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Abstract
Motivated by the problemofmany-body localization and the recent numerical results for the level and
eigenfunction statistics on the random regular graphs, a generalization of the Rosenzweig–Porter
randommatrixmodel is suggested that possesses two transitions. One of them is theAnderson
localization transition from the localized to the extended states. The other one is the ergodic transition
from the extended non-ergodic (multifractal) states to the extended ergodic states.We confirm the
existence of both transitions by computing the two-level spectral correlation function, the spectrumof
multifractality f ( )a and thewave function overlapwhich consistently demonstrate these two
transitions.

1. Introduction

Motivated by the problemofmany-body (MB)Localization [1] and the applicability of the Boltzmann’s statistics
in interacting disorderedmedia [2], there was recently a revival of interest to the Anderson localization (AL)
problemonhierarchical lattices such as the Bethe lattice (BL) or the random regular graph (RRG). Due to
hierarchical structure of the Fock space connected by the two-body interaction, statistics of randomwave
functions in suchmodels is an important playground forMB localization. In particular, the non-ergodic
extended phase on disordered hierarchical lattices couldmodel a breakdownof conventional Boltzmann
statistics in interactingMB systems and an emergence of a phase of a ‘badmetal’ [3] or unconventional fluid
phases [4] in systems of interacting particles.

However, even for the one-particle AL existence of such a phase in afinite interval of disorder strengths is a
highly non-trivial issue.

According to earlier studies [5, 6] there is only one transition in suchmodels at a disorder strengthW WAT=
which is theAL transition (AT) that separates the localized and ergodic extended states. However, recent
numerical studies [7] of level statistics onRRG seem to indicate on the second transition atW W WET AT= <
which is identified as the transition between the ergodic and non-ergodic extended states (ET). Subsequent
studies [8, 9] raise doubts about the existence of the second transition onRRG.Numerical results of [8, 9]
indicate on the non-ergodic states onRRG in awide range of disorder strengths down to very low disorder
W W5 17.5AT= » , while in [9] it is demonstrated how an apparent non-ergodic behavior for the
intermediatematrix sizesN in Levy randommatrix (RM) ensemble evolves into the ergodic one at largerNʼs.
Complexity of RRG and the controversy associatedwith existence of the ergodic transition atW WET=
necessitate a search for a simplermodel inwhich such a transitionmay occur.
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Inspired by the success ofWigner–DysonRM theory [10]which predictions are relevant in such seemingly
differentfields of physics as nuclear physics and nano- andmesoscipic physics, our goal is to search for a RM
model that would be able to give a simple and universal description of all the three phases: goodmetal,MB
insulator and ‘badmetal’, which are relevant in the problemofMB localization. An important heuristic
argument to construct such amodel is that RRGwith disordered on-site energies ie is essentially a two-step
disorder ensemble. The disorder of thefirst level is the structural disorder due to the random structure of RRG
where each ofN sites of the graph is connectedwith thefixed number K 1+ of other sites in a randommanner.
An ensemble of tight-bindingmodels on such graphswith deterministic on-site energies ie and hopping
integrals is believed to be equivalent to theGaussianRMensemble [11]. The disorder of the second level is
produced by randomization of ie fluctuating independently around zerowith the distribution function p ( )e .
For numerical calculations this distribution is often taken in the form p W W2( ) ( ∣ ∣)e q e= - , with x( )q
being theHeaviside step function.

One can expect that the following RMensemble (the Rosenzweig–Porter (RP) ensemble [12]) is a close
relative of RRGwith on-site energy ie disorder. It is an ensemble ofN×N randomHermitianmatrices which
entriesHnmwith n m> are independent randomGaussian numbers, real for orthogonal RPmodel ( 1b = ) and
complex for the unitary RPmodel ( 2b = ), fluctuating around zerowith the variance H 2nm

2∣ ∣ ( )b sá ñ = . The
diagonal elements have the same properties with the variance H 1nn

2á ñ = . The case 1s = corresponds to the
Gaussian orthogonal (GOE) orGaussian unitary (GUE) ensembles and represents the structural disorder in
RRG. The additional ie -disorder in RRG corresponds to 1s < . One should also take into account that in order
to significantly deviate from theGOEorGUEbehavior, the ratio H Hnm nn

2 2∣ ∣á ñ á ñmust be proportional to some
negative power of thematrix sizeN, as the number of the off-diagonal terms is N~ times larger. Thuswe
consider themodel:

H H N1, 2 , 1nn n m
2 2 2∣ ∣ ( ) ( )b s lá ñ = á ñ = = g

¹

where O N 0( )l ~ and γ is themain control parameter of the problem.
One can estimate the strength of disorder required for the AL transition as corresponding to the typical

fluctuation of diagonalmatrix element equal to the typical off-diagonalmatrix element times the coordination
numberK. For the coordination number K N~ (each site is connectedwith any other one) this results in

N 1s ~ , or N1 2s ~ . However, this estimation does not take into account a random, sign-alternating
character of the off-diagonalmatrix elements. It is likely that for sign-alternating hopping there is another
relevant coordination number N~ with the critical scaling N1s ~ . Aswe showbelow it corresponds to the
ergodic transition. For technical reasons themost significant progress in the analytical studies of themodel was
achieved [13, 14, 16] for the ‘unitary’RP (URP) ensemble. The conclusionwas that at 2g = the spectral form-
factor (two-level correlation function) is neither of theWigner–Dyson nor of the Poisson form [13, 15, 16]
which is typical for the AL transition point. In contrast, at 1g = the level statistics was found to beGUE [14].
The papers [13, 14, 16] have a status of classic keynote papers in the field.

TheDyson ideas of the Brownianmotion of energy levelsfirst applied to the RP ensemble in [13]were
developed in the series of works [17, 18]. It was shown that the possible transitions in the level statistics are
associatedwith the fixed points of parameter N N N N2 2( ) [ ( )] [ ( )]s d dL = µ g- , where N( )d is themean
level spacing. Then assuming N N1( )d µ established in [16] for 1g > one obtains the transition point at

2g = . If, however, theWigner–Dyson semicircle level density is assumedwith N N1( )d µ , then the
transitionwould occur at 1g = [17]. Unfortunately, N N1( )d µ only at 0g = . For 0 1g< the

following result is valid (see e.g. equation (170) in [19]) for themean density of states S S2 2( ) ( )r e e p= - ,
where S H N

n nm
2 1∣ ∣å= á ñ µ g- . Thuswe obtain N N N1 0 1 2( ) ( ( )) ( )d r= µ g- + for 0 1g< and

N N1( )d µ for 1g > , resulting in NL µ for 0 1g< and N 2L µ g- for 1g > .We conclude that the
only fixed point ofΛ is possible at 2g = , and no transition at 1g = can be obtained from the results of [17, 18].

In this paper by amore sophisticated analysis of the two-level correlations and the eigenfunctions statistics
we show that the above extension of the RPmodel indeed contains not one but two transitions. One of them at

2g = corresponds to the transition from the extended to the localized states. However, the extended states
emerging at 2g < are not ergodic: their support set contains infinitelymany N D1 sites in the N  ¥ limit,
which, however, is a zero fraction of all sites, since D 11 < . Such non-ergodic extended states onRRG are
recently discussed in [8].With further decrease of γ the second transition at 1g = happenswhich is a transition
from the non-ergodic extended states to the ergodic extended states with D 11 = similar to the eigenstates of
theGOE.

We prove this statement in three steps. As the first stepwe use the perturbative arguments to compute the
statistics of wave function amplitude ro

2∣ ( )∣y in a certain observation point ro.We obtain a drastic change of the
character of this distribution at 1g = and 2g = which is summarized infigure 1. This result is fully confirmed
by a numerical diagonalization of theHamiltonian (see figures 2–4). It is also confirmed by the numerical
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Figure 1.The spectrumof fractal dimensions: (a) the singular spectrum in the localized phase at 2g > . It corresponds to the same
exponent qt as for f ( )a shown by the dashed line. (b)The triangular spectrumat the localization transition point 2g = . (c)The
spectrumwith the gap 2mina g= - for the intermediate phase 1 2;g< < (d) the ergodic transition at 1g = corresponds to the
collapse of 2 1max min ( )a a g- = - .

Figure 2. Spectrumof fractal dimension for 3g = obtained numerically as in [8]. The linear part of the extrapolated f ( )a (solid red
line) is exactly as expected f ( )a (black dashed line). The curves for f N,( )a for increasingN are shown by black, blue, green and
orange lines frombottom to top. The top of the singular peak at 0a = shown by the points of the corresponding color, extrapolates
to zero as expected (see inset); (inset) the N1 ln extrapolation of the singular peak value f f N0,peak ( )= .

Figure 3. Spectrumof fractal dimension in the intermediate phase for 1.5g = obtained numerically as in [8]. All notations are the
same as in figure 2. Line colors correspond to the same values ofN as in figure 2. Expected f ( )a is shown by a black dashed line.
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analysis of themoments of randomwave functionswhich determine their Shannon entropy and the support set
dimensionD1 (seefigure 5). Thenwe compute numerically the overlap of amplitudes for two different wave
functionswith the energy differenceω andfind the scalingwithN of the Thouless energy E N z

Th ~ - which
exponent z changes abruptly at 1g = and 2g = (seefigure 6). Finally, we perform a rigorous calculation of the
spectral form-factor which also shows the transition at 1g = and 2g = (see figure 7). In the last sectionwe
compare the corresponding results for ourmodel and for the RRG anddemonstrate their similarity. It allows us
to unify bothmodels in a special universality class of randomhierarchicalmodels which differs from the one
realized in localization transition points of two- and three-dimensional Andersonmodels. Further details
concerning thismodel can be found in [20].

2. Statistics of eigenfunction amplitudes

As the off-diagonalmatrix elements in equation (1) are small, one can employ the perturbation theory for
computing the distribution function of the amplitudes x N ro

2∣ ( )∣y= . Thefirst order perturbation theory
gives:

r H H H n m, , 2n m nm nn mm
2

2 2( ) ( )∣ ( ) ( )y = - ¹

where themaximumof rn ( )y is supposed to be at r rn= .

Figure 4. Finite-N spectrumof fractal dimensions f N,( )a for 0.75g = andN=210–215 obtained by the rectification procedure of
[8]. For comparisonwe also present f N,( )a (shown by a red line) for the Porter–Thomas distribution ofwave function amplitudes
in theGOEobtained by the same procedure at N 215= . It almost coincides with the (violette) curve for f N,( )a computed at the
same N 215= for ourmodel with 0.75g = . In the inset: P xln ( ) versus xln for the same 0.75g = and system sizes as in themain
plot. The corresponding curve for GOE is shown in red. All the curves are almost indistinguishable.

Figure 5.The support set dimension D1 ( )g and the global curvature C N1 ( )g extracted from thefit
x xlná ñ = D N C C N1 ln N1 0 1

1( )- + + - versus γ. The dashed line is the prediction forD1, equation (9); (inset) the average
x xlná ñversus Nln for γ from0.75 (bottom) to 2.25 (top)with steps 0.25. It is relatedwith the Shannon entropy

r r N x xln ln ln
r

2 2∣ ( )∣ ∣ ( )∣å y y- = - á ñ. The global curvature C N1 changes sign at the transition points 1g = and 2g = .
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The perturbative series converge absolutely if the typical off-diagonalmatrix element H Nnm typ
2∣( ) ∣ l~ g-

times the coordination numberN ismuch smaller than the typical difference of the diagonalmatrix elements
H H W Nnn mm typ∣( ) ∣ ( )d- ~  . Thus it converges absolutely for 2g > irrespectively of the statistics of

diagonalmatrix elements. For 2g the convergence of the series occurs only because of the randomand
independently fluctuating signs ofHnm and H Hnn mm( )- . Although it is hard to prove such a convergence
rigorously, a plausible argument in its favor is that the effective coordination number of oscillatory
contributions is N rather thanN. The corresponding criterion of convergence is N N W2l g-  which is
satisfied at 1g > .

Consider the regular part of the characteristic function Q e N ri o
2( ) ( )x = á ñx y . For theGaussian distribution

ofmatrix elements equation (1)we obtain Q N( ) ( )x x s= , where:

e Erfc i 2 1 2i . 3i 2 ( )( ) ( ) z z z p= - » - -z-

The eigenfunction amplitude distribution function P x
N

e
d

2
i x

N( ) ( )ò z
z

p s
= z

-¥

¥
- s at x N O N1( )s ~ g-

is dominated at 1g > by small 1z  . That is why it is only the expansion of equation (3) at small ζwhatmatters
forP(x) at 1g > . Thuswe obtain for the regular part of the function P(x):

x N x2 . 4
1 1 2 3 2( )( ) ( ) ( ) p s=

-

There are two normalization conditions forP(x): the normalization of probability equation (5) and the
normalization of thewave function equation (6):

P x xd 1, 5
0

( ) ( )ò =
¥

x P x xd 1. 6
0

( ) ( )ò =
¥

Equation (5) imposes a cut-off x Nmin
1( )~ g- - to equation (4) at small x, while equation (6) determines the

upper cut-off x Nmax
1~ g- . A caution, however, should be taken: by normalization r 1

i i
2∣ ( )∣å y = the

amplitude r 1i
2∣ ( )∣ y on any lattice site cannot exceed 1, and therefore x N . One can see that the above

estimation for xmax is valid only for 2g < when N N1g-  . For 2g > a correct x Nmax = . In order to
compensate for the deficiency of normalization in equation (6) one has to assume a singular part of
P x x A x N( ) ( ) ( ) d= + - . One can see that for 2g > equation (6) is dominated by the singular term, and
A N 1= - . This corresponds to the strongly localizedwave functions. Themechanismof emergence of the
singular term at theAL transition at 2g = is somewhat similar to the Bose-condensation, where the singular
term also appears because of the deficiency of normalization of the Bose–Einstein distribution.

One can express the distribution function equation (4) through the spectrum of fractal dimensions [8, 21]:

f f N xN x Nlim , lim ln ln , 7
N N

( ) ( ) [ ( )] ( )a a= =
¥ ¥

where x N1 ln lna = - or r No
2∣ ( )∣y = a- . Using equations (4)–(7) one obtains:

f 2 1 2, . 8min max( ) ( ) ( )a a g a a a= + - < <

The upper cutoff maxa g= corresponds to the lower cutoff xmin. The lower cutoff mina depends on γ. In the
localized region 2g > ,figure 1(a), 0mina = . At the AL transition point 2g = the function f ( )a has the same
triangular shape as atW WAT= onRRG, figure 1(b). In the region of the extended non-ergodic states
1 2g< < , figure 1(c), 2 0mina g= - > . It is remarkable that in the entire region 1 2 g the symmetry
[21, 22] f x f x x1 1( ) ( )+ = - + holds. Finally, at 1g = the two limits mina and maxa collapse in one point

1a = whichmarks the transition point to the ergodic state, figure 1(d).
Note that f ( )a for 2g > (see figure 1(a)) has a singular peak at 0a = which corresponds to the singular

term N x N1 ( )d -- inP(x). This singular f ( )a is not a limit of any convex function.However, onemay easily see
that all themoments N Nq2 q∣ ∣yá ñ ~ t- have the same exponents qt as for the ‘convex’ f ( )a shownby the
dashed line infigure 1(a): f ( )a a g= for 0 a g< < . Such a triangular f ( )a with the slope smaller than 1/2
also holds in the localized phase onRRG [8].

The numerical calculation of f ( )a which involve the rectification and extrapolation procedures described in
[8], fully confirms the above results. Infigure 2we present the results of this calculation forN=28–214 and the
extrapolated f ( )a (shown by a solid red line) for 3g = which perfectly coincides with the prediction of our
perturbative analysis above. The similar coincidencewas obtained for 1.5g = , while for 0.75g = the
distribution function P(x) is practically indistinguishable from the Porter–Thomas distribution of theGOE.
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3. The support set dimensionD1

By calculating the Legendre transform qt [21] of f ( )a (shown infigure 1) onefinds that in the intermediate
phase 1 2g< < all fractal dimensions D q 1q q ( )t= - for q 1 2> are the same and equal to:

D D q2 , 1 2 . 9q ( ) ( )g= = - >

Thus the support set of a typical wave function is a fractal containing N ND 21 = g- sites. As N 2  ¥g- in the
limit N  ¥ it is an extended state. However the support set contains a fraction of all sites F N1= g- tending
to zero in this limit. Thus it is a non-ergodic state.

In the localized phase 2g > (including the critical point 2g = )we obtained:

q
q q

q

1, 1

0, 1 . 10( ) ( )
⎪

⎪

⎧
⎨
⎩

t
g g

g=
- <

>

One can see that the fractal dimensions D 0q = only at q 1 g> , while they are non-zero and negative for
q0 1 g< < . This is not exactly the behavior of the typical Anderson insulator where all fractal dimensions

with q 0> are equal to zero. The behavior similar to equation (10)were found in certain two-dimensional
randomDiracmodels [25–28]. Such a quasi-localized phase is referred to as the frozen phase and the
corresponding transition is known as the freezing transition. In such a phase a typical wave function amplitude
has several sharp peaks separated by valleys where 2∣ ∣y is not exponentially but only power-law small inN
( Ntyp

2∣ ∣y > g- in our case). The same behavior is also found for the RRG [8]withW WAT> .

In order to check the existence of the intermediate phase numerically we computed the average x xlná ñ
which is directly relatedwith the Shannon entropy and the dimensionD1 of the support set of fractal wave
functions [23]. The results are shown in the inset offigure 5whereN span from256 up to 32768. The
corresponding values ofD1 extracted from the linear in Nln fit are shown infigure 5which are consistent with
the transitions at 2g = and 1g = . The deviation from the expected D 21 g= - shownby a dashed line in
figure 5 is afinite-size effect. Indeed, the correlation volumeNc close to the localization transition at 2g = is
exponentially large N ec

c
2µ g- . This follows from equation (17) of section 5where the Poisson limit is

reached only for N O 12 ( )g-  or N Nln ln 1 2c ( )g~ - . The similar exponential dependence

N ec W W
c

c~ - of the correlation volumewas obtained on the BL [24]. For system sizes N Nc one should
see the properties of the critical point 2g = where D 01 = . Thus in the vicinity of the transition point the
support set dimension extracted from the finite-size simulations should show a tendency towards smaller values
as infigure 5.However, for 1.5g < at our systems sizes the support set dimensionD1 approaches the values
expected in N  ¥ limit (dashed line in figure 5). This fact implies that for 1.5g < we reached N Nc and
thus itmay serve as numerical evidence of convergence and existence of non-ergodic extended phase in the
thermodynamic limit.

We also introduced the N1 corrections to the fit with itsmagnitude C N1 being ameasure of the global
curvature of the x xlná ñversus Nln dependence. Remarkably, C N1 changes sign at both the transition points

1g = and 2g = (though the positive C N1 is very small for 2g > ).We also checked that it changes sign at the
localization transition point of the 3DAndersonmodel (not shown).We believe that the changing of sign of
C N1 is a convenient way to identify the points of both localization and ergodic transitions.

4.Overlap of differentwave functions

Nextwe compute numerically the overlap of different wave functions K N r r
r

2 2( ) ∣ ( )∣ ∣ ( )∣åw y y= á ñe e w+ .
Note that for the ergodic wave functions ofGOE K 1( )w = is independent of the energy differenceω, as in this
case the overlap is always 100%.Our results presented infigure 6 show that for 1g > the overlap K ( )w has a
plateau at EThw < which is followed by a fast decrease K 1 2( )w wµ for EThw > . The Thouless energy
ETh [29] that separates theGOE-like behavior (plateau) from the system specific behavior (K 2( )w wµ - ),
depends onN as a power-law N z- . However, the scaling exponent z is different in all the three phases (see
figure 6). In the localized phase figure 6(b)we obtained z 2g= which corresponds to rare resonances when

H Nn m
2∣ ∣w < ~ g

¹
- . In the extended non-ergodic phase figure 6(a)we found E N ND

Th
1 d~ ~g- , where

N p1 0( ( ))d = is themean level spacing. This corresponds to allND sites in the support set being in resonance
with each other. The correspondingND states produced by linear combinations of basis states localized on
resonant sites form amini-band of levels of thewidth E ND

Th d~ . Clearly, the states inside such amini-band
should have theGOE-like correlations. On the contrary, the states separated by the energy distance EThw >
should belong to different support sets which poorly overlapwith each other. At the ergodic transition at 1g =
and in the entire extended ergodic state at 1g < we obtain E O NTh

0( )~ , and the plateau extends to entire
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spectral band-width. The emergence of such a plateau that survives the limit N  ¥ is a signature of the
ergodic state [30].

Surprisingly, the overlap function K N 01 2( )w w~ g- as N  ¥ at any fixedω and 1g > . This
phenomenon of ‘repulsion of wave functions’ [30] is a peculiar feature of ourmodel. The non-ergodic fractal
states at the localization transition points of the two and three- dimensional Andersonmodels of theDyson
symmetry classes, as well as those of the power-law banded randommatrices [21, 30, 31] show a different
behavior. In thesemodels, the Thouless energy for fractal states is proportional to themean level spacing
ETh d~ and the behavior for E NTh ( )w > is described by the conventional Chalker’s scaling [32, 34, 35]:

K . 11D1 2( ) ( )w w~ - +

Only at a very large energy separationsω of the order of the total spectral band-width, the ‘repulsion of wave
functions’was observed [30].

A remarkable feature of the presentmodel is that the Thouless energy in the region of extended non-ergodic
states ismuch larger than themean level spacing:

E N N . 12D z
Th 2 ( )d~ µ -

One can interpret this relationship as a non-trivial dynamical scaling exponent

z D1 1. 132 ( )= - <

For non-interacting systems in two or three-dimensions in the point of Anderson transition z=1 for all Dyson
symmetry classes. A non-trivial z is known only in two-dimensional systems described by theDirac equation
with randomvector-potential which belong to chiral symmetry classes [25–28]where the freezing transition is
observed.

In terms of the dynamical exponent z the leading power-law term in theChalker’s scaling for EThw  can
be rewritten as [28]:

K D z, 1 . 142( ) ( ) ( )w w mµ = -m-

In ourmodel we have:

K
E

E, . 15Th
2 Th( ) ( ) ( )w

w
w~ 

One can consider equation (15) as a particular case of expansion in E 1Th w  with the leading term exponent
1m = :

K c c
E1

... , 160 1
Th( ) ( )

⎡
⎣⎢

⎤
⎦⎥w

w w
= + +

inwhich the coefficient c0 is zero.Wewill see below that equations (12) and (16) hold for the RRG too.However
in this case the coefficient c 10 ~ is non-zero. Thus one can speak of the special universality class ofmodels with
a non-trivial z 1¹ and 1m = which the presentmodel belongs to together with the RRGmodel.

Figure 6.The overlap correlation function K N r r
r

2 2( ) ∣ ( )∣ ∣ ( )∣åw y y= á ñe e w+ . (a) For 1 2g< < functions K N1( )w g- for
differentN collapse into the same curve in coordinates E NTh

1w wµ g- (see also an inset to figure 7). (b) For 2g the collapse of
K N( )w occurs in coordinates N 2w g- .
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5. Spectral form-factor

Finally, we present the results of a rigorous calculation of the spectral form-factor C t t, e
n m

tE t Ei im n( ) å¢ = ¹
+ ¢ ,

with a set of eigenvalues En{ }ofH. To this endwe generalize to the case 1g > the results of [16]where C t t,( )¢
was derived forURPmodel equation (1)with 2g = using the Itzykson–Zuber formula of integration over
unitary group. Thefinal result (see details of the derivation in [20]) for

C t t t t S t t, 2 1E

2
Th( )( ) ( ) ( )⎡⎣ ⎤⎦pd¢ = + ¢ - ¢ - is given by equation (17)

S u
I u

u

u N
x x

x
I u x

1 e e
2

1

4

d

1
1 e , 17

u u N

x u N

2
1

3 2

3 2

5 2 2

0
1

3 2

2 2 2 2

2 2 2

( )
( )

( )

⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ò

k

k

p
k k

= +

-
+

+

p

g

- L -L

-
¥

- L

g

g

-

-

with themodifiedBessel function I x1( ), E NTh
2d= g- , N8 2 2k p= Lg- and p 0( )lL = . The unfolded

spectral form-factor R ( )t with t t1

2
( )d= - ¢t is given by R S N 2( ) ( )= g-t t . It follows from equation (17) that

for 2g > , R 1( ) t in the N  ¥ limit, which corresponds to completely uncorrelated energy levels and the
exact Poisson statistics. Another important feature of equation (17) is that R 0 1( ) = for all 1g > .

Infigure 7we plot the unfolded spectral form-factor R ( )t for the two phases: (i) the critical phase of theAL
transition at 2g = and (ii) the intermediate phase at 1 2g< < . One can see thatwhile at 2g = the function
R ( )t has a non-trivial N  ¥ limit, for 1 2g< < the limit coincideswith that of theGUE, except for the
point 0=t where there is a jump in R ( )t . This jump is a hallmark of the intermediate phase. To demonstrate
thismore clearly we blowup the region of small t by re-scaling the variable

ut t t N t t E
1

2

1

2
2

Th( ) ( )d= - ¢ = - ¢g- . Note that E NTh
2d= g- appears again as the characteristic scale

where the level repulsion is taken over by the level attraction infigure 7. In this new variable R uN S u2( ) ( )=g-

has a non-GUE N  ¥ limit:

S u uexp 2 , 1 2, 182( ) ( ) ( )p g= - L < <

which is shown in the inset tofigure 7. The trueGUE form factor is just identically zero in this limit. The
existence of the new scale ETh and a non-GUE N  ¥ limit equation (18) in the variable u t t E1

2 Th( )= - ¢
have been overlooked in [14].

Equation (18) holds for u E NTh
1> ~ g- , and S(u) is saturated at S 0 e N2 2 1( ) » p- L g-

for u N1< g- , which
corresponds to t t∣ ∣- ¢ smaller than the inverse total spectral band-width. For 1g = we have N 11 =g- . Thus
the value S 0 e 2 2( ) ~ p- L at 1g = is smaller than 1. So, in addition to the specific critical behavior of S(u) at

2g = (shown by the red curve infigure 7) one obtains yet another critical behavior of S(u) at the ergodic
transition 1g = (shownby the dashed yellow line infigure 7)which is stable in the N  ¥ limit and is
characterized by S 0 1( ) < . For 1g < , N1 g- is increasingwithN, making S S u0 max 0( ) ( )=  as N  ¥.
This is how theGUE limit S u 0( ) º is reached.

Figure 7.Unfolded spectral form-factor R ( )t for the RPmodel for two different cases: (i) 2g = and (ii) 1.5g = at
N 10 , 10 , 102 3 4= . The falling part corresponds to attraction of levels while the rising part corresponds to repulsion of levels. The
GUE form-factor is shown by the red dashed line. The Poisson distribution corresponds to R 1( ) =t . (inset)The spectral form-factor

in the variable u t t E1

2 Th( )= - ¢ with E NTh
2d= g- in the N  ¥ limit for different values of γ. There are five distinctly different

phases: insulator 2g > , AT critical 2g = , non-ergodic extended 1 2g< < , ET critical 1g = and ergodic 1g < .
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Note that the fact that ETh d affects the level number variance nvar( ) (n and nvar( ) are the average
number of levels and the level number variance in a certain spectral window, respectively) inwhich a new scale
E NTh

2d ~ g- appears for n at1 2g< < :

n
n n N

n N n N
var

ln , 1

, .
19

2

2
( ) ( )

⎧⎨⎩=
~ g

g

-

-
 

 

The level compressibilityχ [33, 34] is ill-defined in ourmodel because of the jump in the spectral form factor
R N( )∣ ¥t at 0=t . Formally it can take any value from 0c = to 1c = depending on the parameter n N 2 g- .
This is in contrast to other RMmodels withmultifractal eigenstates, e.g. PLBRMandMoshe–Neuberger–
Shapiromodels (see [34] and references therein)where the level compressibility is well defined and takes a
definite value 0 1c< < in the N  ¥ limit.

6. ComparisonwithRRGmodel

In the introductionwementioned a heuristic relation between the Andersonmodel on a hierarchical RRG and
the RPmodel which has no apparent hierarchical structure. It is instructive now to compare themain results of
this paper with the corresponding results for RRG.

First of all we recall (see figure 1 and the corresponding explanations in the text) that all themoments q2∣ ∣y ñ
in the localized and the AT critical phases of ourmodel have exactly the same q-dependence as in the
corresponding phases of the RRG. The N - and g- dependence of themoments is also very similar (see figure 5
withfigure 8) to the correspondingN andW-dependences for the randomwave functions obtained by the exact
diagonalization of the Andersonmodel onRRGwith the branching number K 2 and= N 2000 16000= - .
However, there is an important difference: we found only one point of changing the sign of C N1 onRRGwhich
corresponds to the knownpoint of the AL transition atW» 17.5.

Infigure 9we demonstrate that in the case of RRG the scaling of the Thouless energywith the system size
follows the same equation (12) as for the present RPmodel and is different from the standardChalker’s scaling.
The falling part of K Eat Th( )w w  can be described by the unified expansion equation (16) both for RRG and
ourmodel, albeit the coefficient c0 is zero for the presentmodel and is non-zero for RRG. It is important that for
RRG the data for properly re-scaled F y N K yNz z( ) ( )= - - at different N collapse on one same scaling curve
F y F yW( ) ( )º that, however, depends onW , as well as the exponent z D1 2= - (see inset offigure 9). This is
very different from the usual scaling K N F N N N,a z

c( ) ( )w w= in the vicinity of a single critical point
W Wc= where the exponents a zand are determined by the property of this critical point and not by the
distance W Wc∣ ∣- from this point which determines only the correlation volume N W Wc c(∣ ∣)- . In our
opinion, this implies that there is a line of critical points atW Wc< which determine the behavior of the system at
least in a parametrically large interval of sizes N N Nc2 c  , with the second characteristic size
scale N Nc2 c .

Our conclusion is that the localized andAT critical states are very similar for ourmodel andRRG. The
extended states shownon-ergodicity in a broad interval of Wandg and are characterized by the Thouless
energywhich in bothmodels ismuch larger than themean level spacing.However, the existence or non-
existence of the ergodic transition ismore subtle and depends on tiny features of themodel. It exists in our

Figure 8.The support set dimensionD1 and the global curvature C N1 as the function of disorder strengthW extracted for the RRG
model as infigure 5. No ergodic transition is detected by changing of sign of the global curvature. This is consistentwith the statement
[8] that the entire extended phase is non-ergodic.
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model andmost probably does not exist onRRGwith the branching numberK=2.Nonetheless our study
largely confirms expectation on the similarity between the RRG andRPmodels. This allows us to speak on the
special class ofmodels with the explicit (RRG) or hidden (RP) hierarchical structure.
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