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Abstract

Motivated by the problem of many-body localization and the recent numerical results for the level and
eigenfunction statistics on the random regular graphs, a generalization of the Rosenzweig—Porter
random matrix model is suggested that possesses two transitions. One of them is the Anderson
localization transition from the localized to the extended states. The other one is the ergodic transition
from the extended non-ergodic (multifractal) states to the extended ergodic states. We confirm the
existence of both transitions by computing the two-level spectral correlation function, the spectrum of
multifractality f (o) and the wave function overlap which consistently demonstrate these two
transitions.

1. Introduction

Motivated by the problem of many-body (MB) Localization [ 1] and the applicability of the Boltzmann’s statistics
in interacting disordered media [2], there was recently a revival of interest to the Anderson localization (AL)
problem on hierarchical lattices such as the Bethe lattice (BL) or the random regular graph (RRG). Due to
hierarchical structure of the Fock space connected by the two-body interaction, statistics of random wave
functions in such models is an important playground for MB localization. In particular, the non-ergodic
extended phase on disordered hierarchical lattices could model a breakdown of conventional Boltzmann
statistics in interacting MB systems and an emergence of a phase of a ‘bad metal’ [3] or unconventional fluid
phases [4] in systems of interacting particles.

However, even for the one-particle AL existence of such a phase in a finite interval of disorder strengths is a
highly non-trivial issue.

According to earlier studies [5, 6] there is only one transition in such models at a disorder strength W = W,
which is the AL transition (AT) that separates the localized and ergodic extended states. However, recent
numerical studies [7] of level statistics on RRG seem to indicate on the second transition at W = Wgp < Wir
which is identified as the transition between the ergodic and non-ergodic extended states (ET). Subsequent
studies [8, 9] raise doubts about the existence of the second transition on RRG. Numerical results of [8, 9]
indicate on the non-ergodic states on RRG in a wide range of disorder strengths down to very low disorder
W =5 < Wyt & 17.5, whilein [9] it is demonstrated how an apparent non-ergodic behavior for the
intermediate matrix sizes N in Levy random matrix (RM) ensemble evolves into the ergodic one atlarger N’s.
Complexity of RRG and the controversy associated with existence of the ergodic transition at W = Wy
necessitate a search for a simpler model in which such a transition may occur.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Inspired by the success of Wigner—Dyson RM theory [10] which predictions are relevant in such seemingly
different fields of physics as nuclear physics and nano- and mesoscipic physics, our goal is to search for a RM
model that would be able to give a simple and universal description of all the three phases: good metal, MB
insulator and ‘bad metal’, which are relevant in the problem of MB localization. An important heuristic
argument to construct such a model is that RRG with disordered on-site energies ; is essentially a two-step
disorder ensemble. The disorder of the first level is the structural disorder due to the random structure of RRG
where each of N sites of the graph is connected with the fixed number K + 1 of other sites in a random manner.
An ensemble of tight-binding models on such graphs with deterministic on-site energies ¢; and hopping
integrals is believed to be equivalent to the Gaussian RM ensemble [11]. The disorder of the second level is
produced by randomization of ¢; fluctuating independently around zero with the distribution function p ().
For numerical calculations this distribution is often taken in the form p(¢) = (W /2 — |e|)/ W, with 0 (x)
being the Heaviside step function.

One can expect that the following RM ensemble (the Rosenzweig—Porter (RP) ensemble [12]) is a close
relative of RRG with on-site energy ¢; disorder. Itis an ensemble of N x Nrandom Hermitian matrices which
entries H,,,,, with n > m are independent random Gaussian numbers, real for orthogonal RP model (3 = 1) and
complex for the unitary RP model (3 = 2), fluctuating around zero with the variance (|H,,,, [*) = (8/2)c. The
diagonal elements have the same properties with the variance (H?,) = 1. The case ¢ = 1 corresponds to the
Gaussian orthogonal (GOE) or Gaussian unitary (GUE) ensembles and represents the structural disorder in
RRG. The additional g;-disorder in RRG corresponds to o < 1. One should also take into account that in order
to significantly deviate from the GOE or GUE behavior, the ratio (| H,,, |*)/(H,.,) must be proportional to some
negative power of the matrix size N, as the number of the off-diagonal terms is ~N times larger. Thus we
consider the model:

(H2) =1,  (|Hywm %) = (B/2)0 = X/N7, )

where A ~ O(N?) and yis the main control parameter of the problem.

One can estimate the strength of disorder required for the AL transition as corresponding to the typical
fluctuation of diagonal matrix element equal to the typical off-diagonal matrix element times the coordination
number K. For the coordination number K ~ N (each site is connected with any other one) this results in
JoN ~ 1,0r ¢ ~ 1/N?2 However, this estimation does not take into account a random, sign-alternating
character of the off-diagonal matrix elements. It is likely that for sign-alternating hopping there is another
relevant coordination number ~+/N with the critical scaling o ~ 1/N. As we show below it corresponds to the
ergodic transition. For technical reasons the most significant progress in the analytical studies of the model was
achieved [13, 14, 16] for the ‘unitary’ RP (URP) ensemble. The conclusion was that at v = 2 the spectral form-
factor (two-level correlation function) is neither of the Wigner—Dyson nor of the Poisson form [13, 15, 16]
which is typical for the AL transition point. In contrast, at v = 1the level statistics was found to be GUE [14].
The papers [13, 14, 16] have a status of classic keynote papers in the field.

The Dyson ideas of the Brownian motion of energy levels first applied to the RP ensemble in [13] were
developed in the series of works [17, 18]. It was shown that the possible transitions in the level statistics are
associated with the fixed points of parameter A = o (N)/[6 (N)]* o< N~7/[§ (N)]?, where § (N) is the mean
level spacing. Then assuming 6 (N) o 1/N established in [16] for 7y > 1one obtains the transition point at
~ = 2.1f, however, the Wigner—Dyson semicircle level density is assumed with § (N) o 1/ VN, then the
transition would occur at v = 1[17]. Unfortunately, 6 (N) « 1/ JN onlyaty = 0.For 0 < v < 1the
following result is valid (see e.g. equation (170) in [ 19]) for the mean density of states p (¢) = /2S5 — &2 / (7S),
where § = Zn<|Hnm [*) oc N'=7. Thus we obtain § (N) = 1/(Np(0)) ox N-1+1/2for 0 < v < land
8(N) oc 1/N fory > 1,resultingin A oc Nfor0 < v < land A o< N2~ for v > 1. We conclude that the
only fixed point of A is possible at y = 2, and no transition at oy = 1 can be obtained from the results of [17, 18].

In this paper by a more sophisticated analysis of the two-level correlations and the eigenfunctions statistics
we show that the above extension of the RP model indeed contains not one but two transitions. One of them at
~ = 2 corresponds to the transition from the extended to the localized states. However, the extended states
emergingat y < 2 are not ergodic: their support set contains infinitely many N2 sites in the N — oo limit,
which, however, is a zero fraction of all sites, since D; < 1. Such non-ergodic extended states on RRG are
recently discussed in [8]. With further decrease of ythe second transition at v = 1 happens which is a transition
from the non-ergodic extended states to the ergodic extended states with D; = 1similar to the eigenstates of
the GOE.

We prove this statement in three steps. As the first step we use the perturbative arguments to compute the
statistics of wave function amplitude |1 (1, ) |* in a certain observation point r,. We obtain a drastic change of the
character of this distribution at y = 1and v = 2 which is summarized in figure 1. This result is fully confirmed
by a numerical diagonalization of the Hamiltonian (see figures 2—4). It is also confirmed by the numerical
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Figure 1. The spectrum of fractal dimensions: (a) the singular spectrum in the localized phase at y > 2. It corresponds to the same
exponent 7, as for f (o) shown by the dashed line. (b) The triangular spectrum at the localization transition point v = 2.(c) The
spectrum with the gap amin = 2 — -y for the intermediate phase 1 < < 2;(d) the ergodic transition at oy = 1 corresponds to the
collapse of Apay — Qmin = 2(1 — 7).
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Figure 2. Spectrum of fractal dimension for 7y = 3 obtained numerically as in [8]. The linear part of the extrapolated f () (solid red
line) is exactly as expected f («) (black dashed line). The curves for f (c, N) for increasing N are shown by black, blue, green and
orange lines from bottom to top. The top of the singular peak at « = 0 shown by the points of the corresponding color, extrapolates
to zero as expected (see inset); (inset) the 1 /In N extrapolation of the singular peak value fpeak =f(0, N).
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Figure 3. Spectrum of fractal dimension in the intermediate phase for v = 1.5 obtained numerically as in [8]. All notations are the
same as in figure 2. Line colors correspond to the same values of N as in figure 2. Expected f () is shown by a black dashed line.




10P Publishing

NewJ. Phys. 17 (2015) 122002 B Fast Track Communications

1.0
[ f@N) y=0.75
0.8 N= 210 oI5
L Red: Rectified GOE N=213
0.6 T
r 5 InP(y)
0.4 L 0 y=Inx ~
L st
Lo—10f
021 . .
F -20 -15 -10 -5 0
0 O L n n n L n n n L n n n L
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Figure 4. Finite-N spectrum of fractal dimensions f (a, N) for v = 0.75and N = 21°-2'5 obtained by the rectification procedure of
[8]. For comparison we also present f (o, N) (shown by a red line) for the Porter—Thomas distribution of wave function amplitudes
in the GOE obtained by the same procedure at N = 2'5. Italmost coincides with the (violette) curve for f (a, N) computed at the
same N = 2'° for our model with v = 0.75. In the inset: In P (x) versus In x for the same v = 0.75 and system sizes as in the main
plot. The corresponding curve for GOE is shown in red. All the curves are almost indistinguishable.
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Figure 5. The support set dimension D; () and the global curvature G,/ () extracted from the fit

(xInx)= (1 —D)InN + Cy + G/n N~1versus . The dashed line is the prediction for D,, equation (9); (inset) the average
(x In x) versus In N for yfrom 0.75 (bottom) to 2.25 (top) with steps 0.25. It is related with the Shannon entropy

7Zr|1[1 (M In|Y(r)* = In N — (x In x). The global curvature G /y changes sign at the transition points v = land vy = 2.

analysis of the moments of random wave functions which determine their Shannon entropy and the support set
dimension D, (see figure 5). Then we compute numerically the overlap of amplitudes for two different wave
functions with the energy difference wand find the scaling with N of the Thouless energy E1, ~ N2 which
exponent z changes abruptlyat ¥ = 1and v = 2 (see figure 6). Finally, we perform a rigorous calculation of the
spectral form-factor which also shows the transition at v = 1and y = 2 (see figure 7). In the last section we
compare the corresponding results for our model and for the RRG and demonstrate their similarity. It allows us
to unify both models in a special universality class of random hierarchical models which differs from the one
realized in localization transition points of two- and three-dimensional Anderson models. Further details
concerning this model can be found in [20].

2. Statistics of eigenfunction amplitudes
As the off-diagonal matrix elements in equation (1) are small, one can employ the perturbation theory for
computing the distribution function of the amplitudes x = N |t (r,) [. The first order perturbation theory

gives:

(00 ()| = [H P/ (How = Hu)'s 1= ), @

where the maximum of 1), (r) is supposed tobe at r = 1.

4



10P Publishing

New]. Phys. 17 (2015) 122002

P Fast Track Communications

The perturbative series converge absolutely if the typical off-diagonal matrix element | (Hy,y, )yp| ~ AN—/2
times the coordination number Nis much smaller than the typical difference of the diagonal matrix elements
| (Hun — Huym)iypl ~ W > 6 (N). Thus it converges absolutely for v > 2 irrespectively of the statistics of
diagonal matrix elements. For v < 2 the convergence of the series occurs only because of the random and
independently fluctuating signs of H,,,,,and (H,,, — H,,,,)- Although itis hard to prove such a convergence
rigorously, a plausible argument in its favor is that the effective coordination number of oscillatory
contributions is /N rather than N. The corresponding criterion of convergenceis A N~7/2 \/N < W which s
satisfiedat v > 1.

Consider the regular part of the characteristic function Q (€) = (e’ N1¥(o)F), For the Gaussian distribution
of matrix elements equation (1) we obtain Q (§) = Q(£No), where:

Q(() = e itr2 Erfc(q/—ig/z) ~1— —2(/x. 3)

The eigenfunction amplitude distribution function P (x) = f e i Q(C) % at x > No ~ O(N'77)
—00 TUINO
isdominated at v > 1bysmall { < 1. Thatis why itis only the expansion of equation (3) at small { what matters

for P(x) at v > 1. Thus we obtain for the regular part of the function P(x):
P = (V21) | (No) 2 /2302, 4)

There are two normalization conditions for P(x): the normalization of probability equation (5) and the
normalization of the wave function equation (6):

fx P(x)dx = 1, (5)
0

foo x P(x)dx = 1. (6)
0

Equation (5) imposes a cut-off xi, ~ N~0~Y to equation (4) at small x, while equation (6) determines the
upper cut-off x,,, ~ N7~ A caution, however, should be taken: by normalization Zi| P (1) P = 1the
amplitude | (r;)|*> < 1onanylattice site cannot exceed 1, and therefore x < N. One can see that the above
estimation for X, is valid only for v < 2 when N?7~! < N.For v > 2acorrect X,.,x = N.In order to
compensate for the deficiency of normalization in equation (6) one has to assume a singular part of
P(x) = P(x) + A 6 (x — N).One cansee thatfor v > 2 equation (6) is dominated by the singular term, and
A = N1 This corresponds to the strongly localized wave functions. The mechanism of emergence of the
singular term at the AL transition at v = 2 is somewhat similar to the Bose-condensation, where the singular
term also appears because of the deficiency of normalization of the Bose—Einstein distribution.

One can express the distribution function equation (4) through the spectrum of fractal dimensions [8, 21]:

f(@) = lim f(a, N) = lim ln[xNP(x)]/ln N, 7)
N—oo N—oo

wherea = 1 — Inx/In N or |4 (r,)? = N~% Using equations (4)—(7) one obtains:
f(Oé) = a/z +1-— A//Z) (amin <a< amax)- (8)

The upper cutoff a,,c = -y corresponds to the lower cutoff x,,;,,. The lower cutoff oy, depends on «. In the
localized region «y > 2, figure 1(a), oy, = 0. Atthe AL transition point v = 2 the function f («) has the same
triangular shape as at W = Wy on RRG, figure 1(b). In the region of the extended non-ergodic states

1 < 7y < 2,figure 1(c), iy = 2 — 7 > 0.Itisremarkable thatin the entire region 1 < = < 2 the symmetry
[21,22]f (1 + x) = f (1 — x) + x holds. Finally, at v = 1 the two limits vy, and aupax collapse in one point
o = 1 which marks the transition point to the ergodic state, figure 1(d).

Note that f (a) for v > 2 (see figure 1(a)) has a singular peak at « = 0 which corresponds to the singular
term N~'6 (x — N) in P(x). This singular f («) is notalimit of any convex function. However, one may easily see
that all the moments N (|7 [*1) ~ N~"have the same exponents 7, as for the ‘convex’ f (o) shown by the
dashed line in figure 1(2): f (o) = o/ for 0 < o < +.Suchatriangular f () with the slope smaller than 1/2
also holds in the localized phase on RRG [8].

The numerical calculation of f (o) which involve the rectification and extrapolation procedures described in
[8], fully confirms the above results. In figure 2 we present the results of this calculation for N = 2°~2'*and the
extrapolated f (o) (shown byasolid red line) for v = 3 which perfectly coincides with the prediction of our
perturbative analysis above. The similar coincidence was obtained for v = 1.5, while for v = 0.75 the
distribution function P(x) is practically indistinguishable from the Porter—Thomas distribution of the GOE.
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3. The support set dimension D,

By calculating the Legendre transform 7, [21] of f («) (shown in figure 1) one finds that in the intermediate
phase1 < vy < 2allfractal dimensions D, = 7,/(q — 1) for g > 1/2 are the same and equal to:

Dy=D=2-7v, (qg>1/2). )

Thus the support set of a typical wave function is a fractal containing NPt = N2~ 7 sites. As N2~7 — ooin the
limit N — oo itis an extended state. However the support set contains a fraction of all sites F = N'~7 tending
to zero in this limit. Thus it is a non-ergodic state.

In the localized phase v > 2 (including the critical point v = 2) we obtained:

¥q—1, q<1/vy
T(Q) = 0, q> 1/7- (10)

One can see that the fractal dimensions D, = 0 onlyat g > 1/, while they are non-zero and negative for

0 < g < 1/7.Thisis not exactly the behavior of the typical Anderson insulator where all fractal dimensions
with g > 0 are equal to zero. The behavior similar to equation (10) were found in certain two-dimensional
random Dirac models [25-28]. Such a quasi-localized phase is referred to as the frozen phase and the
corresponding transition is known as the freezing transition. In such a phase a typical wave function amplitude
has several sharp peaks separated by valleys where |1/ |? is not exponentially but only power-law small in N
(v |fyp > N~ 7inour case). The same behavior is also found for the RRG [8] with W > W,r.

In order to check the existence of the intermediate phase numerically we computed the average (x In x)
which is directly related with the Shannon entropy and the dimension D, of the support set of fractal wave
functions [23]. The results are shown in the inset of figure 5 where N span from 256 up to 32768. The
corresponding values of D extracted from the linear in In N fit are shown in figure 5 which are consistent with
the transitions at v = 2 and v = 1. The deviation from the expected D; = 2 — -y shown by a dashed line in
figure 5 is a finite-size effect. Indeed, the correlation volume N, close to the localization transition at y = 2 is
exponentially large N, oc e/12=71, This follows from equation (17) of section 5 where the Poisson limit is
reached only for N7=2 >> O(1)orIn N > In N, ~ 1/(y — 2). The similar exponential dependence
N, ~ e¢/NTW=W ofthe correlation volume was obtained on the BL [24]. For system sizes N < N, one should
see the properties of the critical point v = 2 where D; = 0. Thus in the vicinity of the transition point the
support set dimension extracted from the finite-size simulations should show a tendency towards smaller values
asin figure 5. However, for v < 1.5 at our systems sizes the support set dimension D; approaches the values
expectedin N — oo limit (dashed line in figure 5). This fact implies that for v < 1.5 wereached N > N and
thus it may serve as numerical evidence of convergence and existence of non-ergodic extended phase in the
thermodynamic limit.

Wealso introduced the 1 /N corrections to the fit with its magnitude G, ;5 being a measure of the global
curvature of the (x In x) versus In N dependence. Remarkably, C, /x changes sign at both the transition points
~v = land v = 2 (though the positive G, /v is very small for v > 2). We also checked that it changes sign at the
localization transition point of the 3D Anderson model (not shown). We believe that the changing of sign of
Ci /N is a convenient way to identify the points of both localization and ergodic transitions.

4. Overlap of different wave functions

Next we compute numerically the overlap of different wave functions K (w) = N Zr (e (D Pty (1) ).
Note that for the ergodic wave functions of GOE K (w) = 1isindependent of the energy difference w, as in this
case the overlap is always 100%. Our results presented in figure 6 show that for v > 1the overlap K (w) hasa
plateauat w < Ery, which is followed by a fast decrease K (w) o< 1/w? for w > Ery. The Thouless energy

Ery, [29] that separates the GOE-like behavior (plateau) from the system specific behavior (K (w) oc w™2),
depends on N as a power-law N~?. However, the scaling exponent zis different in all the three phases (see
figure 6). In the localized phase figure 6(b) we obtained z = -y/2 which corresponds to rare resonances when

w < |Hywm| ~ N77/2 In the extended non-ergodic phase figure 6(a) we found Er, ~ N'=7 ~ NP, where

8 = 1/(N p(0))is the mean level spacing. This corresponds to all N sites in the support set being in resonance
with each other. The corresponding N states produced by linear combinations of basis states localized on
resonant sites form a mini-band of levels of the width E1y, ~ § NP. Clearly, the states inside such a mini-band
should have the GOE-like correlations. On the contrary, the states separated by the energy distance w > Ery
should belong to different support sets which poorly overlap with each other. At the ergodic transitionat y = 1
and in the entire extended ergodic state at v < 1we obtain Ety, ~ O(N?), and the plateau extends to entire

6
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Figure 6. The overlap correlation function K (w) = Nzr (19 (") P |90 (1) ). (@) For 1 < 7 < 2 functions K (w)N'~" for
different N collapse into the same curve in coordinates w/Ey, o< w/N!~7 (seealso an inset to figure 7). (b) For v > 2 the collapse of
K (w)/N occurs in coordinates w/N~7/2,

spectral band-width. The emergence of such a plateau that survives the limit N — oo is a signature of the
ergodic state [30].

Surprisingly, the overlap function K (w) ~ N'=7/w? — 0as N — oo atany fixedwand v > 1. This
phenomenon of ‘repulsion of wave functions’ [30] is a peculiar feature of our model. The non-ergodic fractal
states at the localization transition points of the two and three- dimensional Anderson models of the Dyson
symmetry classes, as well as those of the power-law banded random matrices [21, 30, 31] show a different
behavior. In these models, the Thouless energy for fractal states is proportional to the mean level spacing
Erh ~ 6 and the behavior for w > Ey, (N) is described by the conventional Chalker’s scaling [32, 34, 35]:

K(Ww) ~ w1tDe, (11)
Only at a very large energy separations w of the order of the total spectral band-width, the ‘repulsion of wave
functions’ was observed [30].

A remarkable feature of the present model is that the Thouless energy in the region of extended non-ergodic
states is much larger than the mean level spacing:

Etmh~ 6 NP2 oc N72, (12)
One can interpret this relationship as a non-trivial dynamical scaling exponent
z=1-D, < 1. (13)

For non-interacting systems in two or three-dimensions in the point of Anderson transition z = 1 for all Dyson
symmetry classes. A non-trivial zis known only in two-dimensional systems described by the Dirac equation
with random vector-potential which belong to chiral symmetry classes [25—28] where the freezing transition is
observed.

In terms of the dynamical exponent z the leading power-law term in the Chalker’s scaling for w > Ery, can
be rewritten as [28]:

K(w) ox w™#, uw= (1 —Dy)/z (14)

In our model we have:

E
K@~ =3 @> En). (15)
One can consider equation (15) as a particular case of expansion in Et,/w < 1 with the leading term exponent
pn=1

K(w) = l[CO +q ﬂ + ... ], (16)
w w

in which the coefficient ¢, is zero. We will see below that equations (12) and (16) hold for the RRG too. However
in this case the coefficient ¢y ~ 1is non-zero. Thus one can speak of the special universality class of models with
anon-trivial z = 1and p = 1 which the present model belongs to together with the RRG model.
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Figure 7. Unfolded spectral form-factor R (t) for the RP model for two different cases: (i) ¥ = 2 and (i) 7y = 1.5at

N = 102, 10%, 10*. The falling part corresponds to attraction of levels while the rising part corresponds to repulsion of levels. The
GUE form-factor is shown by the red dashed line. The Poisson distribution corresponds to R (t) = 1. (inset) The spectral form-factor
in the variable u = %(t — t)Eqy with Er, = § N2~V inthe N — oo limit for different values of 7. There are five distinctly different
phases: insulator v > 2, AT critical 7y = 2, non-ergodic extended 1 < y < 2,ET critical ¥ = land ergodic v < 1.

5. Spectral form-factor

Finally, we present the results of a rigorous calculation of the spectral form-factor C (¢, t') = anm eitEntit'Ey
with a set of eigenvalues { E,, } of H. To this end we generalize to the case v > 1the results of [16] where C (¢, t')
was derived for URP model equation (1) with v = 2 using the Itzykson—Zuber formula of integration over

unitary group. The final result (see details of the derivation in [20]) for
Ct, 1) = 278 (t + ) [s (fee - ) - 1] is given by equation (17)

2[1(11143/2)

_ —27 Nu,—Nu?N7—2
Swy=1+e e 37

RU

NV ~/72f°oﬂ
47rl€u N 0 Jx+1 Il(
with the modified Bessel function I, (x), Er, = 6 N277, k = v87N7"2A2and A = \p(0). The unfolded
spectral form-factor R (t) with t = %(t — t")§isgivenby R(t) = S(tN2~7). It follows from equation (17) that
for v > 2, R(t) — linthe N — oo limit, which corresponds to completely uncorrelated energy levels and the
exact Poisson statistics. Another important feature of equation (17) is that R(0) = 1forall v > 1.

In figure 7 we plot the unfolded spectral form-factor R (t) for the two phases: (i) the critical phase of the AL
transition at 7y = 2 and (ii) the intermediate phaseat 1 < « < 2. One can see that while at v = 2 the function
R (t) hasanon-trivial N — oo limit, for 1 < « < 2 the limit coincides with that of the GUE, except for the
point t = 0 where thereisajump in R (t). This jump is a hallmark of the intermediate phase. To demonstrate
this more clearly we blow up the region of small t by re-scaling the variable

/<m3/2\/x—|——l)ex u2A2N72:|’ (17)

1 1 . ..
t=u = E(t —th6 N7 = E(t — t')Ey,. Note that Eyy, = §N2~7 appears again as the characteristic scale

where the level repulsion is taken over by the level attraction in figure 7. In this new variable R (uN7~2) = S(u)
hasanon-GUE N — oo limit:

S(u) = exp(—27Nu), 1<~vy<2, (18)

which is shown in the inset to figure 7. The true GUE form factor is just identically zero in this limit. The
existence of the new scale Et, and anon-GUE N — oo limit equation (18) in the variable u = %(t — tYEm,
have been overlooked in [14].

Equation (18) holds for u > Epy, ~ N7, and S(u) is saturated at S (0) ~ e 2™ N for y < N'~7,which
corresponds to |t — t'|smaller than the inverse total spectral band-width. For v = 1wehave N'~7 = 1. Thus
the value $(0) ~ e 27 ¥ at y = 1is smaller than 1. So, in addition to the specific critical behavior of S(x) at
~ = 2 (shown by the red curve in figure 7) one obtains yet another critical behavior of S(u) at the ergodic
transition v = 1(shown by the dashed yellow line in figure 7) which is stable in the N — oo limitand is
characterized by S(0) < 1.For v < 1, N'=7is increasing with N, making S (0) = max S(u) — 0as N — oo.
This is how the GUE limit S (u) = 0is reached.
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Figure 8. The support set dimension D, and the global curvature C, /y as the function of disorder strength W extracted for the RRG
model as in figure 5. No ergodic transition is detected by changing of sign of the global curvature. This is consistent with the statement
[8] that the entire extended phase is non-ergodic.

Note that the fact that Ety, >> § affects the level number variance var(n) (n and var(n) are the average
number of levels and the level number variance in a certain spectral window, respectively) in which a new scale
E,/6 ~ N> 7Vappearsfornatl < v < 2:

~ 2-y
var(n) = { Inn 1<n<N (19)

n, N?7" < n < N.

The level compressibility x [33, 34] is ill-defined in our model because of the jump in the spectral form factor
R(t)|n_ o0 at t = 0.Formally it can take any value from y = 0to Y = 1 depending on the parameter n/N2~7.
This is in contrast to other RM models with multifractal eigenstates, e.g. PLBRM and Moshe—Neuberger—
Shapiro models (see [34] and references therein) where the level compressibility is well defined and takes a
definitevalue 0 < y < linthe N — oo limit.

6. Comparison with RRG model

In the introduction we mentioned a heuristic relation between the Anderson model on a hierarchical RRG and
the RP model which has no apparent hierarchical structure. It is instructive now to compare the main results of
this paper with the corresponding results for RRG.

First of all we recall (see figure 1 and the corresponding explanations in the text) that all the moments | |*4)
in the localized and the AT critical phases of our model have exactly the same g-dependence as in the
corresponding phases of the RRG. The N - and - dependence of the moments is also very similar (see figure 5
with figure 8) to the corresponding N and W-dependences for the random wave functions obtained by the exact
diagonalization of the Anderson model on RRG with the branching number K = 2 and N = 2000 — 16000.
However, there is an important difference: we found only one point of changing the sign of G, /5 on RRG which
corresponds to the known point of the AL transition at W= 17.5.

In figure 9 we demonstrate that in the case of RRG the scaling of the Thouless energy with the system size
follows the same equation (12) as for the present RP model and is different from the standard Chalker’s scaling.
The falling part of K (w) at w > Ery, can be described by the unified expansion equation (16) both for RRG and
our model, albeit the coefficient ¢ is zero for the present model and is non-zero for RRG. It is important that for
RRG the data for properly re-scaled F (y) = N—?K (yN—?) atdifferent N collapse on one same scaling curve
F(y) = Fy (y) that, however, depends on W, as well as the exponent z = 1 — D, (see inset of figure 9). This is
very different from the usual scaling K (w) = N F(wN?, N./N) in the vicinity of a single critical point
W = W_ where the exponents a and z are determined by the property of this critical point and not by the
distance |W — W,|from this point which determines only the correlation volume N, (|W — W[|). In our
opinion, this implies that there is a line of critical pointsat W < W which determine the behavior of the system at
leastin a parametrically large interval of sizes N, > N > N, with the second characteristic size
scale N, > N..

Our conclusion is that the localized and AT critical states are very similar for our model and RRG. The
extended states show non-ergodicity in a broad interval of -y and W and are characterized by the Thouless
energy which in both models is much larger than the mean level spacing. However, the existence or non-
existence of the ergodic transition is more subtle and depends on tiny features of the model. It exists in our
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Figure 9. Collapse of data for K (w) for the Anderson model on RRG with the branching number K = 2and N = 2000, 4000, 8000,
16000, 32000. The collapse occurs in the coordinates K (w)/N'~P2 and w/N~'*P2 which corresponds to equations (12), (9) and
figure 6(a) in RP-ensemble. The values of fractal dimension D, extracted from the best collapse are in excellent agreement with the
corresponding values found from the moments (|1 |*) (see inset). Different disorder strengths W correspond to different collapse
curves and different dynamical exponents z in Et, = N~?. This excludes a possibility for an apparent non-ergodicity of extended
phase to be a finite-size effect reflecting properties of only one single critical disorder strength. The behavior of

K (w) ~ 1/w for w > Eq, = § NP2 corresponds to equation (16) with anon-zero ¢y ~ 1. (inset) The fractal dimensions

D, =1 — zasafunction of W found from the best collapse of data for K (w) (red circle) and from the scaling of moments

(v |*) with N (black circle).

model and most probably does not exist on RRG with the branching number K = 2. Nonetheless our study
largely confirms expectation on the similarity between the RRG and RP models. This allows us to speak on the
special class of models with the explicit (RRG) or hidden (RP) hierarchical structure.
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