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Abstract

We analyse the dynamical properties of three-dimensional solitary waves in cylindrically trapped
Bose—Einstein condensates. Families of solitary waves bifurcate from the planar dark soliton and
include the solitonic vortex, the vortex ring and more complex structures of intersecting vortex lines
known collectively as Chladni solitons. The particle-like dynamics of these guided solitary waves
provides potentially profitable features for their implementation in atomtronic circuits, and play a key
role in the generation of metastable loop currents. Based on the time-dependent Gross—Pitaevskii
equation we calculate the dispersion relations of moving solitary waves and their modes of dynamical
instability. The dispersion relations reveal a complex crossing and bifurcation scenario. For stationary
structures we find that for p/ /7w, > 2.65 the solitonic vortex is the only stable solitary wave. More
complex Chladni solitons still have weaker instabilities than planar dark solitons and may be seen as
transient structures in experiments. Fully time-dependent simulations illustrate typical decay
scenarios, which may result in the generation of multiple separated solitonic vortices.

1. Introduction

Nonlinear waves in superfluids are the subject of intense theoretical and experimental research. The exquisite
control achieved in manipulating ultracold atomic gases has enabled the creation, manipulation, and detection
of dark solitons [1, 2], vortex rings (VRs) [3, 4] and solitonic vortices in Bose—Einstein condensates (BECs) [5]
and Fermi gases along the BEC-BCS crossover [6]. All these structures are strongly influenced by the
confinement of the particle cloud and represent solitary waves in the sense that they are characterised by an
excitation energy density above the condensate ground state that is localised with respect to the long axis of the
confining geometry. These multi-dimensional solitary waves distinguish themselves by their non-trivial
topology associated with the constituting superfluid currents.

The combination of confinement and superfluid currents is also the main constituent in the development of
atomtronic devices, and, to this end, an in-depth understanding of the nonlinear phenomena involved in such
dynamics is required. In particular, the role played by nonlinear waves deserves special attention. On the one
hand, the shape-preserving evolution of solitary waves, in both repulsively and attractively interacting systems,
could be a useful feature to be implemented in future applications, in a similar way as optical solitons are being
currently used in optical fibers [7]. On the other hand, the necessity to better understand the role played by
solitary waves in the generation of superfluid currents has manifested itself in a series of experiments with
superfluid rings at NIST [8, 9]. Therein, vortices of solitonic nature, due to the transverse trapping along the
radius of the rings, have been found after driving the superfluid into motion. Additionally, the generation of
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such metastable loop currents has been demonstrated to be mediated by the existence of solitary waves that
produce an energy barrier preventing phase slips [10].

Dark solitons, or kinks, are density dips with an associated jump in the phase of the order parameter, and
represent nonlinear excitations in BECs with repulsive interparticle interactions [11]. In one-dimensional rings,
kink excitations represent intermediate stages connecting states with different winding numbers [12]. A one-
dimensional dark soliton can be understood as a vortex which is crossing the ring, and hence providing a
characteristic density depletion and phase slip that depends on the position of the vortex. In higher dimensions,
the structure of a vortex line crossing the ring, a solitonic vortex (SV), can be more easily identified on the cross
section of the system. Alternatively, other transverse states containing vortex lines can be excited in order to
produce a given phase jump along the ring circumference. In general, multidimensional stationary kinks are
dynamically unstable [13], unless a tight trap could keep the system in the quasi-one-dimensional regime so that
higher energy transverse excitations were excluded [14, 15].

In trapped superfluids, Chladni solitons [ 16] emerge from the decay of three-dimensional kinks, as a result
of the excitation of standing waves on the nodal plane of the kink. Such waves produce patterns of vorticity along
the nodal lines of the transverse modes in analogy to the Chladni figures visualising the nodal lines of plate
vibration modes [17]. In traps with cylindrical symmetry, the different families of solitary waves can be described
by the radial p and azimuthal  quantum numbers, indicating the number of transverse nodal lines along their
respective directions. Solitonic vortices, belonging to the family (p = 0, I = 1), are the lowest energy states in
elongated condensates [ 15, 18], while VRs [19, 20], presenting higher excitation energies, belong to the family
(p = 1, I = 0). Along with these previously known states, there exist a sequence of more complex stationary
solitary waves with all possible combinations of p and / quantum numbers, as was pointed out by the authors
[16]. Very recently evidence for the observation of the ®-shaped Chadni soliton with quantum numbers
(p = 1, I = 1) inasuperfluid Fermi gas at unitary was reported in [21]. The relative strength of the decay modes
that can produce Chladni solitons from the decay of the kink, as well as the robustness of the Chladni solitons are
key points that remain to be clarified.

Motivated by the previous considerations, in the present work we study the dynamics of solitary wave
excitations within the framework of the time-dependent Gross—Pitaevskii equation. Section 2 is devoted to
characteristic mass parameters relevant for the Landau quasiparticle dynamics of solitary waves. Numerical data
is presented and compared to analytical approximations for energy, inertial, and physical masses of the dark
soliton in section 2.1, and the SV and VR in section 2.2. The snaking instability of the kink state is analysed in
detail in section 3 by solving the Bogoliubov equations of linearised excitations for the trapped kink state
numerically and by developing a semi-analytical theory of the unstable modes. Numerical results for stationary
Chladni solitons are reported in section 4, while the dispersion relations and phase step of moving Chladni
solitons are considered in section 5. A stability analysis of Chladni solitons—stationary and moving—is
performed in section 6, where also results from real-time evolution beyond the linear response regime are
reported. We identify two characteristic scenarios in the fate of Chladni solitons: either a chain of decay episodes
into single vortex lines which are localised around a transverse plane of the system, or the generation of
secondary travelling waves. Finally, the dynamical features pointed out in our study are used to propose feasible
protocols for the experimental realisation of these solitary waves.

2. Energy and inertial and physical masses

Solitary waves often exhibit particle-like dynamics. One manifestation of such particle-like dynamics occurs
when solitary waves move across a slowly varying background where energy radiation is being suppressed. As a
consequence of energy conservation, the solitary wave will then adapt adiabatically to the changing
environmental conditions, adjusting its internal parameters as to maintain its local energy constant, and acting
asa Landau quasiparticle [22]. The nonlinear wave solutions considered in this article are all solitary waves in
this sense, because they are localised with respect to the long axis of a trapped geometry and thus may perform
guided quasiparticle motion, even though their properties are significantly influenced by the presence of a
transverse confining potential. In sections 3 and 6 we present evidence to show that only two types of solitary
waves are dynamically stable in cylindrically trapped BECs: the SV is stable when 1/(/aw; ) > 2.65 while the dark
soliton is stable below this value, where /¢ is the chemical potential and w) the frequency of the transverse
harmonic trapping potential. Dynamically stable solitary wave can be expected to perform near-hamiltonian
quasiparticle dynamics for along time and have been observed in experiments with trapped superfluid Fermi
gases for several seconds [6, 23]. Unstable solitary waves like VRs may still exhibit quasiparticle like dynamics if
the competing decay dynamics is slow enough or suppressed by symmetry constraints [24, 25].

In the framework of Landau quasiparticle dynamics, the equations of motion of a solitary wave in a trapped
quantum gas can be derived from knowing the excitation energy E, (14, ¥ ) of the solitary wave as a function of
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the chemical potential ;c and its velocity v, [22]. In a trapped gas, the chemical potential is then treated as a
(slowly varying) function of the position Z of the solitary wave, while the velocity is the time derivative of
position v, = Z. Requiring the energy to be a constant of motion then leads to

_dE OB\ du o)y D
dt ou vst
where
My = L5 @)
v, OV, i

is the inertial mass of the solitary wave, often also called the effective mass. Equation (1) already looks like
Newton’s law. For weak harmonic trapping potential along the z axis where the Thomas—Fermi approximation
demands that (1 (Z) = p, — %mwﬁZ 2, we arrive at Newton’s equation of motion in the form

MinZ = ~Mpw?Z, 3)
where the physical mass defined by
My = mZE ] @
o

Vs

is to be interpreted as the characteristic parameter of the solitary wave that gives rise to the buoyancy-like force
on the right-hand side of equation (3). The interpretation of the physical mass to be related to a buoyancy
phenomenon is further supported by it being closely related to number of missing particles Ny, i.e. particles
depleted from the background density due to the presence of the solitary wave, where My, = mN; holds in many
cases [26].

Solitary waves in repulsively interacting quantum gases typically have negative inertial and physical masses,
which leads to oscillatory motion of the solitary waves in a trapped gas. This, e.g. is the case for the one-
dimensional Gross—Pitaevskii equation describing BECs with tight transverse confinement [22, 27]. If the
physical and inertial masses are independent of position and velocity, or in the limit of small-amplitude motion,
we obtain simple harmonic oscillations Z (t) o sin(€2¢) with [26, 28]

w_ﬁ = M_l (5)
2 My,

Such harmonic oscillations have already been observed in experiments and the frequency ratio measured for
dark solitons [29] and for solitonic vortices [30] in BECs and for solitonic vortices in the superfluid Fermi gas
[6,23]. In the remainder of this section we present numerical data of dispersion relations and mass parameters
evaluated for the dark soliton, SV and VRs, and compare with approximate analytical expressions.

2.1.Planar dark solitons
We will model solitary waves within the mean field theory given by the Gross—Pitaevskii equation for the
condensate order parameter W (r, t)

in2¥ (—ﬁ—zvz + V@ +g |\If|2)\11, (6)
ot 2m
where ¢ = 4m/%a/m is the interaction strengh determined by the positive s-wave scattering length a and the
bosonic mass m, V (r) = mwi rf /2 isan external, cylindrically symmetric, harmonic potential in the transverse
coordinate r{ = x? + y2,and the condensate particle number N follows from normalisation N = f dr? |UP2.
Our starting point is the search for stationary solutions to equation (6), ¥(r, t) = e #4/%4)(r), with
chemical potential y, having the form of planar kinks across the axial coordinate z. This task has been carried out
numerically because no analytical solution is known for the 3D Gross—Pitaevskii equation (6). Nevertheless, we
have been guided by the asymptotic analytical solution proposed in [16]

z

V(1) = xre(7L tanh[ ) @)
wr(r Jant| (r)

which is valid in the Thomas—Fermi regime, where xqp = /f4), (71 )/g is the transverse ground state,

toc (1) = o — V (r)is thelocal chemical potential, and a local healing length is defined by

() =17 / M, (r1) . Employing equation (7) as initial ansatz, the numerical solution of equation (6) is

obtained without difficulty either using a Newton method or by imaginary time evolution.
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The ansatz (7) also provides an excellent description of relevant properties of the kink, such as excitation
energy or missing number of particles. We define the excitation energy of a soliton 1), relative to the ground state
19, by means of

E = E[¢] - uN — (E[%0] - uo), ®
with the energy defined by the functional
Ely] = fdr( IVUP + V@l + w). ©)
Substituting the ansatz (7) into equation (8) and neglecting the derivatives of x;p (7| ) in equation (9), according

to the Thomas—Fermi approximation, we get the energy of a planar dark soliton confined by a transverse
harmonic trapping as

ol

E,
Ty
where the quantities with tilde are measured in the characteristic units of the trap, i = /4w, d = a/a,,and

a = +//2/muw, . Normalisation of equation (7) gives the missing number of particles in the soliton
N=N— Np:

(10)

4
15

™N |t‘

Sl

N, = — (11

(SR )
Ql|§l

which can also be obtained from the relation
OE;/Ou = —N.. (12)

Figure 1 shows a comparison of the analytical expressions (10) and (11) derived from the ansatz (7), and the
exact numerical solution to equation (6). As expected, the agreement improves with increasing values of the
chemical potential, and for i > 10 errors are below 1%. The preceding analysis shows that for a harmonically
trapped kink, given a chemical potential in the trap units, the parameters @£ and aN; are fixed, as reflected in
equations (10) and (11).

A further improvement can easily be introduced in previous expressions for average quantities. Following
[31], by properly incorporating the zero point energy of the harmonic oscillator in the calculations we obtain the
improved expressions

el o)

and

oo 2y iy .
3 a a

which have the correct limits both in the Thomas—Fermi and in the quasi-onedimensional regimes. They also
interpolate in between with very good accuracy as can be seen in figure 1.

2.2.8Vand VR
We have determined the inertial and physical masses for solitary waves by computing the energy of the fully
numerical solution of the 3D Gross—Pitaevskii equation (6) and taking numerical derivatives with respect to
chemical potential and velocity near the stationary point. Figure 2 reports the resulting mass ratios for dark
solitons (red curve), solitonic vortices (green curve with open squares), and VRs (blue curve with open circles) in
3D condensates confined by isotropic radial harmonic traps. For the kink, one can observe discontinuities
arising at the bifurcation points of (p, 0) modes, corresponding to VRs. As will be explained in later sections, at
these points the kink solutions exist only for the static dark soliton, and moving VRs emerge with the same value
of the chemical potential.

Approximate formulas for the SV properties, obtained from hydrodynamic theory in logarithmic accuracy,
appeared in [6]. The energy expression for the stationary SV in a BEC reads

2
Esy = /T 1 In
mB
::lgzﬁ%ln(Zﬂ)f£ﬁm&, (15)
3 a
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Figure 1. Excitation energy (upper panel) and number of missing particles N; (lower panel) for a three-dimensional solitary waves in
an infinite cylindrical BEC with transverse trapping frequency w) asa function of chemical potential 2. Results from fully numerical
solutions of equation (6) are shown as circles for the kink (dark soliton) and squares for the solitonic vortex (SV). Formulas (10) and
(11) based on the Thomas—Fermi approximation for the kink are shown in a full red line. The improved approach of equations (13)
and (14) is also shown (dashed red line) for comparison. The analytical approximations of equations (15) and (17) for the solitonic
vortex are shown as a full green line. In addition, grey lines show numerical results for other stationary Chladni solitons: single vortex
ring (VR), triple solitonic vortex (3SV), double vortex ring (2VR), and quintuple solitonic vortex (5SV).

12

DS
o——a SV
o————o VR

n/ho,

Figure 2. The ratio of inertial to physical mass as a function of the chemical potential y for kinks (DS, red line), solitonic vortices (SV,
green line with open squares), and vortex rings (VR, blue line with open circles) in a cylindrical BEC with isotropic transverse
harmonic trapping with frequency w .
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:i ln(ZM)QLnlﬂul, (16)

N

and the Thomas—Fermi approximation has been used for the one- and two-dimensional densities, in particular
4an; = [i%. The missing particle number is obtained by differentiation

Ney — ﬁngz(ﬂ mR z) an
mp ol I3 Y

__Za_L\/—( ( ) i), (18)

where v = %g—z is a polytropic index characterising the equation of state, which evaluates to v = 1 for the case

ofa BEC. For the inertial mass the following expression was obtained

4 R?
M = -, (19)

5
2

() o

8\/_

Lo (20)

3. Snaking instability of the dark soliton

3.1. Bogoliubov stability analysis

After finding stationary kink solutions to Gross—Pitaevskii equation (6), we look for elementary excitations
{u(r), v(r) } with angular frequency waround every equilibrium state ¢ with chemical potential xi. The
perturbed state can be written as W(r, t) = e #t// [1/) + Y (we 4 v*ei”f)], and the excitation modes are
the solutions to the linear Bogoliubov equations

(HO -+ 2g|1p |2)u + g*v = Jwu, (21a)

—gY*u — (Ho —p+ Zg\w Iz)v = Jwv, (21b)

where Hy = —/42V?2/2m + V (r,). Dynamical instabilities are related to solutions to equation (21) with
complex frequencies w, where the imaginary part of wis a rate of exponential growth of the corresponding
unstable mode. The inverse of the imaginary part of the unstable frequency can thus be interpreted as the lifetime
of the particular mode. Below we will report fully numerical solutions of equation (21) for the dark soliton and
Chladni solitons. Here we will proceed with finding analytical solutions to the Bogoliubov equations for the dark
soliton based on the Thomas—Fermi approximation.

3.2. Approximate separation of variables
For areal-valued stationary state, as it is the case of the dark soliton or kink of equation (7), the Bogoliubov
equations (21) can be transformed using f, (r) = u(r) £ v(r)and g, = (2 £ 1)g into

(Ho— 1+ g.0?)f. = . (22)

For w = 0 the two equations decouple. This was the problem solved in [16] in order to find the bifurcation
points of Chladni solitons from the dark soliton. Here, we are interested in the more general problem of finding
solutions to equation (22) with finite imaginary or complex values of w. Aiming at an approximate separation of
transverse and longitudinal degrees of freedom we introduce the rescaled variable z = z/£ (r, ). For the dark
soliton state of equation (7) we can write gy»* = y,,.(r )tanh? z, where i, ,. = 1 — V (r,) and may thus
rewrite the Bogoliubov equation (22) as

52
(—%Vi + /j‘locAi)fi = mfx’ (23)
with

1 0?
A_.=———— — 1+ tanh?z, 24a
2 072 (242)

1 0?
A; = ———— — 1+ 3tanh?zZ. 24b
+ > 97 (24b)
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The operators A, are both Hamilton operators of one-dimensional Schrédinger equations with a shifted Rosen-
Morse potential, whose eigenfunctions are known analytically [32]. Here we use the localised ground states of

the respective operators as a restricted basis for the z-dependence of f,, since we expect the unstable modes to be

localised near the dark soliton plane. The ground state eigenfunction of A is @i @) = g sech? Z with

eigenvalue 0. It corresponds to the well-known Goldstone mode of translation of the dark soliton in z direction.
This does not constitute an instability in itself but the mode will be relevant for constructing the decaying modes

with imaginary omega. The operator A_ has the ground state wave function ¢~ /2 (z) = % sech Z with

eigenvalue — % Itis this mode that is responsible for the existence of unstable Bogoliubov modes.

The z dependence can now be removed from the Bogoliubov equation (22) by starting from the ansatz
(fo £ = x (x )/)(cpi, 0)" + x_(x, )0, cpjl/ 2. Ignoring any x, y derivatives of the functions ¢ . (Z) and
projecting onto the respective ground states by multiplying from the left with (c,oi, 0)and (0, ¢~ /?),and
integrating over Z, we obtain the matrix equation

SO vl — N
— wC - ﬁ_ZVZ 1 -
m 1 2/”L10c

where ( = f cpjl/ 2 gai dz = g\/g ~ 0.962 is a numerical constant close to one.

3.3. Homogeneous background
The transverse Bogoliubov equation (25) is easily solved in the absence of a transverse trapping potential, where
-2

Hioe = = m/]_gZ = const, with plane wave solutions, e.g., X, o exp(igx). For the unstable eigenvalues we find
whom — % B - q%&*. (26)
m

For small g the growth rate Im (w) grows linearly with the slope " C;zm R 0.520\/% as is demanded by general

hydrodynamic arguments [33]. Although being approximate due to the restricted basis expansion of the z
dependence, this result compares very well with the previously obtained ones in [13, 33, 34], where the exact
14

slope for the Gross—Pitaevskii equation is , | Fol 0.577\/% . The snaking instability is suppressed and

eigenvalues become real-valued for wave numbers larger than q_;, = 1/&, which s the exact value. For
intermediate values 0 < q < 1/¢ the growth rate has previously only been obtained numerically, and
equation (26) reproduces the results of [ 13, 34] very closely.

3.4. Harmonically trapped kink state

We now proceed with solving the transverse Bogoliubov equation (25) for an isotropic transverse trapping
potential with gy, (r)) = p — %mwi r?. Assuming an azimuthal dependence occos(If) with the quantum
number / = 0, 1, 2, ...reduces equation (25) to a set of ordinary differential equations in the radial coordinate
r, . Itis now convenient to move to harmonic oscillator units. Introducing the rescaled radial coordinate

7| = r./a, and dividing the equation by 7w, , we obtain

H - N
} comll =0, (27)
-ac m =Bl
2
where & = w/w, and
1{ 92 1 0 12
Hf:———~2+~——~—3’ (28)
2\ ot 7L OFL i
H)=H + i?f, (29)

where H} represents a two-dimensional Laplacian and Hb is the Hamiltonian of a two-dimensional harmonic
oscillator with weakened trap potential compared to the one experienced by the atoms. Equation (27) can also be
rewritten in the form

H (Hi — %)xl =o' (30)

Even though this represents a non-hermitian eigenvalue problem, we have only found real eigenvalues @*(? in
numerical investigations.
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3.5. Chladni soliton bifurcation points

Solutions of equation (27) with @ = 0 have special significance as they indicate the transition of a specific mode
from representing an instability ©* < 0 to a stable small amplitude oscillation @2 > 0. At the same time they
indicate a bifurcation of the stationary nonlinear solutions of the Gross—Pitaevskii equation (6) and here relate to
the branch-off points for Chladni solitons. The solutions are found in terms of the scaled Fock—Darwin radial
eigenfunctions X; (7)) =2 iRll, (2717, ) of the 2D harmonic oscillator Hamiltonian H} with eigenvalues

=Q2p+1+ 1)/\/5and
1 _ ZP' 171 2\
Rp(r)— —(p+l)!er(r )e 7, (31)
where Lll, (x) is the generalised Laguerre polynomial. It is easily seen that x; solves the Bogliubov equation (30)

with @ = 0 when 6; =0 / 2, which translates into the condition

=2Qp+1+1), (32)
/L

for the bifurcation points of Chladni soliton solutions from the dark soliton, as found previously in [16].

3.6. Finite growth rates
For finite instability rates Im (&) the eigenvalue equation (30) can be expanded in a basis of the normalised
eigenfunctions |p, I) = x; of Hb, which transforms it into a tridiagonal matrix eigenvalue equation

ZB’ vy = = @Cvy (33)

with Bép’ = (p, 1|H] (Hzl — %)I 1= f L dﬁXZPHf(Hzl — %)va,.Forthematrixelementswe find
> 0
S @p+I+1)7 Aijlzp +14+1

B! , 34
b = 1 NG (34)
+l
B, | = [2(p—1)+l+11/p T p (35)
+l
p Lp = (2P+l+1)\/P +1Ip p —_—> (36)

and B 117 y =0 for|p — p’| > 1. The matrix is block-diagonal in the aZImuthal quantum number / due to the
azimuthal symmetry of the problem. We have solved the corresponding eigenvalue equations numerically and
have found the approximate asymptotic behaviour
o~ - V2@n+1)
n 4C >
for large fi and values of the azimuthal quantum number [ > 1. All these eigenvalues have a zero crossing for a

finite value of [i corresponding to equation (32), wheren = p canbeidentified. These results were obtained by
diagonalising a truncated matrix B Z) » with p, p’ < p. Changing the cutoff value p. affects the large- i regime

(37)

but leaves the zero crossings for # < p. unaffected. The asymptotic behaviour reported above represents the
limitof p. — oo.

Inthel = 0sectoraspecial case occurs, where the |0, 0) state needs to be excluded from the basis in order to
eliminate an unphysical unstable eigenvalue with p = 0 that otherwise occurs in solving equation (33). The
mode with p = 0, | = 0 corresponds to zero point motion of the kink, which is not captured correctly by the
underlying Thomas—Fermi approximation. Indeed, no unstable mode with these quantum numbers is found in
the full numerical solution of the Bogoliubov equations. Diagonalising equation (33) in a truncated basis with
0 < p < p produces the asymptotic behaviour

=0 B N2@n 1)
n 44 b
wherestilln = p canbeidentified at the zero crossings of &.

The results of the truncated eigenvalue problem (33) with the asymptotic results (37) and (38) closely
resemble the full numerical results.

(38)

3.7. Fully numerical results
We have also solved the Bogoliubov equation (21) numerically in full three-dimensions without making use of
the approximations discussed in the previous paragraphs. The results for the unstable modes and associated

8



10P Publishing

NewJ. Phys. 17 (2015) 125013 AM Mateo and ] Brand

(1,0) (0,2) O (11 (0,3

<
| &

. — 7 :
v
= » S s (1,3
0 ’ !
. | - (0.4)
27 -7 I
= i
< .0 J-'(1 2)
2 ;
£ 3t ©.1) ACRIHEDE
o . : . .
0 S S S R
<t
ot
£ ol I
s i &
(o)) o
g o i
=0 :
| (0,1) g
o .
0 5 10 15 20
n/ho,

Figure 3. Upper panel: unstable frequencies w and density isocontours at 5% of maximum density (insets) of Bogoliubov modes,
classified by their radial and angular quantum numbers (p, [), responsible for the decay of the kink. The shaded background of the
isocontours indicates the BEC density distribution. The axial view for the (0, 1) mode (bottom left inset) clearly demonstrates the
axial localisation of the mode function. All the mode functions have been generated close to their respective bifurcation points. The
arrows below the horizontal axis indicate the bifurcation points according to the analytical prediction (32). Lower panel: following the
unstable mode frequencies to larger interaction parameters j/(7w) ) demonstrates the linear growth.

frequencies are collected as a function of the chemical potential of the kink in figure 3. The insets represent axial
views of phase-coloured density isocontours of the excitation modes (p, I) just after the appearance of bifurcation
points. These modes present a structure of nodal lines, derived from the radial p and azimuthal / quantum
numbers, characteristic of the linear excitations of the transverse trap. As can be seen in the lower left inset, the
only one displaying a longitudinal view, they are strongly localised around the plane of the kink. Their
emergence follow in a very good approximation the analytical prediction for bifurcations given by equation (32),
which are indicated by red arrows below the horizontal axis. As the interaction energy increases from the quasi-
onedimensional configuration, where kink states are stable structures and generate only real frequency
excitations, the first bifurcation point denoting the appearance of a complex frequency for the mode

| p =0, I = 1)comesinto existenceat 11, = 2.65/w, very close to the 2.8/x; value predicted by (32). From
this point on, kinks are unstable states, and further increase of the chemical potential is accompanied by the
emergence of new bifurcation points grouped around the integer energy values €,; = 2p + I + 1, withthe
characteristic degeneracy of the two-dimensional harmonic oscillator.

4. Stationary Chladni solitons

Every unstable mode of the kink is associated with a stationary Chladni soliton. The zero crossings of the
unstable mode frequencies in figure 3 indicate bifurcation points of the Chladni solitons from the dark soliton.
The sign patterns of the unstable mode functions at the bifurcation points X; (r)cos(l6) determine the
direction of flow along or counter the z direction, and the nodal lines translate into vortex lines. Numerically
obtained mode functions are also shown in figure 3. Increasing the nonlinearity parameter fi = /(7w ) above
the bifurcation point, we obtain a family of stationary Chladni solitons with the same structure and symmetries,
as endowed by the unstable mode at the bifurcation point. A number of Chladni soliton solutions is shown in
figure 4. For instance, the first excited mode | p = 0, I = 1) generates the family of SV states, while the next two
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unstable modes, | 1, 0)and | 0, 2), that branch off near x4 o= 47w in figure 3, generate the families of VRs and
two crossed vortices states, respectively.

The linear solutions of a general, isotropic or anisotropic, two-dimensional harmonic oscillator can be
written in terms of Hermite modes with cartesian symmetries instead of the Laguerre modes of cylindrical
symmetry. The Hermite modes are characterised by the pair (7, 7,) of quantum numbers indicating the nodal
lines along x and y directions. Corresponding Chladni solitons would be made of vortex lines in such rectangular
patterns. Although we have found the stationary Chladni solitons bifurcating from the kink to all conform to the
Laguerre type, one may still expect to find Hermite-type structures to be relevant in the decay process of the kink.
In the linear regime, the Hermite modes |r,, 1,) can be constructed as superposition of Laguerre modes |p, [)
with degenerate energies ¢, , = €. For example,|n, = 0, n, = 2) oc |p = 0,1 =2) — [p =1, ] = 0),and
|ny =1,n, =2) < |p=0,l=3) — |[p=1, 1= 1). Because of the energy splitting of the bundle of linear
degenerate states presented in figure 3, the linear superposition mechanism is not acting in the nonlinear case.
However, we have found that Hermite-like modes do emerge as nonlinear bifurcations at a second stage. In the
first stage, families of stationary solitary waves bifurcate from the kink in close relation to its unstable Laguerre-
like modes. Except for the SV, all these families are made of unstable states, the unstable excitation modes of
which can generate new solitary waves at a second stage. It is then when the new solitonic families turn out to be
composed of Hermite-like modes (ry, 1, ).The instabilities of Chladni solitons will be discussed in more detail
in section 6.

5. Moving Chladni solitons

Up to now we have been looking at static solitons. In order to understand how the different families of solitonic
states appear and connect, it is convenient to consider a more general picture of moving solitary waves. Here, we
extend upon the work of Komineas and Papanicolao, who already computed energy dispersion relations and
phase steps for axisymmetric solitary waves (kinks and nested VRs) [19, 20] and for the SV [18].

In order to construct the full dispersion relations for moving solitary waves, we numerically search for states
U(r, t) = e i¢tHmen)/%y)(r), moving along the z-axis with a constant velocity v, = (0, 0, 1,), which are
solutions of the stationary Gross—Pitaevskii equation for a co-moving reference frame:

1 . 2
(Y — o+ V@ gl P = i, (39)
where 1 = p + mv?/2 is the shifted chemical potential. Moving solitons have nonzero density dips associated
to reduced (smaller than 7) phase jumps, and their velocities are limited by the speed of sound ¢, at which
solitonic states become linear sound excitations. In order to calculate the speed of sound, which will be used as

velocity unit in what follows, we will make use of the analytical expression given in [35]:
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Figure 5. Characteristic quantities for solitary waves with chemical potential 1 = 5/av : axial phase step A¢ (a), and excitation
energy E; (b) as a function of the axial velocity v, in units of the speed of sound ¢, and energy (E;) versus momentum dispersion
relations (c).

¢ :(ﬂz_l]}* (40)
N 20 )’

where fi = p//av, . This expression provides the speed of sound for elongated, harmonically trapped
condensates with arbitrary values of the interaction, and gives the exact limits both in the quasi-onedimensional
and Thomas—Fermi regimes.

Figure 5(b) shows the excitation energy E; as a function of the axial velocity v, for moving solitary waves with
chemical potential 1 = 57w, . Kinks, represented by the solid red line at the top of the figure, have the highest
excitation energy among the solitary waves, and exist in this case only for low velocities, [1,| < 0.24 c. Below
them, at lower excitation energies, only solitary waves bifurcating at energies less or equal than i = 5 canbe
found in the graph, as per equation (32). As can also be deduced from the unstable frequencies of figure 3,
indeed, only VRs (blue solid line), double SV (dashed black) and the single SV (solid green) are available at i = 5
and appear in figure 5. At small velocity, and very close in energy to the VR and the static cross soliton, a new type
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Figure 6. (a) Broken symmetry in a static cross soliton (2SV) with chemical potential ;¢ = 5/x; for small velocity increments around
v, =0, corresponding to points A (at the centre), B (left), and C (right) of figure 5. (b) Hermite-type (1, n,) Chladni solitons: for

1 = 57w, H(2,0) solitons have v, = 0 (left) and v, = 0.53 c (right), whereas H(3,0) corresponds to a static soliton with y¢ = 10/, .
The cross-section of H(2,0) is 6.6 a, in width, whereas H(3,0)is 9 a, .

of solution emerges (see the inset of figure 5(b)). It is composed of a couple of almost parallel vortices, more
specifically a vortex—antivortex pair or vortex dipole, which is not coming directly from a bifurcation of the kink,
but from a secondary bifurcation of the cross soliton. Indeed, the solution can be connected to a decay instability
of the cross soliton produced by the Hermite modes (1, = 2, n, = 0) or (n, = 0, n, = 2). Figure 6(a) shows
the density configuration of these states around zero velocity, which can be cross-checked with their features
extracted from the three panels of figure 5, where clear differences in the associated phase step arise for the three
states A, Band C. At higher velocities, the picture is slighly different. The structure of the kink changes and so do
its excitation modes. Since the cross soliton is a static state, it can not be found between the bifurcations of
moving kinks, and is substituted by the mentioned, moving Hermite modes. For growing values of the chemical
potential, new, higher energy Hermite modes emerge by equivalent mechanisms. In figure 6(b) we show density
isocontours for some of such modes with fi = 5, and 10.

Itis also interesting to look at the phase jump along the axial z-direction A¢ = ¢(z — 00)—¢p(z — —00)
created by the different solitary waves (figure 5(a)). The phase shift of dark solitons of the one-dimensional
nonlinear Schrédinger equation (dotted line) is shown as a reference. Its phase shows a 7 jump in the static
configuration, and grows up to 27 as the velocity approaches +c, or alternatively reduces to zeroas v, — —c.
Similar behaviour, but with different variation rates, is in general followed by the phases of 3D solitonic states.
However, a particular feature can be noted as characteristic of the 3D case. It is the existence of turning points
with vertical phase slopes. Looking at the curves for VRs (blue lines with triangles), one can notice that there are
two separated branches ending at respective turning points, and connected by kink states (red curve). A more
striking manifestation of this phenomenon can be observed in the inset of figure 5(b), on the curve
corresponding to the vortex—antivortex pair. Between turning points, labeled as B and C in figure 5(¢), there exist
aset of almost static and degenerate states of this type which produce different phase jumps. The turning points
here indicate a transition between the Hermite-like symmetry of the vortex—antivortex pair and the Laguerre-
like vortex cross.

The precedent analysis, in terms of phase and velocity, can now be completed by constructing the dispersion
relations of Chladni solitons. To this end, as usual, we define the axial canonical momentum P, of a solitonic
state as the conjugate variable of the axial coordinate z, that fulfils

0K,
=

v, (41)

Along with the axial physical momentum p, = —i% f dr(*0,¢) — 1¥d,1*) /2, carried by the particles
traversing the plane of the moving soliton, the canonical momentum includes the contribution coming from the
phase jump A¢ between the axial boundaries of the condensate
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Figure 7. Dispersion curves (non-exhaustive diagram) for Chladni solitons with ;1 = 10/, , some of which correspond to the
isocontour diagrams in figure 4 for static solitons, and in figure 8 for moving solitons.

PC = pz — ﬁn1A¢, (42)

where 1, is the axial density of the ground state of the system [20, 26]. Figure 5(c) shows the dispersion relation,
excitation energy versus axial canonical momentum, for solitonic states with ;1 = 5/4v moving along the axial
coordinate. The turning points that have been described on the phase graph, appear here as the vertexes of cusps
connecting states with the twofold symmetry: VRs and vortex—antivortex pairs. It is also worth noticing that the
lowest excitation energy levels for fixed momentum are occupied by solitonic vortices, wherever they exist. This
last remark accounts for the fact that there exist a small regime of soliton speeds, approaching the speed of
sound, where the only solitonic state is the continuation of the VR family, here an axisymmetric solitary wave
very much like a grey soliton with a VR phase singularity outside the Thomas—Fermi density of the trapped BEC,
asis apparent in figures 5(a) and (b). In this regime, VRs are dynamically stable states.

When the chemical potential increases, and the number of bifurcations grows, the dispersion diagram of
Chladni solitons becomes more complex, because of the emergence of new connections between solitary waves
sharing symmetries. As an instance of this complexity, figure 7 displays some of the curves making the dispersion
diagram for ;4 = 10 /aw. For this value of the chemical potential, the family of double VRs [(p = 2, [ = 0),
violet lines] is available, and produces a new couple of turning points compared to the case for y = 5 /.
Following the different curves away from their maximum (corresponding to zero velocity v, = OE;/0OP. = 0)
the density patterns of Chladni solitons can change dramatically from their static configuration. To illustrate this
point, figure 8 shows the density isocontours of some of the moving Chladni solitons that can be found with
1 = 10 /ww. Itis apparent how their symmetry changes when compared to their static counterparts in figure 4.

6. Stability of Chladni solitons

It remains to know how robust the Chladni solitons are. To this end, we have numerically solved the Bogoliubov
equations (21) for the linear excitation modes of the stationary and moving solitonic solutions (as those
represented in figures 1 and 5). In addition, we have checked the stability of these nonlinear systems against
perturbations by monitoring their evolution in real time through the full time dependent Gross—Pitaevskii
equation (6).

6.1. Linear analysis

As mentioned before, and aside from the stability of VRs moving near to the speed of sound, our results indicate
that the SV branch is the only one containing dynamically stable states. Solitons corresponding to other families
are unstable, and decay through the instability channels opened by lower energy branches. Specifically for the
stationary solitary waves, the SV as the lowest energy solitary wave has no channel of instability, since there is no
other, lower energy solution bifurcating from it (or from the kink). However, the second excited state, which is
the single VR, does present one instability channel associated to the bifurcation of solitonic vortices from the
kink with lower energy. The next family is that of cross solitons (2SV), and is unstable through two channels, and
so on. This analysis for static states is displayed in figure 9(a). The red curve with open circles corresponds to the
unstable frequencies for VRs as a function of the chemical potential, and the two blue curves with open triangles
indicate the two instability channels for the cross soliton. The dotted vertical lines mark the bifurcation points
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Figure 8. Steady state configurations of moving Chladni solitons (represented by density isocontours at 5% of maximum density)
sampling the dispersion curves in figure 7 for ;¢ = 10/, . The labels indicate the quantum numbers (p, I) of the associated solitonic
family. Several isocontours from the same family correspond to different velocities, with increasing value from left to right. In this
order, the canonical momentum is (in units of 7/, ) for (0,1): 1.97 and 1.99; for (1,0): 1.2 and 1.6; for (1,1): 1.04, 1.3 and 1.7; for (2,1):
1.06; for (0,3): 1.2, 1.3 and 1.6; for (0,5): 1.3. The cross-sections are 9 a, in width.

for the Chladni solitons considered (VR and 2SV), by intersecting the instability curves of kinks (grey dashed
lines). It is worth to mention that, as can be seen in figure 9(a), for intermediate values of the chemical potential,
between 4 and 5/i , the cross soliton has smaller values of unstable frequencies than VRs. This fact suggests that
cross solitons are good candidates for being experimentally realised in elongated BECs. VRs have already been
observed in experiments [3, 37]. In this regard, we have noticed that in [38], where the decay of dark solitons in
anisotropic cigar-shaped condensates was observed in experiments, travelling solitary waves composed of
vortex—antivortex pairs (see below) were clearly identified, and a cross soliton structure was found at the turning
points of motion.

Additional remarks about VR states are in order. As shown in figure 9(a) for the static case, VRs are unstable
against decay modes with quantum numbers (p = 0, / = 1). Our numerical results (open circles in the inset of
figure 9(a)) show that this instability decreases at slow rate with increasing chemical potential, in agreement with
the analytical prediction of [36] (solid red line in the inset):

3 ln[éz(RIZ + /<;2/8)]
Y= _f 2me ’ )

where k is the curvature of the vortex, £ is the healing length, and R, is the Thomas—Fermi radius. This
expression is valid for VRs in harmonically trapped elongated condensates within the Thomas—Fermi regime,
and gives nonzero unstable frequencies win the limit of very high chemical potential, thus providing an
estimation for the life time of VRs. For instance, for ;1 = 21 /v, both the numerical and analytical methods
predict an unstable frequency w ~ 0.16 w, corresponding to alife time of about 20 ms for 50 Hz transverse trap.

In the case of moving solitons, the linear stability analysis follows essentially the preceding procedure for
static states. Figure 9(b), generated for ;1 = 57w , shows our numerical result for the unstable frequencies of
moving Chladni solitons as a function of the canonical momentum. The unstable frequencies decrease rapidly
for VRs (blue lines with open triangles) of increasing speed (and thus their life time increases), and indeed they
become stable past the bifurcation with solitonic vortices close to P. = 0.2 w/my, (and P. = 1.8 7/im;) where the
speed approaches the sound speed. As anticipated, there are also no unstable frequencies for solitonic vortices.
As itis the case for the cross soliton, moving vortex dipoles (black dashed curves) present lower unstable
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Figure 9. (a) Growth rates of unstable modes from numerical solution of Bogoliubov equations (21), for stationary vortex ring (VR)
and double solitonic vortex (2SV) states. Dotted vertical lines indicate the bifurcation from DS (with unstable frequencies represented
by dashed grey lines). In the inset, numerical results for vortex rings (open symbols) are compared with the analytical prediction (43)
(solid line) of [36]. (b) Unstable mode growth rates for moving solitary waves with ;s = 5/ , as a function of the canonical
momentum, from a numerical solution of the Bogoliubov equations (21). Point A refers to the cross-vortex soliton labeled in figure 5
and represented in the centre of figure 6(a).

frequencies than VRs. This may seem surprising considering the cylindrical symmetry of the system, and gives
support to their possible detection in experiments.

6.2. Real time evolution

In order to check the predictions given by the linear stability analysis, we have also tested the nonlinear stability
of Chladni solitons by the real time evolution of their stationary configurations. For, on the initial states

U(r, t = 0), we have added arandom noise perturbation § ¥ (r), which typically amounts to 2% of the wave
function amplitude. Afterwards, we have allowed these wave functions to evolve in time, without dissipation, at
constant chemical potential according to equation (6). For example, we have followed this procedure for the
static Chladni solitons with ;1 = 5 7w , namely dark soliton, VR, cross soliton and SV, which have been
previously characterised in figures 5 and 9(b). As expected, we have observed the decay of all solitonic states
except the solitonic vortex, which, as a result, emerges at the final stage of the time evolution in all cases.

Figure 10 summarises the decay processes, showing snapshots of the evolution at intermediate times. In
particular it shows complex patterns localised in the plane of the initial stationary state at intermediate times and
the emergence of a single solitionic vortex at late times, while some small amplitude radiation moves away from
the solitary wave at the speed of sound.

For higher values of the interaction parameter ji, different scenarios can be found in the decay of Chladni
solitons. In particular more than one solitary wave can appear and move away from the location of the initial
unstable soliton. The interaction energy released from the parent state can transform into translational kinetic
energy of a descendant solitary wave, leaving a simpler structure at the initial position. This is the case shown at
figure 11, which displays two types of ‘sling-shot’ events, similar to the one recently observed in experiments and
simulations with elongated BECs [38]. In the upper panels of figure 11, a static vortex—antivortex pair, after a
fairly long time scale (~50 ms), releases one of the vortices, whose acceleration can be noticed by its increasing
curvature at later times. As another example, the lower panels of figure 11 follow the evolution of a static double
ring that has been perturbed with a radial noise imprint preserving the cylindrical symmetry. One can observe
how the external ring escapes from the original transverse plane, and, as in the previous case, increases its

velocity.
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Figure 10. Density isocontours (at 5% of maximum density) during real time evolution showing the decay dynamics of akink (DS), a
vortex ring (VR) and a cross soliton (2SV), with /7w, = 5and v, =0, obtained by solving numerically the time-dependent Gross—
Pitaevskii equation starting from the stationary configuration seeded with a small amount of numerical noise. The typical cross-
section radius is 3.54, and time scales correspond to a transverse trap with w; = 27 X 71 Hz. Animations of figure 10 are available in
the supplementary material (stacks.iop.org/njp/17/125013 /mmedia).

7. Conclusions

We have analysed the dynamical properties of static and moving Chladni solitons in cylindrically symmetric
BEC:s, within the mean-field regime described by Gross—Pitaevskii equation. These states, strongly influenced by
the geometry of the trap, emerge from the excitation of standing waves on planar kink states, and inherit
particle-like features characterised by lower excitation energies and higher inertial masses than the kink. We
have calculated numerically such quantities, and presented analytical expressions for their evaluation. The
unstable standing waves producing the decay of the kink have been the object of a detailed analysis, and a
formula for the prediction of the unstable frequencies has been proposed.

Itis an interesting question to consider how a small deviation from the cylindrically symmetric trapping
potential considered here will influence the nature and stability of Chladni solitons. Clearly, the continuous
degeneracy of symmetry-breaking Chladni solitons (with I > 1) with respect to azimuthal rotation will be lifted.
In addition, the near degeneracies of the different Laguerre-type unstable modes of the dark soliton (e.g. seen in
figure 3) can be overcome with sufficiently strong azimuthal asymmetry, which will favour Hermite-type
Chladni solitons with cartesian symmetries similar to the structures found at finite velocities and shown in
figure 6. Since Laguerre and Hermite-type structures co-exist already in a symmetric trap where they have
similar excitation energies and stability properties (see e.g. figure 9(b)), we do not expect the stability properties
to change dramatically with small trap asymmetry. For more strongly asymmetric traps, we expect trap
distortion to eventually destroy the vortex-ring-type structures and lead to chains of solitonic vortices with
alternating sign in the limit of a near-two-dimensional trap. The further exploration of this interesting topic is
left for future work.

The stability of Chladni solitons was studied by a linear stability analysis of the stationary states as well as by
real-time evolution. Even though the recently observed SV and fast moving grey solitons are the only stable
solitary waves in the strongly nonlinear regime (i > 2.65/4v, ), the more complex structures with crossing
vortex lines are expected to be observable in current experiments with estimated lifetimes of tens of
milliseconds, comparable to the previously observed VRs. In this regard, several procedures could be followed.
In particular, in [16], we have proposed a feasible protocol for seeding a particular Chladni soliton on a planar
kink. By means of a dark-bright soliton [39] in a two component condensate in the immiscible regime, a proper
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Figure 11. Sling shot events in the real time evolution of a 2SV state (up) with chemical potential y1//w, = 8,anda2VR state (down)
with p1//aw; = 15. Density isocontours at 5% of maximum density are shown in both cases, with a transparent external surface in the
axial view of the 2VR. Time scales correspond to a transverse trap with w; = 27 x 71 Hz. Animations of figure 11 are available in the
supplementary material (stacks.iop.org/njp/17/125013 /mmedia).

density and phase pattern could be imprinted on the bright soliton of one of the components occupying the kink
depletion in the other component. The subsequent transfer of the selected pattern into the kink component,
through a controlled Raman pulse, could serve the purpose of seeding the decay into the corresponding Chladni
soliton. Other procedures with scalar condensates relying on an adequate trap geometry, have already been
demonstrated. This is the case in [38], where vortex dipoles and the cross soliton has been identified after the
decay of kinks in anisotropic harmonic traps. Very recently also the ® soliton (p = 1, I = 1) has been identified
in what appears to be a seeded decay of a kink in a unitary Fermi gas [21]. This existing experimental evidence for
Chladni solitons indicates that small amounts of dissipation due to trap losses and finite temperature are not
fatal for the existence of these structures. It is an interesting question for further study whether Chladni solitons
or analogous structures may exist as attractors in inherently dissipative superfluids, such as exciton—polariton
condensates.
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