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Abstract
Many infrastructure networks have amodular structure and are also interdependent with other
infrastructures.While significant research has explored the resilience of interdependent networks,
there has been no analysis of the effects ofmodularity. Here we develop a theoretical framework for
attacks on interdependentmodular networks and support our results through simulations.We focus,
for simplicity, on the casewhere each network has the same number of communities and the
dependency links are restricted to be between pairs of communities of different networks. This is
particularly realistic formodeling infrastructure across cities. Each city has its own infrastructures and
different infrastructures are dependent onlywithin the city. However, each infrastructure is connected
within and between cities. For example, a power gridwill connectmany cities as will a communication
network, yet a power station and communication tower that are interdependent will likely be in the
same city. It has previously been shown that single networks are very susceptible to the failure of the
interconnected nodes (between communities) (Shai et al 2014 arXiv:1404.4748) and that attacks on
these nodes are evenmore crippling than attacks based on betweenness (daCunha et al 2015
arXiv:1502.00353). In our example of cities these nodes have long range linkswhich aremore likely to
fail. For both treelike and looplike interdependentmodular networkswe find distinct regimes
depending on the number ofmodules,m. (i) In the casewhere there are fewermodules with strong
intraconnections, the system first separates intomodules in an abruptfirst-order transition and then
eachmodule undergoes a second percolation transition. (ii)When there aremoremodules withmany
interconnections between them, the systemundergoes a single transition.Overall, we find that
modular structure can significantly influence the type of transitions observed in interdependent
networks and should be considered in attempts tomake interdependent networksmore resilient.

1. Introduction

Many recent studies have explored interdependent andmultilayer networks [3–34]. Further studies have also
exploredmore realistic structures such as spatially embedded networks [35–40], and different types of realistic
failures such as response under degree-based attacks [41, 42] and localized attacks [26, 39]. Nevertheless, all
previous studies on interdependent networks ignored the realistic effect ofmodularity on the resilience of
interdependent networks.

Many real world networks have amodular structure including biological networks [43], infrastructure such
as the power grid, internet [44] and airport networks [45], andfinancial networks [46]. Several studies have
explored the robustness of individualmodular systems (i.e. single networks) [47, 48] yet no study has considered
the effect of interdependence inmodular networks. It is well known thatmany of these systems are also
interdependent and thus it is crucial to understand how themodular structure affects the resilience of
interdependent networks.

There has also been considerable work on understanding various types of attacks on networks [26, 39, 49–
51]. Recent work by Shai et al [1] developed an analyticalmethodwhere the attack is carried out on
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interconnected nodes, i.e. nodes that connect communities. Further work by daCunha et al [2] showed that in
real networks, attacks on interconnected nodes are evenmore damaging than attacks based on betweenness. It is
particularly important to consider the effectiveness of this type of attack in interdependent networks since the
researchers in [2] showed that theUS power grid is among themost susceptible networks to this type of attack
and it is well known that power grids are interdependent with other infrastructures.

In ourmodel we assumemodular networks composed ofmmodules, and afixed ratio,α, between the
probability for an intramodule link and intermodule link.We further fix the total average degree, k ,tot of the
network. Using these three parameters we can determine the average intramodule degree, kintra and the average
intermodule degree k .inter Weobtain

k

k m 1
, 1intra

inter

( )a
=

-

k k k . 2tot intra inter ( )= +

Note that kinter increases withm, since networks withmoremodules havemore interlinks [1].We generate n
of thesemodular networks, and for simplicity we assume that each network has the samem,α and k.We then
create dependency links between the nodes in the different networks. The fraction of nodes in network iwhich
depend on nodes in network j is defined as qij. The dependency links are either bidirectional (in our analysis of
treelike dependencies, section 3, figure 1(a)) or unidirectional (in our analysis of looplike dependencies,
section 4, figure 1(b)). In both cases we further restrict the dependency links such that a node in communityma

in network iwill depend on a node in communityma in network j, i.e. the dependency links arewithin the same
community. This restriction is particularly reasonable in our example of cities where each city has its own tightly
connected, interdependent infrastructure with relatively few connectivity links between the cities.

We focus on the case of attack on the interconnected nodes, i.e. nodes with at least one connectivity link to a
differentmodule.Many studies have shown that these links are particularly susceptible to failure in biological
networks and serve as efficient targets in attacking infrastructure [2]. Further in our example of cities, these
nodes have the longer distance links that aremore likely to fail [52].

Our attack randomly removes a fraction r1 ,- of the interconnected nodes in the network until there are no
remaining interconnected nodes and then continues to remove nodes randomly. The fraction of unremoved
interconnected nodes, r, is related to the overall fraction of unremoved nodes, p, by

r
p p

p1
, 3inter

inter

¯
¯

( )=
-

-

where pinter¯ is the probability that a node is not interconnected.
We study thismodel on both treelike networks of networks (NoNs) and looplikeNoNs (figure 1) andfind

that there are two distinct regimes depending on the number ofmodules,m. In thefirst regime, for smallm, the
networkfirst separates into isolated, interdependent, yet functionalmodules, i.e. there is a transition at r=0.
However, for largerm the network collapses due to the removal of afinite nonzero fraction of interconnected
nodes.We provide an analytic solution that predicts the critical point, m ,* where the systemhas a transition

Figure 1.We study two possible configurations of a network of networks. (a)A treelike network of networkswith full coupling and
bidirectional dependency links and (b) a looplike network of networkswith a fraction of dependent nodes, q, and unidirectional
dependency links. In both (a) and (b) dependency links are restricted such that they only connect nodes within the same communities,
i.e a node inmodulema in network iwill depend on a node also inmodulema in network j. (c)Demonstration of the dependency
between a pair of interdependent networks shown in (a) and (b). The dependency is between the same communities in different
networks (same colors).
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fromone behavior to the other, as well as solutions for the size of the giant component as a function of the
fraction of removed nodes.We support our theory by simulations.

2. Failure and attack on interdependentmodular networks

Wenow extend themethod of Callaway et al [50] to the case of interdependent networks or network of networks
(NoN).Wewill then specifically apply this framework to the case of interdependentmodular networks.

We begin by recalling the derivation in [50] for a single network iwith a given degree distribution Pi(k)
described by the generating function

G x P k x . 4
k

i
k

0

( ) ( ) ( )å=
=

¥

For degree based attacks where nodes with degree k are removedwith probability r1 ,k- the generating function
is [50]

F x r P k x . 5
k

k i
k

0
0

( ) ( ) ( )å=
=

¥

The generating function of the branching process is then

F x F x G x . 61 0( ) ( ) ( ) ( )= ¢ ¢

FollowingCallaway et al [50]we obtain the probability that a randomly chosen edge leads to a cluster of given
size, H x ,1( ) as

H x F x xF H x1 71 1 1 1( ) ( ) ( ) ( )⎡⎣ ⎤⎦= - +

and the probability that a randomly chosen node leads to a cluster of a given size, H x0 ( )

H x F xF H x1 1 . 80 0 0 1( ) ( ) ( ) ( )⎡⎣ ⎤⎦= - +

The fraction of nodes in the giant component is

P x H F F u1 1 1 , 90 0 0( ) ( ) ( ) ( ) ( )= - = -¥

with u being the smallest non-negative real solution of the self consistency equation

u F F u1 1 . 101 1( ) ( ) ( )= - +

In order to generalize this framework for the case of attack on aNoNwemust include the fact that nodes
have an additional uniform likelihood to fail. Since this likelihood to fail is randomwe can include it in the
equations by defining a probability, p ,dep of surviving failure from the dependency links.We note that pdep will

depend on the specific topology of theNoN. Essentially, nodes nowmust survive the initial failure and failure
fromdependency links, which lead equation (5) to become F x p r P k x .

k k i
k

0 0 dep( ) ( )å= =
¥

The overall likelihood

of failure for each node is now r p .k dep However, since pdep is constant with respect to the degree of the node, we

can extract it from the sum to obtain

F x p r P k x , 11
k

k i
k

0 dep
0

˜ ( ) ( ) ( )å=
=

where F x0̃ ( ) is the analogue of equation (5) for interdependent networks and pdep can be extracted from the sum
since it does not depend on the degree of the node. The rest of the derivation continues the same for
equations (5)–(9).

We note that equation (10) is the same as before only nowwith the extra factor of p ,dep giving

p
F u F

u
1

1

1
12dep

1 1( ) ( ) ( )=
-
-

and equation (9) alsowill have the same factor p .dep This pair of equations, equations (9) and (12), can be used to
find the giant component of aNoNunder any sort of degree based attack and can be used as an alternative
method to that ofHuang et al [42] andDong et al [41].

Wewill now generalize this framework to the case where each network in theNoN is amodular network
with the parametersm,α, and k, defined above. For the case of amodular networkwhere themodules aremade
up of Erdős–Rényi structures, equation (3) becomes

r
p e

1 e
. 13

k

k

inter

inter
( )=

-
-

-

-
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We recall the results from Shai et al [1] for the generating functions

G x e , 14k k x 1intra inter( )( ) ( )( )= - + -

F x r rG xe 1 , 15k x k
0

1intra inter( ) ( ) ( ) ( )( )= - +- -

F x F x G x . 161 0( ) ( ) ( ) ( )= ¢ ¢

Wenow combine the results from Shai et al [1] for a single networkwith equations (9) and (12) for aNoN.We
note that these equations not only describe the case of an interdependentmodularNoNbut also the casewhere
we have both random failurewith probability p1 rand- and targeted attack. For our purposes wewill assume
that p p ,rand dep= i.e. the randomdamage is solely the result of the dependencies. Our new generating functions
are thus

F x p F x

F x p F x

,

. 17

0 dep 0

1 dep 1

˜ ( ) ( )
˜ ( ) ( ) ( )

=

=

The average connected component size is given by Leicht andD’Souza [6]

s p F p rk F j p rk j1 1 , 18dep 0 dep intra 0 0 dep inter 1( ) ( ) ( )á ñ = + +

where

j p F p rk F j p rk j1 1 , 190 dep 0 dep intra 0 0 dep inter 1( ) ( ) ( )= + +

j p r p rk j p rk j . 201 dep dep intra 0 dep inter 1 ( )= + +

Combining the above equations, wefind that there is a giant component that spans the systemwhen

p k r r p r k p r k k

r p k k r p k p k p k p k k

p k

1 e e 1 0

e e e

e 1 0

21

k k

k k k

k
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intra inter

c
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2
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2

intra inter

rand intra

inter inter

inter inter inter

inter

( )( ) ( )
( ) ( )

( )
( )

- + - - - =

 + + - -

+ - =

- -

- - -

-

which can be solved using the quadratic formula for rc.

3. Treelike network of interdependentmodular networks

Wenow consider the case of a treelikeNoN (see figure 1(a))with full dependency and no-feedback, i.e. if
network i depends on network j then each node in i depends on a single node in j and vice versa. As stated earlier,
this can serve as a goodmodel of infrastructure across cities.We remove a fraction r1 - of the interconnected
nodes fromone of the networks and aim to obtain themutual giant connected component. The fraction of
nodes which fail due to the effect of the dependencies is given by

p 1 e . 22k k P
n

dep

1
intra inter( )( ) ( )= - - +

-
¥

This can be understood by noting that each node is a part of a n-tuple of interdependent nodes andwe require
that all these nnodes be in their networks respective giant components. Therefore, besides the node itself, there
are n 1- dependent nodes thatmust all be in their networks’ respective giant components after the initial
attack.

If we combine equations (11), (12), and (22)we obtain themutual giant connected component in theNoN,

P
r r r

r

e 1 1 e 1 e 1 e 0 1,

1 e 0.

23

k k P k k P k k P
n

p

m
mk P n

1
inter intra intra inter intra inter

intra

( )( ) ( )( )
( )

( ) ( )( )

( )

⎧
⎨⎪

⎩⎪
=

- - + - - < <

- <
¥

- - - + - +
-

-

¥ ¥ ¥

¥

Since the dependency links are withinmodules, equation (23) for r 0< is simply the equation for a treelikeNoN
with k kintra= and a giant component that is smaller by a factor ofm. Nonetheless the value of pc will be the
same as for a regular treelikeNoNwith k k .intra= We show analytic solutions of these equations alongwith
simulations infigure 2 for varyingm and varying n. By varying either of these parameters wemay have either one
or two abrupt percolation transitions. Note that for the case of varying n the point of the first abrupt drop is the
same for all curves. This is because the point where themodules separate depends only onm,α and k ,tot but not
on n (see figure 3). It is worth noting though that for larger n, the second regime, wheremodules exist
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independently (see figure 3(b)), may not be present if the individualmodules do not have enough intralinks to
survive the damage from the dependencies.

We demonstrate that in the case where there are two abrupt transitions, thefirst transition (at higher p)
represents the separation of themodules andwe therefore havem individualmodules functioning separately.
This is indicated by the spike in the size of the second largest component, P ,2¥ infigure 2(c) and is demonstrated
visually infigure 3. In general for a network composed ofmmodules, there arem equal components functioning
independently. After the separation intomodules, we observe a second abrupt transition due to the
interdependence.

Asm increases, the network begins to actmore like a regular network of n interdependent Erdős–Rényi
networks. It is clear from the framework developed until now that there exists a critical value ofm,m* above
which the systemundergoes a single transitionwhereas belowm* the systemfirst separates into separate
modules before collapsing entirely.

Wewill nowdetermine pc andm
* for this systemusing the framework developed in chapter II. For certain

regimes there exist twofirst-order, discontinuous jumps in the size of the giant component (seefigure 2(a)).We
define pc as the point where the first (higher p) jumpoccurs, regardless of whether there is a second jump
afterwards. If desired, the point of the second jump can be found by solving for the critical threshold for a typical
Erdős–RényiNoNwith k k .intra= Wewill now solve for pc by first finding rcusing equation (21) and then

Figure 2. (a) and (b)Results of simulations and theory according to equation (23) formodular networkswith 100a = and k 4.tot =
In (a)we varymwith n=2 and in (b)we vary nwithm=2.Note that by varying either of these parameters wemay have either one or
twofirst order transitions (at two different values of p). Note that for the limiting case,m=1 and n=2, i.e. the squares in (a)we
obtain the known result of Buldyrev et al [3] p k2.445 0.611c tot= = for k 4.tot = For largerm, pc increases, implying thatmodular
networks aremore vulnerable under attack. In (c)we show the size of the second largest giant component, P ,2¥ for the same
parameters as in (a). This plot verifies that thefirst abrupt drop in P¥ is the result ofmodules separating and there is a regimewhere the
largest and second largest components are essentially equivalent. Note as the number ofmodules increases the size of the second
largest component decreases, yet there aremore surviving components, i.e. form=10 there are 10modules of similar size. In (d)we
show pc, defined as the point of thefirst abrupt drop (at the largest p), as a function ofm for several values ofαwith k 4.tot = Note that
below m ,* pc drops quickly according to equation (27) yet asm increases it decreases slowly according to equation (26). The sharp
kinkwhere pc changes behaviors ism

* and for m m*> there is only one single transition rather than two. Simulation points and error
bars correspond to themean and standard deviation respectively, obtained from at least 10 simulations carried out on networks of at
least N 105= nodes.
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converting it to pc using equation (13).We recall that for the case of trees we use p 1 e k k P n
dep

1intra inter( )( )= - - + -¥

in equation (21) aswas done in equation (23). This gives us the following systemof equations

p 1 e , 24k k P
n

dep

1
intra inter( )( ) ( )= - - +

-
¥

P r re 1 1 e 1 e 1 e , 25k k P k k P k k P
n

c c

1
inter intra intra inter intra inter( )( ) ( )( )( ) ( ) ( ) ( )= - - + - -¥

- - - + - +
-

¥ ¥ ¥

r
b b ac

a

4

2
26c

2

( )=
- + -

with the values of a, b and c being the coefficients from equation (21).
We see infigure 2(d) that the simulations fit the theorywell except near the point wherewe switch to having a

single abrupt transition. This small discrepancy is because there are large fluctuations in the fraction of
individualmodules that are part of the giant component, which are not considered in themean-field approach.
Oncewemove away from this critical point the theory again fits the simulations.

In order tofindm*we compare the value of pwhen r=0 to the pc for a treelike network of networkswith
k k .intra= Essentially thismeans comparing the fraction of nodes needed to remove all interconnected nodes
and the value of pc where themodules themselves break apart.

We can triviallyfind the value of pwhen r=0 by noting that r .
p e

1 e

k

k

inter

inter
= -

-

-

- Weobtain in terms ofm

p r 0 e . 27k m
mtot

1
1( ) ( )= = - a

-
+ -

Wenote that the value of pc for a treelike network of networks (without communities)was determined byGao
et al [10]. In order tofind pc we firstfind the value of k ,min

¯ the degree at which the systemundergoes a transition.
This is done using the systemof equations

f nW
n

1
e , 28n

c
1

1

( )⎜⎡
⎣⎢

⎛
⎝

⎤
⎦⎥= - - -
-

k nf f1 , 29
n

min c c

1 1( )¯ ( )( )⎡⎣ ⎤⎦= -
- -

whereW(x) is the Lambert function.
Then p k kc min

¯= < >, where k< > is the average degree of each network, in our case k k .intra< > = We
obtain

Figure 3. (a)Demonstration of the network in the initial state before the attack. The red links are connectivity links and the torquoise
links are dependency links.We highlight the interconnected nodeswhichwill be removed by the attack (note that we only perform the
attack on one of the networks). (b)Demonstration of the network after the removal of the interconnected nodes. As shown, the attack
divides both networks into their separatemodules andwe have two components each ofwhich behaves like a typical interdependent
network of Erdős–Rényi networks.

6

New J. Phys. 17 (2015) 123007 LMShekhtman et al



p . 30k m

kc
1min

tot
( )

¯ ( )= a
a

+ -

The value ofm* is found by setting equation (27) equal to equation (30) to obtain

k m

k

1
e . 31

k m
m

min

tot

1
1

tot
( )¯

( )
* *

*
a

a

+ -
= a

- -
+ -

This equation can be solved numerically for any value of n andα. Essentially, there are two competing effects in
this equation. The left side represents the value of pc for an interdependent network of networkswith k kintra=
and the right side represents the point wherewe have removed all nodes with an interlink. Asm increases, kintra

decreases,meaning that themodules becomemore vulnerable and pc from the left side of the equation increases.
On the other hand, asm increases, kinter increases somore nodes have an interlink and pc on the right side of the
equation decreases (more resilient).We demonstrate these two effects and show the point where they intersect in
figure 4(a). Further we show the value ofm* for various values ofα and n infigure 4(b). Also, as n increases, kmin

¯
increases,meaning the affect of the interdependence is stronger. Essentially it causes the dashed curve in
figure 4(a) to increase, thus decreasing m ,* the point where the curves intersect. Thus for larger nwehave a
lower m ,* as seen infigure 4(b).

4. Loop of interdependentmodular networks

Wewill nowdemonstrate our approach on another examplewherewe consider the specific case of a directed
loop ofmodular networks. In this case, for simplicity, we perform the initial attack on all of the networks rather
than just one of them.Also, whereas the dependency links in chapter III. were bidirectional herewe use
unidirectional links as part of a loop (see figure 1(b)). The fraction of nodes which are interdependent is defined
as q, i.e. q1 - is the fraction of autonomous nodes, and is assumed here, for simplicity, to be the same for all
pairs of networks.Here again, wewill only consider dependency links which are restricted to being between two
networks but within the samemodule. It has been shown that for looplikeNoNs the number of networks in the
loop is not relevant to the calculation [4, 38, 53].

The equation governing this system is once again equation (12)with p q qP1 .dep ( )= - + ¥ Substituing

this into equation (12) gives

P
r r q qP r

p

m
q qmP r

e 1 1 e 1 e 1 0 1,

1 e 1 0.
32

k k P k k P

k mP

inter intra intra inter

intra

( )( )( ) ( )
( )( )

( )( )
( )

⎧
⎨⎪

⎩
⎪⎪

=
- - + - - + < <

- - + <
¥

- - - +
¥

-
¥

¥ ¥

¥

Wecompare simulations and theory according to equation (32) infigure 5.We note that here if the system
undergoes two transitions, thefirst one (at a higher p) is abrupt and the second one is either continuous or
abrupt. For the parameters we used, looplike networks of networks undergo a second order transition [10, 53],
yet for different values of ktot and q they can undergo an abrupt transition. For looplikeNoNs, the number of

Figure 4. (a)We showhow to obtainm* by plotting equation (27) and equation (30) for the case of n=2, k=4, and 100.a = The
curve showing equation (27) decreases withm since the number of interlinks increases withm so a larger fraction of nodes have an
intermodule connection. On the other hand, pc in equation (30) increases since forfixed k, asm increases kintra decreases so the
modules themselves aremore vulnerable. The value ofm* is determined by the intersection of the two curves. (b)The value ofm*

versusα according to equation (31) for several values of nwith k=4 is shown.
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networks, n, does not play a role but increasing q the fraction of interdependent nodes, weakens the resilience of
the system (seefigure 5(b)).We further note that for looplikeNoNs there is amaximum coupling, qmax above
which the entire network collapses even for p 1. Our value for qmax will be the same as that of Gao et al [53],
namely q k1 1max tot= - since for p=1 our networks respond to randompercolation like ERnetworks.
Indeed, infigure 5(b)we donot showhigher values of q since the systemdoes not survive even for p=1 if
q k1 1 .tot> - For example, with k 4tot = (the value in our plots)we obtain amaximumcoupling of q 0.75,=
abovewhich the system collapses even for p 1.

Following the analysis in chapter II we canfind pc using equation (21). In this case p q qP1 ,dep ( )= - + ¥
whichwewill substitute into equation (21). Our system corresponding to equation (26) becomes

p q qP1 , 33dep ( ) ( )= - + ¥

P r re 1 1 e 1 e , 34k k P k k Pinter intra intra inter( )( )( ) ( )( ) ( )= - - + -¥
- - - +¥ ¥

r
b b ac

a

4

2
35c

2

( )=
- + -

with the values of a, b and c being the coefficients from equation (21).We plot the pc obtained based on the
theory and compare with simulations infigure 5(c).

Tofindm*weuse the samemethod aswas done in chapter III for treelike networks of networks. Specifically
we compare the pc at which themodules become separated and the pc for a network of networkswith k k .intra=
Wehave fromGao et al [53] that pc for a looplikeNoN is p .

k qc
1

1( )
=

-
If we solve this and use the representation

withα andm rather than k ,intra we obtain

m

k q

1

1
e . 36

tot

k m
m

tot 1
1

( )
( )

( )* *a
a
+ -

-
= - a

-
+ -

Figure 5.We show simulations and theory according to equation (32)with k=4, 100a = and (a) q=0.5 and varyingm; and (b)
m=2 and varying q. In (c)we show pc as a function ofmwith q=0.5 and several values ofα. Until the sharp kink the theory is
governed by equation (27)whereas after the kink pc changes according to equation (35). In (d)we show the value ofm* versusα for
several values of qwith k=4. Simulation points and error bars correspond to themean and standard deviation respectively, obtained
from at least 10 simulations carried out on networks of at least N 105= nodes.
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The values of m ,* as a function ofα, based on equation (36) can be seen infigure 5(d). Increasing q decreases the
robustness of the individualmodules and thus decreases the value ofm* since the system ismore likely to
collapse before themodules are separated.

5.More realistic features of interdependentmodular networks

The previous cases focused on a simplemodel of equal sizedmodules with dependency links being restricted to
bewithin the samemodule. Herewewill considermore realistic variations of thismodel and discuss what effect
they have on our results.

First, it is noteworthy that real communities, e.g. cities, are not all of equal size. In fact the distribution of city
sizes is actually rather heavy-tailedmeaning that some cities are significantly larger than others [54].
Nonetheless, we assume that the level of connectivitywithin the various cities is likely similar. In other words,
power stations in different cities tend to have approximately the same number of connections to other power
stations in the same city and to power stations in other cities. So long as kinter and kintra remain the same, our
results for rc and pc are robust to varying sizes ofmodules. This is essentially due to the fact that once the system
size becomes large enough its behavior approaches the infinite limit (with non-equal sizedmodules the relative
size of eachmodule changes, yet allmodules have the same critical properties). The sole difference in the case of
non-equal sizedmodules occurs in the case of m m*< and r 0,< in other words after themodules have
separated. In this case P¥will be slightly larger since one of the survivingmodules will contain a larger fraction of
the remaining nodes. For example, for the case shown infigure 6(b) onemodule has 70%of the nodes, thus
when themodules split apart, the giant component is larger since one of the remainingmodules is larger.
Nonetheless the value of pc is the same as for equal-sizedmodules.

A second question is what happens if dependency links are not strictly required to bewithin the same
modules. Presumably there could be some overlap of dependency links between different cities, even if these
links are relatively scarce.We note that for the case r0 1,< < the systemhas identical behavior because the
damage is the same in eachmodule regardless of whether its source is fromdependent nodes in the samemodule
or othermodules. Thus, it can bemodeled using the corresponding parts of equations (23) and (32).

Now, due to dependencies between differentmodules themodules themselves become less robust as seen in
figure 6(a).When themodules split apart in one layer, the damage from the split in one layer encompasses parts
of differentmodules in the other layers (as opposed tofigure 3). Thus an individualmodule ends up being part of
different components, reducing the number of intraconnections between the nodes in themodule.

Figure 6.Herewe plot results fromnumerical simulations on networks of at least 105 nodes for two additional realistic cases. The
results here are for treelikeNoNswithm=2, 100,a = k=4, q=1, and n=2.We note that the lines in both plots aremerely a
guide to the eye and do not represent theoretical predictions. In (a)we show the giant component for the case of equal sizedmodules
(50–50 split of nodes) and for the case when onemodule has 70%of the nodes (70–30 split). The critical transition points are the same
in both cases, but the size of the giant component after splitting themodules is larger in the case of a 70–30 split. (b)Herewe show the
results of allowing dependency links to be betweenmodules.We also plot the case of dependency links onlywithinmodules as a
reference to the case of having 10%of dependency links betweenmodules and the entirely random case where form=2, 50%of
dependency linkswill be betweenmodules. The plot clearly shows that until the point where themodules split apart, all cases behave
similarly. However, adding dependency links betweenmodules leads themodules to be less resilient after the separation.
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One can see thismost clearly in the limiting case of totally randomdependency links (i.e. no bias towards
dependency links beingwithin the samemodule)wherewhile one networkwill separate according to its
modules, the components in the other networks will include parts of severalmodules and thus will have a lower
overall level of connectivity. Essentially the individualmodule becomes split upwith parts of it in different giant
components corresponding to the separation of themodules in another network. In the case of random
dependency links for treelike networks (the circles infigure 6(a)) the equations governing the system are

P
r r r

r

e 1 1 e 1 e 1 e 0 1,

1 e 1 e 0.

37

k k P k k P k k P
n

p

m
mk P k P n

1

1

inter intra intra inter intra inter

intra intra

( )( ) ( )( )
( )( )

( ) ( )( )

( )

⎧
⎨⎪

⎩⎪
=

- - + - - < <

- - <
¥

- - - + - +
-

- - -

¥ ¥ ¥

¥ ¥

It is alsoworth noting that the decreased robustness of themodules themselves decreasesm* sincewhen the
network breaks apart it is now less likely that individualmodules have enough remaining connectivity to
continue functioning.

6.Discussion

In summary, we have developed a framework for studying attacks on interdependentmodular networks. Our
results show thatmodularNoNs can behave significantly differently from randomNoNs or spatially embedded
NoNs in that theymay undergo two separate percolation phase transitions. One transition occurs (at a higher p)
where themodules become separated, and a second transition occurs when the individualmodules collapse. For
the case of a fully interdependent treelikeNoNwith bidirectional dependency links, both of these transitions are
first order, whereas for a looplikeNoNwith unidirectional dependency links the first transition (higher p) is
abrupt while the second is either abrupt or continuous depending on the parameters. These resultsmight be
relevant formany interdependent systems such as financial networks, biological networks and are particularly
relevant formodels of city infrastructure wheremost of the interdependence presumably occurs within a single
city (regarded here as a community) even though there are connections to other cities. Another reason our attack
is realistic for city infrastructure is because the interconnected nodes contain the interconnected links that are
longer and thereforemore likely to fail [52].

We also note that the theoretical approach developed here can be used formany other types of targeted
attack and for other network of network structures aswell.
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