also the 2 couplings between region BB and the semi-infinite
leads L and R are easy to express, taking the usual nearest neighbour approximation of second derivatives in the
Hamiltonian. In continuous-coordinate representation this is a more subtle question [17].

Introducing a two-dimensional lattice with step size As and Ag in the s and ¢ directions respectively we
represent the wavefunctions on the|i) basis of lattice points as

wy= YWl i)y with ¥(i] = JAsde ¥ (s ), (C.1)

where(s;, ¢;) are the coordinates of lattice point i. The Hamiltonian of (5) taking the nearest neighbours in the
second derivatives are given by a matrix with elements

2(1/4s* + 1/4g?), ifi = j,
H[ 71 =9 21452 or — 1/4¢?, ifi and j are nearest neighbours (C.2)
0, otherwise.
The Green’s function is represented as the matrix
G(e) = ZGE 5 j]1)(G |,  with Gg[i,j] = Ge(si, ;5 S q)]—) AsAg. (C3)

i,]
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e o o {6 o (]
pL3 Brs Bns qR3

e o o & o ¢
PL2 Brs B qR2

e o o &l o ¢
pr1 Bra Br qRr1

Figure C1. Representation of the partitioning, introducing a notation on the adjacent points of different parts showing schematically
the coupling terms connecting the finite region /3 to the semi-infinite leads L and R.

From (C.2) with the notations of figure C1 the couplings (B.6) between /3 and the leads are:
1 1
TL=—ZZ|BLi><pLi|, TR:_ZZ‘BRi><qRi
As As ‘er

ieL
From (C.4) we calculate the ¥ correction (exactly) on the lattice. Focusing on Z® we see that according to the
definition (B.10) the transformation with z® ‘picks out’ those elements of g* which correspond to the (py;, py ;)

. (C4)

points, i.e. the end points of the semi-infinite domain (see figure C1). Nonzero elements of X are
1 1 N ikmAs p*
Zf[BRi’ BRj] = A & [pRi’ pRj] T T a2 Z b [PRi]e ks [PR]‘]-

We note that for a discrete lattice the dispersion relation is modified, the k,,, in (B.10) has to be replaced by
k,, = sin (k,,As)/As.
In this way the finite size matrix to be inverted for G? in (26) is fully defined.

(C.5)
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