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Abstract
Weanalyse the dynamical properties of three-dimensional solitarywaves in cylindrically trapped
Bose–Einstein condensates. Families of solitarywaves bifurcate from the planar dark soliton and
include the solitonic vortex, the vortex ring andmore complex structures of intersecting vortex lines
known collectively as Chladni solitons. The particle-like dynamics of these guided solitary waves
provides potentially profitable features for their implementation in atomtronic circuits, and play a key
role in the generation ofmetastable loop currents. Based on the time-dependent Gross–Pitaevskii
equationwe calculate the dispersion relations ofmoving solitary waves and theirmodes of dynamical
instability. The dispersion relations reveal a complex crossing and bifurcation scenario. For stationary
structures wefind that for 2.65m w >^ the solitonic vortex is the only stable solitary wave.More
complexChladni solitons still haveweaker instabilities than planar dark solitons andmay be seen as
transient structures in experiments. Fully time-dependent simulations illustrate typical decay
scenarios, whichmay result in the generation ofmultiple separated solitonic vortices.

1. Introduction

Nonlinear waves in superfluids are the subject of intense theoretical and experimental research. The exquisite
control achieved inmanipulating ultracold atomic gases has enabled the creation,manipulation, and detection
of dark solitons [1, 2], vortex rings (VRs) [3, 4] and solitonic vortices in Bose–Einstein condensates (BECs) [5]
and Fermi gases along the BEC–BCS crossover [6]. All these structures are strongly influenced by the
confinement of the particle cloud and represent solitary waves in the sense that they are characterised by an
excitation energy density above the condensate ground state that is localisedwith respect to the long axis of the
confining geometry. Thesemulti-dimensional solitary waves distinguish themselves by their non-trivial
topology associatedwith the constituting superfluid currents.

The combination of confinement and superfluid currents is also themain constituent in the development of
atomtronic devices, and, to this end, an in-depth understanding of the nonlinear phenomena involved in such
dynamics is required. In particular, the role played by nonlinear waves deserves special attention.On the one
hand, the shape-preserving evolution of solitary waves, in both repulsively and attractively interacting systems,
could be a useful feature to be implemented in future applications, in a similar way as optical solitons are being
currently used in optical fibers [7]. On the other hand, the necessity to better understand the role played by
solitary waves in the generation of superfluid currents hasmanifested itself in a series of experiments with
superfluid rings atNIST [8, 9]. Therein, vortices of solitonic nature, due to the transverse trapping along the
radius of the rings, have been found after driving the superfluid intomotion. Additionally, the generation of
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suchmetastable loop currents has been demonstrated to bemediated by the existence of solitary waves that
produce an energy barrier preventing phase slips [10].

Dark solitons, or kinks, are density dips with an associated jump in the phase of the order parameter, and
represent nonlinear excitations in BECswith repulsive interparticle interactions [11]. In one-dimensional rings,
kink excitations represent intermediate stages connecting states with different winding numbers [12]. A one-
dimensional dark soliton can be understood as a vortex which is crossing the ring, and hence providing a
characteristic density depletion and phase slip that depends on the position of the vortex. In higher dimensions,
the structure of a vortex line crossing the ring, a solitonic vortex (SV), can bemore easily identified on the cross
section of the system. Alternatively, other transverse states containing vortex lines can be excited in order to
produce a given phase jump along the ring circumference. In general, multidimensional stationary kinks are
dynamically unstable [13], unless a tight trap could keep the system in the quasi-one-dimensional regime so that
higher energy transverse excitations were excluded [14, 15].

In trapped superfluids, Chladni solitons [16] emerge from the decay of three-dimensional kinks, as a result
of the excitation of standingwaves on the nodal plane of the kink. Suchwaves produce patterns of vorticity along
the nodal lines of the transversemodes in analogy to theChladni figures visualising the nodal lines of plate
vibrationmodes [17]. In trapswith cylindrical symmetry, the different families of solitarywaves can be described
by the radial p and azimuthal l quantumnumbers, indicating the number of transverse nodal lines along their
respective directions. Solitonic vortices, belonging to the family p l0, 1= =( ), are the lowest energy states in
elongated condensates [15, 18], while VRs [19, 20], presenting higher excitation energies, belong to the family
p l1, 0= =( ). Alongwith these previously known states, there exist a sequence ofmore complex stationary
solitary waveswith all possible combinations of p and l quantumnumbers, as was pointed out by the authors
[16]. Very recently evidence for the observation of theΦ-shapedChadni solitonwith quantumnumbers
p l1, 1= =( ) in a superfluid Fermi gas at unitarywas reported in [21]. The relative strength of the decaymodes
that can produce Chladni solitons from the decay of the kink, as well as the robustness of theChladni solitons are
key points that remain to be clarified.

Motivated by the previous considerations, in the present workwe study the dynamics of solitary wave
excitations within the framework of the time-dependent Gross–Pitaevskii equation. Section 2 is devoted to
characteristicmass parameters relevant for the Landau quasiparticle dynamics of solitary waves. Numerical data
is presented and compared to analytical approximations for energy, inertial, and physicalmasses of the dark
soliton in section 2.1, and the SV andVR in section 2.2. The snaking instability of the kink state is analysed in
detail in section 3 by solving the Bogoliubov equations of linearised excitations for the trapped kink state
numerically and by developing a semi-analytical theory of the unstablemodes. Numerical results for stationary
Chladni solitons are reported in section 4, while the dispersion relations and phase step ofmovingChladni
solitons are considered in section 5. A stability analysis of Chladni solitons—stationary andmoving—is
performed in section 6, where also results from real-time evolution beyond the linear response regime are
reported.We identify two characteristic scenarios in the fate of Chladni solitons: either a chain of decay episodes
into single vortex lineswhich are localised around a transverse plane of the system, or the generation of
secondary travellingwaves. Finally, the dynamical features pointed out in our study are used to propose feasible
protocols for the experimental realisation of these solitary waves.

2. Energy and inertial and physicalmasses

Solitary waves often exhibit particle-like dynamics. Onemanifestation of such particle-like dynamics occurs
when solitarywavesmove across a slowly varying backgroundwhere energy radiation is being suppressed. As a
consequence of energy conservation, the solitary wavewill then adapt adiabatically to the changing
environmental conditions, adjusting its internal parameters as tomaintain its local energy constant, and acting
as a Landau quasiparticle [22]. The nonlinear wave solutions considered in this article are all solitary waves in
this sense, because they are localisedwith respect to the long axis of a trapped geometry and thusmay perform
guided quasiparticlemotion, even though their properties are significantly influenced by the presence of a
transverse confining potential. In sections 3 and 6we present evidence to show that only two types of solitary
waves are dynamically stable in cylindrically trapped BECs: the SV is stable when 2.65m w >^( ) while the dark
soliton is stable below this value, whereμ is the chemical potential and ŵ the frequency of the transverse
harmonic trapping potential. Dynamically stable solitary wave can be expected to performnear-hamiltonian
quasiparticle dynamics for a long time and have been observed in experiments with trapped superfluid Fermi
gases for several seconds [6, 23]. Unstable solitary waves like VRsmay still exhibit quasiparticle like dynamics if
the competing decay dynamics is slow enough or suppressed by symmetry constraints [24, 25].

In the framework of Landau quasiparticle dynamics, the equations ofmotion of a solitary wave in a trapped
quantumgas can be derived fromknowing the excitation energy E v,s sm( ) of the solitary wave as a function of

2

New J. Phys. 17 (2015) 125013 AMMateo and J Brand



the chemical potentialμ and its velocity vs [22]. In a trapped gas, the chemical potential is then treated as a
(slowly varying) function of the positionZ of the solitary wave, while the velocity is the time derivative of
position v Zs = ˙ . Requiring the energy to be a constant ofmotion then leads to
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is the inertial mass of the solitary wave, often also called the effectivemass. Equation (1) already looks like
Newton’s law. Forweak harmonic trapping potential along the z axis where the Thomas–Fermi approximation
demands that Z m Zz0

1

2
2 2m m w= -( ) , we arrive atNewton’s equation ofmotion in the form
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where the physical mass defined by
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¶
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is to be interpreted as the characteristic parameter of the solitary wave that gives rise to the buoyancy-like force
on the right-hand side of equation (3). The interpretation of the physicalmass to be related to a buoyancy
phenomenon is further supported by it being closely related to number ofmissing particlesNs, i.e. particles
depleted from the background density due to the presence of the solitary wave, where M mNsph = holds inmany
cases [26].

Solitary waves in repulsively interacting quantum gases typically have negative inertial and physicalmasses,
which leads to oscillatorymotion of the solitary waves in a trapped gas. This, e.g. is the case for the one-
dimensional Gross–Pitaevskii equation describing BECswith tight transverse confinement [22, 27]. If the
physical and inertialmasses are independent of position and velocity, or in the limit of small-amplitudemotion,
we obtain simple harmonic oscillations Z t tsinµ W( ) ( )with [26, 28]
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Such harmonic oscillations have already been observed in experiments and the frequency ratiomeasured for
dark solitons [29] and for solitonic vortices [30] in BECs and for solitonic vortices in the superfluid Fermi gas
[6, 23]. In the remainder of this sectionwe present numerical data of dispersion relations andmass parameters
evaluated for the dark soliton, SV andVRs, and comparewith approximate analytical expressions.

2.1. Planar dark solitons
Wewillmodel solitarywaves within themeanfield theory given by theGross–Pitaevskii equation for the
condensate order parameter tr,Y( )

t m
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where g a m4 2p= is the interaction strengh determined by the positive s-wave scattering length a and the
bosonicmassm,V m rr 22 2w= ^ ^( ) is an external, cylindrically symmetric, harmonic potential in the transverse
coordinate r x y2 2 2= +^ , and the condensate particle numberN follows fromnormalisation N rd 3 2ò= Y∣ .

Our starting point is the search for stationary solutions to equation (6), tr r, e ti yY = m-( ) ( ), with
chemical potentialμ, having the formof planar kinks across the axial coordinate z. This task has been carried out
numerically because no analytical solution is known for the 3DGross–Pitaevskii equation (6). Nevertheless, we
have been guided by the asymptotic analytical solution proposed in [16]

r
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r
r tanh , 7TF

⎛
⎝⎜

⎞
⎠⎟y c

x
= ^

^
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which is valid in the Thomas–Fermi regime, where r gTF locc m= ^( ) is the transverse ground state,
r V rlocm m= -^ ^( ) ( ) is the local chemical potential, and a local healing length is defined by

m rr locx m=^ ^( ) ( ) . Employing equation (7) as initial ansatz, the numerical solution of equation (6) is
obtainedwithout difficulty either using aNewtonmethod or by imaginary time evolution.
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The ansatz (7) also provides an excellent description of relevant properties of the kink, such as excitation
energy ormissing number of particles.We define the excitation energy of a solitonψ, relative to the ground state

0y , bymeans of

E E N E N , 8s 0 0
⎡⎣ ⎤⎦y m y m= - - -( )[ ] ( )

with the energy defined by the functional
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Substituting the ansatz (7) into equation (8) and neglecting the derivatives of rTFc ^( ) in equation (9), according
to the Thomas–Fermi approximation, we get the energy of a planar dark soliton confined by a transverse
harmonic trapping as
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where the quantities with tilde aremeasured in the characteristic units of the trap, m m w= ^˜ , a a a= ^˜ , and
a m w=^ ^ . Normalisation of equation (7) gives themissing number of particles in the soliton
N N Ns 0= - :
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which can also be obtained from the relation

E N . 12s sm¶ ¶ = - ( )

Figure 1 shows a comparison of the analytical expressions (10) and (11)derived from the ansatz (7), and the
exact numerical solution to equation (6). As expected, the agreement improves with increasing values of the
chemical potential, and for 10m >˜ errors are below 1%.The preceding analysis shows that for a harmonically
trapped kink, given a chemical potential in the trap units, the parameters aEs˜ ˜ and aNs˜ arefixed, as reflected in
equations (10) and (11).

A further improvement can easily be introduced in previous expressions for average quantities. Following
[31], by properly incorporating the zero point energy of the harmonic oscillator in the calculations we obtain the
improved expressions
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which have the correct limits both in the Thomas–Fermi and in the quasi-onedimensional regimes. They also
interpolate in betweenwith very good accuracy as can be seen infigure 1.

2.2. SV andVR
Wehave determined the inertial and physicalmasses for solitarywaves by computing the energy of the fully
numerical solution of the 3DGross–Pitaevskii equation (6) and taking numerical derivatives with respect to
chemical potential and velocity near the stationary point. Figure 2 reports the resultingmass ratios for dark
solitons (red curve), solitonic vortices (green curvewith open squares), andVRs (blue curvewith open circles) in
3D condensates confined by isotropic radial harmonic traps. For the kink, one can observe discontinuities
arising at the bifurcation points of p, 0( )modes, corresponding toVRs. Aswill be explained in later sections, at
these points the kink solutions exist only for the static dark soliton, andmovingVRs emergewith the same value
of the chemical potential.

Approximate formulas for the SV properties, obtained fromhydrodynamic theory in logarithmic accuracy,
appeared in [6]. The energy expression for the stationary SV in a BEC reads
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Figure 1.Excitation energy (upper panel) and number ofmissing particlesNs (lower panel) for a three-dimensional solitarywaves in
an infinite cylindrical BECwith transverse trapping frequency ŵ as a function of chemical potentialμ. Results from fully numerical
solutions of equation (6) are shown as circles for the kink (dark soliton) and squares for the solitonic vortex (SV). Formulas (10) and
(11) based on the Thomas–Fermi approximation for the kink are shown in a full red line. The improved approach of equations (13)
and (14) is also shown (dashed red line) for comparison. The analytical approximations of equations (15) and (17) for the solitonic
vortex are shown as a full green line. In addition, grey lines shownumerical results for other stationaryChladni solitons: single vortex
ring (VR), triple solitonic vortex (3SV), double vortex ring (2VR), and quintuple solitonic vortex (5SV).

Figure 2.The ratio of inertial to physicalmass as a function of the chemical potentialμ for kinks (DS, red line), solitonic vortices (SV,
green linewith open squares), and vortex rings (VR, blue linewith open circles) in a cylindrical BECwith isotropic transverse
harmonic trappingwith frequency ŵ .
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and theThomas–Fermi approximation has been used for the one- and two-dimensional densities, in particular
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3. Snaking instability of the dark soliton

3.1. Bogoliubov stability analysis
Afterfinding stationary kink solutions toGross–Pitaevskii equation (6), we look for elementary excitations
u vr r,{ ( ) ( )}with angular frequencyω around every equilibrium stateψwith chemical potentialμ. The

perturbed state can bewritten as t u vr, e e et t ti i i⎡⎣ ⎤⎦* åyY = + +m
w

w w- -( ) ( ) , and the excitationmodes are

the solutions to the linear Bogoliubov equations
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where H m V r20
2 2= -  + ^( ). Dynamical instabilities are related to solutions to equation (21)with

complex frequenciesω, where the imaginary part ofω is a rate of exponential growth of the corresponding
unstablemode. The inverse of the imaginary part of the unstable frequency can thus be interpreted as the lifetime
of the particularmode. Belowwewill report fully numerical solutions of equation (21) for the dark soliton and
Chladni solitons.Herewewill proceedwithfinding analytical solutions to the Bogoliubov equations for the dark
soliton based on the Thomas–Fermi approximation.

3.2. Approximate separation of variables
For a real-valued stationary state, as it is the case of the dark soliton or kink of equation (7), the Bogoliubov
equations (21) can be transformed using f u vr r r= ( ) ( ) ( ) and g g2 1=  ( ) into

H g f f . 220
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For 0w = the two equations decouple. This was the problem solved in [16] in order tofind the bifurcation
points of Chladni solitons from the dark soliton.Here, we are interested in themore general problemoffinding
solutions to equation (22)withfinite imaginary or complex values ofω. Aiming at an approximate separation of
transverse and longitudinal degrees of freedomwe introduce the rescaled variable z z rx= ^¯ ( ). For the dark
soliton state of equation (7)we canwrite g r ztanh2

loc
2y m= ^( ) ¯, where V rlocm m= - ^( ) andmay thus

rewrite the Bogoliubov equation (22) as
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The operators A are bothHamilton operators of one-dimensional Schrödinger equations with a shifted Rosen-
Morse potential, whose eigenfunctions are known analytically [32]. Herewe use the localised ground states of
the respective operators as a restricted basis for the z-dependence of f, since we expect the unstablemodes to be

localised near the dark soliton plane. The ground state eigenfunction of A+ is z zsech0 3

2
2j =+ ( ¯) ¯ with

eigenvalue 0. It corresponds to thewell-knownGoldstonemode of translation of the dark soliton in z direction.
This does not constitute an instability in itself but themodewill be relevant for constructing the decayingmodes
with imaginary omega. The operator A-has the ground state wave function z zsech1 2 1

2
j =-
- ( ¯) ¯ with

eigenvalue 1

2
- . It is thismode that is responsible for the existence of unstable Bogoliubovmodes.

The z dependence can nowbe removed from the Bogoliubov equation (22) by starting from the ansatz
f f x y x y, , , 0 , 0,t t t0 1 2c j c j= ++ - + + - -

-( ) ( )( ) ( )( ) . Ignoring any x y, derivatives of the functions zj( ¯) and
projecting onto the respective ground states bymultiplying from the left with , 00j+( ) and 0, 1 2j-

-( ), and
integrating over z̄ , we obtain thematrix equation
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3.3.Homogeneous background
The transverse Bogoliubov equation (25) is easily solved in the absence of a transverse trapping potential, where
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For small q the growth rate Im w( ) grows linearly with the slope 0.520
m m4 2 »m

z
m
as is demanded by general

hydrodynamic arguments [33]. Although being approximate due to the restricted basis expansion of the z
dependence, this result compares verywell with the previously obtained ones in [13, 33, 34], where the exact
slope for theGross–Pitaevskii equation is 0.577

m m3
»m m

. The snaking instability is suppressed and

eigenvalues become real-valued for wave numbers larger than q 1crit x= , which is the exact value. For
intermediate values q0 1 x< < the growth rate has previously only been obtained numerically, and
equation (26) reproduces the results of [13, 34] very closely.

3.4.Harmonically trapped kink state
Wenowproceedwith solving the transverse Bogoliubov equation (25) for an isotropic transverse trapping
potential with r m rloc
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2
2 2m m w= -^ ^ ^( ) . Assuming an azimuthal dependence lcos qµ ( )with the quantum

number l 0, 1, 2,= ¼reduces equation (25) to a set of ordinary differential equations in the radial coordinate
r̂ . It is now convenient tomove to harmonic oscillator units. Introducing the rescaled radial coordinate
r r a=^ ^ ^˜ and dividing the equation by ŵ , we obtain
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⎞
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¶
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¶
¶
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H H r
1

4
, 29l l

2 1
2= + ^̃ ( )

whereH1
l represents a two-dimensional Laplacian andH2

l is theHamiltonian of a two-dimensional harmonic
oscillator withweakened trap potential compared to the one experienced by the atoms. Equation (27) can also be
rewritten in the form

H H
2

. 30l l l l
1 2

2 2⎜ ⎟⎛
⎝

⎞
⎠

m
c w z c- =- -

˜ ˜ ( )

Even though this represents a non-hermitian eigenvalue problem,we have only found real eigenvalues 2 2w z˜ in
numerical investigations.
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3.5. Chladni soliton bifurcation points
Solutions of equation (27)with 0w =˜ have special significance as they indicate the transition of a specificmode
from representing an instability 02w <˜ to a stable small amplitude oscillation 02w >˜ . At the same time they
indicate a bifurcation of the stationary nonlinear solutions of theGross–Pitaevskii equation (6) and here relate to
the branch-off points for Chladni solitons. The solutions are found in terms of the scaled Fock–Darwin radial
eigenfunctions r R r2 2p

l
p
l1

4
1
4c =^

- -
^(˜ ) ( ˜ ) of the 2Dharmonic oscillatorHamiltonianH2

l with eigenvalues

p l2 1 2p
l = + +( ) and

R r
p

p l
r L r

2
e , 31p

l l
p
l 2 r 2

2=
+

-( )( ) !
( )!

( )

where L xp
l ( ) is the generalised Laguerre polynomial. It is easily seen that p

lc solves the Bogliubov equation (30)

with 0w =˜ when 2p
l m= ˜ , which translates into the condition

p l2 2 1 , 32


m
w

= + +
^

( ) ( )

for the bifurcation points of Chladni soliton solutions from the dark soliton, as found previously in [16].

3.6. Finite growth rates
Forfinite instability rates Im w( ˜ ) the eigenvalue equation (30) can be expanded in a basis of the normalised
eigenfunctions p l, p

lcº∣ ) ofH2
l , which transforms it into a tridiagonalmatrix eigenvalue equation

B v v 33
p

p p
l

p p,
2 2å w z=

¢
¢ ¢ ˜ ( )

with B p l H H p l r r H H,
2

, d
2p p

l l l
p
l l l

p
l

, 1 2
0

1 2⎜ ⎟
⎛
⎝⎜

⎛
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⎞
⎠

⎞
⎠⎟ ò

m
c

m
c= - ¢ = -¢

¥

^ ^ ¢∣ ˜ ∣ ˜ ˜ ( ˜ ) . For thematrix elementswe find

B
p l p l2 1

4

2 1

4 2
, 34p p

l
,

2

m=
+ +

-
+ +( ) ˜ ( )

B p l p lp
p lp1

4
2 1 1

4 2
, 35p p

l
, 1

2
2

m= - + + + -
+

- [ ( ) ] ˜ ( )

B p l p lp
p lp1

4
2 1

4 2
, 36p p

l
1,

2
2

m= + + + -
+

- ( ) ˜ ( )

and B 0
p p
l
,

=¢ for p p 1- ¢ >∣ ∣ . Thematrix is block-diagonal in the azimuthal quantumnumber l due to the

azimuthal symmetry of the problem.Wehave solved the corresponding eigenvalue equations numerically and
have found the approximate asymptotic behaviour

n2 2 1

4
, 37n

lw
m

z
~

- +˜ ˜ ( ) ( )

for large m̃ and values of the azimuthal quantumnumber l 1> . All these eigenvalues have a zero crossing for a
finite value of m̃ corresponding to equation (32), where n= p can be identified. These results were obtained by
diagonalising a truncatedmatrix B

p p
l
, ¢ with p p p, c

¢ < . Changing the cutoff value pc affects the large-m̃ regime

but leaves the zero crossings for n pc unaffected. The asymptotic behaviour reported above represents the
limit of pc  ¥.

In the l= 0 sector a special case occurs, where the 0, 0∣ ) state needs to be excluded from the basis in order to
eliminate an unphysical unstable eigenvaluewith p= 0 that otherwise occurs in solving equation (33). The
modewith p l0, 0= = corresponds to zero pointmotion of the kink, which is not captured correctly by the
underlying Thomas–Fermi approximation. Indeed, no unstablemodewith these quantumnumbers is found in
the full numerical solution of the Bogoliubov equations. Diagonalising equation (33) in a truncated basis with

p p0 c< < produces the asymptotic behaviour

n2 2 1

4
, 38n

l 0w
m

z
~

- -=˜ ˜ ( ) ( )

where still n= p can be identified at the zero crossings of w̃.
The results of the truncated eigenvalue problem (33)with the asymptotic results (37) and (38) closely

resemble the full numerical results.

3.7. Fully numerical results
Wehave also solved the Bogoliubov equation (21)numerically in full three-dimensions withoutmaking use of
the approximations discussed in the previous paragraphs. The results for the unstablemodes and associated
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frequencies are collected as a function of the chemical potential of the kink infigure 3. The insets represent axial
views of phase-coloured density isocontours of the excitationmodes (p, l) just after the appearance of bifurcation
points. Thesemodes present a structure of nodal lines, derived from the radial p and azimuthal l quantum
numbers, characteristic of the linear excitations of the transverse trap. As can be seen in the lower left inset, the
only one displaying a longitudinal view, they are strongly localised around the plane of the kink. Their
emergence follow in a very good approximation the analytical prediction for bifurcations given by equation (32),
which are indicated by red arrows below the horizontal axis. As the interaction energy increases from the quasi-
onedimensional configuration, where kink states are stable structures and generate only real frequency
excitations, thefirst bifurcation point denoting the appearance of a complex frequency for themode
p l0, 1= = ñ∣ comes into existence at 2.650,1 m w= ^, very close to the 2.8ŵ value predicted by (32). From
this point on, kinks are unstable states, and further increase of the chemical potential is accompanied by the
emergence of newbifurcation points grouped around the integer energy values p l2 1pl = + + , with the
characteristic degeneracy of the two-dimensional harmonic oscillator.

4. Stationary Chladni solitons

Every unstablemode of the kink is associatedwith a stationary Chladni soliton. The zero crossings of the
unstablemode frequencies infigure 3 indicate bifurcation points of the Chladni solitons from the dark soliton.
The sign patterns of the unstablemode functions at the bifurcation points r lcosp

lc q^( ) ( ) determine the

direction offlow along or counter the z direction, and the nodal lines translate into vortex lines. Numerically
obtainedmode functions are also shown infigure 3. Increasing the nonlinearity parameter m m w= ^˜ ( ) above
the bifurcation point, we obtain a family of stationary Chladni solitonswith the same structure and symmetries,
as endowed by the unstablemode at the bifurcation point. A number of Chladni soliton solutions is shown in
figure 4. For instance, thefirst excitedmode p l0, 1= = ñ∣ generates the family of SV states, while the next two

Figure 3.Upper panel: unstable frequenciesω and density isocontours at 5% ofmaximumdensity (insets) of Bogoliubovmodes,
classified by their radial and angular quantumnumbers (p, l), responsible for the decay of the kink. The shaded background of the
isocontours indicates the BECdensity distribution. The axial view for the 0, 1( ) mode (bottom left inset) clearly demonstrates the
axial localisation of themode function. All themode functions have been generated close to their respective bifurcation points. The
arrows below the horizontal axis indicate the bifurcation points according to the analytical prediction (32). Lower panel: following the
unstablemode frequencies to larger interaction parameters m ŵ( ) demonstrates the linear growth.
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unstablemodes, 1, 0ñ∣ and 0, 2ñ∣ , that branch off near 41,0 m w= ^ infigure 3, generate the families of VRs and
two crossed vortices states, respectively.

The linear solutions of a general, isotropic or anisotropic, two-dimensional harmonic oscillator can be
written in terms ofHermitemodes with cartesian symmetries instead of the Laguerremodes of cylindrical
symmetry. TheHermitemodes are characterised by the pair n n,x y( ) of quantumnumbers indicating the nodal
lines along x and y directions. CorrespondingChladni solitonswould bemade of vortex lines in such rectangular
patterns. Althoughwe have found the stationary Chladni solitons bifurcating from the kink to all conform to the
Laguerre type, onemay still expect tofindHermite-type structures to be relevant in the decay process of the kink.
In the linear regime, theHermitemodes n n,x yñ∣ can be constructed as superposition of Laguerremodes p l, ñ∣
with degenerate energies n n plx y

 = . For example, n n p l p l0, 2 0, 2 1, 0x y= = ñ µ = = ñ - = = ñ∣ ∣ ∣ , and

n n p l p l1, 2 0, 3 1, 1x y= = ñ µ = = ñ - = = ñ∣ ∣ ∣ . Because of the energy splitting of the bundle of linear
degenerate states presented infigure 3, the linear superpositionmechanism is not acting in the nonlinear case.
However, we have found thatHermite-likemodes do emerge as nonlinear bifurcations at a second stage. In the
first stage, families of stationary solitary waves bifurcate from the kink in close relation to its unstable Laguerre-
likemodes. Except for the SV, all these families aremade of unstable states, the unstable excitationmodes of
which can generate new solitary waves at a second stage. It is thenwhen the new solitonic families turn out to be
composed ofHermite-likemodes n n,x y( ).The instabilities of Chladni solitonswill be discussed inmore detail
in section 6.

5.MovingChladni solitons

Up to nowwe have been looking at static solitons. In order to understand how the different families of solitonic
states appear and connect, it is convenient to consider amore general picture ofmoving solitary waves. Here, we
extend upon thework of Komineas and Papanicolao, who already computed energy dispersion relations and
phase steps for axisymmetric solitary waves (kinks and nestedVRs) [19, 20] and for the SV [18].

In order to construct the full dispersion relations formoving solitary waves, we numerically search for states
tr r, e t mv zi z yY = m- ¢ +( ) ( )( ) , moving along the z-axis with a constant velocity vv 0, 0,z z= ( ), which are

solutions of the stationaryGross–Pitaevskii equation for a co-moving reference frame:

m
m V gv r

1

2
i , 39z

2 2 y y y y m y- - + + = ¢( ) ( ) ∣ ∣ ( )

where mv 2z
2m m¢ = + is the shifted chemical potential.Moving solitons have nonzero density dips associated

to reduced (smaller thanπ) phase jumps, and their velocities are limited by the speed of sound c, at which
solitonic states become linear sound excitations. In order to calculate the speed of sound, whichwill be used as
velocity unit inwhat follows, wewillmake use of the analytical expression given in [35]:

Figure 4.Density isocontours (at 5%ofmaximumdensity) of static Chladni solitonswith 10 m w= ^. The cross-sections are a9 ^ in
width.
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2
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2
1
4⎛

⎝⎜
⎞
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m
m

=
-

^

˜
˜

( )

where m m w= ^˜ . This expression provides the speed of sound for elongated, harmonically trapped
condensates with arbitrary values of the interaction, and gives the exact limits both in the quasi-onedimensional
andThomas–Fermi regimes.

Figure 5(b) shows the excitation energyEs as a function of the axial velocity vz formoving solitarywaves with
chemical potential 5m w= ^. Kinks, represented by the solid red line at the top of the figure, have the highest
excitation energy among the solitary waves, and exist in this case only for low velocities, v c0.24z <∣ ∣ . Below
them, at lower excitation energies, only solitary waves bifurcating at energies less or equal than 5m =˜ can be
found in the graph, as per equation (32). As can also be deduced from the unstable frequencies offigure 3,
indeed, only VRs (blue solid line), double SV (dashed black) and the single SV (solid green) are available at 5m =˜
and appear infigure 5. At small velocity, and very close in energy to theVR and the static cross soliton, a new type

Figure 5.Characteristic quantities for solitarywaves with chemical potential 5m w= ^: axial phase step fD (a), and excitation
energy Es (b) as a function of the axial velocity vz in units of the speed of sound c, and energy (Es) versusmomentumdispersion
relations (c).
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of solution emerges (see the inset offigure 5(b)). It is composed of a couple of almost parallel vortices,more
specifically a vortex–antivortex pair or vortex dipole, which is not coming directly from a bifurcation of the kink,
but from a secondary bifurcation of the cross soliton. Indeed, the solution can be connected to a decay instability
of the cross soliton produced by theHermitemodes n n2, 0x y= =( ) or n n0, 2x y= =( ). Figure 6(a) shows
the density configuration of these states around zero velocity, which can be cross-checkedwith their features
extracted from the three panels offigure 5, where clear differences in the associated phase step arise for the three
states A, B andC. At higher velocities, the picture is slighly different. The structure of the kink changes and so do
its excitationmodes. Since the cross soliton is a static state, it can not be found between the bifurcations of
moving kinks, and is substituted by thementioned,movingHermitemodes. For growing values of the chemical
potential, new, higher energyHermitemodes emerge by equivalentmechanisms. Infigure 6(b)we showdensity
isocontours for some of suchmodes with 5, and 10m =˜ .

It is also interesting to look at the phase jump along the axial z-direction f fD = z  ¥( ) zf-  -¥( )
created by the different solitary waves (figure 5(a)). The phase shift of dark solitons of the one-dimensional
nonlinear Schrödinger equation (dotted line) is shown as a reference. Its phase shows aπ jump in the static
configuration, and grows up to 2p as the velocity approaches c+ , or alternatively reduces to zero as v cz  - .
Similar behaviour, butwith different variation rates, is in general followed by the phases of 3D solitonic states.
However, a particular feature can be noted as characteristic of the 3D case. It is the existence of turning points
with vertical phase slopes. Looking at the curves for VRs (blue lines with triangles), one can notice that there are
two separated branches ending at respective turning points, and connected by kink states (red curve). Amore
strikingmanifestation of this phenomenon can be observed in the inset offigure 5(b), on the curve
corresponding to the vortex–antivortex pair. Between turning points, labeled as B andC infigure 5(c), there exist
a set of almost static and degenerate states of this typewhich produce different phase jumps. The turning points
here indicate a transition between theHermite-like symmetry of the vortex–antivortex pair and the Laguerre-
like vortex cross.

The precedent analysis, in terms of phase and velocity, can nowbe completed by constructing the dispersion
relations of Chladni solitons. To this end, as usual, we define the axial canonicalmomentumPc of a solitonic
state as the conjugate variable of the axial coordinate z, that fulfils

v
E

P
. 41z

s

c

=
¶
¶

( )

Alongwith the axial physicalmomentum p ri d 2z z z /* * ò y y y y= - ¶ - ¶( ) , carried by the particles
traversing the plane of themoving soliton, the canonicalmomentum includes the contribution coming from the
phase jump fD between the axial boundaries of the condensate

Figure 6. (a)Broken symmetry in a static cross soliton (2SV)with chemical potential 5m w= ^ for small velocity increments around
vz= 0, corresponding to points A (at the centre), B (left), andC (right) offigure 5. (b)Hermite-type n n,x y( )Chladni solitons: for

5m w= ^, H(2,0) solitons have vz = 0 (left) and v c0.53z = (right), whereasH(3,0) corresponds to a static solitonwith 10m w= ^.
The cross-section ofH(2,0) is a6.6 ^ inwidth, whereasH(3,0) is a9 ^.
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P p n , 42zc 1 f= - D ( )

where n1 is the axial density of the ground state of the system [20, 26]. Figure 5(c) shows the dispersion relation,
excitation energy versus axial canonicalmomentum, for solitonic states with 5m w= ^moving along the axial
coordinate. The turning points that have been described on the phase graph, appear here as the vertexes of cusps
connecting states with the twofold symmetry: VRs and vortex–antivortex pairs. It is alsoworth noticing that the
lowest excitation energy levels forfixedmomentum are occupied by solitonic vortices, wherever they exist. This
last remark accounts for the fact that there exist a small regime of soliton speeds, approaching the speed of
sound, where the only solitonic state is the continuation of theVR family, here an axisymmetric solitary wave
verymuch like a grey solitonwith aVRphase singularity outside the Thomas–Fermi density of the trapped BEC,
as is apparent infigures 5(a) and (b). In this regime, VRs are dynamically stable states.

When the chemical potential increases, and the number of bifurcations grows, the dispersion diagramof
Chladni solitons becomesmore complex, because of the emergence of new connections between solitary waves
sharing symmetries. As an instance of this complexity, figure 7 displays some of the curvesmaking the dispersion
diagram for 10 m w= . For this value of the chemical potential, the family of double VRs p l2, 0= =[( ),
violet lines] is available, and produces a new couple of turning points compared to the case for 5 m w= .
Following the different curves away from theirmaximum (corresponding to zero velocity v E P 0z s c= ¶ ¶ = )
the density patterns of Chladni solitons can change dramatically from their static configuration. To illustrate this
point,figure 8 shows the density isocontours of some of themovingChladni solitons that can be foundwith

10 m w= . It is apparent how their symmetry changes when compared to their static counterparts infigure 4.

6. Stability of Chladni solitons

It remains to knowhow robust the Chladni solitons are. To this end, we have numerically solved the Bogoliubov
equations (21) for the linear excitationmodes of the stationary andmoving solitonic solutions (as those
represented infigures 1 and 5). In addition, we have checked the stability of these nonlinear systems against
perturbations bymonitoring their evolution in real time through the full time dependent Gross–Pitaevskii
equation (6).

6.1. Linear analysis
Asmentioned before, and aside from the stability of VRsmoving near to the speed of sound, our results indicate
that the SV branch is the only one containing dynamically stable states. Solitons corresponding to other families
are unstable, and decay through the instability channels opened by lower energy branches. Specifically for the
stationary solitary waves, the SV as the lowest energy solitary wave has no channel of instability, since there is no
other, lower energy solution bifurcating from it (or from the kink). However, the second excited state, which is
the single VR, does present one instability channel associated to the bifurcation of solitonic vortices from the
kinkwith lower energy. The next family is that of cross solitons (2SV), and is unstable through two channels, and
so on. This analysis for static states is displayed infigure 9(a). The red curvewith open circles corresponds to the
unstable frequencies for VRs as a function of the chemical potential, and the two blue curves with open triangles
indicate the two instability channels for the cross soliton. The dotted vertical linesmark the bifurcation points

Figure 7.Dispersion curves (non-exhaustive diagram) for Chladni solitonswith 10m w= ^, some ofwhich correspond to the
isocontour diagrams infigure 4 for static solitons, and infigure 8 formoving solitons.

13

New J. Phys. 17 (2015) 125013 AMMateo and J Brand



for theChladni solitons considered (VR and 2SV), by intersecting the instability curves of kinks (grey dashed
lines). It is worth tomention that, as can be seen infigure 9(a), for intermediate values of the chemical potential,
between 4 and 5ŵ , the cross soliton has smaller values of unstable frequencies thanVRs. This fact suggests that
cross solitons are good candidates for being experimentally realised in elongated BECs. VRs have already been
observed in experiments [3, 37]. In this regard, we have noticed that in [38], where the decay of dark solitons in
anisotropic cigar-shaped condensates was observed in experiments, travelling solitary waves composed of
vortex–antivortex pairs (see below)were clearly identified, and a cross soliton structure was found at the turning
points ofmotion.

Additional remarks about VR states are in order. As shown infigure 9(a) for the static case, VRs are unstable
against decaymodeswith quantumnumbers p l0, 1= =( ). Our numerical results (open circles in the inset of
figure 9(a)) show that this instability decreases at slow rate with increasing chemical potential, in agreement with
the analytical prediction of [36] (solid red line in the inset):

R

mR

3

2

ln 8

2
, 43

2 2 2

2

⎡⎣ ⎤⎦
w

x k
= -

+^
-

^

( )
( )

whereκ is the curvature of the vortex, ξ is the healing length, and R̂ is the Thomas–Fermi radius. This
expression is valid for VRs in harmonically trapped elongated condensates within the Thomas–Fermi regime,
and gives nonzero unstable frequenciesω in the limit of very high chemical potential, thus providing an
estimation for the life time of VRs. For instance, for 21 m w= ^ both the numerical and analyticalmethods
predict an unstable frequency 0.16w ŵ corresponding to a life time of about 20 ms for 50 Hz transverse trap.

In the case ofmoving solitons, the linear stability analysis follows essentially the preceding procedure for
static states. Figure 9(b), generated for 5m w= ^, shows our numerical result for the unstable frequencies of
movingChladni solitons as a function of the canonicalmomentum. The unstable frequencies decrease rapidly
for VRs (blue lines with open triangles) of increasing speed (and thus their life time increases), and indeed they
become stable past the bifurcationwith solitonic vortices close to P n0.2c 1p= , (and P n1.8c 1p= )where the
speed approaches the sound speed. As anticipated, there are also no unstable frequencies for solitonic vortices.
As it is the case for the cross soliton,moving vortex dipoles (black dashed curves) present lower unstable

Figure 8. Steady state configurations ofmovingChladni solitons (represented by density isocontours at 5%ofmaximumdensity)
sampling the dispersion curves infigure 7 for 10m w= ^. The labels indicate the quantumnumbers (p, l) of the associated solitonic
family. Several isocontours from the same family correspond to different velocities, with increasing value from left to right. In this
order, the canonicalmomentum is (in units of n1p ) for (0,1): 1.97 and 1.99; for (1,0): 1.2 and 1.6; for (1,1): 1.04, 1.3 and 1.7; for (2,1):
1.06 ; for (0,3): 1.2, 1.3 and 1.6; for (0,5): 1.3. The cross-sections are a9 ^ inwidth.
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frequencies thanVRs. Thismay seem surprising considering the cylindrical symmetry of the system, and gives
support to their possible detection in experiments.

6.2. Real time evolution
In order to check the predictions given by the linear stability analysis, we have also tested the nonlinear stability
of Chladni solitons by the real time evolution of their stationary configurations. For, on the initial states

tr, 0Y =( ), we have added a randomnoise perturbation rdY( ), which typically amounts to 2%of thewave
function amplitude. Afterwards, we have allowed these wave functions to evolve in time, without dissipation, at
constant chemical potential according to equation (6). For example, we have followed this procedure for the
static Chladni solitonswith 5 m w= ^, namely dark soliton, VR, cross soliton and SV,which have been
previously characterised in figures 5 and 9(b). As expected, we have observed the decay of all solitonic states
except the solitonic vortex, which, as a result, emerges at thefinal stage of the time evolution in all cases.
Figure 10 summarises the decay processes, showing snapshots of the evolution at intermediate times. In
particular it shows complex patterns localised in the plane of the initial stationary state at intermediate times and
the emergence of a single solitionic vortex at late times, while some small amplitude radiationmoves away from
the solitarywave at the speed of sound.

For higher values of the interaction parameter m̃, different scenarios can be found in the decay of Chladni
solitons. In particularmore than one solitarywave can appear andmove away from the location of the initial
unstable soliton. The interaction energy released from the parent state can transform into translational kinetic
energy of a descendant solitary wave, leaving a simpler structure at the initial position. This is the case shown at
figure 11, which displays two types of ‘sling-shot’ events, similar to the one recently observed in experiments and
simulationswith elongated BECs [38]. In the upper panels offigure 11, a static vortex–antivortex pair, after a
fairly long time scale (∼50 ms), releases one of the vortices, whose acceleration can be noticed by its increasing
curvature at later times. As another example, the lower panels offigure 11 follow the evolution of a static double
ring that has been perturbedwith a radial noise imprint preserving the cylindrical symmetry. One can observe
how the external ring escapes from the original transverse plane, and, as in the previous case, increases its
velocity.

Figure 9. (a)Growth rates of unstablemodes fromnumerical solution of Bogoliubov equations (21), for stationary vortex ring (VR)
and double solitonic vortex (2SV) states. Dotted vertical lines indicate the bifurcation fromDS (with unstable frequencies represented
by dashed grey lines). In the inset, numerical results for vortex rings (open symbols) are comparedwith the analytical prediction (43)
(solid line) of [36]. (b)Unstablemode growth rates formoving solitarywaves with 5m w= ^, as a function of the canonical
momentum, from anumerical solution of the Bogoliubov equations (21). Point A refers to the cross-vortex soliton labeled infigure 5
and represented in the centre offigure 6(a).
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7. Conclusions

Wehave analysed the dynamical properties of static andmovingChladni solitons in cylindrically symmetric
BECs, within themean-field regime described byGross–Pitaevskii equation. These states, strongly influenced by
the geometry of the trap, emerge from the excitation of standingwaves on planar kink states, and inherit
particle-like features characterised by lower excitation energies and higher inertialmasses than the kink.We
have calculated numerically such quantities, and presented analytical expressions for their evaluation. The
unstable standingwaves producing the decay of the kink have been the object of a detailed analysis, and a
formula for the prediction of the unstable frequencies has been proposed.

It is an interesting question to consider how a small deviation from the cylindrically symmetric trapping
potential considered herewill influence the nature and stability of Chladni solitons. Clearly, the continuous
degeneracy of symmetry-breaking Chladni solitons (with l 1 )with respect to azimuthal rotationwill be lifted.
In addition, the near degeneracies of the different Laguerre-type unstablemodes of the dark soliton (e.g. seen in
figure 3) can be overcomewith sufficiently strong azimuthal asymmetry, whichwill favourHermite-type
Chladni solitonswith cartesian symmetries similar to the structures found atfinite velocities and shown in
figure 6. Since Laguerre andHermite-type structures co-exist already in a symmetric trapwhere they have
similar excitation energies and stability properties (see e.g. figure 9(b)), we do not expect the stability properties
to change dramatically with small trap asymmetry. Formore strongly asymmetric traps, we expect trap
distortion to eventually destroy the vortex-ring-type structures and lead to chains of solitonic vortices with
alternating sign in the limit of a near-two-dimensional trap. The further exploration of this interesting topic is
left for future work.

The stability of Chladni solitonswas studied by a linear stability analysis of the stationary states as well as by
real-time evolution. Even though the recently observed SV and fastmoving grey solitons are the only stable
solitary waves in the strongly nonlinear regime ( 2.65m w> ^), themore complex structures with crossing
vortex lines are expected to be observable in current experiments with estimated lifetimes of tens of
milliseconds, comparable to the previously observedVRs. In this regard, several procedures could be followed.
In particular, in [16], we have proposed a feasible protocol for seeding a particular Chladni soliton on a planar
kink. Bymeans of a dark–bright soliton [39] in a two component condensate in the immiscible regime, a proper

Figure 10.Density isocontours (at 5%ofmaximumdensity) during real time evolution showing the decay dynamics of a kink (DS), a
vortex ring (VR) and a cross soliton (2SV), with 5m w =^ and vz= 0, obtained by solving numerically the time-dependent Gross–
Pitaevskii equation starting from the stationary configuration seededwith a small amount of numerical noise. The typical cross-
section radius is a3.5 ^ and time scales correspond to a transverse trapwith 2 71w p= ´^ Hz. Animations offigure 10 are available in
the supplementarymaterial (stacks.iop.org/njp/17/125013/mmedia).
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density and phase pattern could be imprinted on the bright soliton of one of the components occupying the kink
depletion in the other component. The subsequent transfer of the selected pattern into the kink component,
through a controlled Raman pulse, could serve the purpose of seeding the decay into the correspondingChladni
soliton.Other procedures with scalar condensates relying on an adequate trap geometry, have already been
demonstrated. This is the case in [38], where vortex dipoles and the cross soliton has been identified after the
decay of kinks in anisotropic harmonic traps. Very recently also theΦ soliton p l1, 1= =( ) has been identified
inwhat appears to be a seeded decay of a kink in a unitary Fermi gas [21]. This existing experimental evidence for
Chladni solitons indicates that small amounts of dissipation due to trap losses and finite temperature are not
fatal for the existence of these structures. It is an interesting question for further studywhether Chladni solitons
or analogous structuresmay exist as attractors in inherently dissipative superfluids, such as exciton–polariton
condensates.
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