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CORRIGENDUM

Corrigendum: Intertwined orders from symmetry projected
wavefunctions of repulsively interacting Fermi gases in optical
lattices (2015New J. Phys.17 103023)

ALeprévost1, O Juillet1 andRFrésard2

1 Laboratoire LPCCaen, ENSICAEN,Université de Caen, CNRS/IN2P3, Caen, France
2 Laboratoire CRISMAT,UMRCNRS-ENSICAEN6508, Caen, France

In footnote 3, on page 3, reference [37] should read [38]. In addition, typographical errors concerning the value
of the hole doping have been discovered infigure 13. They do not affect our conclusions. The corrected figure is:
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Figure 13. Same as infigure 13 but for a tube of L=32 plaquettes and different latticefillings.
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Abstract
Unconventional strongly correlated phases of the repulsive Fermi–Hubbardmodel, which could be
emulated by ultracold vapors loaded in optical lattices, are investigated bymeans of energy
minimizationswith quantumnumber projection before variation andwithout any assumed order
parameter. Using a tube-like geometry of optical plaquettes to realize the four-leg ladderHubbard
Hamiltonian, we highlight the intertwining of spin-, charge-, and pair-density waves embedded in a
uniform d-wave superfluid background. As the latticefilling increases, this phase emerges from
homogenous states exhibiting spiralmagnetism and evolves towards a doped antiferromagnet. A
concomitant enhancement of long-ranged d-wave pairing correlations is also found.Numerical tests
of the approach for two-dimensional clusters are carried out, too.

1. Introduction

Low-dimensional interacting quantummatter generally exhibits several phases at low energy that challenge the
ability to distinguish between competing orders and their intertwiningwithin one single correlated state [1].
Ultracold atoms provide an ideal playground to capture the essence of this problemby their potential to properly
emulate the fundamentalmechanisms of quantummany-body physics [2]. In the fermionic sector, the BCS-to-
BEC crossover [3, 4] and the question of Stoner’s itinerant ferromagnetism in repulsive gases [5, 6] have been
investigated. By trapping atomic vapors in optical lattices, amimic of ideal crystallinematter can also be achieved
[7]. By now, direct images of Fermi surfaces in the non-interacting limit [8] aswell as s-wave superfluidity near
unitary scattering [9] have been reported. Away from a Feshbach resonance, one is able to engineer almost
perfectly the celebratedHubbardmodel that had been first considered to describe themagnetism ofmetallic
systems [10].More generally, it aims to grasp the generic properties of spin-1/2 fermionsmoving on a lattice by
hopping between neighboring sites r r, ¢

 
and experiencing a local two-body interaction of strengthU. In

second-quantized form, theHamiltonian is given by

H t c c U n n , 1
r r

r r
r

r r
,
å å= - +

s
s s

á ¢ñ
¢  

 
 


 ˆ ˆ ˆ ˆ ˆ ( )†

with t the hopping integral. The fermionic creation, annihilation and density operators at site r

with spin label

,s Î  { }are c ,rsˆ
† crsˆ and n c c ,r r r=s s s  ˆ ˆ ˆ† respectively. In the attractive regime, spin-polarized systems could

exhibit several exotic superfluid phases [11]while the BCS-to-BEC transition has been addressed in the spin-
balancedmodel [12]. Otherwise, the on-site repulsion can stand for a perfectly screenedCoulomb interaction,
which received considerable renewed interest in two-dimensional (2D) geometry after Anderson’s proposal [13]
in connection to the spectacular properties of the high-Tc cuprates. However, there is still no consensus about
the adequacy of the positive-UHubbardmodel to capture the interplay between d-wave superconductivity,
magnetism and inhomogeneous phases of copper oxides. This challenging issue is evenmore relevant since the
latest condensed-matter experiments seem to be consistent with an intriguing scenario where spin, density and
long-ranged pair correlations develop cooperatively and are spatiallymodulated [14, 15].

OPEN ACCESS

RECEIVED

15 July 2015

ACCEPTED FOR PUBLICATION

17August 2015

PUBLISHED

12October 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/10/103023
mailto:juillet@lpccaen.in2p3.fr
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/10/103023&domain=pdf&date_stamp=2015-10-12
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/10/103023&domain=pdf&date_stamp=2015-10-12
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


The exact answer to the question of whether the 2D repulsiveHubbardmodel supports such intertwining of
multiple orders will probably be provided only through quantum emulators like ultracold atoms. Indeed, the
exact low energy properties ofHamiltonian equation (1) are only accessible in one dimension [16] and for the
infinitely connected Bethe lattice through the dynamicalmean-field theory [17]. In other cases, computational
methods to recover exact ground-states are generallymarred by exponential complexity [18, 19]. Nevertheless,
diagrammatic quantumMonteCarlo (QMC) simulations in continuous time have recently allowed for a
determination of the phase diagram atweak coupling for small to intermediate filling [20]. Even if ultracold
fermions in optical lattices already enabled us tomonitor theMott transition [21] and the development of
antiferromagnetic correlations at half-filling [22], the knowledge of the phase diagram at low temperature and
up to the strongly repulsive limit remains a long-term goal. In the spirit of the compelling example provided by
unitary Fermi gases [23], it is highly desirable to introduce theoretical approximate schemes that could guide
experiments and benefit from the progressive results of this emulation. In order to embrace the full complexity
of the repulsiveHubbardmodel, we set up in this paper a variational approachwhere the ground-state is
progressively reconstructed from an expansion on symmetry adaptedwavefunctions without any a priori input
on the relevant correlations. The key features of themethod are presented in section 2. Its reliability against other
numerical simulations is discussed in section 3. Finally, we proceed in section 4 to a systematic application in a
four-leg ladder geometrymotivated by recent experimental achievement of optical lattice plaquettes [24]. The
obtained quantumphase diagram in the latticefilling-interaction strength plane highlights the intertwining of
magnetic, density and pairing channels.

2.Methodology: the symmetry projectedHartree–Fock/Bogoliubov–deGennes scheme

Forweak coupling strengthU/t the determination of correlations that spontaneously emerge from theHubbard
Hamiltonian equation (1) can be achieved by identifying the channels inwhich instabilities develop through
self-consistent perturbative or functional renormalization groupmethods [25, 26]. In the strongly correlated
regime, the problem could ideally be tackledwithGutzwiller-typewavefunctions Pg GY = Fñˆ where the

operator P gn n1G r r r=  -    ( )ˆ ˆ ˆ ˆ partially suppresses the double occupancy entailed in amean-field state Fñ
through the real parameter g [27]. Yet, the energyminimization has to be performed in a variationalMonte
Carlo framework, rendering unrestricted calculations beyond reach.Hence, the reference wavefunctionmust be
parameterizedwith a limited number of relevant variables to describe specific phases, such as d-wave superfluids
[28], spirals [29] or stripes [30]. A step towards unbiasedGutzwiller calculations has been recently achieved [31].
However, orders exhibiting a periodicity larger than a few lattice spacings were forbidden, in contradiction to
approximateQMC results [32] revealing longwavelengthmodes in ground states.

Alternatively, correlations beyondmeanfield can be generated by restoring deliberately broken symmetries
through quantumnumber projection. In fact, theHamiltonian equation (1) is invariant under localU(1) gauge
transformations, lattice translations, spin rotations and discrete symmetries of the lattice. Thus, exact eigenstates
are characterized by the number of fermions N , the total pseudo-momentum K ,


the total spin S and its z-

component Sz, as well as an irreducible representation of the lattice symmetry group. All these labels will be
collectively denoted byΓ in the following. Their restoration on top of a singleHartree–Fock (HF)wavefunction
and before energyminimization recently yielded encouraging results for 2D clusters [33]. In particular, the exact
ground state of the four-sitemodel has been analytically recovered irrespective of the interaction strength [34].
The approach, and its analogwith several Slater determinants [35, 36], also proved capable to evidence interplay
between spin, charge and pair degrees of freedom. Potential superfluid features would nevertheless require a
very large number ofHartree–Fock (HF) basis states to be accurately captured, whereas Bogoliubov–deGennes
(BdG) ansätze are well known to bemore appropriate. Hence, we focus on amore entangled trial state YG

obtained through the coherent superposition of symmetry projectedHF andBdGwavefunctions:

P x x 2HF HF BdG BdGY = F + FG G( )ˆ ( )( ) ( ) ( ) ( )

Here, cn
NHF

1 n
F =  ñf= ˆ( ) † with c cr r r n,n

f= åf s s s  ˆ ˆ† † denotes themost general Slater determinant, which

mixes both spin components; n
N

n
BdG

1
2 r gF µ  ñ=

 ˆ( ) with c V c Un r r r n r r n, ,* *g = å +s s s s s    ˆ (ˆ ˆ )† is themost general

quasi-particle vacuum for a lattice with Nr
 sites. The Peierls–Yoccoz operator PGˆ [37] ensures the projection on

quantumnumbersΓ and, according to group theory,may be expressed as a specific linear combination of
(unitary) symmetry transformations Tĝ :

P T , 3
g

g g,ål=G Gˆ ˆ ( )

2
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where the coefficientsλΓ,g are proportional to the characters of the irreducible representation associatedwithΓ.
Noting that the transformed vectors Tg

a
g

aF = Fˆ( ) ( ) (with the label a specifying theHFor BdGpart) remain
mean-field states, the variational ansatz equation (2) appears as a superposition of numerous symmetry-related
wavefunctions. The projected energy E H=G YG

ˆ can also be further calculated according to:

E
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where  stands for the energy functional obtainedwithWick’s theorem.However, the normal contractions
c c ,r rs s¢ ¢ ˆ ˆ† c cr rs s¢ ¢

 ˆ ˆ† now correspond tomatrix elements between the non-orthogonal wavefunctions aF( ) and

,g
bF( ) divided by their overlap g

a b, ( ) [38, 39]3. They define the one-body (transition) densitymatrix elements
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which can be easily expressed in terms of quasi-particle states,

occupied and unoccupiedHFwavefunctions [40]. Stationarity ofEΓ equation (4)with respect to the amplitudes
x(HF) and x(BdG) immediately leads to a generalized eigenvalue equation:

x E 0. 5
b

b

g
g g

a b
g
a b

HF,BdG
,

, ,⎡⎣ ⎤⎦ å ål - =
Î

G G( ) ( )
{ }

( ) ( ) ( )

On the other hand, the energyminimizationwith respect to the spin-orbitals r n,f s andBogoliubov
coefficientsU ,r n,s Vr n,s ismuchmore involved andwill be detailed in a forthcoming paper [40]. It leads to a set of
self-consistent equations that reads

x 0 6
b

b a b

HF,BdG

,å =
Î

G ( )
{ }

( ) ( )

where thematrices a b,G
( ) are obtainedwith the help of theHF/BdGmean-fieldHamiltonian ij

1
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= ¶
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The systemof equations (5)–(7) allows us to determine the optimal symmetry-projectedHF/BdG
wavefunction through a numerical solution inwhich theHF andBdG states are parameterized according to the
Thouless theorem [38]. No initial assumption on the ground-state is required and themethod is thus able to
reveal the physics embedded in theHubbardmodel equation (1) at low energy.

3. Reliability of theHF/BdGapproach

Wenow address the accuracy of thewavefunction equation (2) against exact diagonalization (ED) for small
clusters orQMC simulations.We focus on autocorrelation functions r r, 

 ( ) ( ) and r
( ) in themagnetic,

charge and d-wave pairing channels, respectively:

r S S r n n r D D D D, ,
1

2
. 8r r r r0 0 0 0  d d= ⋅ = = +

Y Y YG G G

           ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† †

Here, S c cr r r
1

2 , ,t= ås s s s s s¢ ¢ ¢
   ˆ ˆ ˆ† is the spin operator at lattice node r


(with t the usual Paulimatrices);

n n nr r rd = å -s s s YG
  ( )ˆ ˆ ˆ corresponds to the local density fluctuation;

D f l c c c cr l r r l r r l

1

2
= å - +   + 


       ( )( )ˆ ˆ ˆ ˆ ˆ† † † † † denotes the singlet pair-field in the dx y2 2- channel where the form

factor f l
( ) is zero except for neighboring sites in the x- and y-directions: f u 1x =


( ) and f u 1y = -

( ) .

For a 4×4 cluster in the strong coupling regimeU/t=10, 12, theHF/BdG approximation reproduces
very accurately the EDdata, as shown infigures 1 and 2. The determination of exact ground states for larger cells
is still limited by theNP-hardness of QMC simulations, except for limited parameter spaceswhere the stochastic
sampling is protected from the notorious sign problem. This is the case at half-filling andwe present infigure 3 a

3
The overlap g

a b a
g
b, = F F|( ) ( ) ( ) is a determinant for twoHFwavefunctions (see [37]) and a pfaffian otherwise (see [39]).
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comparisonbetweenQMCandHF/BdGspin–spin correlations for a 6×6 cluster atU/t=4.No significant
difference is found, especially for the largest separationdistanceswhich are essential to indicating thedevelopment
of amagnetic order. In the hole-doped regimewith repulsive interactions, a sign-free stochastic sampling of the
ground state is certainly possible [41, 42], but it remains generally plaguedby systematic errorswhose origin is not
totally elucidated [43]. Nevertheless, it seems that thesenewQMCalgorithms can be accurate for closed-shell
fillings andmoderate interaction strengthswhen supplemented byquantumnumber projection [44, 45].
Superfluid correlations in the d-wave channel have been investigated in such a framework [45] andwe show in
figure 4 a representative result from [31] in the intermediate coupling regimeU/t=4 ona 8×8 cell. The
symmetry-adaptedHF/BdGwavefunction essentially yields the samepairing response r ,

( ) as shown infigure 4.
Besides, the variational energiesEΓ originating from equations (5)–(7) are summarized in table 1 for the

clusters and on-site interactions previously considered. The agreement is excellent for 4×4 cells with a relative
error smaller than 0.5%. The quality of the approximation is quite similar for their doped counterparts, even
when a negative next-nearest neighbor hopping t′ is introduced to induce frustration. As the size increases, the
HF/BdG energy becomes generally less accurate and the deterioration ismore pronounced if the cell is doped
and/or the couplingU/t is strong. Indeed, while the discrepancy for the half-filled 6×6 cluster atU/t=4 does

Figure 1.Momentumdependence of (a)magnetic S qm


( ) and (b) charge S qc


( ) structure factors for a 4×4 cluster with N 14=
atoms and periodic–periodic boundary conditions in the strongly correlated regimeU t 12.= Wavevectors q


are expressed in units

of 2.p A symmetry-projectedHF/BdGpair of states displays excellent agreement with exact diagonalization.

Figure 2.The d-wave pair correlation function r
( ) against separation distance r for a 4×4 lattice with N 10= atoms at strong on-

site interactionU t 10.= Periodic–periodic boundary conditions are imposed. ED results as well as a recent VMCcalculationwith a
symmetry restored BCS–Gutzwiller wavefunction (mVMC) are extracted fromfigure 8(b) of [31]. TheHF/BdG ansatz, with quantum
number projection before variation, correctly reproduces the shape andmagnitude of the exact pairing correlations.

4
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Figure 4.Distance dependence of the d-wave pair correlation function r
( ) for an 8×8 cell with N 50= atoms and periodic–

periodic boundary conditions atmoderate coupling strengthU t 4.= Sign-freeQMCcalculations (GQMC) andVMC results with
the BCS–Gutzwiller wavefunction (mVMC), both including symmetry restoration, are extracted fromfigure 10 of [31]. They are
compared to the pairing correlations r

( ) originating from the symmetry-adaptedHF/BdG scheme.

Table 1.Variational energies EG from the symmetry-projectedHF/BdGwavefunction compared to reference energies Eref. obtained either
with exact diagonalization (ED), quantumMonteCarlo (QMC) or variationalMonte Carlo (VMC) results. Periodic–periodic (PP) or peri-
odic–antiperiodic (PA) boundary conditions are specified. The symbol (*) indicates a simulation of the frustratedHubbardmodel with a
hopping amplitude t t0.3¢ = - between next-nearest neighbors. Exact diagonalization has been performedwithALPS [46]. QMCdata are
borrowed from [31, 43]. TheVMCcalculations correspond to the original (o) [28] or improved (i) [31, 49]BCS–Gutzwiller wavefunction.

Lattice U t Boundary N E tG E treference

4×4 4 PP 16 −13.618 −13.622 (ED)
4×4 (*) 8 PP 14 −12.439 −12.503 (ED)
4×4 10 PP 10 −16.876 −16.902 (ED)
4×4 12 PP 14 −9.957 −10.05 (ED)
6×6 4 PP 36 −30.724 −30.87(2) (QMC)
8×8 4 PP 50 −70.13 −71.417(4)(VMC, i)−72.51(5)(QMC)
8×8 10 PA 60 −32.164 −31.2 (VMC, o)
8×8 8 PA 62 −34.736 −36.04(VMC, i)

Figure 3. Spin–spin correlations r
( ) at half-filling for a periodic–periodic 6×6 cluster atU t 4= as obtained from the

symmetry restoredHF/BdG approach and comparedwithQMCcalculations incorporating quantumnumber projection (GQMC,
extracted fromfigure 2 of [43]).

5
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not exceed 0.5%,we only recover an energyEΓ very close to the one obtainedwith theGutzwiller projection on
top of an optimized BCSwavefunction [28] for 64-site cells and up toU/t= 12.

For the largest clusters, the above contradictory findings regarding the accuracy ofHF/BdG correlation
functions and energies could be reconciled provided that improving the ansatz equation (2) only has a noticeable
effect on the energy. This scenario has been validated by enlarging the variational subspace through the inclusion
of severalHF/BdGpairs of states via amodification of thewavefunction equation (2) according to:

P x 9
i

N

a

a a

1 HF,BdG

i i

HF BdG/⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å åY = FG G

= Î

( ) ( )ˆ ( )
{ }

where ,HFiF( ) BdGiF( ) denote the ithHF, BdGwavefunction in the basis, respectively. The full energy
minimizationwould then require the simultaneous variation of all HF andBdG states. This scheme is beyond
our computational facilities andwe therefore limit ourselves to a sequential process. In this case, HF/BdGpairs
are progressively introduced and each of them is optimizedwhile keeping unchanged the previous basis states.
The amplitudes x(a i) are obtained through a generalized eigenvalue problem similar to equation (5) and the set of
self-consistent equations determining the structure of the currentHF/BdGpair now reads

x 0. 10
j

i

b

b a b

1 HF,BdG

,
j

i jå å =
= Î

G
( ) ( ) ( )

{ }

As expected, such superpositions of several HF/BdGwavefunctions notably improve the energy. In the case
of a doped 6×6 cluster withN=24 atoms and a coupling strengthU/t=8, the symmetry-adaptedHF/BdG
approximationwith one pair of states leads to a variational energyEΓ=−34.93 t. The use offiftyHF/BdGpairs
allows us to reach an energy of−36.9 twhich is comparable to approximateQMCestimates depending on the
constraining state chosen to avoid the sign problem [47]. As shown infigure 5, such an improvement of the trial
wavefunction equation (2) inducesminimal changes in the spin, charge and d-wave pair correlation functions. A
similar behavior is also reported in the next section for larger cells at various fillings.

Manifestly, the ansatz equation (9) is not the onlyway to progressively reconstruct the exact ground state in a
subspace spanned by symmetry-projectedwavefunctions. As of now, such variational strategies have only been
developedwithHF states, whichwere either stochastically sampled [48] or optimized [35, 36]. The inclusion of
BdGwavefunctions in the basis through equation (9) yields a notable acceleration of the convergence towards
the ground-state. For instance, forN=56 interacting atoms on a 16×4 cell atU/t=12, EG is decreased to
−36.018 twith tenHF/BdGpairs while a subspace twice as large is required to reach a similar energywithout
BdG states [36]. Efficient energy loweringmay also be achieved by tuning the numbers of BdG andHF
wavefunctions in the basis and the order inwhich they are introduced as long as the optimization is reduced to a
sequential process. As an example, we consider the case ofN=62 atoms loaded in a 8×8 cell forU/t=8
through the ansatz

P x x . 11
i

N

i

N

1

BdG BdG

1

HF HFi i i i

BdG HF⎛
⎝⎜

⎞
⎠⎟å åY = F + FG G

= =

( ) ( ) ( ) ( )ˆ ( )

While the simpleHF/BdGstate equation (2) gives an energyEΓ=−34.736 tnot competitivewith extended
BCS–Gutzwiller schemes [49], the expansion equation (11) allowsus to reach a similar accuracywithEΓ=−35.961 t
(forNBdG=15 andNHF=35). Figure 6 reconfirms that thephysical content embedded in r ,

( ) r
( ) and r

( )
is unaffected against the enlargement of theHF/BdGsubspace.However, noticeable changes in the values of the
order parameters extracted from the long-rangedparts of the considered correlation functions are obtained.

Finally, the present calculations tend to support theHF/BdGapproximationwith full symmetry restoration
before variation as a reliable starting point to capture the essence of correlations entailed in the repulsive
Hubbardmodel, at least in themagnetic, density, and superfluid channels and formoderate size clusters.

4. Results: quantumphase diagramof ultracold fermions loaded in optical four-leg tubes

Though the symmetry-projectedHF/BdGwavefunction equation (2) displays a polynomial complexity with the
number Nr

 lattice sites, the numerical optimization remains challenging by requiring the simultaneous
determination of around N3 r

2 parameters. Unfortunately, very large square cells are needed to support both the
emergence of an off-diagonal long-ranged order linkedwith superfluidity and the development of the long-
wavelength collectivemodes expected in the density andmagnetic channels [32]. Therefore, we now restrict
ourselves to four-leg ladders which are natural steps in the dimensional crossover from the exactly solvable chain
to the unknown 2D limit. This geometry can, in fact, be indirectly emulatedwith ultracold vapors by loading the
atoms in optical tubes of plaquettes created from fourwells arranged in a square pattern, as depicted in figure 7.
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A three-dimensional array of such independent clusters has already been realized using an optical superlattice
configuration along two orthogonal directions [24]. By tuning the laser potentials’ parameters to allow for the
tunneling between adjacent planes, a collection of uncoupled identical tubes could be obtained.When unfolded,
each of them realizes theHubbardHamiltonian on a rectangular cell with four legs and periodic boundary
conditions along the y-direction.

The variational state equation (2), free of symmetry breaking, is now systematically determined to unravel
the relevant orders and their potential intertwining in the low-lying energy states.We focus on tubes of length
L�16 loadedwith slightly less than one atomper site, so that they are characterized by their hole-doping
δ=1−nwith n the latticefilling factor. Coupling strengths ranging from themoderateU/t=4 to the strongly
U/t=12 interacting regime are considered.We stress that all energyminimizations have been independently

Figure 5.Evolution of (a) spin, (b) density and (c) d-wave pairing autocorrelation functions with the number NHF BdG/ of symmetry
projectedHF/BdGwavefunctions spanning the variational subspace. Calculations are performed for N 24= atoms on a 6×6
cluster with an interaction strengthU t 8= .
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carried out, thereby allowing for crosschecking the results.Moreover, full periodic boundary conditions on
finite-size clusters could bias pairing correlations by disadvantaging the dx y2 2- channel: the corresponding
wavefunction inmomentum spacewould indeed be zero for a non-negligible fraction of wavevectors in the first
Brillouin zone. Therefore, antiperiodic boundary conditions along the legs (x-direction) are chosen. Their
influence is discussed in the appendix, where it ismore generally shown that a tube length L=16 is large enough
to ensure aweak sensitivity of the physical content to boundary conditions.

Wefirst address a systemof L=16 four-sites plaquettes with an on-site interactionU=12t and investigate
the hole-doping dependence of relevant correlation functions. Each optimization involves the determination of
around 104 complex parameters that enter the variational wavefunction equation (2), consisting of the coherent
superposition ofmore than 7 104symmetry relatedmean-field states. The resultingmagnetic S qm


( ) and density

S qc


( ) structure factors are shown infigure 8. They are defined according to

Figure 6. Spatial dependence of (a) spin–spin, (b) density–density and (c) d-wave pair–pair correlations obtained from the two
different symmetry-projectedwavefunction equations (2) and (11). N 62= interacting atoms in the regimeU t 8,= and loaded on
an 8×8 cell are considered.
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Figure 7.Representation of an optical superlattice configuration emulating the four-leg tubeHubbardmodel. (a) Scheme of the
potential V r r V kr V kr, sin sin 2i l i s i1 2 1

2 2 2= -å +=( ) ( ( ) ( )) generated in a horizontal r r1 2- plane by twomutually orthogonal pairs
of standing-wave laserfields, eachwith awavelength ratio of 2.With this setup, a four-site unit cell ABCD is created. (b)By
superimposing another optical lattice along the vertical direction, independent tubes of plaquettesmay be obtained. (c)When using
periodic boundary conditions along the y-direction in an x y- lattice, the L 4´ rectangular cluster is isomorphic to each optical
four-leg ladder displayed in (b).

Figure 8.Momentumdependence of (a)magnetic and (b) charge structure factors for hole dopings 1 4d < at large interaction
strengthU t 12.= A rectangular 16×4 cell is considered. Spin and density autocorrelation functions are calculated from the
numerical solution of the symmetry projectedHF/BdG scheme. All symmetries are restored through projections on the number of
atoms N , a zero total pseudo-momentum K ,


the spin-singlet subspace and the irreducible representation A1 of the C v2 lattice

symmetry group. The latter is physically associated to amany-bodywavefunction invariant under horizontal and verticalmirrors.
Note that these quantumnumber projection are also included during the energyminimization, except for the total spinwhere only its
z-component and parity are imposed. In both parts (a) and (b), 3D histograms in the front are obtainedwith oneHF/BdGpair of
states, while those in the back result from an enlarged subspace spanned by several sequentially optimizedHF/BdGwavefunctions
(five couples for N 50, 54, 58, 62= and ten couples for N 56.= The cases N 52, 60, 64= exhibit equivalent features regarding
the number ofHF/BdGpairs considered. They are not shownhere for clarity’s sake). Bothmagnetic and charge correlation functions
show little sensitivity to the improvement of the variational state.
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S q q r r S q q r r
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exp i , exp i . 12m

r
c

r

 å å= ⋅ = ⋅
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Pairing correlation functions r
( ) in the d-wave channel are displayed infigure 94.

Starting with δ≈16% (N=54), a coexistence of spin and charge density waves is clearly evidenced by a
peak in Sm and Sc on top of a broad background. The dominant wavevector q 3 4,m p p=

 ( ) in the spin–spin
correlations corresponds to an antiferromagnet with a staggeredmagnetization oscillating in amplitudewith a
period ofλm=8 lattice spacings in the x-direction. Similarly, the density–density correlation function reveals
inhomogeneities distributedwith a periodλc=4 along the x-axis in the variational ground state. Note that
these orders and their symmetry-related counterparts are necessarily superimposed to respect all invariances of
theHamiltonian. Furthermore, withλc even, the relationλm=2λc characterizes stripes at the boundaries of
antiferromagnetic domains separated by aπ phase shift. Their intertwiningwith d-wave superfluidity is
eventually proved by highlighting infigure 9(b) a non-zero average of the pairing correlation function r

( ) at
large separation distance r. The non-decaying tail observed for r>4 is consistent with the off-diagonal long-
ranged order that signs superfluidity. Besides, the 4-period small oscillations of r

( ) around its averaged value
indicate the existence of pairs at afinitemomentum equal to the charge-order wavevector. Such stripes with a d-
wave superfluidity spatiallymodulated in phasewith the density profile have also been proposed in recent

Figure 9.Dependence of the d-wave pair correlation function r
( ) against separation distance r for different numbers N of atoms at

strong couplingU t 12= [50]. In (b), note the oscillations at r 4> in the stripe-like states with a full charge period cl for N 54=
and half a period for N 58.= The samewavefunctions as forfigure 8 are used. Short and long-ranged parts of r

( ) are indicated by
open and full symbols, respectively. They are not affected by the improvement of the variational ansatz, as shown in the back of parts
(a), (b), and (c). As infigure 8, the cases N 52, 60, 64= are omitted for clarity.

4
The rapidly decaying one-particle contributions in the pairing correlation function r

( ) are discarded to avoid any spurious
contamination fromnon-interacting dressed atoms. Precisely, the quantity c c c c c c c cr r r r r r r r1 1 4 4 2 2 3 3 1 1 3 3 2 2 4 4-s s s s s s s sY Y Y YG G G G

       ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † is

subtracted for each termof the form c c c c ,r r r r1 1 2 2 3 3 4 4s s s s YG
   ˆ ˆ ˆ ˆ† † so that r

( ) vanishes in theU 0= limit.
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simulations [50, 51] of the t–JHamiltonian that approximates theHubbardmodel in the limitU/t→∞.
Superfluid domainwall states in four-leg ladders alsofind support fromdensity-matrix renormalization group
calculations [52] of the t–Jmodel, despite a possible contamination by Friedel oscillations stemming fromopen
boundary conditions [53].

Stripe-like states are robust against a decrease of the hole number as shown infigure 8 for the 16×4 cluster
considered here.However, the shift of the peaks in the structure factors Sm and Sc reflects a doubling of the
periodwhen crossing δ=1/8. In addition, pairing correlations at large distance are totally suppressed in the 8-
and 4-hole systems corresponding to the perfectlyfilled and half-filled 8-period vertical stripes, respectively (see
figure 9(c)). The spin and charge pattern associatedwith domainwalls separated by eight lattice spacings is also
realized forN=58. As forN=54, these stripes are neither filled nor half-filled and again the behavior of r

( )
at large distance is consistent with the development of a pair-density wave of periodλc.Whenmoving towards
the half-filling limit, antiferromagnetism no longer exhibits amplitudemodulation and a uniformdensity
profile is recovered. Finally, a pure d-wave off-diagonal long-ranged order is unambiguously supported as long
as such a background is dopedwith few holes (see figure 9(b) forN=62).

Another scenario emergeswhen considering an increase of theholedoping from δ≈16%.While peaks related
to charge-densitywaves disappear, incommensurate spin–spin correlations persist. At the same time, its associated
wavevector leaves the side of theBrillouin zone to its diagonal. Thenature of the underlying incommensurate
magnetic ordering is not unambiguously revealed by suchpeaks, as they are compatiblewithboth collinear spins or
spirals [29].Oneway to testwhether spins rotate on the lattice is to detect a non-decaying four-body correlation
functionbetween spin chirality vectorsV S S Sr r r u r ux y

=  ++ +
   
     ˆ ˆ ( ˆ ˆ ) as a functionof separationdistance. The

calculationof r V Vr0 = á ⋅ ñYG

   ( ) ˆ ˆ atU=12t for different densities is shown infigure 10.The long-ranged (r>4)
part systematically displays an oscillating behavior reflecting significant quantum fluctuations. Two regimes are
however clearly distinguished: spiral correlations averaged over large distances vanish in the striped and
antiferromagnetic states (N�54), while they are non-zero and positive at larger dopings. This signal
remains of small amplitude and thus rather characterizes a spiral ordering component embedded in a spin-
density wave (SDW). Note that despite this, pure spiral ground states are not expected in the large-U
Hubbard model considered here [54]. As shown in figure 9(a), the d-wave pairing correlation function in
the SDW/spiral state displays a complex behavior at large distance, yet free of a rapid decay to zero as was
found at half-filling or in the stripes at commensurate dopings. It can be viewed as the precursor of the d-
wave superfluidity that is better established for larger lattice fillings.

The energyminimizationwith the symmetry projectedHF/BdGwavefunction essentially exhibits all the
above features from the intermediate couplingU/t=6 to the strongly correlated regimeU/t=12. The results
are summarized in the quantumphase diagram shown infigure 11 for hole doping δ smaller than 1/4. The
stripe-like states are stabilized in the intermediate doping range and onceU/t exceeds a critical value. The latter

Figure 10. Spiral correlation function r
( ) averaged over large distances r 4> against the latticefilling forU t 12.= The same

wavefunctions as for figure 8 are used.However, performing the full spin projection for such a four-body observable is beyond reach.
We limit ourselves here to impose the z-component Sz and the spin-parity in addition to the restoration of all other symmetries. The
detailed behavior of r

( ) is shown in the inset for N 52= atoms.Note the small difference between full circles and stars that
correspond to one and fiveHF/BdGpair(s) of states, respectively.
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is suppressedwith decreasing δ. A similar feature has also been obtainedwith inhomogeneous dynamical
mean-field [55] and constrained-pathQMCapproaches [32]. In addition, the change of the charge period from
λc=4 toλc=8 takes place forU�10twhen crossing δ=1/8. Close to the half-filling limit, only
antiferromagnetic correlations persist, while stripesmelt for larger doping. Instead, incommensurate
antiferromagnetism in the formof coexisting spiral and spin-density waves is found. It develops along the x-
direction for intermediate interaction strengths (6�U/t�8) and tends towards the diagonal direction at large
U/t. Furthermore, the spiral component appears for couplings that increase with the doping. Finally, long-
ranged d-wave pairing correlations are systematically evidenced, except when all the holes are perfectly trapped
into filled or half-filled vertical stripes. These trends are altered at smallerU/t. In particular, forU/t=4, charge
inhomogeneities aremissing and a clear tendency towardsmagnetic ordering is obtained for doping δ<16%
only, in agreementwith the latest diagrammaticQMCcalculations [20]. Eventually, the superfluid signal is
rather erratic, though this non-monotonicity proved stable against changes of boundary conditions to
investigate the influence of shell effects, commonly invoked at small coupling in the attractive regime [56].
Further details are presented in the appendix.

The symmetry-projectedHF/BdGphase diagram (figure 11) in four-leg ladder geometry confirms the
emergence of correlations proposed separately for the hole-doped 2DHubbardmodel in the spin, charge and
pairing channels.While the scenario of a competition between the resulting orders is usually retained, our
findings rather point towards a subtle entanglement of the associated degrees of freedom. It induces thewide
variety of strongly correlated states observed infigure 11 as a function of the hole doping. Their robustness
requires persistence of the observed correlationswhen refining the grid of available densities by increasing the
tube length L. Some representative examples are shown infigures 12 and 13 for differentU/t regimes to explore
additional parts of the phase diagramoriginally obtained at L=16. Either close to the half-filling point or on
both sides of the 1/8 hole doping, no qualitatively new features appear in the spin and density autocorrelation
functions. Not even the stripe period changes, when relevant. Besides, long-ranged pair correlations are still
evidencedwhether or not they are intertwinedwith antiferromagnetism or stripes. In the latter case, the increase
of L allows us to grasp the oscillations of r

( )which clearlymatch the charge periodλc. It is remarkable that

Figure 11.Phase diagram arising from the symmetry-projectedHF/BdG approach for repulsively interacting cold fermions loaded in
optical four-leg tubes of length L 16.= Colors refer to differentmagnetic (charge) orders revealed by a peak at thewavevector qm


(qc

 )
in the Fourier transformof the spin (density) autocorrelation function. For each hole doping d and interaction strengthU t , the
d-wave superfluidity symbol ismademore visible when the pair correlation function exhibits off-diagonal long-ranged order.
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only the quantumnumber projection on top of themean-field likewavefunctions and before variation remains
efficient to generate such unconventional superfluid signals for clusters with a hundred lattice sites. Indeed, we
recall that the standard BdG approach fails to stabilize superfluid states for the repulsiveHubbardmodel.
However, the value of the long-ranged tail in r

( ) tends to decrease as compared to the length L=16 that was
previously considered.While this feature could indicate the establishment of a quasi-long-ranged order in the
d-wave pairing channel, the benchmark comparisons presented in section 3 point towards a deterioration of the
symmetry-projectedHF/BdG approximation to the ground-state when enlarging the cluster. So, one cannot
exclude the need to significantly increase the dimension of theHF/BdG subspace to recover the accuracy on
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correlation functions reached for L=16. Such calculations are not currently feasible andwould then reveal a
reminiscence of the intrinsic exponential complexitymet by unbiasedmethods.

Figure 14. Sensitivity on boundary conditions along the leg direction of correlation functions in the density, spin and superfluid
channels as obtained from the symmetry projectedHF/BdG ansatz in a tube geometry of length L 16.= The relevant charge S qc


( )

andmagnetic S qm


( ) structure factors are shown on the upper andmiddle parts, respectively, while the d-wave pair correlation
function r

( ) is plotted at the bottom. The variational energies withAPBC (PBC) are E t t63.445 63.592= - -G ( ) and
E t t60.885 61.297= - -G ( )for N 56= and N 58,= respectively.
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5. Conclusion

Summarizing, we have highlighted insights into generic features of repulsively interacting ultracold fermions
loaded in optical four-leg ladders through their description by theHubbardmodel. First, we have shown that
such systems are ideal candidates to realize a whole sequence ofmagnetic phases thatmay be tailored by varying
thefilling of the lattice or the ratio t/U. Above all, the long since proposed scenario of d-wave superfluidity
emerging from a dopedMott insulator has been put forward thanks to energyminimizations with no physical
assumption on the relevant orders. Nevertheless, such intertwining ofmagnetic and pair degrees of freedom
manifests itself under various facets depending onwhether antiferromagnetic correlations grow from
homogenous collinear spins, spatiallymodulated spin-density waves or spirals. It also involves the charge degree
of freedom as stripes that either destroy or support superfluidity, depending on their filling. These features have
been extracted from symmetry-adapted states originating fromquantumnumber projection that also induce
correlations beyondmean field. Furthermore,magnetic, charge and superfluid correlations remain robust
against improvements of this wavefunction. The quantumphase diagram in the four-leg tube geometry
therefore provides an additional reference for the cross-validation between theory and quantum emulation from
experiments that is necessary to face the exponential complexity of low-dimensional quantummatter.

Acknowledgments

Wewarmly thankTKopp andDBraak for stimulating discussions. This researchwas partly supported by the
ANR through theGeCoDoproject (ANR-11-JS08-001-01).We are grateful to theRégion Basse-Normandie and
theMinistère de la Recherche forfinancial support.

Figure 15.Dependence on the boundary conditions of several observables for a ladder of L 16= four-site plaquettes at two different
filling factors. The long-ranged pairing correlations r

( ) and the energy EG are lowered by PBC in the stripe phase N 58,= while
this is not the case in the doped antiferromagnet N 62.= The location qc


(qm

 ) and the values of the peaks in the charge (spin)
structure factors Sc Sm( ) are not affected by the boundary conditions.
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Appendix

Wediscuss here the influence of the boundary conditions along the tube direction in the symmetry projected
HF/BdGapproximation to the ground state of theHubbardmodel in a four-leg geometry. Emphasis is put on
the energyEΓ, themagnetic S qm


( ) and charge S qc


( ) structure factor equations (12), (8), as well as on the

correlation function r
( ) in the d-wave pairing sector equation (8). The results obtainedwith periodic (PBC)

and antiperiodic (APBC) boundary conditions are compared through several representative cases for a length
tube L= 16.

Wefirst focus on two neighboring fillingsN=56 andN=58 in the intermediate regimeU/t=4 to probe
the robustness of the non-monotonicity of the d-wave superfluid response reported in the phase diagram
figure 11 for this interaction. Indeed, themagnetic and density correlations reported infigure 14 reveal only
marginal differences between PBC andAPBC. In both cases, a spin-density wavewith themagnetic period
λm=16 is found. Regarding the pairing correlations in the d-wave channel, no sensitivity to the tube
boundaries appears when r

( ) is essentially zero at large distance, as shown in figure 14 forN=56.On the
other hand, precursors of d-wave superfluid states aremore subject to influence by the choice of PBCorAPBC,
as anticipated in section 4. This is clearly the case for N 58= where PBCmaintains a long-ranged plateau in

r ,
( ) butwith a reduced value.Whenmoving to the strongly correlated regime, the superfluid behavior displays

a similar effect against the change of boundary conditions as long as it is intertwinedwith longwavelength
modes in themagnetic and/or density channels. For instance, in the paired-stripe state obtained for N 58=
atoms atU t 10= and shown infigure 15(a), r

( )with PBCorAPBC exhibits an oscillating shape at large r
though PBC significantly reduces the amplitude aswell as the averaged value. On the other hand, when
considering N 62= atoms that realize a lightly hole doped antiferromagneticMott insulator, r

( ) is no longer
affectedwhether PBCorAPBC are selected (seefigure 15(b)).

Finally, the present symmetry-projectedHF/BdG calculations suggest that themain results summarized in
the phase diagram (figure 11) are not significantly contaminated fromboundary condition effects.
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